vm_pageout.c revision 132220
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 *	The proverbial page-out daemon.
71 */
72
73#include <sys/cdefs.h>
74__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 132220 2004-07-15 18:00:43Z alc $");
75
76#include "opt_vm.h"
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/kernel.h>
80#include <sys/eventhandler.h>
81#include <sys/lock.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/kthread.h>
85#include <sys/ktr.h>
86#include <sys/resourcevar.h>
87#include <sys/sched.h>
88#include <sys/signalvar.h>
89#include <sys/vnode.h>
90#include <sys/vmmeter.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/vm_object.h>
97#include <vm/vm_page.h>
98#include <vm/vm_map.h>
99#include <vm/vm_pageout.h>
100#include <vm/vm_pager.h>
101#include <vm/swap_pager.h>
102#include <vm/vm_extern.h>
103#include <vm/uma.h>
104
105#include <machine/mutex.h>
106
107/*
108 * System initialization
109 */
110
111/* the kernel process "vm_pageout"*/
112static void vm_pageout(void);
113static int vm_pageout_clean(vm_page_t);
114static void vm_pageout_pmap_collect(void);
115static void vm_pageout_scan(int pass);
116
117struct proc *pageproc;
118
119static struct kproc_desc page_kp = {
120	"pagedaemon",
121	vm_pageout,
122	&pageproc
123};
124SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
125
126#if !defined(NO_SWAPPING)
127/* the kernel process "vm_daemon"*/
128static void vm_daemon(void);
129static struct	proc *vmproc;
130
131static struct kproc_desc vm_kp = {
132	"vmdaemon",
133	vm_daemon,
134	&vmproc
135};
136SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
137#endif
138
139
140int vm_pages_needed;		/* Event on which pageout daemon sleeps */
141int vm_pageout_deficit;		/* Estimated number of pages deficit */
142int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
143
144#if !defined(NO_SWAPPING)
145static int vm_pageout_req_swapout;	/* XXX */
146static int vm_daemon_needed;
147#endif
148static int vm_max_launder = 32;
149static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
150static int vm_pageout_full_stats_interval = 0;
151static int vm_pageout_algorithm=0;
152static int defer_swap_pageouts=0;
153static int disable_swap_pageouts=0;
154
155#if defined(NO_SWAPPING)
156static int vm_swap_enabled=0;
157static int vm_swap_idle_enabled=0;
158#else
159static int vm_swap_enabled=1;
160static int vm_swap_idle_enabled=0;
161#endif
162
163SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
164	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
165
166SYSCTL_INT(_vm, OID_AUTO, max_launder,
167	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
170	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
173	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
176	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
177
178#if defined(NO_SWAPPING)
179SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180	CTLFLAG_RD, &vm_swap_enabled, 0, "");
181SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
183#else
184SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
186SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188#endif
189
190SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
191	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
192
193SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
194	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
195
196static int pageout_lock_miss;
197SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
198	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
199
200#define VM_PAGEOUT_PAGE_COUNT 16
201int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
202
203int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
204
205#if !defined(NO_SWAPPING)
206static void vm_pageout_map_deactivate_pages(vm_map_t, long);
207static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
208static void vm_req_vmdaemon(void);
209#endif
210static void vm_pageout_page_stats(void);
211
212/*
213 * vm_pageout_clean:
214 *
215 * Clean the page and remove it from the laundry.
216 *
217 * We set the busy bit to cause potential page faults on this page to
218 * block.  Note the careful timing, however, the busy bit isn't set till
219 * late and we cannot do anything that will mess with the page.
220 */
221static int
222vm_pageout_clean(m)
223	vm_page_t m;
224{
225	vm_object_t object;
226	vm_page_t mc[2*vm_pageout_page_count];
227	int pageout_count;
228	int ib, is, page_base;
229	vm_pindex_t pindex = m->pindex;
230
231	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
232	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
233
234	/*
235	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
236	 * with the new swapper, but we could have serious problems paging
237	 * out other object types if there is insufficient memory.
238	 *
239	 * Unfortunately, checking free memory here is far too late, so the
240	 * check has been moved up a procedural level.
241	 */
242
243	/*
244	 * Don't mess with the page if it's busy, held, or special
245	 */
246	if ((m->hold_count != 0) ||
247	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
248		return 0;
249	}
250
251	mc[vm_pageout_page_count] = m;
252	pageout_count = 1;
253	page_base = vm_pageout_page_count;
254	ib = 1;
255	is = 1;
256
257	/*
258	 * Scan object for clusterable pages.
259	 *
260	 * We can cluster ONLY if: ->> the page is NOT
261	 * clean, wired, busy, held, or mapped into a
262	 * buffer, and one of the following:
263	 * 1) The page is inactive, or a seldom used
264	 *    active page.
265	 * -or-
266	 * 2) we force the issue.
267	 *
268	 * During heavy mmap/modification loads the pageout
269	 * daemon can really fragment the underlying file
270	 * due to flushing pages out of order and not trying
271	 * align the clusters (which leave sporatic out-of-order
272	 * holes).  To solve this problem we do the reverse scan
273	 * first and attempt to align our cluster, then do a
274	 * forward scan if room remains.
275	 */
276	object = m->object;
277more:
278	while (ib && pageout_count < vm_pageout_page_count) {
279		vm_page_t p;
280
281		if (ib > pindex) {
282			ib = 0;
283			break;
284		}
285
286		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
287			ib = 0;
288			break;
289		}
290		if (((p->queue - p->pc) == PQ_CACHE) ||
291		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
292			ib = 0;
293			break;
294		}
295		vm_page_test_dirty(p);
296		if ((p->dirty & p->valid) == 0 ||
297		    p->queue != PQ_INACTIVE ||
298		    p->wire_count != 0 ||	/* may be held by buf cache */
299		    p->hold_count != 0) {	/* may be undergoing I/O */
300			ib = 0;
301			break;
302		}
303		mc[--page_base] = p;
304		++pageout_count;
305		++ib;
306		/*
307		 * alignment boundry, stop here and switch directions.  Do
308		 * not clear ib.
309		 */
310		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
311			break;
312	}
313
314	while (pageout_count < vm_pageout_page_count &&
315	    pindex + is < object->size) {
316		vm_page_t p;
317
318		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
319			break;
320		if (((p->queue - p->pc) == PQ_CACHE) ||
321		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
322			break;
323		}
324		vm_page_test_dirty(p);
325		if ((p->dirty & p->valid) == 0 ||
326		    p->queue != PQ_INACTIVE ||
327		    p->wire_count != 0 ||	/* may be held by buf cache */
328		    p->hold_count != 0) {	/* may be undergoing I/O */
329			break;
330		}
331		mc[page_base + pageout_count] = p;
332		++pageout_count;
333		++is;
334	}
335
336	/*
337	 * If we exhausted our forward scan, continue with the reverse scan
338	 * when possible, even past a page boundry.  This catches boundry
339	 * conditions.
340	 */
341	if (ib && pageout_count < vm_pageout_page_count)
342		goto more;
343
344	/*
345	 * we allow reads during pageouts...
346	 */
347	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
348}
349
350/*
351 * vm_pageout_flush() - launder the given pages
352 *
353 *	The given pages are laundered.  Note that we setup for the start of
354 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
355 *	reference count all in here rather then in the parent.  If we want
356 *	the parent to do more sophisticated things we may have to change
357 *	the ordering.
358 */
359int
360vm_pageout_flush(vm_page_t *mc, int count, int flags)
361{
362	vm_object_t object = mc[0]->object;
363	int pageout_status[count];
364	int numpagedout = 0;
365	int i;
366
367	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
368	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
369	/*
370	 * Initiate I/O.  Bump the vm_page_t->busy counter and
371	 * mark the pages read-only.
372	 *
373	 * We do not have to fixup the clean/dirty bits here... we can
374	 * allow the pager to do it after the I/O completes.
375	 *
376	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
377	 * edge case with file fragments.
378	 */
379	for (i = 0; i < count; i++) {
380		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
381		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
382			mc[i], i, count));
383		vm_page_io_start(mc[i]);
384		pmap_page_protect(mc[i], VM_PROT_READ);
385	}
386	vm_page_unlock_queues();
387	vm_object_pip_add(object, count);
388
389	vm_pager_put_pages(object, mc, count,
390	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
391	    pageout_status);
392
393	vm_page_lock_queues();
394	for (i = 0; i < count; i++) {
395		vm_page_t mt = mc[i];
396
397		KASSERT((mt->flags & PG_WRITEABLE) == 0,
398		    ("vm_pageout_flush: page %p is not write protected", mt));
399		switch (pageout_status[i]) {
400		case VM_PAGER_OK:
401		case VM_PAGER_PEND:
402			numpagedout++;
403			break;
404		case VM_PAGER_BAD:
405			/*
406			 * Page outside of range of object. Right now we
407			 * essentially lose the changes by pretending it
408			 * worked.
409			 */
410			pmap_clear_modify(mt);
411			vm_page_undirty(mt);
412			break;
413		case VM_PAGER_ERROR:
414		case VM_PAGER_FAIL:
415			/*
416			 * If page couldn't be paged out, then reactivate the
417			 * page so it doesn't clog the inactive list.  (We
418			 * will try paging out it again later).
419			 */
420			vm_page_activate(mt);
421			break;
422		case VM_PAGER_AGAIN:
423			break;
424		}
425
426		/*
427		 * If the operation is still going, leave the page busy to
428		 * block all other accesses. Also, leave the paging in
429		 * progress indicator set so that we don't attempt an object
430		 * collapse.
431		 */
432		if (pageout_status[i] != VM_PAGER_PEND) {
433			vm_object_pip_wakeup(object);
434			vm_page_io_finish(mt);
435			if (vm_page_count_severe())
436				vm_page_try_to_cache(mt);
437		}
438	}
439	return numpagedout;
440}
441
442#if !defined(NO_SWAPPING)
443/*
444 *	vm_pageout_object_deactivate_pages
445 *
446 *	deactivate enough pages to satisfy the inactive target
447 *	requirements or if vm_page_proc_limit is set, then
448 *	deactivate all of the pages in the object and its
449 *	backing_objects.
450 *
451 *	The object and map must be locked.
452 */
453static void
454vm_pageout_object_deactivate_pages(pmap, first_object, desired)
455	pmap_t pmap;
456	vm_object_t first_object;
457	long desired;
458{
459	vm_object_t backing_object, object;
460	vm_page_t p, next;
461	int actcount, rcount, remove_mode;
462
463	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
464	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
465		return;
466	for (object = first_object;; object = backing_object) {
467		if (pmap_resident_count(pmap) <= desired)
468			goto unlock_return;
469		if (object->paging_in_progress)
470			goto unlock_return;
471
472		remove_mode = 0;
473		if (object->shadow_count > 1)
474			remove_mode = 1;
475		/*
476		 * scan the objects entire memory queue
477		 */
478		rcount = object->resident_page_count;
479		p = TAILQ_FIRST(&object->memq);
480		vm_page_lock_queues();
481		while (p && (rcount-- > 0)) {
482			if (pmap_resident_count(pmap) <= desired) {
483				vm_page_unlock_queues();
484				goto unlock_return;
485			}
486			next = TAILQ_NEXT(p, listq);
487			cnt.v_pdpages++;
488			if (p->wire_count != 0 ||
489			    p->hold_count != 0 ||
490			    p->busy != 0 ||
491			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
492			    !pmap_page_exists_quick(pmap, p)) {
493				p = next;
494				continue;
495			}
496			actcount = pmap_ts_referenced(p);
497			if (actcount) {
498				vm_page_flag_set(p, PG_REFERENCED);
499			} else if (p->flags & PG_REFERENCED) {
500				actcount = 1;
501			}
502			if ((p->queue != PQ_ACTIVE) &&
503				(p->flags & PG_REFERENCED)) {
504				vm_page_activate(p);
505				p->act_count += actcount;
506				vm_page_flag_clear(p, PG_REFERENCED);
507			} else if (p->queue == PQ_ACTIVE) {
508				if ((p->flags & PG_REFERENCED) == 0) {
509					p->act_count -= min(p->act_count, ACT_DECLINE);
510					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
511						pmap_remove_all(p);
512						vm_page_deactivate(p);
513					} else {
514						vm_pageq_requeue(p);
515					}
516				} else {
517					vm_page_activate(p);
518					vm_page_flag_clear(p, PG_REFERENCED);
519					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
520						p->act_count += ACT_ADVANCE;
521					vm_pageq_requeue(p);
522				}
523			} else if (p->queue == PQ_INACTIVE) {
524				pmap_remove_all(p);
525			}
526			p = next;
527		}
528		vm_page_unlock_queues();
529		if ((backing_object = object->backing_object) == NULL)
530			goto unlock_return;
531		VM_OBJECT_LOCK(backing_object);
532		if (object != first_object)
533			VM_OBJECT_UNLOCK(object);
534	}
535unlock_return:
536	if (object != first_object)
537		VM_OBJECT_UNLOCK(object);
538}
539
540/*
541 * deactivate some number of pages in a map, try to do it fairly, but
542 * that is really hard to do.
543 */
544static void
545vm_pageout_map_deactivate_pages(map, desired)
546	vm_map_t map;
547	long desired;
548{
549	vm_map_entry_t tmpe;
550	vm_object_t obj, bigobj;
551	int nothingwired;
552
553	if (!vm_map_trylock(map))
554		return;
555
556	bigobj = NULL;
557	nothingwired = TRUE;
558
559	/*
560	 * first, search out the biggest object, and try to free pages from
561	 * that.
562	 */
563	tmpe = map->header.next;
564	while (tmpe != &map->header) {
565		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
566			obj = tmpe->object.vm_object;
567			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
568				if (obj->shadow_count <= 1 &&
569				    (bigobj == NULL ||
570				     bigobj->resident_page_count < obj->resident_page_count)) {
571					if (bigobj != NULL)
572						VM_OBJECT_UNLOCK(bigobj);
573					bigobj = obj;
574				} else
575					VM_OBJECT_UNLOCK(obj);
576			}
577		}
578		if (tmpe->wired_count > 0)
579			nothingwired = FALSE;
580		tmpe = tmpe->next;
581	}
582
583	if (bigobj != NULL) {
584		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
585		VM_OBJECT_UNLOCK(bigobj);
586	}
587	/*
588	 * Next, hunt around for other pages to deactivate.  We actually
589	 * do this search sort of wrong -- .text first is not the best idea.
590	 */
591	tmpe = map->header.next;
592	while (tmpe != &map->header) {
593		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
594			break;
595		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
596			obj = tmpe->object.vm_object;
597			if (obj != NULL) {
598				VM_OBJECT_LOCK(obj);
599				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
600				VM_OBJECT_UNLOCK(obj);
601			}
602		}
603		tmpe = tmpe->next;
604	}
605
606	/*
607	 * Remove all mappings if a process is swapped out, this will free page
608	 * table pages.
609	 */
610	if (desired == 0 && nothingwired) {
611		GIANT_REQUIRED;
612		pmap_remove(vm_map_pmap(map), vm_map_min(map),
613		    vm_map_max(map));
614	}
615	vm_map_unlock(map);
616}
617#endif		/* !defined(NO_SWAPPING) */
618
619/*
620 * This routine is very drastic, but can save the system
621 * in a pinch.
622 */
623static void
624vm_pageout_pmap_collect(void)
625{
626	int i;
627	vm_page_t m;
628	static int warningdone;
629
630	if (pmap_pagedaemon_waken == 0)
631		return;
632	if (warningdone < 5) {
633		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
634		warningdone++;
635	}
636	vm_page_lock_queues();
637	for (i = 0; i < vm_page_array_size; i++) {
638		m = &vm_page_array[i];
639		if (m->wire_count || m->hold_count || m->busy ||
640		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
641			continue;
642		pmap_remove_all(m);
643	}
644	vm_page_unlock_queues();
645	pmap_pagedaemon_waken = 0;
646}
647
648/*
649 *	vm_pageout_scan does the dirty work for the pageout daemon.
650 */
651static void
652vm_pageout_scan(int pass)
653{
654	vm_page_t m, next;
655	struct vm_page marker;
656	int page_shortage, maxscan, pcount;
657	int addl_page_shortage, addl_page_shortage_init;
658	struct proc *p, *bigproc;
659	struct thread *td;
660	vm_offset_t size, bigsize;
661	vm_object_t object;
662	int actcount;
663	int vnodes_skipped = 0;
664	int maxlaunder;
665
666	mtx_lock(&Giant);
667	/*
668	 * Decrease registered cache sizes.
669	 */
670	EVENTHANDLER_INVOKE(vm_lowmem, 0);
671	/*
672	 * We do this explicitly after the caches have been drained above.
673	 */
674	uma_reclaim();
675	/*
676	 * Do whatever cleanup that the pmap code can.
677	 */
678	vm_pageout_pmap_collect();
679
680	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
681
682	/*
683	 * Calculate the number of pages we want to either free or move
684	 * to the cache.
685	 */
686	page_shortage = vm_paging_target() + addl_page_shortage_init;
687
688	/*
689	 * Initialize our marker
690	 */
691	bzero(&marker, sizeof(marker));
692	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
693	marker.queue = PQ_INACTIVE;
694	marker.wire_count = 1;
695
696	/*
697	 * Start scanning the inactive queue for pages we can move to the
698	 * cache or free.  The scan will stop when the target is reached or
699	 * we have scanned the entire inactive queue.  Note that m->act_count
700	 * is not used to form decisions for the inactive queue, only for the
701	 * active queue.
702	 *
703	 * maxlaunder limits the number of dirty pages we flush per scan.
704	 * For most systems a smaller value (16 or 32) is more robust under
705	 * extreme memory and disk pressure because any unnecessary writes
706	 * to disk can result in extreme performance degredation.  However,
707	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
708	 * used) will die horribly with limited laundering.  If the pageout
709	 * daemon cannot clean enough pages in the first pass, we let it go
710	 * all out in succeeding passes.
711	 */
712	if ((maxlaunder = vm_max_launder) <= 1)
713		maxlaunder = 1;
714	if (pass)
715		maxlaunder = 10000;
716	vm_page_lock_queues();
717rescan0:
718	addl_page_shortage = addl_page_shortage_init;
719	maxscan = cnt.v_inactive_count;
720
721	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
722	     m != NULL && maxscan-- > 0 && page_shortage > 0;
723	     m = next) {
724
725		cnt.v_pdpages++;
726
727		if (m->queue != PQ_INACTIVE) {
728			goto rescan0;
729		}
730
731		next = TAILQ_NEXT(m, pageq);
732
733		/*
734		 * skip marker pages
735		 */
736		if (m->flags & PG_MARKER)
737			continue;
738
739		/*
740		 * A held page may be undergoing I/O, so skip it.
741		 */
742		if (m->hold_count) {
743			vm_pageq_requeue(m);
744			addl_page_shortage++;
745			continue;
746		}
747		/*
748		 * Don't mess with busy pages, keep in the front of the
749		 * queue, most likely are being paged out.
750		 */
751		if (m->busy || (m->flags & PG_BUSY)) {
752			addl_page_shortage++;
753			continue;
754		}
755
756		/*
757		 * If the object is not being used, we ignore previous
758		 * references.
759		 */
760		if (m->object->ref_count == 0) {
761			vm_page_flag_clear(m, PG_REFERENCED);
762			pmap_clear_reference(m);
763
764		/*
765		 * Otherwise, if the page has been referenced while in the
766		 * inactive queue, we bump the "activation count" upwards,
767		 * making it less likely that the page will be added back to
768		 * the inactive queue prematurely again.  Here we check the
769		 * page tables (or emulated bits, if any), given the upper
770		 * level VM system not knowing anything about existing
771		 * references.
772		 */
773		} else if (((m->flags & PG_REFERENCED) == 0) &&
774			(actcount = pmap_ts_referenced(m))) {
775			vm_page_activate(m);
776			m->act_count += (actcount + ACT_ADVANCE);
777			continue;
778		}
779
780		/*
781		 * If the upper level VM system knows about any page
782		 * references, we activate the page.  We also set the
783		 * "activation count" higher than normal so that we will less
784		 * likely place pages back onto the inactive queue again.
785		 */
786		if ((m->flags & PG_REFERENCED) != 0) {
787			vm_page_flag_clear(m, PG_REFERENCED);
788			actcount = pmap_ts_referenced(m);
789			vm_page_activate(m);
790			m->act_count += (actcount + ACT_ADVANCE + 1);
791			continue;
792		}
793
794		/*
795		 * If the upper level VM system doesn't know anything about
796		 * the page being dirty, we have to check for it again.  As
797		 * far as the VM code knows, any partially dirty pages are
798		 * fully dirty.
799		 */
800		if (m->dirty == 0 && !pmap_is_modified(m)) {
801			/*
802			 * Avoid a race condition: Unless write access is
803			 * removed from the page, another processor could
804			 * modify it before all access is removed by the call
805			 * to vm_page_cache() below.  If vm_page_cache() finds
806			 * that the page has been modified when it removes all
807			 * access, it panics because it cannot cache dirty
808			 * pages.  In principle, we could eliminate just write
809			 * access here rather than all access.  In the expected
810			 * case, when there are no last instant modifications
811			 * to the page, removing all access will be cheaper
812			 * overall.
813			 */
814			if ((m->flags & PG_WRITEABLE) != 0)
815				pmap_remove_all(m);
816		} else {
817			vm_page_dirty(m);
818		}
819
820		object = m->object;
821		if (!VM_OBJECT_TRYLOCK(object))
822			continue;
823		if (m->valid == 0) {
824			/*
825			 * Invalid pages can be easily freed
826			 */
827			vm_page_busy(m);
828			pmap_remove_all(m);
829			vm_page_free(m);
830			cnt.v_dfree++;
831			--page_shortage;
832		} else if (m->dirty == 0) {
833			/*
834			 * Clean pages can be placed onto the cache queue.
835			 * This effectively frees them.
836			 */
837			vm_page_cache(m);
838			--page_shortage;
839		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
840			/*
841			 * Dirty pages need to be paged out, but flushing
842			 * a page is extremely expensive verses freeing
843			 * a clean page.  Rather then artificially limiting
844			 * the number of pages we can flush, we instead give
845			 * dirty pages extra priority on the inactive queue
846			 * by forcing them to be cycled through the queue
847			 * twice before being flushed, after which the
848			 * (now clean) page will cycle through once more
849			 * before being freed.  This significantly extends
850			 * the thrash point for a heavily loaded machine.
851			 */
852			vm_page_flag_set(m, PG_WINATCFLS);
853			vm_pageq_requeue(m);
854		} else if (maxlaunder > 0) {
855			/*
856			 * We always want to try to flush some dirty pages if
857			 * we encounter them, to keep the system stable.
858			 * Normally this number is small, but under extreme
859			 * pressure where there are insufficient clean pages
860			 * on the inactive queue, we may have to go all out.
861			 */
862			int swap_pageouts_ok;
863			struct vnode *vp = NULL;
864			struct mount *mp;
865
866			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
867				swap_pageouts_ok = 1;
868			} else {
869				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
870				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
871				vm_page_count_min());
872
873			}
874
875			/*
876			 * We don't bother paging objects that are "dead".
877			 * Those objects are in a "rundown" state.
878			 */
879			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
880				VM_OBJECT_UNLOCK(object);
881				vm_pageq_requeue(m);
882				continue;
883			}
884
885			/*
886			 * The object is already known NOT to be dead.   It
887			 * is possible for the vget() to block the whole
888			 * pageout daemon, but the new low-memory handling
889			 * code should prevent it.
890			 *
891			 * The previous code skipped locked vnodes and, worse,
892			 * reordered pages in the queue.  This results in
893			 * completely non-deterministic operation and, on a
894			 * busy system, can lead to extremely non-optimal
895			 * pageouts.  For example, it can cause clean pages
896			 * to be freed and dirty pages to be moved to the end
897			 * of the queue.  Since dirty pages are also moved to
898			 * the end of the queue once-cleaned, this gives
899			 * way too large a weighting to defering the freeing
900			 * of dirty pages.
901			 *
902			 * We can't wait forever for the vnode lock, we might
903			 * deadlock due to a vn_read() getting stuck in
904			 * vm_wait while holding this vnode.  We skip the
905			 * vnode if we can't get it in a reasonable amount
906			 * of time.
907			 */
908			if (object->type == OBJT_VNODE) {
909				vp = object->handle;
910				mp = NULL;
911				if (vp->v_type == VREG)
912					vn_start_write(vp, &mp, V_NOWAIT);
913				vm_page_unlock_queues();
914				VI_LOCK(vp);
915				VM_OBJECT_UNLOCK(object);
916				if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
917				    LK_TIMELOCK, curthread)) {
918					VM_OBJECT_LOCK(object);
919					vm_page_lock_queues();
920					++pageout_lock_miss;
921					vn_finished_write(mp);
922					if (object->flags & OBJ_MIGHTBEDIRTY)
923						vnodes_skipped++;
924					VM_OBJECT_UNLOCK(object);
925					continue;
926				}
927				VM_OBJECT_LOCK(object);
928				vm_page_lock_queues();
929				/*
930				 * The page might have been moved to another
931				 * queue during potential blocking in vget()
932				 * above.  The page might have been freed and
933				 * reused for another vnode.  The object might
934				 * have been reused for another vnode.
935				 */
936				if (m->queue != PQ_INACTIVE ||
937				    m->object != object ||
938				    object->handle != vp) {
939					if (object->flags & OBJ_MIGHTBEDIRTY)
940						vnodes_skipped++;
941					goto unlock_and_continue;
942				}
943
944				/*
945				 * The page may have been busied during the
946				 * blocking in vput();  We don't move the
947				 * page back onto the end of the queue so that
948				 * statistics are more correct if we don't.
949				 */
950				if (m->busy || (m->flags & PG_BUSY)) {
951					goto unlock_and_continue;
952				}
953
954				/*
955				 * If the page has become held it might
956				 * be undergoing I/O, so skip it
957				 */
958				if (m->hold_count) {
959					vm_pageq_requeue(m);
960					if (object->flags & OBJ_MIGHTBEDIRTY)
961						vnodes_skipped++;
962					goto unlock_and_continue;
963				}
964			}
965
966			/*
967			 * If a page is dirty, then it is either being washed
968			 * (but not yet cleaned) or it is still in the
969			 * laundry.  If it is still in the laundry, then we
970			 * start the cleaning operation.
971			 *
972			 * This operation may cluster, invalidating the 'next'
973			 * pointer.  To prevent an inordinate number of
974			 * restarts we use our marker to remember our place.
975			 *
976			 * decrement page_shortage on success to account for
977			 * the (future) cleaned page.  Otherwise we could wind
978			 * up laundering or cleaning too many pages.
979			 */
980			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
981			if (vm_pageout_clean(m) != 0) {
982				--page_shortage;
983				--maxlaunder;
984			}
985			next = TAILQ_NEXT(&marker, pageq);
986			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
987unlock_and_continue:
988			VM_OBJECT_UNLOCK(object);
989			if (vp) {
990				vm_page_unlock_queues();
991				vput(vp);
992				vn_finished_write(mp);
993				vm_page_lock_queues();
994			}
995			continue;
996		}
997		VM_OBJECT_UNLOCK(object);
998	}
999
1000	/*
1001	 * Compute the number of pages we want to try to move from the
1002	 * active queue to the inactive queue.
1003	 */
1004	page_shortage = vm_paging_target() +
1005		cnt.v_inactive_target - cnt.v_inactive_count;
1006	page_shortage += addl_page_shortage;
1007
1008	/*
1009	 * Scan the active queue for things we can deactivate. We nominally
1010	 * track the per-page activity counter and use it to locate
1011	 * deactivation candidates.
1012	 */
1013	pcount = cnt.v_active_count;
1014	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1015
1016	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1017
1018		KASSERT(m->queue == PQ_ACTIVE,
1019		    ("vm_pageout_scan: page %p isn't active", m));
1020
1021		next = TAILQ_NEXT(m, pageq);
1022		/*
1023		 * Don't deactivate pages that are busy.
1024		 */
1025		if ((m->busy != 0) ||
1026		    (m->flags & PG_BUSY) ||
1027		    (m->hold_count != 0)) {
1028			vm_pageq_requeue(m);
1029			m = next;
1030			continue;
1031		}
1032
1033		/*
1034		 * The count for pagedaemon pages is done after checking the
1035		 * page for eligibility...
1036		 */
1037		cnt.v_pdpages++;
1038
1039		/*
1040		 * Check to see "how much" the page has been used.
1041		 */
1042		actcount = 0;
1043		if (m->object->ref_count != 0) {
1044			if (m->flags & PG_REFERENCED) {
1045				actcount += 1;
1046			}
1047			actcount += pmap_ts_referenced(m);
1048			if (actcount) {
1049				m->act_count += ACT_ADVANCE + actcount;
1050				if (m->act_count > ACT_MAX)
1051					m->act_count = ACT_MAX;
1052			}
1053		}
1054
1055		/*
1056		 * Since we have "tested" this bit, we need to clear it now.
1057		 */
1058		vm_page_flag_clear(m, PG_REFERENCED);
1059
1060		/*
1061		 * Only if an object is currently being used, do we use the
1062		 * page activation count stats.
1063		 */
1064		if (actcount && (m->object->ref_count != 0)) {
1065			vm_pageq_requeue(m);
1066		} else {
1067			m->act_count -= min(m->act_count, ACT_DECLINE);
1068			if (vm_pageout_algorithm ||
1069			    m->object->ref_count == 0 ||
1070			    m->act_count == 0) {
1071				page_shortage--;
1072				if (m->object->ref_count == 0) {
1073					pmap_remove_all(m);
1074					if (m->dirty == 0)
1075						vm_page_cache(m);
1076					else
1077						vm_page_deactivate(m);
1078				} else {
1079					vm_page_deactivate(m);
1080				}
1081			} else {
1082				vm_pageq_requeue(m);
1083			}
1084		}
1085		m = next;
1086	}
1087
1088	/*
1089	 * We try to maintain some *really* free pages, this allows interrupt
1090	 * code to be guaranteed space.  Since both cache and free queues
1091	 * are considered basically 'free', moving pages from cache to free
1092	 * does not effect other calculations.
1093	 */
1094	while (cnt.v_free_count < cnt.v_free_reserved) {
1095		static int cache_rover = 0;
1096
1097		if ((m = vm_page_select_cache(cache_rover)) == NULL)
1098			break;
1099		cache_rover = (m->pc + PQ_PRIME2) & PQ_L2_MASK;
1100		object = m->object;
1101		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1102		vm_page_busy(m);
1103		vm_page_free(m);
1104		VM_OBJECT_UNLOCK(object);
1105		cnt.v_dfree++;
1106	}
1107	vm_page_unlock_queues();
1108#if !defined(NO_SWAPPING)
1109	/*
1110	 * Idle process swapout -- run once per second.
1111	 */
1112	if (vm_swap_idle_enabled) {
1113		static long lsec;
1114		if (time_second != lsec) {
1115			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1116			vm_req_vmdaemon();
1117			lsec = time_second;
1118		}
1119	}
1120#endif
1121
1122	/*
1123	 * If we didn't get enough free pages, and we have skipped a vnode
1124	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1125	 * if we did not get enough free pages.
1126	 */
1127	if (vm_paging_target() > 0) {
1128		if (vnodes_skipped && vm_page_count_min())
1129			(void) speedup_syncer();
1130#if !defined(NO_SWAPPING)
1131		if (vm_swap_enabled && vm_page_count_target()) {
1132			vm_req_vmdaemon();
1133			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1134		}
1135#endif
1136	}
1137
1138	/*
1139	 * If we are critically low on one of RAM or swap and low on
1140	 * the other, kill the largest process.  However, we avoid
1141	 * doing this on the first pass in order to give ourselves a
1142	 * chance to flush out dirty vnode-backed pages and to allow
1143	 * active pages to be moved to the inactive queue and reclaimed.
1144	 *
1145	 * We keep the process bigproc locked once we find it to keep anyone
1146	 * from messing with it; however, there is a possibility of
1147	 * deadlock if process B is bigproc and one of it's child processes
1148	 * attempts to propagate a signal to B while we are waiting for A's
1149	 * lock while walking this list.  To avoid this, we don't block on
1150	 * the process lock but just skip a process if it is already locked.
1151	 */
1152	if (pass != 0 &&
1153	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1154	     (swap_pager_full && vm_paging_target() > 0))) {
1155		bigproc = NULL;
1156		bigsize = 0;
1157		sx_slock(&allproc_lock);
1158		FOREACH_PROC_IN_SYSTEM(p) {
1159			int breakout;
1160
1161			if (PROC_TRYLOCK(p) == 0)
1162				continue;
1163			/*
1164			 * If this is a system or protected process, skip it.
1165			 */
1166			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1167			    (p->p_flag & P_PROTECTED) ||
1168			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1169				PROC_UNLOCK(p);
1170				continue;
1171			}
1172			/*
1173			 * If the process is in a non-running type state,
1174			 * don't touch it.  Check all the threads individually.
1175			 */
1176			mtx_lock_spin(&sched_lock);
1177			breakout = 0;
1178			FOREACH_THREAD_IN_PROC(p, td) {
1179				if (!TD_ON_RUNQ(td) &&
1180				    !TD_IS_RUNNING(td) &&
1181				    !TD_IS_SLEEPING(td)) {
1182					breakout = 1;
1183					break;
1184				}
1185			}
1186			if (breakout) {
1187				mtx_unlock_spin(&sched_lock);
1188				PROC_UNLOCK(p);
1189				continue;
1190			}
1191			mtx_unlock_spin(&sched_lock);
1192			/*
1193			 * get the process size
1194			 */
1195			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1196				PROC_UNLOCK(p);
1197				continue;
1198			}
1199			size = vmspace_swap_count(p->p_vmspace);
1200			vm_map_unlock_read(&p->p_vmspace->vm_map);
1201			size += vmspace_resident_count(p->p_vmspace);
1202			/*
1203			 * if the this process is bigger than the biggest one
1204			 * remember it.
1205			 */
1206			if (size > bigsize) {
1207				if (bigproc != NULL)
1208					PROC_UNLOCK(bigproc);
1209				bigproc = p;
1210				bigsize = size;
1211			} else
1212				PROC_UNLOCK(p);
1213		}
1214		sx_sunlock(&allproc_lock);
1215		if (bigproc != NULL) {
1216			killproc(bigproc, "out of swap space");
1217			mtx_lock_spin(&sched_lock);
1218			sched_nice(bigproc, PRIO_MIN);
1219			mtx_unlock_spin(&sched_lock);
1220			PROC_UNLOCK(bigproc);
1221			wakeup(&cnt.v_free_count);
1222		}
1223	}
1224	mtx_unlock(&Giant);
1225}
1226
1227/*
1228 * This routine tries to maintain the pseudo LRU active queue,
1229 * so that during long periods of time where there is no paging,
1230 * that some statistic accumulation still occurs.  This code
1231 * helps the situation where paging just starts to occur.
1232 */
1233static void
1234vm_pageout_page_stats()
1235{
1236	vm_page_t m,next;
1237	int pcount,tpcount;		/* Number of pages to check */
1238	static int fullintervalcount = 0;
1239	int page_shortage;
1240
1241	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1242	page_shortage =
1243	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1244	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1245
1246	if (page_shortage <= 0)
1247		return;
1248
1249	pcount = cnt.v_active_count;
1250	fullintervalcount += vm_pageout_stats_interval;
1251	if (fullintervalcount < vm_pageout_full_stats_interval) {
1252		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1253		if (pcount > tpcount)
1254			pcount = tpcount;
1255	} else {
1256		fullintervalcount = 0;
1257	}
1258
1259	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1260	while ((m != NULL) && (pcount-- > 0)) {
1261		int actcount;
1262
1263		KASSERT(m->queue == PQ_ACTIVE,
1264		    ("vm_pageout_page_stats: page %p isn't active", m));
1265
1266		next = TAILQ_NEXT(m, pageq);
1267		/*
1268		 * Don't deactivate pages that are busy.
1269		 */
1270		if ((m->busy != 0) ||
1271		    (m->flags & PG_BUSY) ||
1272		    (m->hold_count != 0)) {
1273			vm_pageq_requeue(m);
1274			m = next;
1275			continue;
1276		}
1277
1278		actcount = 0;
1279		if (m->flags & PG_REFERENCED) {
1280			vm_page_flag_clear(m, PG_REFERENCED);
1281			actcount += 1;
1282		}
1283
1284		actcount += pmap_ts_referenced(m);
1285		if (actcount) {
1286			m->act_count += ACT_ADVANCE + actcount;
1287			if (m->act_count > ACT_MAX)
1288				m->act_count = ACT_MAX;
1289			vm_pageq_requeue(m);
1290		} else {
1291			if (m->act_count == 0) {
1292				/*
1293				 * We turn off page access, so that we have
1294				 * more accurate RSS stats.  We don't do this
1295				 * in the normal page deactivation when the
1296				 * system is loaded VM wise, because the
1297				 * cost of the large number of page protect
1298				 * operations would be higher than the value
1299				 * of doing the operation.
1300				 */
1301				pmap_remove_all(m);
1302				vm_page_deactivate(m);
1303			} else {
1304				m->act_count -= min(m->act_count, ACT_DECLINE);
1305				vm_pageq_requeue(m);
1306			}
1307		}
1308
1309		m = next;
1310	}
1311}
1312
1313/*
1314 *	vm_pageout is the high level pageout daemon.
1315 */
1316static void
1317vm_pageout()
1318{
1319	int error, pass;
1320
1321	/*
1322	 * Initialize some paging parameters.
1323	 */
1324	cnt.v_interrupt_free_min = 2;
1325	if (cnt.v_page_count < 2000)
1326		vm_pageout_page_count = 8;
1327
1328	/*
1329	 * v_free_reserved needs to include enough for the largest
1330	 * swap pager structures plus enough for any pv_entry structs
1331	 * when paging.
1332	 */
1333	if (cnt.v_page_count > 1024)
1334		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1335	else
1336		cnt.v_free_min = 4;
1337	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1338	    cnt.v_interrupt_free_min;
1339	cnt.v_free_reserved = vm_pageout_page_count +
1340	    cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_L2_SIZE;
1341	cnt.v_free_severe = cnt.v_free_min / 2;
1342	cnt.v_free_min += cnt.v_free_reserved;
1343	cnt.v_free_severe += cnt.v_free_reserved;
1344
1345	/*
1346	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1347	 * that these are more a measure of the VM cache queue hysteresis
1348	 * then the VM free queue.  Specifically, v_free_target is the
1349	 * high water mark (free+cache pages).
1350	 *
1351	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1352	 * low water mark, while v_free_min is the stop.  v_cache_min must
1353	 * be big enough to handle memory needs while the pageout daemon
1354	 * is signalled and run to free more pages.
1355	 */
1356	if (cnt.v_free_count > 6144)
1357		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1358	else
1359		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1360
1361	if (cnt.v_free_count > 2048) {
1362		cnt.v_cache_min = cnt.v_free_target;
1363		cnt.v_cache_max = 2 * cnt.v_cache_min;
1364		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1365	} else {
1366		cnt.v_cache_min = 0;
1367		cnt.v_cache_max = 0;
1368		cnt.v_inactive_target = cnt.v_free_count / 4;
1369	}
1370	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1371		cnt.v_inactive_target = cnt.v_free_count / 3;
1372
1373	/* XXX does not really belong here */
1374	if (vm_page_max_wired == 0)
1375		vm_page_max_wired = cnt.v_free_count / 3;
1376
1377	if (vm_pageout_stats_max == 0)
1378		vm_pageout_stats_max = cnt.v_free_target;
1379
1380	/*
1381	 * Set interval in seconds for stats scan.
1382	 */
1383	if (vm_pageout_stats_interval == 0)
1384		vm_pageout_stats_interval = 5;
1385	if (vm_pageout_full_stats_interval == 0)
1386		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1387
1388	swap_pager_swap_init();
1389	pass = 0;
1390	/*
1391	 * The pageout daemon is never done, so loop forever.
1392	 */
1393	while (TRUE) {
1394		vm_page_lock_queues();
1395		/*
1396		 * If we have enough free memory, wakeup waiters.  Do
1397		 * not clear vm_pages_needed until we reach our target,
1398		 * otherwise we may be woken up over and over again and
1399		 * waste a lot of cpu.
1400		 */
1401		if (vm_pages_needed && !vm_page_count_min()) {
1402			if (!vm_paging_needed())
1403				vm_pages_needed = 0;
1404			wakeup(&cnt.v_free_count);
1405		}
1406		if (vm_pages_needed) {
1407			/*
1408			 * Still not done, take a second pass without waiting
1409			 * (unlimited dirty cleaning), otherwise sleep a bit
1410			 * and try again.
1411			 */
1412			++pass;
1413			if (pass > 1)
1414				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1415				       "psleep", hz/2);
1416		} else {
1417			/*
1418			 * Good enough, sleep & handle stats.  Prime the pass
1419			 * for the next run.
1420			 */
1421			if (pass > 1)
1422				pass = 1;
1423			else
1424				pass = 0;
1425			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1426				    "psleep", vm_pageout_stats_interval * hz);
1427			if (error && !vm_pages_needed) {
1428				pass = 0;
1429				vm_pageout_page_stats();
1430				vm_page_unlock_queues();
1431				continue;
1432			}
1433		}
1434		if (vm_pages_needed)
1435			cnt.v_pdwakeups++;
1436		vm_page_unlock_queues();
1437		vm_pageout_scan(pass);
1438	}
1439}
1440
1441/*
1442 * Unless the page queue lock is held by the caller, this function
1443 * should be regarded as advisory.  Specifically, the caller should
1444 * not msleep() on &cnt.v_free_count following this function unless
1445 * the page queue lock is held until the msleep() is performed.
1446 */
1447void
1448pagedaemon_wakeup()
1449{
1450
1451	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1452		vm_pages_needed = 1;
1453		wakeup(&vm_pages_needed);
1454	}
1455}
1456
1457#if !defined(NO_SWAPPING)
1458static void
1459vm_req_vmdaemon()
1460{
1461	static int lastrun = 0;
1462
1463	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1464		wakeup(&vm_daemon_needed);
1465		lastrun = ticks;
1466	}
1467}
1468
1469static void
1470vm_daemon()
1471{
1472	struct rlimit rsslim;
1473	struct proc *p;
1474	struct thread *td;
1475	int breakout;
1476
1477	mtx_lock(&Giant);
1478	while (TRUE) {
1479		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1480		if (vm_pageout_req_swapout) {
1481			swapout_procs(vm_pageout_req_swapout);
1482			vm_pageout_req_swapout = 0;
1483		}
1484		/*
1485		 * scan the processes for exceeding their rlimits or if
1486		 * process is swapped out -- deactivate pages
1487		 */
1488		sx_slock(&allproc_lock);
1489		LIST_FOREACH(p, &allproc, p_list) {
1490			vm_pindex_t limit, size;
1491
1492			/*
1493			 * if this is a system process or if we have already
1494			 * looked at this process, skip it.
1495			 */
1496			PROC_LOCK(p);
1497			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1498				PROC_UNLOCK(p);
1499				continue;
1500			}
1501			/*
1502			 * if the process is in a non-running type state,
1503			 * don't touch it.
1504			 */
1505			mtx_lock_spin(&sched_lock);
1506			breakout = 0;
1507			FOREACH_THREAD_IN_PROC(p, td) {
1508				if (!TD_ON_RUNQ(td) &&
1509				    !TD_IS_RUNNING(td) &&
1510				    !TD_IS_SLEEPING(td)) {
1511					breakout = 1;
1512					break;
1513				}
1514			}
1515			mtx_unlock_spin(&sched_lock);
1516			if (breakout) {
1517				PROC_UNLOCK(p);
1518				continue;
1519			}
1520			/*
1521			 * get a limit
1522			 */
1523			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1524			limit = OFF_TO_IDX(
1525			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1526
1527			/*
1528			 * let processes that are swapped out really be
1529			 * swapped out set the limit to nothing (will force a
1530			 * swap-out.)
1531			 */
1532			if ((p->p_sflag & PS_INMEM) == 0)
1533				limit = 0;	/* XXX */
1534			PROC_UNLOCK(p);
1535
1536			size = vmspace_resident_count(p->p_vmspace);
1537			if (limit >= 0 && size >= limit) {
1538				vm_pageout_map_deactivate_pages(
1539				    &p->p_vmspace->vm_map, limit);
1540			}
1541		}
1542		sx_sunlock(&allproc_lock);
1543	}
1544}
1545#endif			/* !defined(NO_SWAPPING) */
1546