vm_pageout.c revision 121455
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 *	The proverbial page-out daemon.
71 */
72
73#include <sys/cdefs.h>
74__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 121455 2003-10-24 06:43:04Z alc $");
75
76#include "opt_vm.h"
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/kernel.h>
80#include <sys/eventhandler.h>
81#include <sys/lock.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/kthread.h>
85#include <sys/ktr.h>
86#include <sys/resourcevar.h>
87#include <sys/sched.h>
88#include <sys/signalvar.h>
89#include <sys/vnode.h>
90#include <sys/vmmeter.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/vm_object.h>
97#include <vm/vm_page.h>
98#include <vm/vm_map.h>
99#include <vm/vm_pageout.h>
100#include <vm/vm_pager.h>
101#include <vm/swap_pager.h>
102#include <vm/vm_extern.h>
103#include <vm/uma.h>
104
105#include <machine/mutex.h>
106
107/*
108 * System initialization
109 */
110
111/* the kernel process "vm_pageout"*/
112static void vm_pageout(void);
113static int vm_pageout_clean(vm_page_t);
114static void vm_pageout_pmap_collect(void);
115static void vm_pageout_scan(int pass);
116
117struct proc *pageproc;
118
119static struct kproc_desc page_kp = {
120	"pagedaemon",
121	vm_pageout,
122	&pageproc
123};
124SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
125
126#if !defined(NO_SWAPPING)
127/* the kernel process "vm_daemon"*/
128static void vm_daemon(void);
129static struct	proc *vmproc;
130
131static struct kproc_desc vm_kp = {
132	"vmdaemon",
133	vm_daemon,
134	&vmproc
135};
136SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
137#endif
138
139
140int vm_pages_needed;		/* Event on which pageout daemon sleeps */
141int vm_pageout_deficit;		/* Estimated number of pages deficit */
142int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
143
144#if !defined(NO_SWAPPING)
145static int vm_pageout_req_swapout;	/* XXX */
146static int vm_daemon_needed;
147#endif
148static int vm_max_launder = 32;
149static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
150static int vm_pageout_full_stats_interval = 0;
151static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
152static int defer_swap_pageouts=0;
153static int disable_swap_pageouts=0;
154
155#if defined(NO_SWAPPING)
156static int vm_swap_enabled=0;
157static int vm_swap_idle_enabled=0;
158#else
159static int vm_swap_enabled=1;
160static int vm_swap_idle_enabled=0;
161#endif
162
163SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
164	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
165
166SYSCTL_INT(_vm, OID_AUTO, max_launder,
167	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
170	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
173	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
176	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
177
178SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
179	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
180
181#if defined(NO_SWAPPING)
182SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183	CTLFLAG_RD, &vm_swap_enabled, 0, "");
184SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
186#else
187SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
188	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
189SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
190	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
191#endif
192
193SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
194	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
195
196SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
197	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
198
199static int pageout_lock_miss;
200SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
201	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
202
203#define VM_PAGEOUT_PAGE_COUNT 16
204int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
205
206int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
207
208#if !defined(NO_SWAPPING)
209static void vm_pageout_map_deactivate_pages(vm_map_t, long);
210static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
211static void vm_req_vmdaemon(void);
212#endif
213static void vm_pageout_page_stats(void);
214
215/*
216 * vm_pageout_clean:
217 *
218 * Clean the page and remove it from the laundry.
219 *
220 * We set the busy bit to cause potential page faults on this page to
221 * block.  Note the careful timing, however, the busy bit isn't set till
222 * late and we cannot do anything that will mess with the page.
223 */
224static int
225vm_pageout_clean(m)
226	vm_page_t m;
227{
228	vm_object_t object;
229	vm_page_t mc[2*vm_pageout_page_count];
230	int pageout_count;
231	int ib, is, page_base;
232	vm_pindex_t pindex = m->pindex;
233
234	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
235	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
236
237	/*
238	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
239	 * with the new swapper, but we could have serious problems paging
240	 * out other object types if there is insufficient memory.
241	 *
242	 * Unfortunately, checking free memory here is far too late, so the
243	 * check has been moved up a procedural level.
244	 */
245
246	/*
247	 * Don't mess with the page if it's busy, held, or special
248	 */
249	if ((m->hold_count != 0) ||
250	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
251		return 0;
252	}
253
254	mc[vm_pageout_page_count] = m;
255	pageout_count = 1;
256	page_base = vm_pageout_page_count;
257	ib = 1;
258	is = 1;
259
260	/*
261	 * Scan object for clusterable pages.
262	 *
263	 * We can cluster ONLY if: ->> the page is NOT
264	 * clean, wired, busy, held, or mapped into a
265	 * buffer, and one of the following:
266	 * 1) The page is inactive, or a seldom used
267	 *    active page.
268	 * -or-
269	 * 2) we force the issue.
270	 *
271	 * During heavy mmap/modification loads the pageout
272	 * daemon can really fragment the underlying file
273	 * due to flushing pages out of order and not trying
274	 * align the clusters (which leave sporatic out-of-order
275	 * holes).  To solve this problem we do the reverse scan
276	 * first and attempt to align our cluster, then do a
277	 * forward scan if room remains.
278	 */
279	object = m->object;
280more:
281	while (ib && pageout_count < vm_pageout_page_count) {
282		vm_page_t p;
283
284		if (ib > pindex) {
285			ib = 0;
286			break;
287		}
288
289		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
290			ib = 0;
291			break;
292		}
293		if (((p->queue - p->pc) == PQ_CACHE) ||
294		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
295			ib = 0;
296			break;
297		}
298		vm_page_test_dirty(p);
299		if ((p->dirty & p->valid) == 0 ||
300		    p->queue != PQ_INACTIVE ||
301		    p->wire_count != 0 ||	/* may be held by buf cache */
302		    p->hold_count != 0) {	/* may be undergoing I/O */
303			ib = 0;
304			break;
305		}
306		mc[--page_base] = p;
307		++pageout_count;
308		++ib;
309		/*
310		 * alignment boundry, stop here and switch directions.  Do
311		 * not clear ib.
312		 */
313		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
314			break;
315	}
316
317	while (pageout_count < vm_pageout_page_count &&
318	    pindex + is < object->size) {
319		vm_page_t p;
320
321		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
322			break;
323		if (((p->queue - p->pc) == PQ_CACHE) ||
324		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
325			break;
326		}
327		vm_page_test_dirty(p);
328		if ((p->dirty & p->valid) == 0 ||
329		    p->queue != PQ_INACTIVE ||
330		    p->wire_count != 0 ||	/* may be held by buf cache */
331		    p->hold_count != 0) {	/* may be undergoing I/O */
332			break;
333		}
334		mc[page_base + pageout_count] = p;
335		++pageout_count;
336		++is;
337	}
338
339	/*
340	 * If we exhausted our forward scan, continue with the reverse scan
341	 * when possible, even past a page boundry.  This catches boundry
342	 * conditions.
343	 */
344	if (ib && pageout_count < vm_pageout_page_count)
345		goto more;
346
347	/*
348	 * we allow reads during pageouts...
349	 */
350	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
351}
352
353/*
354 * vm_pageout_flush() - launder the given pages
355 *
356 *	The given pages are laundered.  Note that we setup for the start of
357 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
358 *	reference count all in here rather then in the parent.  If we want
359 *	the parent to do more sophisticated things we may have to change
360 *	the ordering.
361 */
362int
363vm_pageout_flush(vm_page_t *mc, int count, int flags)
364{
365	vm_object_t object = mc[0]->object;
366	int pageout_status[count];
367	int numpagedout = 0;
368	int i;
369
370	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
371	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
372	/*
373	 * Initiate I/O.  Bump the vm_page_t->busy counter and
374	 * mark the pages read-only.
375	 *
376	 * We do not have to fixup the clean/dirty bits here... we can
377	 * allow the pager to do it after the I/O completes.
378	 *
379	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
380	 * edge case with file fragments.
381	 */
382	for (i = 0; i < count; i++) {
383		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
384		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
385			mc[i], i, count));
386		vm_page_io_start(mc[i]);
387		pmap_page_protect(mc[i], VM_PROT_READ);
388	}
389	vm_page_unlock_queues();
390	vm_object_pip_add(object, count);
391
392	vm_pager_put_pages(object, mc, count,
393	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
394	    pageout_status);
395
396	vm_page_lock_queues();
397	for (i = 0; i < count; i++) {
398		vm_page_t mt = mc[i];
399
400		switch (pageout_status[i]) {
401		case VM_PAGER_OK:
402		case VM_PAGER_PEND:
403			numpagedout++;
404			break;
405		case VM_PAGER_BAD:
406			/*
407			 * Page outside of range of object. Right now we
408			 * essentially lose the changes by pretending it
409			 * worked.
410			 */
411			pmap_clear_modify(mt);
412			vm_page_undirty(mt);
413			break;
414		case VM_PAGER_ERROR:
415		case VM_PAGER_FAIL:
416			/*
417			 * If page couldn't be paged out, then reactivate the
418			 * page so it doesn't clog the inactive list.  (We
419			 * will try paging out it again later).
420			 */
421			vm_page_activate(mt);
422			break;
423		case VM_PAGER_AGAIN:
424			break;
425		}
426
427		/*
428		 * If the operation is still going, leave the page busy to
429		 * block all other accesses. Also, leave the paging in
430		 * progress indicator set so that we don't attempt an object
431		 * collapse.
432		 */
433		if (pageout_status[i] != VM_PAGER_PEND) {
434			vm_object_pip_wakeup(object);
435			vm_page_io_finish(mt);
436			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
437				pmap_page_protect(mt, VM_PROT_READ);
438		}
439	}
440	return numpagedout;
441}
442
443#if !defined(NO_SWAPPING)
444/*
445 *	vm_pageout_object_deactivate_pages
446 *
447 *	deactivate enough pages to satisfy the inactive target
448 *	requirements or if vm_page_proc_limit is set, then
449 *	deactivate all of the pages in the object and its
450 *	backing_objects.
451 *
452 *	The object and map must be locked.
453 */
454static void
455vm_pageout_object_deactivate_pages(pmap, first_object, desired)
456	pmap_t pmap;
457	vm_object_t first_object;
458	long desired;
459{
460	vm_object_t backing_object, object;
461	vm_page_t p, next;
462	int actcount, rcount, remove_mode;
463
464	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
465	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
466		return;
467	for (object = first_object;; object = backing_object) {
468		if (pmap_resident_count(pmap) <= desired)
469			goto unlock_return;
470		if (object->paging_in_progress)
471			goto unlock_return;
472
473		remove_mode = 0;
474		if (object->shadow_count > 1)
475			remove_mode = 1;
476		/*
477		 * scan the objects entire memory queue
478		 */
479		rcount = object->resident_page_count;
480		p = TAILQ_FIRST(&object->memq);
481		vm_page_lock_queues();
482		while (p && (rcount-- > 0)) {
483			if (pmap_resident_count(pmap) <= desired) {
484				vm_page_unlock_queues();
485				goto unlock_return;
486			}
487			next = TAILQ_NEXT(p, listq);
488			cnt.v_pdpages++;
489			if (p->wire_count != 0 ||
490			    p->hold_count != 0 ||
491			    p->busy != 0 ||
492			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
493			    !pmap_page_exists_quick(pmap, p)) {
494				p = next;
495				continue;
496			}
497			actcount = pmap_ts_referenced(p);
498			if (actcount) {
499				vm_page_flag_set(p, PG_REFERENCED);
500			} else if (p->flags & PG_REFERENCED) {
501				actcount = 1;
502			}
503			if ((p->queue != PQ_ACTIVE) &&
504				(p->flags & PG_REFERENCED)) {
505				vm_page_activate(p);
506				p->act_count += actcount;
507				vm_page_flag_clear(p, PG_REFERENCED);
508			} else if (p->queue == PQ_ACTIVE) {
509				if ((p->flags & PG_REFERENCED) == 0) {
510					p->act_count -= min(p->act_count, ACT_DECLINE);
511					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
512						pmap_remove_all(p);
513						vm_page_deactivate(p);
514					} else {
515						vm_pageq_requeue(p);
516					}
517				} else {
518					vm_page_activate(p);
519					vm_page_flag_clear(p, PG_REFERENCED);
520					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
521						p->act_count += ACT_ADVANCE;
522					vm_pageq_requeue(p);
523				}
524			} else if (p->queue == PQ_INACTIVE) {
525				pmap_remove_all(p);
526			}
527			p = next;
528		}
529		vm_page_unlock_queues();
530		if ((backing_object = object->backing_object) == NULL)
531			goto unlock_return;
532		VM_OBJECT_LOCK(backing_object);
533		if (object != first_object)
534			VM_OBJECT_UNLOCK(object);
535	}
536unlock_return:
537	if (object != first_object)
538		VM_OBJECT_UNLOCK(object);
539}
540
541/*
542 * deactivate some number of pages in a map, try to do it fairly, but
543 * that is really hard to do.
544 */
545static void
546vm_pageout_map_deactivate_pages(map, desired)
547	vm_map_t map;
548	long desired;
549{
550	vm_map_entry_t tmpe;
551	vm_object_t obj, bigobj;
552	int nothingwired;
553
554	if (!vm_map_trylock(map))
555		return;
556
557	bigobj = NULL;
558	nothingwired = TRUE;
559
560	/*
561	 * first, search out the biggest object, and try to free pages from
562	 * that.
563	 */
564	tmpe = map->header.next;
565	while (tmpe != &map->header) {
566		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
567			obj = tmpe->object.vm_object;
568			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
569				if (obj->shadow_count <= 1 &&
570				    (bigobj == NULL ||
571				     bigobj->resident_page_count < obj->resident_page_count)) {
572					if (bigobj != NULL)
573						VM_OBJECT_UNLOCK(bigobj);
574					bigobj = obj;
575				} else
576					VM_OBJECT_UNLOCK(obj);
577			}
578		}
579		if (tmpe->wired_count > 0)
580			nothingwired = FALSE;
581		tmpe = tmpe->next;
582	}
583
584	if (bigobj != NULL) {
585		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
586		VM_OBJECT_UNLOCK(bigobj);
587	}
588	/*
589	 * Next, hunt around for other pages to deactivate.  We actually
590	 * do this search sort of wrong -- .text first is not the best idea.
591	 */
592	tmpe = map->header.next;
593	while (tmpe != &map->header) {
594		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
595			break;
596		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
597			obj = tmpe->object.vm_object;
598			if (obj != NULL) {
599				VM_OBJECT_LOCK(obj);
600				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
601				VM_OBJECT_UNLOCK(obj);
602			}
603		}
604		tmpe = tmpe->next;
605	}
606
607	/*
608	 * Remove all mappings if a process is swapped out, this will free page
609	 * table pages.
610	 */
611	if (desired == 0 && nothingwired) {
612		GIANT_REQUIRED;
613		vm_page_lock_queues();
614		pmap_remove(vm_map_pmap(map), vm_map_min(map),
615		    vm_map_max(map));
616		vm_page_unlock_queues();
617	}
618	vm_map_unlock(map);
619}
620#endif		/* !defined(NO_SWAPPING) */
621
622/*
623 * This routine is very drastic, but can save the system
624 * in a pinch.
625 */
626static void
627vm_pageout_pmap_collect(void)
628{
629	int i;
630	vm_page_t m;
631	static int warningdone;
632
633	if (pmap_pagedaemon_waken == 0)
634		return;
635	if (warningdone < 5) {
636		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
637		warningdone++;
638	}
639	vm_page_lock_queues();
640	for (i = 0; i < vm_page_array_size; i++) {
641		m = &vm_page_array[i];
642		if (m->wire_count || m->hold_count || m->busy ||
643		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
644			continue;
645		pmap_remove_all(m);
646	}
647	vm_page_unlock_queues();
648	pmap_pagedaemon_waken = 0;
649}
650
651/*
652 *	vm_pageout_scan does the dirty work for the pageout daemon.
653 */
654static void
655vm_pageout_scan(int pass)
656{
657	vm_page_t m, next;
658	struct vm_page marker;
659	int page_shortage, maxscan, pcount;
660	int addl_page_shortage, addl_page_shortage_init;
661	struct proc *p, *bigproc;
662	vm_offset_t size, bigsize;
663	vm_object_t object;
664	int actcount;
665	int vnodes_skipped = 0;
666	int maxlaunder;
667	int s;
668	struct thread *td;
669
670	mtx_lock(&Giant);
671	/*
672	 * Decrease registered cache sizes.
673	 */
674	EVENTHANDLER_INVOKE(vm_lowmem, 0);
675	/*
676	 * We do this explicitly after the caches have been drained above.
677	 */
678	uma_reclaim();
679	/*
680	 * Do whatever cleanup that the pmap code can.
681	 */
682	vm_pageout_pmap_collect();
683
684	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
685
686	/*
687	 * Calculate the number of pages we want to either free or move
688	 * to the cache.
689	 */
690	page_shortage = vm_paging_target() + addl_page_shortage_init;
691
692	/*
693	 * Initialize our marker
694	 */
695	bzero(&marker, sizeof(marker));
696	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
697	marker.queue = PQ_INACTIVE;
698	marker.wire_count = 1;
699
700	/*
701	 * Start scanning the inactive queue for pages we can move to the
702	 * cache or free.  The scan will stop when the target is reached or
703	 * we have scanned the entire inactive queue.  Note that m->act_count
704	 * is not used to form decisions for the inactive queue, only for the
705	 * active queue.
706	 *
707	 * maxlaunder limits the number of dirty pages we flush per scan.
708	 * For most systems a smaller value (16 or 32) is more robust under
709	 * extreme memory and disk pressure because any unnecessary writes
710	 * to disk can result in extreme performance degredation.  However,
711	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
712	 * used) will die horribly with limited laundering.  If the pageout
713	 * daemon cannot clean enough pages in the first pass, we let it go
714	 * all out in succeeding passes.
715	 */
716	if ((maxlaunder = vm_max_launder) <= 1)
717		maxlaunder = 1;
718	if (pass)
719		maxlaunder = 10000;
720	vm_page_lock_queues();
721rescan0:
722	addl_page_shortage = addl_page_shortage_init;
723	maxscan = cnt.v_inactive_count;
724
725	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
726	     m != NULL && maxscan-- > 0 && page_shortage > 0;
727	     m = next) {
728
729		cnt.v_pdpages++;
730
731		if (m->queue != PQ_INACTIVE) {
732			goto rescan0;
733		}
734
735		next = TAILQ_NEXT(m, pageq);
736
737		/*
738		 * skip marker pages
739		 */
740		if (m->flags & PG_MARKER)
741			continue;
742
743		/*
744		 * A held page may be undergoing I/O, so skip it.
745		 */
746		if (m->hold_count) {
747			vm_pageq_requeue(m);
748			addl_page_shortage++;
749			continue;
750		}
751		/*
752		 * Don't mess with busy pages, keep in the front of the
753		 * queue, most likely are being paged out.
754		 */
755		if (m->busy || (m->flags & PG_BUSY)) {
756			addl_page_shortage++;
757			continue;
758		}
759
760		/*
761		 * If the object is not being used, we ignore previous
762		 * references.
763		 */
764		if (m->object->ref_count == 0) {
765			vm_page_flag_clear(m, PG_REFERENCED);
766			pmap_clear_reference(m);
767
768		/*
769		 * Otherwise, if the page has been referenced while in the
770		 * inactive queue, we bump the "activation count" upwards,
771		 * making it less likely that the page will be added back to
772		 * the inactive queue prematurely again.  Here we check the
773		 * page tables (or emulated bits, if any), given the upper
774		 * level VM system not knowing anything about existing
775		 * references.
776		 */
777		} else if (((m->flags & PG_REFERENCED) == 0) &&
778			(actcount = pmap_ts_referenced(m))) {
779			vm_page_activate(m);
780			m->act_count += (actcount + ACT_ADVANCE);
781			continue;
782		}
783
784		/*
785		 * If the upper level VM system knows about any page
786		 * references, we activate the page.  We also set the
787		 * "activation count" higher than normal so that we will less
788		 * likely place pages back onto the inactive queue again.
789		 */
790		if ((m->flags & PG_REFERENCED) != 0) {
791			vm_page_flag_clear(m, PG_REFERENCED);
792			actcount = pmap_ts_referenced(m);
793			vm_page_activate(m);
794			m->act_count += (actcount + ACT_ADVANCE + 1);
795			continue;
796		}
797
798		/*
799		 * If the upper level VM system doesn't know anything about
800		 * the page being dirty, we have to check for it again.  As
801		 * far as the VM code knows, any partially dirty pages are
802		 * fully dirty.
803		 */
804		if (m->dirty == 0) {
805			vm_page_test_dirty(m);
806		} else {
807			vm_page_dirty(m);
808		}
809		object = m->object;
810		if (!VM_OBJECT_TRYLOCK(object))
811			continue;
812		if (m->valid == 0) {
813			/*
814			 * Invalid pages can be easily freed
815			 */
816			vm_page_busy(m);
817			pmap_remove_all(m);
818			vm_page_free(m);
819			cnt.v_dfree++;
820			--page_shortage;
821		} else if (m->dirty == 0) {
822			/*
823			 * Clean pages can be placed onto the cache queue.
824			 * This effectively frees them.
825			 */
826			vm_page_cache(m);
827			--page_shortage;
828		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
829			/*
830			 * Dirty pages need to be paged out, but flushing
831			 * a page is extremely expensive verses freeing
832			 * a clean page.  Rather then artificially limiting
833			 * the number of pages we can flush, we instead give
834			 * dirty pages extra priority on the inactive queue
835			 * by forcing them to be cycled through the queue
836			 * twice before being flushed, after which the
837			 * (now clean) page will cycle through once more
838			 * before being freed.  This significantly extends
839			 * the thrash point for a heavily loaded machine.
840			 */
841			vm_page_flag_set(m, PG_WINATCFLS);
842			vm_pageq_requeue(m);
843		} else if (maxlaunder > 0) {
844			/*
845			 * We always want to try to flush some dirty pages if
846			 * we encounter them, to keep the system stable.
847			 * Normally this number is small, but under extreme
848			 * pressure where there are insufficient clean pages
849			 * on the inactive queue, we may have to go all out.
850			 */
851			int swap_pageouts_ok;
852			struct vnode *vp = NULL;
853			struct mount *mp;
854
855			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
856				swap_pageouts_ok = 1;
857			} else {
858				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
859				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
860				vm_page_count_min());
861
862			}
863
864			/*
865			 * We don't bother paging objects that are "dead".
866			 * Those objects are in a "rundown" state.
867			 */
868			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
869				VM_OBJECT_UNLOCK(object);
870				vm_pageq_requeue(m);
871				continue;
872			}
873
874			/*
875			 * The object is already known NOT to be dead.   It
876			 * is possible for the vget() to block the whole
877			 * pageout daemon, but the new low-memory handling
878			 * code should prevent it.
879			 *
880			 * The previous code skipped locked vnodes and, worse,
881			 * reordered pages in the queue.  This results in
882			 * completely non-deterministic operation and, on a
883			 * busy system, can lead to extremely non-optimal
884			 * pageouts.  For example, it can cause clean pages
885			 * to be freed and dirty pages to be moved to the end
886			 * of the queue.  Since dirty pages are also moved to
887			 * the end of the queue once-cleaned, this gives
888			 * way too large a weighting to defering the freeing
889			 * of dirty pages.
890			 *
891			 * We can't wait forever for the vnode lock, we might
892			 * deadlock due to a vn_read() getting stuck in
893			 * vm_wait while holding this vnode.  We skip the
894			 * vnode if we can't get it in a reasonable amount
895			 * of time.
896			 */
897			if (object->type == OBJT_VNODE) {
898				vp = object->handle;
899				mp = NULL;
900				if (vp->v_type == VREG)
901					vn_start_write(vp, &mp, V_NOWAIT);
902				vm_page_unlock_queues();
903				VI_LOCK(vp);
904				VM_OBJECT_UNLOCK(object);
905				if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
906				    LK_TIMELOCK, curthread)) {
907					VM_OBJECT_LOCK(object);
908					vm_page_lock_queues();
909					++pageout_lock_miss;
910					vn_finished_write(mp);
911					if (object->flags & OBJ_MIGHTBEDIRTY)
912						vnodes_skipped++;
913					VM_OBJECT_UNLOCK(object);
914					continue;
915				}
916				VM_OBJECT_LOCK(object);
917				vm_page_lock_queues();
918				/*
919				 * The page might have been moved to another
920				 * queue during potential blocking in vget()
921				 * above.  The page might have been freed and
922				 * reused for another vnode.  The object might
923				 * have been reused for another vnode.
924				 */
925				if (m->queue != PQ_INACTIVE ||
926				    m->object != object ||
927				    object->handle != vp) {
928					if (object->flags & OBJ_MIGHTBEDIRTY)
929						vnodes_skipped++;
930					goto unlock_and_continue;
931				}
932
933				/*
934				 * The page may have been busied during the
935				 * blocking in vput();  We don't move the
936				 * page back onto the end of the queue so that
937				 * statistics are more correct if we don't.
938				 */
939				if (m->busy || (m->flags & PG_BUSY)) {
940					goto unlock_and_continue;
941				}
942
943				/*
944				 * If the page has become held it might
945				 * be undergoing I/O, so skip it
946				 */
947				if (m->hold_count) {
948					vm_pageq_requeue(m);
949					if (object->flags & OBJ_MIGHTBEDIRTY)
950						vnodes_skipped++;
951					goto unlock_and_continue;
952				}
953			}
954
955			/*
956			 * If a page is dirty, then it is either being washed
957			 * (but not yet cleaned) or it is still in the
958			 * laundry.  If it is still in the laundry, then we
959			 * start the cleaning operation.
960			 *
961			 * This operation may cluster, invalidating the 'next'
962			 * pointer.  To prevent an inordinate number of
963			 * restarts we use our marker to remember our place.
964			 *
965			 * decrement page_shortage on success to account for
966			 * the (future) cleaned page.  Otherwise we could wind
967			 * up laundering or cleaning too many pages.
968			 */
969			s = splvm();
970			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
971			splx(s);
972			if (vm_pageout_clean(m) != 0) {
973				--page_shortage;
974				--maxlaunder;
975			}
976			s = splvm();
977			next = TAILQ_NEXT(&marker, pageq);
978			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
979			splx(s);
980unlock_and_continue:
981			VM_OBJECT_UNLOCK(object);
982			if (vp) {
983				vm_page_unlock_queues();
984				vput(vp);
985				vn_finished_write(mp);
986				vm_page_lock_queues();
987			}
988			continue;
989		}
990		VM_OBJECT_UNLOCK(object);
991	}
992
993	/*
994	 * Compute the number of pages we want to try to move from the
995	 * active queue to the inactive queue.
996	 */
997	page_shortage = vm_paging_target() +
998		cnt.v_inactive_target - cnt.v_inactive_count;
999	page_shortage += addl_page_shortage;
1000
1001	/*
1002	 * Scan the active queue for things we can deactivate. We nominally
1003	 * track the per-page activity counter and use it to locate
1004	 * deactivation candidates.
1005	 */
1006	pcount = cnt.v_active_count;
1007	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1008
1009	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1010
1011		KASSERT(m->queue == PQ_ACTIVE,
1012		    ("vm_pageout_scan: page %p isn't active", m));
1013
1014		next = TAILQ_NEXT(m, pageq);
1015		/*
1016		 * Don't deactivate pages that are busy.
1017		 */
1018		if ((m->busy != 0) ||
1019		    (m->flags & PG_BUSY) ||
1020		    (m->hold_count != 0)) {
1021			vm_pageq_requeue(m);
1022			m = next;
1023			continue;
1024		}
1025
1026		/*
1027		 * The count for pagedaemon pages is done after checking the
1028		 * page for eligibility...
1029		 */
1030		cnt.v_pdpages++;
1031
1032		/*
1033		 * Check to see "how much" the page has been used.
1034		 */
1035		actcount = 0;
1036		if (m->object->ref_count != 0) {
1037			if (m->flags & PG_REFERENCED) {
1038				actcount += 1;
1039			}
1040			actcount += pmap_ts_referenced(m);
1041			if (actcount) {
1042				m->act_count += ACT_ADVANCE + actcount;
1043				if (m->act_count > ACT_MAX)
1044					m->act_count = ACT_MAX;
1045			}
1046		}
1047
1048		/*
1049		 * Since we have "tested" this bit, we need to clear it now.
1050		 */
1051		vm_page_flag_clear(m, PG_REFERENCED);
1052
1053		/*
1054		 * Only if an object is currently being used, do we use the
1055		 * page activation count stats.
1056		 */
1057		if (actcount && (m->object->ref_count != 0)) {
1058			vm_pageq_requeue(m);
1059		} else {
1060			m->act_count -= min(m->act_count, ACT_DECLINE);
1061			if (vm_pageout_algorithm ||
1062			    m->object->ref_count == 0 ||
1063			    m->act_count == 0) {
1064				page_shortage--;
1065				if (m->object->ref_count == 0) {
1066					pmap_remove_all(m);
1067					if (m->dirty == 0)
1068						vm_page_cache(m);
1069					else
1070						vm_page_deactivate(m);
1071				} else {
1072					vm_page_deactivate(m);
1073				}
1074			} else {
1075				vm_pageq_requeue(m);
1076			}
1077		}
1078		m = next;
1079	}
1080	s = splvm();
1081
1082	/*
1083	 * We try to maintain some *really* free pages, this allows interrupt
1084	 * code to be guaranteed space.  Since both cache and free queues
1085	 * are considered basically 'free', moving pages from cache to free
1086	 * does not effect other calculations.
1087	 */
1088	while (cnt.v_free_count < cnt.v_free_reserved) {
1089		static int cache_rover = 0;
1090
1091		if ((m = vm_page_select_cache(cache_rover)) == NULL)
1092			break;
1093		cache_rover = (m->pc + PQ_PRIME2) & PQ_L2_MASK;
1094		object = m->object;
1095		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1096		vm_page_busy(m);
1097		pmap_remove_all(m);
1098		vm_page_free(m);
1099		VM_OBJECT_UNLOCK(object);
1100		cnt.v_dfree++;
1101	}
1102	splx(s);
1103	vm_page_unlock_queues();
1104#if !defined(NO_SWAPPING)
1105	/*
1106	 * Idle process swapout -- run once per second.
1107	 */
1108	if (vm_swap_idle_enabled) {
1109		static long lsec;
1110		if (time_second != lsec) {
1111			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1112			vm_req_vmdaemon();
1113			lsec = time_second;
1114		}
1115	}
1116#endif
1117
1118	/*
1119	 * If we didn't get enough free pages, and we have skipped a vnode
1120	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1121	 * if we did not get enough free pages.
1122	 */
1123	if (vm_paging_target() > 0) {
1124		if (vnodes_skipped && vm_page_count_min())
1125			(void) speedup_syncer();
1126#if !defined(NO_SWAPPING)
1127		if (vm_swap_enabled && vm_page_count_target()) {
1128			vm_req_vmdaemon();
1129			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1130		}
1131#endif
1132	}
1133
1134	/*
1135	 * If we are critically low on one of RAM or swap and low on
1136	 * the other, kill the largest process.  However, we avoid
1137	 * doing this on the first pass in order to give ourselves a
1138	 * chance to flush out dirty vnode-backed pages and to allow
1139	 * active pages to be moved to the inactive queue and reclaimed.
1140	 *
1141	 * We keep the process bigproc locked once we find it to keep anyone
1142	 * from messing with it; however, there is a possibility of
1143	 * deadlock if process B is bigproc and one of it's child processes
1144	 * attempts to propagate a signal to B while we are waiting for A's
1145	 * lock while walking this list.  To avoid this, we don't block on
1146	 * the process lock but just skip a process if it is already locked.
1147	 */
1148	if (pass != 0 &&
1149	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1150	     (swap_pager_full && vm_paging_target() > 0))) {
1151		bigproc = NULL;
1152		bigsize = 0;
1153		sx_slock(&allproc_lock);
1154		FOREACH_PROC_IN_SYSTEM(p) {
1155			int breakout;
1156			/*
1157			 * If this process is already locked, skip it.
1158			 */
1159			if (PROC_TRYLOCK(p) == 0)
1160				continue;
1161			/*
1162			 * If this is a system or protected process, skip it.
1163			 */
1164			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1165			    (p->p_flag & P_PROTECTED) ||
1166			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1167				PROC_UNLOCK(p);
1168				continue;
1169			}
1170			/*
1171			 * if the process is in a non-running type state,
1172			 * don't touch it. Check all the threads individually.
1173			 */
1174			mtx_lock_spin(&sched_lock);
1175			breakout = 0;
1176			FOREACH_THREAD_IN_PROC(p, td) {
1177				if (!TD_ON_RUNQ(td) &&
1178				    !TD_IS_RUNNING(td) &&
1179				    !TD_IS_SLEEPING(td)) {
1180					breakout = 1;
1181					break;
1182				}
1183			}
1184			if (breakout) {
1185				mtx_unlock_spin(&sched_lock);
1186				PROC_UNLOCK(p);
1187				continue;
1188			}
1189			mtx_unlock_spin(&sched_lock);
1190			/*
1191			 * get the process size
1192			 */
1193			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1194				PROC_UNLOCK(p);
1195				continue;
1196			}
1197			size = vmspace_swap_count(p->p_vmspace);
1198			vm_map_unlock_read(&p->p_vmspace->vm_map);
1199			size += vmspace_resident_count(p->p_vmspace);
1200			/*
1201			 * if the this process is bigger than the biggest one
1202			 * remember it.
1203			 */
1204			if (size > bigsize) {
1205				if (bigproc != NULL)
1206					PROC_UNLOCK(bigproc);
1207				bigproc = p;
1208				bigsize = size;
1209			} else
1210				PROC_UNLOCK(p);
1211		}
1212		sx_sunlock(&allproc_lock);
1213		if (bigproc != NULL) {
1214			struct ksegrp *kg;
1215			killproc(bigproc, "out of swap space");
1216			mtx_lock_spin(&sched_lock);
1217			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1218				sched_nice(kg, PRIO_MIN); /* XXXKSE ??? */
1219			}
1220			mtx_unlock_spin(&sched_lock);
1221			PROC_UNLOCK(bigproc);
1222			wakeup(&cnt.v_free_count);
1223		}
1224	}
1225	mtx_unlock(&Giant);
1226}
1227
1228/*
1229 * This routine tries to maintain the pseudo LRU active queue,
1230 * so that during long periods of time where there is no paging,
1231 * that some statistic accumulation still occurs.  This code
1232 * helps the situation where paging just starts to occur.
1233 */
1234static void
1235vm_pageout_page_stats()
1236{
1237	vm_page_t m,next;
1238	int pcount,tpcount;		/* Number of pages to check */
1239	static int fullintervalcount = 0;
1240	int page_shortage;
1241	int s0;
1242
1243	page_shortage =
1244	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1245	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1246
1247	if (page_shortage <= 0)
1248		return;
1249
1250	s0 = splvm();
1251	vm_page_lock_queues();
1252	pcount = cnt.v_active_count;
1253	fullintervalcount += vm_pageout_stats_interval;
1254	if (fullintervalcount < vm_pageout_full_stats_interval) {
1255		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1256		if (pcount > tpcount)
1257			pcount = tpcount;
1258	} else {
1259		fullintervalcount = 0;
1260	}
1261
1262	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1263	while ((m != NULL) && (pcount-- > 0)) {
1264		int actcount;
1265
1266		KASSERT(m->queue == PQ_ACTIVE,
1267		    ("vm_pageout_page_stats: page %p isn't active", m));
1268
1269		next = TAILQ_NEXT(m, pageq);
1270		/*
1271		 * Don't deactivate pages that are busy.
1272		 */
1273		if ((m->busy != 0) ||
1274		    (m->flags & PG_BUSY) ||
1275		    (m->hold_count != 0)) {
1276			vm_pageq_requeue(m);
1277			m = next;
1278			continue;
1279		}
1280
1281		actcount = 0;
1282		if (m->flags & PG_REFERENCED) {
1283			vm_page_flag_clear(m, PG_REFERENCED);
1284			actcount += 1;
1285		}
1286
1287		actcount += pmap_ts_referenced(m);
1288		if (actcount) {
1289			m->act_count += ACT_ADVANCE + actcount;
1290			if (m->act_count > ACT_MAX)
1291				m->act_count = ACT_MAX;
1292			vm_pageq_requeue(m);
1293		} else {
1294			if (m->act_count == 0) {
1295				/*
1296				 * We turn off page access, so that we have
1297				 * more accurate RSS stats.  We don't do this
1298				 * in the normal page deactivation when the
1299				 * system is loaded VM wise, because the
1300				 * cost of the large number of page protect
1301				 * operations would be higher than the value
1302				 * of doing the operation.
1303				 */
1304				pmap_remove_all(m);
1305				vm_page_deactivate(m);
1306			} else {
1307				m->act_count -= min(m->act_count, ACT_DECLINE);
1308				vm_pageq_requeue(m);
1309			}
1310		}
1311
1312		m = next;
1313	}
1314	vm_page_unlock_queues();
1315	splx(s0);
1316}
1317
1318/*
1319 *	vm_pageout is the high level pageout daemon.
1320 */
1321static void
1322vm_pageout()
1323{
1324	int error, pass, s;
1325
1326	/*
1327	 * Initialize some paging parameters.
1328	 */
1329	cnt.v_interrupt_free_min = 2;
1330	if (cnt.v_page_count < 2000)
1331		vm_pageout_page_count = 8;
1332
1333	/*
1334	 * v_free_reserved needs to include enough for the largest
1335	 * swap pager structures plus enough for any pv_entry structs
1336	 * when paging.
1337	 */
1338	if (cnt.v_page_count > 1024)
1339		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1340	else
1341		cnt.v_free_min = 4;
1342	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1343	    cnt.v_interrupt_free_min;
1344	cnt.v_free_reserved = vm_pageout_page_count +
1345	    cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_L2_SIZE;
1346	cnt.v_free_severe = cnt.v_free_min / 2;
1347	cnt.v_free_min += cnt.v_free_reserved;
1348	cnt.v_free_severe += cnt.v_free_reserved;
1349
1350	/*
1351	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1352	 * that these are more a measure of the VM cache queue hysteresis
1353	 * then the VM free queue.  Specifically, v_free_target is the
1354	 * high water mark (free+cache pages).
1355	 *
1356	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1357	 * low water mark, while v_free_min is the stop.  v_cache_min must
1358	 * be big enough to handle memory needs while the pageout daemon
1359	 * is signalled and run to free more pages.
1360	 */
1361	if (cnt.v_free_count > 6144)
1362		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1363	else
1364		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1365
1366	if (cnt.v_free_count > 2048) {
1367		cnt.v_cache_min = cnt.v_free_target;
1368		cnt.v_cache_max = 2 * cnt.v_cache_min;
1369		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1370	} else {
1371		cnt.v_cache_min = 0;
1372		cnt.v_cache_max = 0;
1373		cnt.v_inactive_target = cnt.v_free_count / 4;
1374	}
1375	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1376		cnt.v_inactive_target = cnt.v_free_count / 3;
1377
1378	/* XXX does not really belong here */
1379	if (vm_page_max_wired == 0)
1380		vm_page_max_wired = cnt.v_free_count / 3;
1381
1382	if (vm_pageout_stats_max == 0)
1383		vm_pageout_stats_max = cnt.v_free_target;
1384
1385	/*
1386	 * Set interval in seconds for stats scan.
1387	 */
1388	if (vm_pageout_stats_interval == 0)
1389		vm_pageout_stats_interval = 5;
1390	if (vm_pageout_full_stats_interval == 0)
1391		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1392
1393	/*
1394	 * Set maximum free per pass
1395	 */
1396	if (vm_pageout_stats_free_max == 0)
1397		vm_pageout_stats_free_max = 5;
1398
1399	swap_pager_swap_init();
1400	pass = 0;
1401	/*
1402	 * The pageout daemon is never done, so loop forever.
1403	 */
1404	while (TRUE) {
1405		s = splvm();
1406		vm_page_lock_queues();
1407		/*
1408		 * If we have enough free memory, wakeup waiters.  Do
1409		 * not clear vm_pages_needed until we reach our target,
1410		 * otherwise we may be woken up over and over again and
1411		 * waste a lot of cpu.
1412		 */
1413		if (vm_pages_needed && !vm_page_count_min()) {
1414			if (!vm_paging_needed())
1415				vm_pages_needed = 0;
1416			wakeup(&cnt.v_free_count);
1417		}
1418		if (vm_pages_needed) {
1419			/*
1420			 * Still not done, take a second pass without waiting
1421			 * (unlimited dirty cleaning), otherwise sleep a bit
1422			 * and try again.
1423			 */
1424			++pass;
1425			if (pass > 1)
1426				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1427				       "psleep", hz/2);
1428		} else {
1429			/*
1430			 * Good enough, sleep & handle stats.  Prime the pass
1431			 * for the next run.
1432			 */
1433			if (pass > 1)
1434				pass = 1;
1435			else
1436				pass = 0;
1437			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1438				    "psleep", vm_pageout_stats_interval * hz);
1439			if (error && !vm_pages_needed) {
1440				vm_page_unlock_queues();
1441				splx(s);
1442				pass = 0;
1443				vm_pageout_page_stats();
1444				continue;
1445			}
1446		}
1447		if (vm_pages_needed)
1448			cnt.v_pdwakeups++;
1449		vm_page_unlock_queues();
1450		splx(s);
1451		vm_pageout_scan(pass);
1452	}
1453}
1454
1455/*
1456 * Unless the page queue lock is held by the caller, this function
1457 * should be regarded as advisory.  Specifically, the caller should
1458 * not msleep() on &cnt.v_free_count following this function unless
1459 * the page queue lock is held until the msleep() is performed.
1460 */
1461void
1462pagedaemon_wakeup()
1463{
1464
1465	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1466		vm_pages_needed = 1;
1467		wakeup(&vm_pages_needed);
1468	}
1469}
1470
1471#if !defined(NO_SWAPPING)
1472static void
1473vm_req_vmdaemon()
1474{
1475	static int lastrun = 0;
1476
1477	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1478		wakeup(&vm_daemon_needed);
1479		lastrun = ticks;
1480	}
1481}
1482
1483static void
1484vm_daemon()
1485{
1486	struct proc *p;
1487	int breakout;
1488	struct thread *td;
1489
1490	mtx_lock(&Giant);
1491	while (TRUE) {
1492		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1493		if (vm_pageout_req_swapout) {
1494			swapout_procs(vm_pageout_req_swapout);
1495			vm_pageout_req_swapout = 0;
1496		}
1497		/*
1498		 * scan the processes for exceeding their rlimits or if
1499		 * process is swapped out -- deactivate pages
1500		 */
1501		sx_slock(&allproc_lock);
1502		LIST_FOREACH(p, &allproc, p_list) {
1503			vm_pindex_t limit, size;
1504
1505			/*
1506			 * if this is a system process or if we have already
1507			 * looked at this process, skip it.
1508			 */
1509			PROC_LOCK(p);
1510			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1511				PROC_UNLOCK(p);
1512				continue;
1513			}
1514			/*
1515			 * if the process is in a non-running type state,
1516			 * don't touch it.
1517			 */
1518			mtx_lock_spin(&sched_lock);
1519			breakout = 0;
1520			FOREACH_THREAD_IN_PROC(p, td) {
1521				if (!TD_ON_RUNQ(td) &&
1522				    !TD_IS_RUNNING(td) &&
1523				    !TD_IS_SLEEPING(td)) {
1524					breakout = 1;
1525					break;
1526				}
1527			}
1528			mtx_unlock_spin(&sched_lock);
1529			if (breakout) {
1530				PROC_UNLOCK(p);
1531				continue;
1532			}
1533			/*
1534			 * get a limit
1535			 */
1536			limit = OFF_TO_IDX(
1537			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1538				p->p_rlimit[RLIMIT_RSS].rlim_max));
1539
1540			/*
1541			 * let processes that are swapped out really be
1542			 * swapped out set the limit to nothing (will force a
1543			 * swap-out.)
1544			 */
1545			if ((p->p_sflag & PS_INMEM) == 0)
1546				limit = 0;	/* XXX */
1547			PROC_UNLOCK(p);
1548
1549			size = vmspace_resident_count(p->p_vmspace);
1550			if (limit >= 0 && size >= limit) {
1551				vm_pageout_map_deactivate_pages(
1552				    &p->p_vmspace->vm_map, limit);
1553			}
1554		}
1555		sx_sunlock(&allproc_lock);
1556	}
1557}
1558#endif			/* !defined(NO_SWAPPING) */
1559