vm_pageout.c revision 121226
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 *	The proverbial page-out daemon.
71 */
72
73#include <sys/cdefs.h>
74__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 121226 2003-10-18 21:09:21Z alc $");
75
76#include "opt_vm.h"
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/kernel.h>
80#include <sys/eventhandler.h>
81#include <sys/lock.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/kthread.h>
85#include <sys/ktr.h>
86#include <sys/resourcevar.h>
87#include <sys/sched.h>
88#include <sys/signalvar.h>
89#include <sys/vnode.h>
90#include <sys/vmmeter.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/vm_object.h>
97#include <vm/vm_page.h>
98#include <vm/vm_map.h>
99#include <vm/vm_pageout.h>
100#include <vm/vm_pager.h>
101#include <vm/swap_pager.h>
102#include <vm/vm_extern.h>
103#include <vm/uma.h>
104
105#include <machine/mutex.h>
106
107/*
108 * System initialization
109 */
110
111/* the kernel process "vm_pageout"*/
112static void vm_pageout(void);
113static int vm_pageout_clean(vm_page_t);
114static void vm_pageout_page_free(vm_page_t);
115static void vm_pageout_pmap_collect(void);
116static void vm_pageout_scan(int pass);
117
118struct proc *pageproc;
119
120static struct kproc_desc page_kp = {
121	"pagedaemon",
122	vm_pageout,
123	&pageproc
124};
125SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
126
127#if !defined(NO_SWAPPING)
128/* the kernel process "vm_daemon"*/
129static void vm_daemon(void);
130static struct	proc *vmproc;
131
132static struct kproc_desc vm_kp = {
133	"vmdaemon",
134	vm_daemon,
135	&vmproc
136};
137SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
138#endif
139
140
141int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142int vm_pageout_deficit;		/* Estimated number of pages deficit */
143int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144
145#if !defined(NO_SWAPPING)
146static int vm_pageout_req_swapout;	/* XXX */
147static int vm_daemon_needed;
148#endif
149static int vm_max_launder = 32;
150static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
151static int vm_pageout_full_stats_interval = 0;
152static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
153static int defer_swap_pageouts=0;
154static int disable_swap_pageouts=0;
155
156#if defined(NO_SWAPPING)
157static int vm_swap_enabled=0;
158static int vm_swap_idle_enabled=0;
159#else
160static int vm_swap_enabled=1;
161static int vm_swap_idle_enabled=0;
162#endif
163
164SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
165	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
166
167SYSCTL_INT(_vm, OID_AUTO, max_launder,
168	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
169
170SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
171	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
174	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
175
176SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
177	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
178
179SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
180	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
181
182#if defined(NO_SWAPPING)
183SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184	CTLFLAG_RD, &vm_swap_enabled, 0, "");
185SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
187#else
188SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192#endif
193
194SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200static int pageout_lock_miss;
201SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204#define VM_PAGEOUT_PAGE_COUNT 16
205int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
208
209#if !defined(NO_SWAPPING)
210static void vm_pageout_map_deactivate_pages(vm_map_t, long);
211static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
212static void vm_req_vmdaemon(void);
213#endif
214static void vm_pageout_page_stats(void);
215
216/*
217 * vm_pageout_clean:
218 *
219 * Clean the page and remove it from the laundry.
220 *
221 * We set the busy bit to cause potential page faults on this page to
222 * block.  Note the careful timing, however, the busy bit isn't set till
223 * late and we cannot do anything that will mess with the page.
224 */
225static int
226vm_pageout_clean(m)
227	vm_page_t m;
228{
229	vm_object_t object;
230	vm_page_t mc[2*vm_pageout_page_count];
231	int pageout_count;
232	int ib, is, page_base;
233	vm_pindex_t pindex = m->pindex;
234
235	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
236	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
237
238	/*
239	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
240	 * with the new swapper, but we could have serious problems paging
241	 * out other object types if there is insufficient memory.
242	 *
243	 * Unfortunately, checking free memory here is far too late, so the
244	 * check has been moved up a procedural level.
245	 */
246
247	/*
248	 * Don't mess with the page if it's busy, held, or special
249	 */
250	if ((m->hold_count != 0) ||
251	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
252		return 0;
253	}
254
255	mc[vm_pageout_page_count] = m;
256	pageout_count = 1;
257	page_base = vm_pageout_page_count;
258	ib = 1;
259	is = 1;
260
261	/*
262	 * Scan object for clusterable pages.
263	 *
264	 * We can cluster ONLY if: ->> the page is NOT
265	 * clean, wired, busy, held, or mapped into a
266	 * buffer, and one of the following:
267	 * 1) The page is inactive, or a seldom used
268	 *    active page.
269	 * -or-
270	 * 2) we force the issue.
271	 *
272	 * During heavy mmap/modification loads the pageout
273	 * daemon can really fragment the underlying file
274	 * due to flushing pages out of order and not trying
275	 * align the clusters (which leave sporatic out-of-order
276	 * holes).  To solve this problem we do the reverse scan
277	 * first and attempt to align our cluster, then do a
278	 * forward scan if room remains.
279	 */
280	object = m->object;
281more:
282	while (ib && pageout_count < vm_pageout_page_count) {
283		vm_page_t p;
284
285		if (ib > pindex) {
286			ib = 0;
287			break;
288		}
289
290		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
291			ib = 0;
292			break;
293		}
294		if (((p->queue - p->pc) == PQ_CACHE) ||
295		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
296			ib = 0;
297			break;
298		}
299		vm_page_test_dirty(p);
300		if ((p->dirty & p->valid) == 0 ||
301		    p->queue != PQ_INACTIVE ||
302		    p->wire_count != 0 ||	/* may be held by buf cache */
303		    p->hold_count != 0) {	/* may be undergoing I/O */
304			ib = 0;
305			break;
306		}
307		mc[--page_base] = p;
308		++pageout_count;
309		++ib;
310		/*
311		 * alignment boundry, stop here and switch directions.  Do
312		 * not clear ib.
313		 */
314		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
315			break;
316	}
317
318	while (pageout_count < vm_pageout_page_count &&
319	    pindex + is < object->size) {
320		vm_page_t p;
321
322		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
323			break;
324		if (((p->queue - p->pc) == PQ_CACHE) ||
325		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
326			break;
327		}
328		vm_page_test_dirty(p);
329		if ((p->dirty & p->valid) == 0 ||
330		    p->queue != PQ_INACTIVE ||
331		    p->wire_count != 0 ||	/* may be held by buf cache */
332		    p->hold_count != 0) {	/* may be undergoing I/O */
333			break;
334		}
335		mc[page_base + pageout_count] = p;
336		++pageout_count;
337		++is;
338	}
339
340	/*
341	 * If we exhausted our forward scan, continue with the reverse scan
342	 * when possible, even past a page boundry.  This catches boundry
343	 * conditions.
344	 */
345	if (ib && pageout_count < vm_pageout_page_count)
346		goto more;
347
348	/*
349	 * we allow reads during pageouts...
350	 */
351	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
352}
353
354/*
355 * vm_pageout_flush() - launder the given pages
356 *
357 *	The given pages are laundered.  Note that we setup for the start of
358 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
359 *	reference count all in here rather then in the parent.  If we want
360 *	the parent to do more sophisticated things we may have to change
361 *	the ordering.
362 */
363int
364vm_pageout_flush(vm_page_t *mc, int count, int flags)
365{
366	vm_object_t object;
367	int pageout_status[count];
368	int numpagedout = 0;
369	int i;
370
371	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
372	/*
373	 * Initiate I/O.  Bump the vm_page_t->busy counter and
374	 * mark the pages read-only.
375	 *
376	 * We do not have to fixup the clean/dirty bits here... we can
377	 * allow the pager to do it after the I/O completes.
378	 *
379	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
380	 * edge case with file fragments.
381	 */
382	for (i = 0; i < count; i++) {
383		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
384		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
385			mc[i], i, count));
386		vm_page_io_start(mc[i]);
387		pmap_page_protect(mc[i], VM_PROT_READ);
388	}
389	object = mc[0]->object;
390	vm_page_unlock_queues();
391	vm_object_pip_add(object, count);
392	VM_OBJECT_UNLOCK(object);
393
394	vm_pager_put_pages(object, mc, count,
395	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
396	    pageout_status);
397
398	VM_OBJECT_LOCK(object);
399	vm_page_lock_queues();
400	for (i = 0; i < count; i++) {
401		vm_page_t mt = mc[i];
402
403		switch (pageout_status[i]) {
404		case VM_PAGER_OK:
405		case VM_PAGER_PEND:
406			numpagedout++;
407			break;
408		case VM_PAGER_BAD:
409			/*
410			 * Page outside of range of object. Right now we
411			 * essentially lose the changes by pretending it
412			 * worked.
413			 */
414			pmap_clear_modify(mt);
415			vm_page_undirty(mt);
416			break;
417		case VM_PAGER_ERROR:
418		case VM_PAGER_FAIL:
419			/*
420			 * If page couldn't be paged out, then reactivate the
421			 * page so it doesn't clog the inactive list.  (We
422			 * will try paging out it again later).
423			 */
424			vm_page_activate(mt);
425			break;
426		case VM_PAGER_AGAIN:
427			break;
428		}
429
430		/*
431		 * If the operation is still going, leave the page busy to
432		 * block all other accesses. Also, leave the paging in
433		 * progress indicator set so that we don't attempt an object
434		 * collapse.
435		 */
436		if (pageout_status[i] != VM_PAGER_PEND) {
437			vm_object_pip_wakeup(object);
438			vm_page_io_finish(mt);
439			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
440				pmap_page_protect(mt, VM_PROT_READ);
441		}
442	}
443	return numpagedout;
444}
445
446#if !defined(NO_SWAPPING)
447/*
448 *	vm_pageout_object_deactivate_pages
449 *
450 *	deactivate enough pages to satisfy the inactive target
451 *	requirements or if vm_page_proc_limit is set, then
452 *	deactivate all of the pages in the object and its
453 *	backing_objects.
454 *
455 *	The object and map must be locked.
456 */
457static void
458vm_pageout_object_deactivate_pages(pmap, first_object, desired)
459	pmap_t pmap;
460	vm_object_t first_object;
461	long desired;
462{
463	vm_object_t backing_object, object;
464	vm_page_t p, next;
465	int actcount, rcount, remove_mode;
466
467	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
468	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
469		return;
470	for (object = first_object;; object = backing_object) {
471		if (pmap_resident_count(pmap) <= desired)
472			goto unlock_return;
473		if (object->paging_in_progress)
474			goto unlock_return;
475
476		remove_mode = 0;
477		if (object->shadow_count > 1)
478			remove_mode = 1;
479		/*
480		 * scan the objects entire memory queue
481		 */
482		rcount = object->resident_page_count;
483		p = TAILQ_FIRST(&object->memq);
484		vm_page_lock_queues();
485		while (p && (rcount-- > 0)) {
486			if (pmap_resident_count(pmap) <= desired) {
487				vm_page_unlock_queues();
488				goto unlock_return;
489			}
490			next = TAILQ_NEXT(p, listq);
491			cnt.v_pdpages++;
492			if (p->wire_count != 0 ||
493			    p->hold_count != 0 ||
494			    p->busy != 0 ||
495			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
496			    !pmap_page_exists_quick(pmap, p)) {
497				p = next;
498				continue;
499			}
500			actcount = pmap_ts_referenced(p);
501			if (actcount) {
502				vm_page_flag_set(p, PG_REFERENCED);
503			} else if (p->flags & PG_REFERENCED) {
504				actcount = 1;
505			}
506			if ((p->queue != PQ_ACTIVE) &&
507				(p->flags & PG_REFERENCED)) {
508				vm_page_activate(p);
509				p->act_count += actcount;
510				vm_page_flag_clear(p, PG_REFERENCED);
511			} else if (p->queue == PQ_ACTIVE) {
512				if ((p->flags & PG_REFERENCED) == 0) {
513					p->act_count -= min(p->act_count, ACT_DECLINE);
514					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
515						pmap_remove_all(p);
516						vm_page_deactivate(p);
517					} else {
518						vm_pageq_requeue(p);
519					}
520				} else {
521					vm_page_activate(p);
522					vm_page_flag_clear(p, PG_REFERENCED);
523					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
524						p->act_count += ACT_ADVANCE;
525					vm_pageq_requeue(p);
526				}
527			} else if (p->queue == PQ_INACTIVE) {
528				pmap_remove_all(p);
529			}
530			p = next;
531		}
532		vm_page_unlock_queues();
533		if ((backing_object = object->backing_object) == NULL)
534			goto unlock_return;
535		VM_OBJECT_LOCK(backing_object);
536		if (object != first_object)
537			VM_OBJECT_UNLOCK(object);
538	}
539unlock_return:
540	if (object != first_object)
541		VM_OBJECT_UNLOCK(object);
542}
543
544/*
545 * deactivate some number of pages in a map, try to do it fairly, but
546 * that is really hard to do.
547 */
548static void
549vm_pageout_map_deactivate_pages(map, desired)
550	vm_map_t map;
551	long desired;
552{
553	vm_map_entry_t tmpe;
554	vm_object_t obj, bigobj;
555	int nothingwired;
556
557	if (!vm_map_trylock(map))
558		return;
559
560	bigobj = NULL;
561	nothingwired = TRUE;
562
563	/*
564	 * first, search out the biggest object, and try to free pages from
565	 * that.
566	 */
567	tmpe = map->header.next;
568	while (tmpe != &map->header) {
569		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
570			obj = tmpe->object.vm_object;
571			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
572				if (obj->shadow_count <= 1 &&
573				    (bigobj == NULL ||
574				     bigobj->resident_page_count < obj->resident_page_count)) {
575					if (bigobj != NULL)
576						VM_OBJECT_UNLOCK(bigobj);
577					bigobj = obj;
578				} else
579					VM_OBJECT_UNLOCK(obj);
580			}
581		}
582		if (tmpe->wired_count > 0)
583			nothingwired = FALSE;
584		tmpe = tmpe->next;
585	}
586
587	if (bigobj != NULL) {
588		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
589		VM_OBJECT_UNLOCK(bigobj);
590	}
591	/*
592	 * Next, hunt around for other pages to deactivate.  We actually
593	 * do this search sort of wrong -- .text first is not the best idea.
594	 */
595	tmpe = map->header.next;
596	while (tmpe != &map->header) {
597		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
598			break;
599		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
600			obj = tmpe->object.vm_object;
601			if (obj != NULL) {
602				VM_OBJECT_LOCK(obj);
603				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
604				VM_OBJECT_UNLOCK(obj);
605			}
606		}
607		tmpe = tmpe->next;
608	}
609
610	/*
611	 * Remove all mappings if a process is swapped out, this will free page
612	 * table pages.
613	 */
614	if (desired == 0 && nothingwired) {
615		GIANT_REQUIRED;
616		vm_page_lock_queues();
617		pmap_remove(vm_map_pmap(map), vm_map_min(map),
618		    vm_map_max(map));
619		vm_page_unlock_queues();
620	}
621	vm_map_unlock(map);
622}
623#endif		/* !defined(NO_SWAPPING) */
624
625/*
626 * Warning! The page queue lock is released and reacquired.
627 */
628static void
629vm_pageout_page_free(vm_page_t m)
630{
631	vm_object_t object = m->object;
632
633	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
634	vm_page_busy(m);
635	vm_page_unlock_queues();
636	/*
637	 * Avoid a lock order reversal.  The page must be busy.
638	 */
639	VM_OBJECT_LOCK(object);
640	vm_page_lock_queues();
641	pmap_remove_all(m);
642	vm_page_free(m);
643	VM_OBJECT_UNLOCK(object);
644	cnt.v_dfree++;
645}
646
647/*
648 * This routine is very drastic, but can save the system
649 * in a pinch.
650 */
651static void
652vm_pageout_pmap_collect(void)
653{
654	int i;
655	vm_page_t m;
656	static int warningdone;
657
658	if (pmap_pagedaemon_waken == 0)
659		return;
660	if (warningdone < 5) {
661		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
662		warningdone++;
663	}
664	vm_page_lock_queues();
665	for (i = 0; i < vm_page_array_size; i++) {
666		m = &vm_page_array[i];
667		if (m->wire_count || m->hold_count || m->busy ||
668		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
669			continue;
670		pmap_remove_all(m);
671	}
672	vm_page_unlock_queues();
673	pmap_pagedaemon_waken = 0;
674}
675
676/*
677 *	vm_pageout_scan does the dirty work for the pageout daemon.
678 */
679static void
680vm_pageout_scan(int pass)
681{
682	vm_page_t m, next;
683	struct vm_page marker;
684	int page_shortage, maxscan, pcount;
685	int addl_page_shortage, addl_page_shortage_init;
686	struct proc *p, *bigproc;
687	vm_offset_t size, bigsize;
688	vm_object_t object;
689	int actcount;
690	int vnodes_skipped = 0;
691	int maxlaunder;
692	int s;
693	struct thread *td;
694
695	GIANT_REQUIRED;
696	/*
697	 * Decrease registered cache sizes.
698	 */
699	EVENTHANDLER_INVOKE(vm_lowmem, 0);
700	/*
701	 * We do this explicitly after the caches have been drained above.
702	 */
703	uma_reclaim();
704	/*
705	 * Do whatever cleanup that the pmap code can.
706	 */
707	vm_pageout_pmap_collect();
708
709	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
710
711	/*
712	 * Calculate the number of pages we want to either free or move
713	 * to the cache.
714	 */
715	page_shortage = vm_paging_target() + addl_page_shortage_init;
716
717	/*
718	 * Initialize our marker
719	 */
720	bzero(&marker, sizeof(marker));
721	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
722	marker.queue = PQ_INACTIVE;
723	marker.wire_count = 1;
724
725	/*
726	 * Start scanning the inactive queue for pages we can move to the
727	 * cache or free.  The scan will stop when the target is reached or
728	 * we have scanned the entire inactive queue.  Note that m->act_count
729	 * is not used to form decisions for the inactive queue, only for the
730	 * active queue.
731	 *
732	 * maxlaunder limits the number of dirty pages we flush per scan.
733	 * For most systems a smaller value (16 or 32) is more robust under
734	 * extreme memory and disk pressure because any unnecessary writes
735	 * to disk can result in extreme performance degredation.  However,
736	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
737	 * used) will die horribly with limited laundering.  If the pageout
738	 * daemon cannot clean enough pages in the first pass, we let it go
739	 * all out in succeeding passes.
740	 */
741	if ((maxlaunder = vm_max_launder) <= 1)
742		maxlaunder = 1;
743	if (pass)
744		maxlaunder = 10000;
745	vm_page_lock_queues();
746rescan0:
747	addl_page_shortage = addl_page_shortage_init;
748	maxscan = cnt.v_inactive_count;
749
750	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
751	     m != NULL && maxscan-- > 0 && page_shortage > 0;
752	     m = next) {
753
754		cnt.v_pdpages++;
755
756		if (m->queue != PQ_INACTIVE) {
757			goto rescan0;
758		}
759
760		next = TAILQ_NEXT(m, pageq);
761
762		/*
763		 * skip marker pages
764		 */
765		if (m->flags & PG_MARKER)
766			continue;
767
768		/*
769		 * A held page may be undergoing I/O, so skip it.
770		 */
771		if (m->hold_count) {
772			vm_pageq_requeue(m);
773			addl_page_shortage++;
774			continue;
775		}
776		/*
777		 * Don't mess with busy pages, keep in the front of the
778		 * queue, most likely are being paged out.
779		 */
780		if (m->busy || (m->flags & PG_BUSY)) {
781			addl_page_shortage++;
782			continue;
783		}
784
785		/*
786		 * If the object is not being used, we ignore previous
787		 * references.
788		 */
789		if (m->object->ref_count == 0) {
790			vm_page_flag_clear(m, PG_REFERENCED);
791			pmap_clear_reference(m);
792
793		/*
794		 * Otherwise, if the page has been referenced while in the
795		 * inactive queue, we bump the "activation count" upwards,
796		 * making it less likely that the page will be added back to
797		 * the inactive queue prematurely again.  Here we check the
798		 * page tables (or emulated bits, if any), given the upper
799		 * level VM system not knowing anything about existing
800		 * references.
801		 */
802		} else if (((m->flags & PG_REFERENCED) == 0) &&
803			(actcount = pmap_ts_referenced(m))) {
804			vm_page_activate(m);
805			m->act_count += (actcount + ACT_ADVANCE);
806			continue;
807		}
808
809		/*
810		 * If the upper level VM system knows about any page
811		 * references, we activate the page.  We also set the
812		 * "activation count" higher than normal so that we will less
813		 * likely place pages back onto the inactive queue again.
814		 */
815		if ((m->flags & PG_REFERENCED) != 0) {
816			vm_page_flag_clear(m, PG_REFERENCED);
817			actcount = pmap_ts_referenced(m);
818			vm_page_activate(m);
819			m->act_count += (actcount + ACT_ADVANCE + 1);
820			continue;
821		}
822
823		/*
824		 * If the upper level VM system doesn't know anything about
825		 * the page being dirty, we have to check for it again.  As
826		 * far as the VM code knows, any partially dirty pages are
827		 * fully dirty.
828		 */
829		if (m->dirty == 0) {
830			vm_page_test_dirty(m);
831		} else {
832			vm_page_dirty(m);
833		}
834		object = m->object;
835		if (!VM_OBJECT_TRYLOCK(object))
836			continue;
837		if (m->valid == 0) {
838			/*
839			 * Invalid pages can be easily freed
840			 */
841			vm_page_busy(m);
842			pmap_remove_all(m);
843			vm_page_free(m);
844			cnt.v_dfree++;
845			--page_shortage;
846		} else if (m->dirty == 0) {
847			/*
848			 * Clean pages can be placed onto the cache queue.
849			 * This effectively frees them.
850			 */
851			vm_page_cache(m);
852			--page_shortage;
853		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
854			/*
855			 * Dirty pages need to be paged out, but flushing
856			 * a page is extremely expensive verses freeing
857			 * a clean page.  Rather then artificially limiting
858			 * the number of pages we can flush, we instead give
859			 * dirty pages extra priority on the inactive queue
860			 * by forcing them to be cycled through the queue
861			 * twice before being flushed, after which the
862			 * (now clean) page will cycle through once more
863			 * before being freed.  This significantly extends
864			 * the thrash point for a heavily loaded machine.
865			 */
866			vm_page_flag_set(m, PG_WINATCFLS);
867			vm_pageq_requeue(m);
868		} else if (maxlaunder > 0) {
869			/*
870			 * We always want to try to flush some dirty pages if
871			 * we encounter them, to keep the system stable.
872			 * Normally this number is small, but under extreme
873			 * pressure where there are insufficient clean pages
874			 * on the inactive queue, we may have to go all out.
875			 */
876			int swap_pageouts_ok;
877			struct vnode *vp = NULL;
878			struct mount *mp;
879
880			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
881				swap_pageouts_ok = 1;
882			} else {
883				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
884				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
885				vm_page_count_min());
886
887			}
888
889			/*
890			 * We don't bother paging objects that are "dead".
891			 * Those objects are in a "rundown" state.
892			 */
893			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
894				VM_OBJECT_UNLOCK(object);
895				vm_pageq_requeue(m);
896				continue;
897			}
898
899			/*
900			 * The object is already known NOT to be dead.   It
901			 * is possible for the vget() to block the whole
902			 * pageout daemon, but the new low-memory handling
903			 * code should prevent it.
904			 *
905			 * The previous code skipped locked vnodes and, worse,
906			 * reordered pages in the queue.  This results in
907			 * completely non-deterministic operation and, on a
908			 * busy system, can lead to extremely non-optimal
909			 * pageouts.  For example, it can cause clean pages
910			 * to be freed and dirty pages to be moved to the end
911			 * of the queue.  Since dirty pages are also moved to
912			 * the end of the queue once-cleaned, this gives
913			 * way too large a weighting to defering the freeing
914			 * of dirty pages.
915			 *
916			 * We can't wait forever for the vnode lock, we might
917			 * deadlock due to a vn_read() getting stuck in
918			 * vm_wait while holding this vnode.  We skip the
919			 * vnode if we can't get it in a reasonable amount
920			 * of time.
921			 */
922			if (object->type == OBJT_VNODE) {
923				vp = object->handle;
924				mp = NULL;
925				if (vp->v_type == VREG)
926					vn_start_write(vp, &mp, V_NOWAIT);
927				vm_page_unlock_queues();
928				VI_LOCK(vp);
929				VM_OBJECT_UNLOCK(object);
930				if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
931				    LK_TIMELOCK, curthread)) {
932					VM_OBJECT_LOCK(object);
933					vm_page_lock_queues();
934					++pageout_lock_miss;
935					vn_finished_write(mp);
936					if (object->flags & OBJ_MIGHTBEDIRTY)
937						vnodes_skipped++;
938					VM_OBJECT_UNLOCK(object);
939					continue;
940				}
941				VM_OBJECT_LOCK(object);
942				vm_page_lock_queues();
943				/*
944				 * The page might have been moved to another
945				 * queue during potential blocking in vget()
946				 * above.  The page might have been freed and
947				 * reused for another vnode.  The object might
948				 * have been reused for another vnode.
949				 */
950				if (m->queue != PQ_INACTIVE ||
951				    m->object != object ||
952				    object->handle != vp) {
953					if (object->flags & OBJ_MIGHTBEDIRTY)
954						vnodes_skipped++;
955					goto unlock_and_continue;
956				}
957
958				/*
959				 * The page may have been busied during the
960				 * blocking in vput();  We don't move the
961				 * page back onto the end of the queue so that
962				 * statistics are more correct if we don't.
963				 */
964				if (m->busy || (m->flags & PG_BUSY)) {
965					goto unlock_and_continue;
966				}
967
968				/*
969				 * If the page has become held it might
970				 * be undergoing I/O, so skip it
971				 */
972				if (m->hold_count) {
973					vm_pageq_requeue(m);
974					if (object->flags & OBJ_MIGHTBEDIRTY)
975						vnodes_skipped++;
976					goto unlock_and_continue;
977				}
978			}
979
980			/*
981			 * If a page is dirty, then it is either being washed
982			 * (but not yet cleaned) or it is still in the
983			 * laundry.  If it is still in the laundry, then we
984			 * start the cleaning operation.
985			 *
986			 * This operation may cluster, invalidating the 'next'
987			 * pointer.  To prevent an inordinate number of
988			 * restarts we use our marker to remember our place.
989			 *
990			 * decrement page_shortage on success to account for
991			 * the (future) cleaned page.  Otherwise we could wind
992			 * up laundering or cleaning too many pages.
993			 */
994			s = splvm();
995			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
996			splx(s);
997			if (vm_pageout_clean(m) != 0) {
998				--page_shortage;
999				--maxlaunder;
1000			}
1001			s = splvm();
1002			next = TAILQ_NEXT(&marker, pageq);
1003			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1004			splx(s);
1005unlock_and_continue:
1006			VM_OBJECT_UNLOCK(object);
1007			if (vp) {
1008				vm_page_unlock_queues();
1009				vput(vp);
1010				vn_finished_write(mp);
1011				vm_page_lock_queues();
1012			}
1013			continue;
1014		}
1015		VM_OBJECT_UNLOCK(object);
1016	}
1017
1018	/*
1019	 * Compute the number of pages we want to try to move from the
1020	 * active queue to the inactive queue.
1021	 */
1022	page_shortage = vm_paging_target() +
1023		cnt.v_inactive_target - cnt.v_inactive_count;
1024	page_shortage += addl_page_shortage;
1025
1026	/*
1027	 * Scan the active queue for things we can deactivate. We nominally
1028	 * track the per-page activity counter and use it to locate
1029	 * deactivation candidates.
1030	 */
1031	pcount = cnt.v_active_count;
1032	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1033
1034	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1035
1036		/*
1037		 * This is a consistency check, and should likely be a panic
1038		 * or warning.
1039		 */
1040		if (m->queue != PQ_ACTIVE) {
1041			break;
1042		}
1043
1044		next = TAILQ_NEXT(m, pageq);
1045		/*
1046		 * Don't deactivate pages that are busy.
1047		 */
1048		if ((m->busy != 0) ||
1049		    (m->flags & PG_BUSY) ||
1050		    (m->hold_count != 0)) {
1051			vm_pageq_requeue(m);
1052			m = next;
1053			continue;
1054		}
1055
1056		/*
1057		 * The count for pagedaemon pages is done after checking the
1058		 * page for eligibility...
1059		 */
1060		cnt.v_pdpages++;
1061
1062		/*
1063		 * Check to see "how much" the page has been used.
1064		 */
1065		actcount = 0;
1066		if (m->object->ref_count != 0) {
1067			if (m->flags & PG_REFERENCED) {
1068				actcount += 1;
1069			}
1070			actcount += pmap_ts_referenced(m);
1071			if (actcount) {
1072				m->act_count += ACT_ADVANCE + actcount;
1073				if (m->act_count > ACT_MAX)
1074					m->act_count = ACT_MAX;
1075			}
1076		}
1077
1078		/*
1079		 * Since we have "tested" this bit, we need to clear it now.
1080		 */
1081		vm_page_flag_clear(m, PG_REFERENCED);
1082
1083		/*
1084		 * Only if an object is currently being used, do we use the
1085		 * page activation count stats.
1086		 */
1087		if (actcount && (m->object->ref_count != 0)) {
1088			vm_pageq_requeue(m);
1089		} else {
1090			m->act_count -= min(m->act_count, ACT_DECLINE);
1091			if (vm_pageout_algorithm ||
1092			    m->object->ref_count == 0 ||
1093			    m->act_count == 0) {
1094				page_shortage--;
1095				if (m->object->ref_count == 0) {
1096					pmap_remove_all(m);
1097					if (m->dirty == 0)
1098						vm_page_cache(m);
1099					else
1100						vm_page_deactivate(m);
1101				} else {
1102					vm_page_deactivate(m);
1103				}
1104			} else {
1105				vm_pageq_requeue(m);
1106			}
1107		}
1108		m = next;
1109	}
1110	s = splvm();
1111
1112	/*
1113	 * We try to maintain some *really* free pages, this allows interrupt
1114	 * code to be guaranteed space.  Since both cache and free queues
1115	 * are considered basically 'free', moving pages from cache to free
1116	 * does not effect other calculations.
1117	 */
1118	while (cnt.v_free_count < cnt.v_free_reserved) {
1119		static int cache_rover = 0;
1120		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1121		if (!m)
1122			break;
1123		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1124		    m->busy ||
1125		    m->hold_count ||
1126		    m->wire_count) {
1127#ifdef INVARIANTS
1128			printf("Warning: busy page %p found in cache\n", m);
1129#endif
1130			vm_page_deactivate(m);
1131			continue;
1132		}
1133		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1134		vm_pageout_page_free(m);
1135	}
1136	splx(s);
1137	vm_page_unlock_queues();
1138#if !defined(NO_SWAPPING)
1139	/*
1140	 * Idle process swapout -- run once per second.
1141	 */
1142	if (vm_swap_idle_enabled) {
1143		static long lsec;
1144		if (time_second != lsec) {
1145			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1146			vm_req_vmdaemon();
1147			lsec = time_second;
1148		}
1149	}
1150#endif
1151
1152	/*
1153	 * If we didn't get enough free pages, and we have skipped a vnode
1154	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1155	 * if we did not get enough free pages.
1156	 */
1157	if (vm_paging_target() > 0) {
1158		if (vnodes_skipped && vm_page_count_min())
1159			(void) speedup_syncer();
1160#if !defined(NO_SWAPPING)
1161		if (vm_swap_enabled && vm_page_count_target()) {
1162			vm_req_vmdaemon();
1163			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1164		}
1165#endif
1166	}
1167
1168	/*
1169	 * If we are critically low on one of RAM or swap and low on
1170	 * the other, kill the largest process.  However, we avoid
1171	 * doing this on the first pass in order to give ourselves a
1172	 * chance to flush out dirty vnode-backed pages and to allow
1173	 * active pages to be moved to the inactive queue and reclaimed.
1174	 *
1175	 * We keep the process bigproc locked once we find it to keep anyone
1176	 * from messing with it; however, there is a possibility of
1177	 * deadlock if process B is bigproc and one of it's child processes
1178	 * attempts to propagate a signal to B while we are waiting for A's
1179	 * lock while walking this list.  To avoid this, we don't block on
1180	 * the process lock but just skip a process if it is already locked.
1181	 */
1182	if (pass != 0 &&
1183	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1184	     (swap_pager_full && vm_paging_target() > 0))) {
1185		bigproc = NULL;
1186		bigsize = 0;
1187		sx_slock(&allproc_lock);
1188		FOREACH_PROC_IN_SYSTEM(p) {
1189			int breakout;
1190			/*
1191			 * If this process is already locked, skip it.
1192			 */
1193			if (PROC_TRYLOCK(p) == 0)
1194				continue;
1195			/*
1196			 * If this is a system or protected process, skip it.
1197			 */
1198			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1199			    (p->p_flag & P_PROTECTED) ||
1200			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1201				PROC_UNLOCK(p);
1202				continue;
1203			}
1204			/*
1205			 * if the process is in a non-running type state,
1206			 * don't touch it. Check all the threads individually.
1207			 */
1208			mtx_lock_spin(&sched_lock);
1209			breakout = 0;
1210			FOREACH_THREAD_IN_PROC(p, td) {
1211				if (!TD_ON_RUNQ(td) &&
1212				    !TD_IS_RUNNING(td) &&
1213				    !TD_IS_SLEEPING(td)) {
1214					breakout = 1;
1215					break;
1216				}
1217			}
1218			if (breakout) {
1219				mtx_unlock_spin(&sched_lock);
1220				PROC_UNLOCK(p);
1221				continue;
1222			}
1223			mtx_unlock_spin(&sched_lock);
1224			/*
1225			 * get the process size
1226			 */
1227			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1228				PROC_UNLOCK(p);
1229				continue;
1230			}
1231			size = vmspace_swap_count(p->p_vmspace);
1232			vm_map_unlock_read(&p->p_vmspace->vm_map);
1233			size += vmspace_resident_count(p->p_vmspace);
1234			/*
1235			 * if the this process is bigger than the biggest one
1236			 * remember it.
1237			 */
1238			if (size > bigsize) {
1239				if (bigproc != NULL)
1240					PROC_UNLOCK(bigproc);
1241				bigproc = p;
1242				bigsize = size;
1243			} else
1244				PROC_UNLOCK(p);
1245		}
1246		sx_sunlock(&allproc_lock);
1247		if (bigproc != NULL) {
1248			struct ksegrp *kg;
1249			killproc(bigproc, "out of swap space");
1250			mtx_lock_spin(&sched_lock);
1251			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1252				sched_nice(kg, PRIO_MIN); /* XXXKSE ??? */
1253			}
1254			mtx_unlock_spin(&sched_lock);
1255			PROC_UNLOCK(bigproc);
1256			wakeup(&cnt.v_free_count);
1257		}
1258	}
1259}
1260
1261/*
1262 * This routine tries to maintain the pseudo LRU active queue,
1263 * so that during long periods of time where there is no paging,
1264 * that some statistic accumulation still occurs.  This code
1265 * helps the situation where paging just starts to occur.
1266 */
1267static void
1268vm_pageout_page_stats()
1269{
1270	vm_page_t m,next;
1271	int pcount,tpcount;		/* Number of pages to check */
1272	static int fullintervalcount = 0;
1273	int page_shortage;
1274	int s0;
1275
1276	page_shortage =
1277	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1278	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1279
1280	if (page_shortage <= 0)
1281		return;
1282
1283	s0 = splvm();
1284	vm_page_lock_queues();
1285	pcount = cnt.v_active_count;
1286	fullintervalcount += vm_pageout_stats_interval;
1287	if (fullintervalcount < vm_pageout_full_stats_interval) {
1288		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1289		if (pcount > tpcount)
1290			pcount = tpcount;
1291	} else {
1292		fullintervalcount = 0;
1293	}
1294
1295	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1296	while ((m != NULL) && (pcount-- > 0)) {
1297		int actcount;
1298
1299		if (m->queue != PQ_ACTIVE) {
1300			break;
1301		}
1302
1303		next = TAILQ_NEXT(m, pageq);
1304		/*
1305		 * Don't deactivate pages that are busy.
1306		 */
1307		if ((m->busy != 0) ||
1308		    (m->flags & PG_BUSY) ||
1309		    (m->hold_count != 0)) {
1310			vm_pageq_requeue(m);
1311			m = next;
1312			continue;
1313		}
1314
1315		actcount = 0;
1316		if (m->flags & PG_REFERENCED) {
1317			vm_page_flag_clear(m, PG_REFERENCED);
1318			actcount += 1;
1319		}
1320
1321		actcount += pmap_ts_referenced(m);
1322		if (actcount) {
1323			m->act_count += ACT_ADVANCE + actcount;
1324			if (m->act_count > ACT_MAX)
1325				m->act_count = ACT_MAX;
1326			vm_pageq_requeue(m);
1327		} else {
1328			if (m->act_count == 0) {
1329				/*
1330				 * We turn off page access, so that we have
1331				 * more accurate RSS stats.  We don't do this
1332				 * in the normal page deactivation when the
1333				 * system is loaded VM wise, because the
1334				 * cost of the large number of page protect
1335				 * operations would be higher than the value
1336				 * of doing the operation.
1337				 */
1338				pmap_remove_all(m);
1339				vm_page_deactivate(m);
1340			} else {
1341				m->act_count -= min(m->act_count, ACT_DECLINE);
1342				vm_pageq_requeue(m);
1343			}
1344		}
1345
1346		m = next;
1347	}
1348	vm_page_unlock_queues();
1349	splx(s0);
1350}
1351
1352/*
1353 *	vm_pageout is the high level pageout daemon.
1354 */
1355static void
1356vm_pageout()
1357{
1358	int error, pass, s;
1359
1360	mtx_lock(&Giant);
1361
1362	/*
1363	 * Initialize some paging parameters.
1364	 */
1365	cnt.v_interrupt_free_min = 2;
1366	if (cnt.v_page_count < 2000)
1367		vm_pageout_page_count = 8;
1368
1369	/*
1370	 * v_free_reserved needs to include enough for the largest
1371	 * swap pager structures plus enough for any pv_entry structs
1372	 * when paging.
1373	 */
1374	if (cnt.v_page_count > 1024)
1375		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1376	else
1377		cnt.v_free_min = 4;
1378	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1379	    cnt.v_interrupt_free_min;
1380	cnt.v_free_reserved = vm_pageout_page_count +
1381	    cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_L2_SIZE;
1382	cnt.v_free_severe = cnt.v_free_min / 2;
1383	cnt.v_free_min += cnt.v_free_reserved;
1384	cnt.v_free_severe += cnt.v_free_reserved;
1385
1386	/*
1387	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1388	 * that these are more a measure of the VM cache queue hysteresis
1389	 * then the VM free queue.  Specifically, v_free_target is the
1390	 * high water mark (free+cache pages).
1391	 *
1392	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1393	 * low water mark, while v_free_min is the stop.  v_cache_min must
1394	 * be big enough to handle memory needs while the pageout daemon
1395	 * is signalled and run to free more pages.
1396	 */
1397	if (cnt.v_free_count > 6144)
1398		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1399	else
1400		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1401
1402	if (cnt.v_free_count > 2048) {
1403		cnt.v_cache_min = cnt.v_free_target;
1404		cnt.v_cache_max = 2 * cnt.v_cache_min;
1405		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1406	} else {
1407		cnt.v_cache_min = 0;
1408		cnt.v_cache_max = 0;
1409		cnt.v_inactive_target = cnt.v_free_count / 4;
1410	}
1411	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1412		cnt.v_inactive_target = cnt.v_free_count / 3;
1413
1414	/* XXX does not really belong here */
1415	if (vm_page_max_wired == 0)
1416		vm_page_max_wired = cnt.v_free_count / 3;
1417
1418	if (vm_pageout_stats_max == 0)
1419		vm_pageout_stats_max = cnt.v_free_target;
1420
1421	/*
1422	 * Set interval in seconds for stats scan.
1423	 */
1424	if (vm_pageout_stats_interval == 0)
1425		vm_pageout_stats_interval = 5;
1426	if (vm_pageout_full_stats_interval == 0)
1427		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1428
1429	/*
1430	 * Set maximum free per pass
1431	 */
1432	if (vm_pageout_stats_free_max == 0)
1433		vm_pageout_stats_free_max = 5;
1434
1435	swap_pager_swap_init();
1436	pass = 0;
1437	/*
1438	 * The pageout daemon is never done, so loop forever.
1439	 */
1440	while (TRUE) {
1441		s = splvm();
1442		vm_page_lock_queues();
1443		/*
1444		 * If we have enough free memory, wakeup waiters.  Do
1445		 * not clear vm_pages_needed until we reach our target,
1446		 * otherwise we may be woken up over and over again and
1447		 * waste a lot of cpu.
1448		 */
1449		if (vm_pages_needed && !vm_page_count_min()) {
1450			if (!vm_paging_needed())
1451				vm_pages_needed = 0;
1452			wakeup(&cnt.v_free_count);
1453		}
1454		if (vm_pages_needed) {
1455			/*
1456			 * Still not done, take a second pass without waiting
1457			 * (unlimited dirty cleaning), otherwise sleep a bit
1458			 * and try again.
1459			 */
1460			++pass;
1461			if (pass > 1)
1462				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1463				       "psleep", hz/2);
1464		} else {
1465			/*
1466			 * Good enough, sleep & handle stats.  Prime the pass
1467			 * for the next run.
1468			 */
1469			if (pass > 1)
1470				pass = 1;
1471			else
1472				pass = 0;
1473			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1474				    "psleep", vm_pageout_stats_interval * hz);
1475			if (error && !vm_pages_needed) {
1476				vm_page_unlock_queues();
1477				splx(s);
1478				pass = 0;
1479				vm_pageout_page_stats();
1480				continue;
1481			}
1482		}
1483		if (vm_pages_needed)
1484			cnt.v_pdwakeups++;
1485		vm_page_unlock_queues();
1486		splx(s);
1487		vm_pageout_scan(pass);
1488	}
1489}
1490
1491/*
1492 * Unless the page queue lock is held by the caller, this function
1493 * should be regarded as advisory.  Specifically, the caller should
1494 * not msleep() on &cnt.v_free_count following this function unless
1495 * the page queue lock is held until the msleep() is performed.
1496 */
1497void
1498pagedaemon_wakeup()
1499{
1500
1501	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1502		vm_pages_needed = 1;
1503		wakeup(&vm_pages_needed);
1504	}
1505}
1506
1507#if !defined(NO_SWAPPING)
1508static void
1509vm_req_vmdaemon()
1510{
1511	static int lastrun = 0;
1512
1513	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1514		wakeup(&vm_daemon_needed);
1515		lastrun = ticks;
1516	}
1517}
1518
1519static void
1520vm_daemon()
1521{
1522	struct proc *p;
1523	int breakout;
1524	struct thread *td;
1525
1526	mtx_lock(&Giant);
1527	while (TRUE) {
1528		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1529		if (vm_pageout_req_swapout) {
1530			swapout_procs(vm_pageout_req_swapout);
1531			vm_pageout_req_swapout = 0;
1532		}
1533		/*
1534		 * scan the processes for exceeding their rlimits or if
1535		 * process is swapped out -- deactivate pages
1536		 */
1537		sx_slock(&allproc_lock);
1538		LIST_FOREACH(p, &allproc, p_list) {
1539			vm_pindex_t limit, size;
1540
1541			/*
1542			 * if this is a system process or if we have already
1543			 * looked at this process, skip it.
1544			 */
1545			PROC_LOCK(p);
1546			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1547				PROC_UNLOCK(p);
1548				continue;
1549			}
1550			/*
1551			 * if the process is in a non-running type state,
1552			 * don't touch it.
1553			 */
1554			mtx_lock_spin(&sched_lock);
1555			breakout = 0;
1556			FOREACH_THREAD_IN_PROC(p, td) {
1557				if (!TD_ON_RUNQ(td) &&
1558				    !TD_IS_RUNNING(td) &&
1559				    !TD_IS_SLEEPING(td)) {
1560					breakout = 1;
1561					break;
1562				}
1563			}
1564			mtx_unlock_spin(&sched_lock);
1565			if (breakout) {
1566				PROC_UNLOCK(p);
1567				continue;
1568			}
1569			/*
1570			 * get a limit
1571			 */
1572			limit = OFF_TO_IDX(
1573			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1574				p->p_rlimit[RLIMIT_RSS].rlim_max));
1575
1576			/*
1577			 * let processes that are swapped out really be
1578			 * swapped out set the limit to nothing (will force a
1579			 * swap-out.)
1580			 */
1581			if ((p->p_sflag & PS_INMEM) == 0)
1582				limit = 0;	/* XXX */
1583			PROC_UNLOCK(p);
1584
1585			size = vmspace_resident_count(p->p_vmspace);
1586			if (limit >= 0 && size >= limit) {
1587				vm_pageout_map_deactivate_pages(
1588				    &p->p_vmspace->vm_map, limit);
1589			}
1590		}
1591		sx_sunlock(&allproc_lock);
1592	}
1593}
1594#endif			/* !defined(NO_SWAPPING) */
1595