vm_pageout.c revision 120217
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 *	The proverbial page-out daemon.
71 */
72
73#include <sys/cdefs.h>
74__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 120217 2003-09-19 05:03:45Z alc $");
75
76#include "opt_vm.h"
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/kernel.h>
80#include <sys/eventhandler.h>
81#include <sys/lock.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/kthread.h>
85#include <sys/ktr.h>
86#include <sys/resourcevar.h>
87#include <sys/sched.h>
88#include <sys/signalvar.h>
89#include <sys/vnode.h>
90#include <sys/vmmeter.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/vm_object.h>
97#include <vm/vm_page.h>
98#include <vm/vm_map.h>
99#include <vm/vm_pageout.h>
100#include <vm/vm_pager.h>
101#include <vm/swap_pager.h>
102#include <vm/vm_extern.h>
103#include <vm/uma.h>
104
105#include <machine/mutex.h>
106
107/*
108 * System initialization
109 */
110
111/* the kernel process "vm_pageout"*/
112static void vm_pageout(void);
113static int vm_pageout_clean(vm_page_t);
114static void vm_pageout_page_free(vm_page_t);
115static void vm_pageout_pmap_collect(void);
116static void vm_pageout_scan(int pass);
117
118struct proc *pageproc;
119
120static struct kproc_desc page_kp = {
121	"pagedaemon",
122	vm_pageout,
123	&pageproc
124};
125SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
126
127#if !defined(NO_SWAPPING)
128/* the kernel process "vm_daemon"*/
129static void vm_daemon(void);
130static struct	proc *vmproc;
131
132static struct kproc_desc vm_kp = {
133	"vmdaemon",
134	vm_daemon,
135	&vmproc
136};
137SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
138#endif
139
140
141int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142int vm_pageout_deficit;		/* Estimated number of pages deficit */
143int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144
145#if !defined(NO_SWAPPING)
146static int vm_pageout_req_swapout;	/* XXX */
147static int vm_daemon_needed;
148#endif
149static int vm_max_launder = 32;
150static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
151static int vm_pageout_full_stats_interval = 0;
152static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
153static int defer_swap_pageouts=0;
154static int disable_swap_pageouts=0;
155
156#if defined(NO_SWAPPING)
157static int vm_swap_enabled=0;
158static int vm_swap_idle_enabled=0;
159#else
160static int vm_swap_enabled=1;
161static int vm_swap_idle_enabled=0;
162#endif
163
164SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
165	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
166
167SYSCTL_INT(_vm, OID_AUTO, max_launder,
168	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
169
170SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
171	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
174	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
175
176SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
177	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
178
179SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
180	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
181
182#if defined(NO_SWAPPING)
183SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184	CTLFLAG_RD, &vm_swap_enabled, 0, "");
185SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
187#else
188SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192#endif
193
194SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200static int pageout_lock_miss;
201SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204#define VM_PAGEOUT_PAGE_COUNT 16
205int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
208
209#if !defined(NO_SWAPPING)
210static void vm_pageout_map_deactivate_pages(vm_map_t, long);
211static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
212static void vm_req_vmdaemon(void);
213#endif
214static void vm_pageout_page_stats(void);
215
216/*
217 * vm_pageout_clean:
218 *
219 * Clean the page and remove it from the laundry.
220 *
221 * We set the busy bit to cause potential page faults on this page to
222 * block.  Note the careful timing, however, the busy bit isn't set till
223 * late and we cannot do anything that will mess with the page.
224 */
225static int
226vm_pageout_clean(m)
227	vm_page_t m;
228{
229	vm_object_t object;
230	vm_page_t mc[2*vm_pageout_page_count];
231	int pageout_count;
232	int ib, is, page_base;
233	vm_pindex_t pindex = m->pindex;
234
235	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
236	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
237
238	/*
239	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
240	 * with the new swapper, but we could have serious problems paging
241	 * out other object types if there is insufficient memory.
242	 *
243	 * Unfortunately, checking free memory here is far too late, so the
244	 * check has been moved up a procedural level.
245	 */
246
247	/*
248	 * Don't mess with the page if it's busy, held, or special
249	 */
250	if ((m->hold_count != 0) ||
251	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
252		return 0;
253	}
254
255	mc[vm_pageout_page_count] = m;
256	pageout_count = 1;
257	page_base = vm_pageout_page_count;
258	ib = 1;
259	is = 1;
260
261	/*
262	 * Scan object for clusterable pages.
263	 *
264	 * We can cluster ONLY if: ->> the page is NOT
265	 * clean, wired, busy, held, or mapped into a
266	 * buffer, and one of the following:
267	 * 1) The page is inactive, or a seldom used
268	 *    active page.
269	 * -or-
270	 * 2) we force the issue.
271	 *
272	 * During heavy mmap/modification loads the pageout
273	 * daemon can really fragment the underlying file
274	 * due to flushing pages out of order and not trying
275	 * align the clusters (which leave sporatic out-of-order
276	 * holes).  To solve this problem we do the reverse scan
277	 * first and attempt to align our cluster, then do a
278	 * forward scan if room remains.
279	 */
280	object = m->object;
281more:
282	while (ib && pageout_count < vm_pageout_page_count) {
283		vm_page_t p;
284
285		if (ib > pindex) {
286			ib = 0;
287			break;
288		}
289
290		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
291			ib = 0;
292			break;
293		}
294		if (((p->queue - p->pc) == PQ_CACHE) ||
295		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
296			ib = 0;
297			break;
298		}
299		vm_page_test_dirty(p);
300		if ((p->dirty & p->valid) == 0 ||
301		    p->queue != PQ_INACTIVE ||
302		    p->wire_count != 0 ||	/* may be held by buf cache */
303		    p->hold_count != 0) {	/* may be undergoing I/O */
304			ib = 0;
305			break;
306		}
307		mc[--page_base] = p;
308		++pageout_count;
309		++ib;
310		/*
311		 * alignment boundry, stop here and switch directions.  Do
312		 * not clear ib.
313		 */
314		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
315			break;
316	}
317
318	while (pageout_count < vm_pageout_page_count &&
319	    pindex + is < object->size) {
320		vm_page_t p;
321
322		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
323			break;
324		if (((p->queue - p->pc) == PQ_CACHE) ||
325		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
326			break;
327		}
328		vm_page_test_dirty(p);
329		if ((p->dirty & p->valid) == 0 ||
330		    p->queue != PQ_INACTIVE ||
331		    p->wire_count != 0 ||	/* may be held by buf cache */
332		    p->hold_count != 0) {	/* may be undergoing I/O */
333			break;
334		}
335		mc[page_base + pageout_count] = p;
336		++pageout_count;
337		++is;
338	}
339
340	/*
341	 * If we exhausted our forward scan, continue with the reverse scan
342	 * when possible, even past a page boundry.  This catches boundry
343	 * conditions.
344	 */
345	if (ib && pageout_count < vm_pageout_page_count)
346		goto more;
347
348	/*
349	 * we allow reads during pageouts...
350	 */
351	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, TRUE));
352}
353
354/*
355 * vm_pageout_flush() - launder the given pages
356 *
357 *	The given pages are laundered.  Note that we setup for the start of
358 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
359 *	reference count all in here rather then in the parent.  If we want
360 *	the parent to do more sophisticated things we may have to change
361 *	the ordering.
362 */
363int
364vm_pageout_flush(mc, count, flags, is_object_locked)
365	vm_page_t *mc;
366	int count;
367	int flags;
368	int is_object_locked;
369{
370	vm_object_t object;
371	int pageout_status[count];
372	int numpagedout = 0;
373	int i;
374
375	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
376	/*
377	 * Initiate I/O.  Bump the vm_page_t->busy counter and
378	 * mark the pages read-only.
379	 *
380	 * We do not have to fixup the clean/dirty bits here... we can
381	 * allow the pager to do it after the I/O completes.
382	 *
383	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
384	 * edge case with file fragments.
385	 */
386	for (i = 0; i < count; i++) {
387		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
388		vm_page_io_start(mc[i]);
389		pmap_page_protect(mc[i], VM_PROT_READ);
390	}
391	object = mc[0]->object;
392	vm_page_unlock_queues();
393	if (!is_object_locked)
394		VM_OBJECT_LOCK(object);
395	vm_object_pip_add(object, count);
396	VM_OBJECT_UNLOCK(object);
397
398	vm_pager_put_pages(object, mc, count,
399	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
400	    pageout_status);
401
402	VM_OBJECT_LOCK(object);
403	vm_page_lock_queues();
404	for (i = 0; i < count; i++) {
405		vm_page_t mt = mc[i];
406
407		switch (pageout_status[i]) {
408		case VM_PAGER_OK:
409		case VM_PAGER_PEND:
410			numpagedout++;
411			break;
412		case VM_PAGER_BAD:
413			/*
414			 * Page outside of range of object. Right now we
415			 * essentially lose the changes by pretending it
416			 * worked.
417			 */
418			pmap_clear_modify(mt);
419			vm_page_undirty(mt);
420			break;
421		case VM_PAGER_ERROR:
422		case VM_PAGER_FAIL:
423			/*
424			 * If page couldn't be paged out, then reactivate the
425			 * page so it doesn't clog the inactive list.  (We
426			 * will try paging out it again later).
427			 */
428			vm_page_activate(mt);
429			break;
430		case VM_PAGER_AGAIN:
431			break;
432		}
433
434		/*
435		 * If the operation is still going, leave the page busy to
436		 * block all other accesses. Also, leave the paging in
437		 * progress indicator set so that we don't attempt an object
438		 * collapse.
439		 */
440		if (pageout_status[i] != VM_PAGER_PEND) {
441			vm_object_pip_wakeup(object);
442			vm_page_io_finish(mt);
443			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
444				pmap_page_protect(mt, VM_PROT_READ);
445		}
446	}
447	if (!is_object_locked)
448		VM_OBJECT_UNLOCK(object);
449	return numpagedout;
450}
451
452#if !defined(NO_SWAPPING)
453/*
454 *	vm_pageout_object_deactivate_pages
455 *
456 *	deactivate enough pages to satisfy the inactive target
457 *	requirements or if vm_page_proc_limit is set, then
458 *	deactivate all of the pages in the object and its
459 *	backing_objects.
460 *
461 *	The object and map must be locked.
462 */
463static void
464vm_pageout_object_deactivate_pages(pmap, first_object, desired)
465	pmap_t pmap;
466	vm_object_t first_object;
467	long desired;
468{
469	vm_object_t backing_object, object;
470	vm_page_t p, next;
471	int actcount, rcount, remove_mode;
472
473	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
474	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
475		return;
476	for (object = first_object;; object = backing_object) {
477		if (pmap_resident_count(pmap) <= desired)
478			goto unlock_return;
479		if (object->paging_in_progress)
480			goto unlock_return;
481
482		remove_mode = 0;
483		if (object->shadow_count > 1)
484			remove_mode = 1;
485		/*
486		 * scan the objects entire memory queue
487		 */
488		rcount = object->resident_page_count;
489		p = TAILQ_FIRST(&object->memq);
490		vm_page_lock_queues();
491		while (p && (rcount-- > 0)) {
492			if (pmap_resident_count(pmap) <= desired) {
493				vm_page_unlock_queues();
494				goto unlock_return;
495			}
496			next = TAILQ_NEXT(p, listq);
497			cnt.v_pdpages++;
498			if (p->wire_count != 0 ||
499			    p->hold_count != 0 ||
500			    p->busy != 0 ||
501			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
502			    !pmap_page_exists_quick(pmap, p)) {
503				p = next;
504				continue;
505			}
506			actcount = pmap_ts_referenced(p);
507			if (actcount) {
508				vm_page_flag_set(p, PG_REFERENCED);
509			} else if (p->flags & PG_REFERENCED) {
510				actcount = 1;
511			}
512			if ((p->queue != PQ_ACTIVE) &&
513				(p->flags & PG_REFERENCED)) {
514				vm_page_activate(p);
515				p->act_count += actcount;
516				vm_page_flag_clear(p, PG_REFERENCED);
517			} else if (p->queue == PQ_ACTIVE) {
518				if ((p->flags & PG_REFERENCED) == 0) {
519					p->act_count -= min(p->act_count, ACT_DECLINE);
520					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
521						pmap_remove_all(p);
522						vm_page_deactivate(p);
523					} else {
524						vm_pageq_requeue(p);
525					}
526				} else {
527					vm_page_activate(p);
528					vm_page_flag_clear(p, PG_REFERENCED);
529					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
530						p->act_count += ACT_ADVANCE;
531					vm_pageq_requeue(p);
532				}
533			} else if (p->queue == PQ_INACTIVE) {
534				pmap_remove_all(p);
535			}
536			p = next;
537		}
538		vm_page_unlock_queues();
539		if ((backing_object = object->backing_object) == NULL)
540			goto unlock_return;
541		VM_OBJECT_LOCK(backing_object);
542		if (object != first_object)
543			VM_OBJECT_UNLOCK(object);
544	}
545unlock_return:
546	if (object != first_object)
547		VM_OBJECT_UNLOCK(object);
548}
549
550/*
551 * deactivate some number of pages in a map, try to do it fairly, but
552 * that is really hard to do.
553 */
554static void
555vm_pageout_map_deactivate_pages(map, desired)
556	vm_map_t map;
557	long desired;
558{
559	vm_map_entry_t tmpe;
560	vm_object_t obj, bigobj;
561	int nothingwired;
562
563	if (!vm_map_trylock(map))
564		return;
565
566	bigobj = NULL;
567	nothingwired = TRUE;
568
569	/*
570	 * first, search out the biggest object, and try to free pages from
571	 * that.
572	 */
573	tmpe = map->header.next;
574	while (tmpe != &map->header) {
575		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
576			obj = tmpe->object.vm_object;
577			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
578				if (obj->shadow_count <= 1 &&
579				    (bigobj == NULL ||
580				     bigobj->resident_page_count < obj->resident_page_count)) {
581					if (bigobj != NULL)
582						VM_OBJECT_UNLOCK(bigobj);
583					bigobj = obj;
584				} else
585					VM_OBJECT_UNLOCK(obj);
586			}
587		}
588		if (tmpe->wired_count > 0)
589			nothingwired = FALSE;
590		tmpe = tmpe->next;
591	}
592
593	if (bigobj != NULL) {
594		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
595		VM_OBJECT_UNLOCK(bigobj);
596	}
597	/*
598	 * Next, hunt around for other pages to deactivate.  We actually
599	 * do this search sort of wrong -- .text first is not the best idea.
600	 */
601	tmpe = map->header.next;
602	while (tmpe != &map->header) {
603		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
604			break;
605		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
606			obj = tmpe->object.vm_object;
607			if (obj != NULL) {
608				VM_OBJECT_LOCK(obj);
609				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
610				VM_OBJECT_UNLOCK(obj);
611			}
612		}
613		tmpe = tmpe->next;
614	}
615
616	/*
617	 * Remove all mappings if a process is swapped out, this will free page
618	 * table pages.
619	 */
620	if (desired == 0 && nothingwired) {
621		GIANT_REQUIRED;
622		vm_page_lock_queues();
623		pmap_remove(vm_map_pmap(map), vm_map_min(map),
624		    vm_map_max(map));
625		vm_page_unlock_queues();
626	}
627	vm_map_unlock(map);
628}
629#endif		/* !defined(NO_SWAPPING) */
630
631/*
632 * Warning! The page queue lock is released and reacquired.
633 */
634static void
635vm_pageout_page_free(vm_page_t m)
636{
637	vm_object_t object = m->object;
638
639	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
640	vm_page_busy(m);
641	vm_page_unlock_queues();
642	/*
643	 * Avoid a lock order reversal.  The page must be busy.
644	 */
645	VM_OBJECT_LOCK(object);
646	vm_page_lock_queues();
647	pmap_remove_all(m);
648	vm_page_free(m);
649	VM_OBJECT_UNLOCK(object);
650	cnt.v_dfree++;
651}
652
653/*
654 * This routine is very drastic, but can save the system
655 * in a pinch.
656 */
657static void
658vm_pageout_pmap_collect(void)
659{
660	int i;
661	vm_page_t m;
662	static int warningdone;
663
664	if (pmap_pagedaemon_waken == 0)
665		return;
666	if (warningdone < 5) {
667		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
668		warningdone++;
669	}
670	vm_page_lock_queues();
671	for (i = 0; i < vm_page_array_size; i++) {
672		m = &vm_page_array[i];
673		if (m->wire_count || m->hold_count || m->busy ||
674		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
675			continue;
676		pmap_remove_all(m);
677	}
678	vm_page_unlock_queues();
679	pmap_pagedaemon_waken = 0;
680}
681
682/*
683 *	vm_pageout_scan does the dirty work for the pageout daemon.
684 */
685static void
686vm_pageout_scan(int pass)
687{
688	vm_page_t m, next;
689	struct vm_page marker;
690	int page_shortage, maxscan, pcount;
691	int addl_page_shortage, addl_page_shortage_init;
692	struct proc *p, *bigproc;
693	vm_offset_t size, bigsize;
694	vm_object_t object;
695	int actcount;
696	int vnodes_skipped = 0;
697	int maxlaunder;
698	int s;
699	struct thread *td;
700
701	GIANT_REQUIRED;
702	/*
703	 * Decrease registered cache sizes.
704	 */
705	EVENTHANDLER_INVOKE(vm_lowmem, 0);
706	/*
707	 * We do this explicitly after the caches have been drained above.
708	 */
709	uma_reclaim();
710	/*
711	 * Do whatever cleanup that the pmap code can.
712	 */
713	vm_pageout_pmap_collect();
714
715	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
716
717	/*
718	 * Calculate the number of pages we want to either free or move
719	 * to the cache.
720	 */
721	page_shortage = vm_paging_target() + addl_page_shortage_init;
722
723	/*
724	 * Initialize our marker
725	 */
726	bzero(&marker, sizeof(marker));
727	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
728	marker.queue = PQ_INACTIVE;
729	marker.wire_count = 1;
730
731	/*
732	 * Start scanning the inactive queue for pages we can move to the
733	 * cache or free.  The scan will stop when the target is reached or
734	 * we have scanned the entire inactive queue.  Note that m->act_count
735	 * is not used to form decisions for the inactive queue, only for the
736	 * active queue.
737	 *
738	 * maxlaunder limits the number of dirty pages we flush per scan.
739	 * For most systems a smaller value (16 or 32) is more robust under
740	 * extreme memory and disk pressure because any unnecessary writes
741	 * to disk can result in extreme performance degredation.  However,
742	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
743	 * used) will die horribly with limited laundering.  If the pageout
744	 * daemon cannot clean enough pages in the first pass, we let it go
745	 * all out in succeeding passes.
746	 */
747	if ((maxlaunder = vm_max_launder) <= 1)
748		maxlaunder = 1;
749	if (pass)
750		maxlaunder = 10000;
751	vm_page_lock_queues();
752rescan0:
753	addl_page_shortage = addl_page_shortage_init;
754	maxscan = cnt.v_inactive_count;
755
756	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
757	     m != NULL && maxscan-- > 0 && page_shortage > 0;
758	     m = next) {
759
760		cnt.v_pdpages++;
761
762		if (m->queue != PQ_INACTIVE) {
763			goto rescan0;
764		}
765
766		next = TAILQ_NEXT(m, pageq);
767
768		/*
769		 * skip marker pages
770		 */
771		if (m->flags & PG_MARKER)
772			continue;
773
774		/*
775		 * A held page may be undergoing I/O, so skip it.
776		 */
777		if (m->hold_count) {
778			vm_pageq_requeue(m);
779			addl_page_shortage++;
780			continue;
781		}
782		/*
783		 * Don't mess with busy pages, keep in the front of the
784		 * queue, most likely are being paged out.
785		 */
786		if (m->busy || (m->flags & PG_BUSY)) {
787			addl_page_shortage++;
788			continue;
789		}
790
791		/*
792		 * If the object is not being used, we ignore previous
793		 * references.
794		 */
795		if (m->object->ref_count == 0) {
796			vm_page_flag_clear(m, PG_REFERENCED);
797			pmap_clear_reference(m);
798
799		/*
800		 * Otherwise, if the page has been referenced while in the
801		 * inactive queue, we bump the "activation count" upwards,
802		 * making it less likely that the page will be added back to
803		 * the inactive queue prematurely again.  Here we check the
804		 * page tables (or emulated bits, if any), given the upper
805		 * level VM system not knowing anything about existing
806		 * references.
807		 */
808		} else if (((m->flags & PG_REFERENCED) == 0) &&
809			(actcount = pmap_ts_referenced(m))) {
810			vm_page_activate(m);
811			m->act_count += (actcount + ACT_ADVANCE);
812			continue;
813		}
814
815		/*
816		 * If the upper level VM system knows about any page
817		 * references, we activate the page.  We also set the
818		 * "activation count" higher than normal so that we will less
819		 * likely place pages back onto the inactive queue again.
820		 */
821		if ((m->flags & PG_REFERENCED) != 0) {
822			vm_page_flag_clear(m, PG_REFERENCED);
823			actcount = pmap_ts_referenced(m);
824			vm_page_activate(m);
825			m->act_count += (actcount + ACT_ADVANCE + 1);
826			continue;
827		}
828
829		/*
830		 * If the upper level VM system doesn't know anything about
831		 * the page being dirty, we have to check for it again.  As
832		 * far as the VM code knows, any partially dirty pages are
833		 * fully dirty.
834		 */
835		if (m->dirty == 0) {
836			vm_page_test_dirty(m);
837		} else {
838			vm_page_dirty(m);
839		}
840
841		/*
842		 * Invalid pages can be easily freed
843		 */
844		if (m->valid == 0) {
845			vm_pageout_page_free(m);
846			--page_shortage;
847
848		/*
849		 * Clean pages can be placed onto the cache queue.  This
850		 * effectively frees them.
851		 */
852		} else if (m->dirty == 0) {
853			vm_page_cache(m);
854			--page_shortage;
855		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
856			/*
857			 * Dirty pages need to be paged out, but flushing
858			 * a page is extremely expensive verses freeing
859			 * a clean page.  Rather then artificially limiting
860			 * the number of pages we can flush, we instead give
861			 * dirty pages extra priority on the inactive queue
862			 * by forcing them to be cycled through the queue
863			 * twice before being flushed, after which the
864			 * (now clean) page will cycle through once more
865			 * before being freed.  This significantly extends
866			 * the thrash point for a heavily loaded machine.
867			 */
868			vm_page_flag_set(m, PG_WINATCFLS);
869			vm_pageq_requeue(m);
870		} else if (maxlaunder > 0) {
871			/*
872			 * We always want to try to flush some dirty pages if
873			 * we encounter them, to keep the system stable.
874			 * Normally this number is small, but under extreme
875			 * pressure where there are insufficient clean pages
876			 * on the inactive queue, we may have to go all out.
877			 */
878			int swap_pageouts_ok;
879			struct vnode *vp = NULL;
880			struct mount *mp;
881
882			object = m->object;
883			if (!VM_OBJECT_TRYLOCK(object))
884				continue;
885			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
886				swap_pageouts_ok = 1;
887			} else {
888				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
889				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
890				vm_page_count_min());
891
892			}
893
894			/*
895			 * We don't bother paging objects that are "dead".
896			 * Those objects are in a "rundown" state.
897			 */
898			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
899				VM_OBJECT_UNLOCK(object);
900				vm_pageq_requeue(m);
901				continue;
902			}
903
904			/*
905			 * The object is already known NOT to be dead.   It
906			 * is possible for the vget() to block the whole
907			 * pageout daemon, but the new low-memory handling
908			 * code should prevent it.
909			 *
910			 * The previous code skipped locked vnodes and, worse,
911			 * reordered pages in the queue.  This results in
912			 * completely non-deterministic operation and, on a
913			 * busy system, can lead to extremely non-optimal
914			 * pageouts.  For example, it can cause clean pages
915			 * to be freed and dirty pages to be moved to the end
916			 * of the queue.  Since dirty pages are also moved to
917			 * the end of the queue once-cleaned, this gives
918			 * way too large a weighting to defering the freeing
919			 * of dirty pages.
920			 *
921			 * We can't wait forever for the vnode lock, we might
922			 * deadlock due to a vn_read() getting stuck in
923			 * vm_wait while holding this vnode.  We skip the
924			 * vnode if we can't get it in a reasonable amount
925			 * of time.
926			 */
927			if (object->type == OBJT_VNODE) {
928				vp = object->handle;
929				mp = NULL;
930				if (vp->v_type == VREG)
931					vn_start_write(vp, &mp, V_NOWAIT);
932				vm_page_unlock_queues();
933				VI_LOCK(vp);
934				VM_OBJECT_UNLOCK(object);
935				if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
936				    LK_TIMELOCK, curthread)) {
937					VM_OBJECT_LOCK(object);
938					vm_page_lock_queues();
939					++pageout_lock_miss;
940					vn_finished_write(mp);
941					if (object->flags & OBJ_MIGHTBEDIRTY)
942						vnodes_skipped++;
943					VM_OBJECT_UNLOCK(object);
944					continue;
945				}
946				VM_OBJECT_LOCK(object);
947				vm_page_lock_queues();
948				/*
949				 * The page might have been moved to another
950				 * queue during potential blocking in vget()
951				 * above.  The page might have been freed and
952				 * reused for another vnode.  The object might
953				 * have been reused for another vnode.
954				 */
955				if (m->queue != PQ_INACTIVE ||
956				    m->object != object ||
957				    object->handle != vp) {
958					if (object->flags & OBJ_MIGHTBEDIRTY)
959						vnodes_skipped++;
960					goto unlock_and_continue;
961				}
962
963				/*
964				 * The page may have been busied during the
965				 * blocking in vput();  We don't move the
966				 * page back onto the end of the queue so that
967				 * statistics are more correct if we don't.
968				 */
969				if (m->busy || (m->flags & PG_BUSY)) {
970					goto unlock_and_continue;
971				}
972
973				/*
974				 * If the page has become held it might
975				 * be undergoing I/O, so skip it
976				 */
977				if (m->hold_count) {
978					vm_pageq_requeue(m);
979					if (object->flags & OBJ_MIGHTBEDIRTY)
980						vnodes_skipped++;
981					goto unlock_and_continue;
982				}
983			}
984
985			/*
986			 * If a page is dirty, then it is either being washed
987			 * (but not yet cleaned) or it is still in the
988			 * laundry.  If it is still in the laundry, then we
989			 * start the cleaning operation.
990			 *
991			 * This operation may cluster, invalidating the 'next'
992			 * pointer.  To prevent an inordinate number of
993			 * restarts we use our marker to remember our place.
994			 *
995			 * decrement page_shortage on success to account for
996			 * the (future) cleaned page.  Otherwise we could wind
997			 * up laundering or cleaning too many pages.
998			 */
999			s = splvm();
1000			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1001			splx(s);
1002			if (vm_pageout_clean(m) != 0) {
1003				--page_shortage;
1004				--maxlaunder;
1005			}
1006			s = splvm();
1007			next = TAILQ_NEXT(&marker, pageq);
1008			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1009			splx(s);
1010unlock_and_continue:
1011			if (vp) {
1012				vput(vp);
1013				vn_finished_write(mp);
1014			}
1015			VM_OBJECT_UNLOCK(object);
1016		}
1017	}
1018
1019	/*
1020	 * Compute the number of pages we want to try to move from the
1021	 * active queue to the inactive queue.
1022	 */
1023	page_shortage = vm_paging_target() +
1024		cnt.v_inactive_target - cnt.v_inactive_count;
1025	page_shortage += addl_page_shortage;
1026
1027	/*
1028	 * Scan the active queue for things we can deactivate. We nominally
1029	 * track the per-page activity counter and use it to locate
1030	 * deactivation candidates.
1031	 */
1032	pcount = cnt.v_active_count;
1033	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1034
1035	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1036
1037		/*
1038		 * This is a consistency check, and should likely be a panic
1039		 * or warning.
1040		 */
1041		if (m->queue != PQ_ACTIVE) {
1042			break;
1043		}
1044
1045		next = TAILQ_NEXT(m, pageq);
1046		/*
1047		 * Don't deactivate pages that are busy.
1048		 */
1049		if ((m->busy != 0) ||
1050		    (m->flags & PG_BUSY) ||
1051		    (m->hold_count != 0)) {
1052			vm_pageq_requeue(m);
1053			m = next;
1054			continue;
1055		}
1056
1057		/*
1058		 * The count for pagedaemon pages is done after checking the
1059		 * page for eligibility...
1060		 */
1061		cnt.v_pdpages++;
1062
1063		/*
1064		 * Check to see "how much" the page has been used.
1065		 */
1066		actcount = 0;
1067		if (m->object->ref_count != 0) {
1068			if (m->flags & PG_REFERENCED) {
1069				actcount += 1;
1070			}
1071			actcount += pmap_ts_referenced(m);
1072			if (actcount) {
1073				m->act_count += ACT_ADVANCE + actcount;
1074				if (m->act_count > ACT_MAX)
1075					m->act_count = ACT_MAX;
1076			}
1077		}
1078
1079		/*
1080		 * Since we have "tested" this bit, we need to clear it now.
1081		 */
1082		vm_page_flag_clear(m, PG_REFERENCED);
1083
1084		/*
1085		 * Only if an object is currently being used, do we use the
1086		 * page activation count stats.
1087		 */
1088		if (actcount && (m->object->ref_count != 0)) {
1089			vm_pageq_requeue(m);
1090		} else {
1091			m->act_count -= min(m->act_count, ACT_DECLINE);
1092			if (vm_pageout_algorithm ||
1093			    m->object->ref_count == 0 ||
1094			    m->act_count == 0) {
1095				page_shortage--;
1096				if (m->object->ref_count == 0) {
1097					pmap_remove_all(m);
1098					if (m->dirty == 0)
1099						vm_page_cache(m);
1100					else
1101						vm_page_deactivate(m);
1102				} else {
1103					vm_page_deactivate(m);
1104				}
1105			} else {
1106				vm_pageq_requeue(m);
1107			}
1108		}
1109		m = next;
1110	}
1111	s = splvm();
1112
1113	/*
1114	 * We try to maintain some *really* free pages, this allows interrupt
1115	 * code to be guaranteed space.  Since both cache and free queues
1116	 * are considered basically 'free', moving pages from cache to free
1117	 * does not effect other calculations.
1118	 */
1119	while (cnt.v_free_count < cnt.v_free_reserved) {
1120		static int cache_rover = 0;
1121		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1122		if (!m)
1123			break;
1124		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1125		    m->busy ||
1126		    m->hold_count ||
1127		    m->wire_count) {
1128#ifdef INVARIANTS
1129			printf("Warning: busy page %p found in cache\n", m);
1130#endif
1131			vm_page_deactivate(m);
1132			continue;
1133		}
1134		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1135		vm_pageout_page_free(m);
1136	}
1137	splx(s);
1138	vm_page_unlock_queues();
1139#if !defined(NO_SWAPPING)
1140	/*
1141	 * Idle process swapout -- run once per second.
1142	 */
1143	if (vm_swap_idle_enabled) {
1144		static long lsec;
1145		if (time_second != lsec) {
1146			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1147			vm_req_vmdaemon();
1148			lsec = time_second;
1149		}
1150	}
1151#endif
1152
1153	/*
1154	 * If we didn't get enough free pages, and we have skipped a vnode
1155	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1156	 * if we did not get enough free pages.
1157	 */
1158	if (vm_paging_target() > 0) {
1159		if (vnodes_skipped && vm_page_count_min())
1160			(void) speedup_syncer();
1161#if !defined(NO_SWAPPING)
1162		if (vm_swap_enabled && vm_page_count_target()) {
1163			vm_req_vmdaemon();
1164			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1165		}
1166#endif
1167	}
1168
1169	/*
1170	 * If we are critically low on one of RAM or swap and low on
1171	 * the other, kill the largest process.  However, we avoid
1172	 * doing this on the first pass in order to give ourselves a
1173	 * chance to flush out dirty vnode-backed pages and to allow
1174	 * active pages to be moved to the inactive queue and reclaimed.
1175	 *
1176	 * We keep the process bigproc locked once we find it to keep anyone
1177	 * from messing with it; however, there is a possibility of
1178	 * deadlock if process B is bigproc and one of it's child processes
1179	 * attempts to propagate a signal to B while we are waiting for A's
1180	 * lock while walking this list.  To avoid this, we don't block on
1181	 * the process lock but just skip a process if it is already locked.
1182	 */
1183	if (pass != 0 &&
1184	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1185	     (swap_pager_full && vm_paging_target() > 0))) {
1186		bigproc = NULL;
1187		bigsize = 0;
1188		sx_slock(&allproc_lock);
1189		FOREACH_PROC_IN_SYSTEM(p) {
1190			int breakout;
1191			/*
1192			 * If this process is already locked, skip it.
1193			 */
1194			if (PROC_TRYLOCK(p) == 0)
1195				continue;
1196			/*
1197			 * If this is a system or protected process, skip it.
1198			 */
1199			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1200			    (p->p_flag & P_PROTECTED) ||
1201			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1202				PROC_UNLOCK(p);
1203				continue;
1204			}
1205			/*
1206			 * if the process is in a non-running type state,
1207			 * don't touch it. Check all the threads individually.
1208			 */
1209			mtx_lock_spin(&sched_lock);
1210			breakout = 0;
1211			FOREACH_THREAD_IN_PROC(p, td) {
1212				if (!TD_ON_RUNQ(td) &&
1213				    !TD_IS_RUNNING(td) &&
1214				    !TD_IS_SLEEPING(td)) {
1215					breakout = 1;
1216					break;
1217				}
1218			}
1219			if (breakout) {
1220				mtx_unlock_spin(&sched_lock);
1221				PROC_UNLOCK(p);
1222				continue;
1223			}
1224			mtx_unlock_spin(&sched_lock);
1225			/*
1226			 * get the process size
1227			 */
1228			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1229				PROC_UNLOCK(p);
1230				continue;
1231			}
1232			size = vmspace_swap_count(p->p_vmspace);
1233			vm_map_unlock_read(&p->p_vmspace->vm_map);
1234			size += vmspace_resident_count(p->p_vmspace);
1235			/*
1236			 * if the this process is bigger than the biggest one
1237			 * remember it.
1238			 */
1239			if (size > bigsize) {
1240				if (bigproc != NULL)
1241					PROC_UNLOCK(bigproc);
1242				bigproc = p;
1243				bigsize = size;
1244			} else
1245				PROC_UNLOCK(p);
1246		}
1247		sx_sunlock(&allproc_lock);
1248		if (bigproc != NULL) {
1249			struct ksegrp *kg;
1250			killproc(bigproc, "out of swap space");
1251			mtx_lock_spin(&sched_lock);
1252			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1253				sched_nice(kg, PRIO_MIN); /* XXXKSE ??? */
1254			}
1255			mtx_unlock_spin(&sched_lock);
1256			PROC_UNLOCK(bigproc);
1257			wakeup(&cnt.v_free_count);
1258		}
1259	}
1260}
1261
1262/*
1263 * This routine tries to maintain the pseudo LRU active queue,
1264 * so that during long periods of time where there is no paging,
1265 * that some statistic accumulation still occurs.  This code
1266 * helps the situation where paging just starts to occur.
1267 */
1268static void
1269vm_pageout_page_stats()
1270{
1271	vm_page_t m,next;
1272	int pcount,tpcount;		/* Number of pages to check */
1273	static int fullintervalcount = 0;
1274	int page_shortage;
1275	int s0;
1276
1277	page_shortage =
1278	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1279	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1280
1281	if (page_shortage <= 0)
1282		return;
1283
1284	s0 = splvm();
1285	vm_page_lock_queues();
1286	pcount = cnt.v_active_count;
1287	fullintervalcount += vm_pageout_stats_interval;
1288	if (fullintervalcount < vm_pageout_full_stats_interval) {
1289		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1290		if (pcount > tpcount)
1291			pcount = tpcount;
1292	} else {
1293		fullintervalcount = 0;
1294	}
1295
1296	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1297	while ((m != NULL) && (pcount-- > 0)) {
1298		int actcount;
1299
1300		if (m->queue != PQ_ACTIVE) {
1301			break;
1302		}
1303
1304		next = TAILQ_NEXT(m, pageq);
1305		/*
1306		 * Don't deactivate pages that are busy.
1307		 */
1308		if ((m->busy != 0) ||
1309		    (m->flags & PG_BUSY) ||
1310		    (m->hold_count != 0)) {
1311			vm_pageq_requeue(m);
1312			m = next;
1313			continue;
1314		}
1315
1316		actcount = 0;
1317		if (m->flags & PG_REFERENCED) {
1318			vm_page_flag_clear(m, PG_REFERENCED);
1319			actcount += 1;
1320		}
1321
1322		actcount += pmap_ts_referenced(m);
1323		if (actcount) {
1324			m->act_count += ACT_ADVANCE + actcount;
1325			if (m->act_count > ACT_MAX)
1326				m->act_count = ACT_MAX;
1327			vm_pageq_requeue(m);
1328		} else {
1329			if (m->act_count == 0) {
1330				/*
1331				 * We turn off page access, so that we have
1332				 * more accurate RSS stats.  We don't do this
1333				 * in the normal page deactivation when the
1334				 * system is loaded VM wise, because the
1335				 * cost of the large number of page protect
1336				 * operations would be higher than the value
1337				 * of doing the operation.
1338				 */
1339				pmap_remove_all(m);
1340				vm_page_deactivate(m);
1341			} else {
1342				m->act_count -= min(m->act_count, ACT_DECLINE);
1343				vm_pageq_requeue(m);
1344			}
1345		}
1346
1347		m = next;
1348	}
1349	vm_page_unlock_queues();
1350	splx(s0);
1351}
1352
1353/*
1354 *	vm_pageout is the high level pageout daemon.
1355 */
1356static void
1357vm_pageout()
1358{
1359	int error, pass, s;
1360
1361	mtx_lock(&Giant);
1362
1363	/*
1364	 * Initialize some paging parameters.
1365	 */
1366	cnt.v_interrupt_free_min = 2;
1367	if (cnt.v_page_count < 2000)
1368		vm_pageout_page_count = 8;
1369
1370	/*
1371	 * v_free_reserved needs to include enough for the largest
1372	 * swap pager structures plus enough for any pv_entry structs
1373	 * when paging.
1374	 */
1375	if (cnt.v_page_count > 1024)
1376		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1377	else
1378		cnt.v_free_min = 4;
1379	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1380	    cnt.v_interrupt_free_min;
1381	cnt.v_free_reserved = vm_pageout_page_count +
1382	    cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_L2_SIZE;
1383	cnt.v_free_severe = cnt.v_free_min / 2;
1384	cnt.v_free_min += cnt.v_free_reserved;
1385	cnt.v_free_severe += cnt.v_free_reserved;
1386
1387	/*
1388	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1389	 * that these are more a measure of the VM cache queue hysteresis
1390	 * then the VM free queue.  Specifically, v_free_target is the
1391	 * high water mark (free+cache pages).
1392	 *
1393	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1394	 * low water mark, while v_free_min is the stop.  v_cache_min must
1395	 * be big enough to handle memory needs while the pageout daemon
1396	 * is signalled and run to free more pages.
1397	 */
1398	if (cnt.v_free_count > 6144)
1399		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1400	else
1401		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1402
1403	if (cnt.v_free_count > 2048) {
1404		cnt.v_cache_min = cnt.v_free_target;
1405		cnt.v_cache_max = 2 * cnt.v_cache_min;
1406		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1407	} else {
1408		cnt.v_cache_min = 0;
1409		cnt.v_cache_max = 0;
1410		cnt.v_inactive_target = cnt.v_free_count / 4;
1411	}
1412	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1413		cnt.v_inactive_target = cnt.v_free_count / 3;
1414
1415	/* XXX does not really belong here */
1416	if (vm_page_max_wired == 0)
1417		vm_page_max_wired = cnt.v_free_count / 3;
1418
1419	if (vm_pageout_stats_max == 0)
1420		vm_pageout_stats_max = cnt.v_free_target;
1421
1422	/*
1423	 * Set interval in seconds for stats scan.
1424	 */
1425	if (vm_pageout_stats_interval == 0)
1426		vm_pageout_stats_interval = 5;
1427	if (vm_pageout_full_stats_interval == 0)
1428		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1429
1430	/*
1431	 * Set maximum free per pass
1432	 */
1433	if (vm_pageout_stats_free_max == 0)
1434		vm_pageout_stats_free_max = 5;
1435
1436	swap_pager_swap_init();
1437	pass = 0;
1438	/*
1439	 * The pageout daemon is never done, so loop forever.
1440	 */
1441	while (TRUE) {
1442		s = splvm();
1443		vm_page_lock_queues();
1444		/*
1445		 * If we have enough free memory, wakeup waiters.  Do
1446		 * not clear vm_pages_needed until we reach our target,
1447		 * otherwise we may be woken up over and over again and
1448		 * waste a lot of cpu.
1449		 */
1450		if (vm_pages_needed && !vm_page_count_min()) {
1451			if (!vm_paging_needed())
1452				vm_pages_needed = 0;
1453			wakeup(&cnt.v_free_count);
1454		}
1455		if (vm_pages_needed) {
1456			/*
1457			 * Still not done, take a second pass without waiting
1458			 * (unlimited dirty cleaning), otherwise sleep a bit
1459			 * and try again.
1460			 */
1461			++pass;
1462			if (pass > 1)
1463				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1464				       "psleep", hz/2);
1465		} else {
1466			/*
1467			 * Good enough, sleep & handle stats.  Prime the pass
1468			 * for the next run.
1469			 */
1470			if (pass > 1)
1471				pass = 1;
1472			else
1473				pass = 0;
1474			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1475				    "psleep", vm_pageout_stats_interval * hz);
1476			if (error && !vm_pages_needed) {
1477				vm_page_unlock_queues();
1478				splx(s);
1479				pass = 0;
1480				vm_pageout_page_stats();
1481				continue;
1482			}
1483		}
1484		if (vm_pages_needed)
1485			cnt.v_pdwakeups++;
1486		vm_page_unlock_queues();
1487		splx(s);
1488		vm_pageout_scan(pass);
1489	}
1490}
1491
1492/*
1493 * Unless the page queue lock is held by the caller, this function
1494 * should be regarded as advisory.  Specifically, the caller should
1495 * not msleep() on &cnt.v_free_count following this function unless
1496 * the page queue lock is held until the msleep() is performed.
1497 */
1498void
1499pagedaemon_wakeup()
1500{
1501
1502	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1503		vm_pages_needed = 1;
1504		wakeup(&vm_pages_needed);
1505	}
1506}
1507
1508#if !defined(NO_SWAPPING)
1509static void
1510vm_req_vmdaemon()
1511{
1512	static int lastrun = 0;
1513
1514	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1515		wakeup(&vm_daemon_needed);
1516		lastrun = ticks;
1517	}
1518}
1519
1520static void
1521vm_daemon()
1522{
1523	struct proc *p;
1524	int breakout;
1525	struct thread *td;
1526
1527	mtx_lock(&Giant);
1528	while (TRUE) {
1529		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1530		if (vm_pageout_req_swapout) {
1531			swapout_procs(vm_pageout_req_swapout);
1532			vm_pageout_req_swapout = 0;
1533		}
1534		/*
1535		 * scan the processes for exceeding their rlimits or if
1536		 * process is swapped out -- deactivate pages
1537		 */
1538		sx_slock(&allproc_lock);
1539		LIST_FOREACH(p, &allproc, p_list) {
1540			vm_pindex_t limit, size;
1541
1542			/*
1543			 * if this is a system process or if we have already
1544			 * looked at this process, skip it.
1545			 */
1546			PROC_LOCK(p);
1547			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1548				PROC_UNLOCK(p);
1549				continue;
1550			}
1551			/*
1552			 * if the process is in a non-running type state,
1553			 * don't touch it.
1554			 */
1555			mtx_lock_spin(&sched_lock);
1556			breakout = 0;
1557			FOREACH_THREAD_IN_PROC(p, td) {
1558				if (!TD_ON_RUNQ(td) &&
1559				    !TD_IS_RUNNING(td) &&
1560				    !TD_IS_SLEEPING(td)) {
1561					breakout = 1;
1562					break;
1563				}
1564			}
1565			mtx_unlock_spin(&sched_lock);
1566			if (breakout) {
1567				PROC_UNLOCK(p);
1568				continue;
1569			}
1570			/*
1571			 * get a limit
1572			 */
1573			limit = OFF_TO_IDX(
1574			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1575				p->p_rlimit[RLIMIT_RSS].rlim_max));
1576
1577			/*
1578			 * let processes that are swapped out really be
1579			 * swapped out set the limit to nothing (will force a
1580			 * swap-out.)
1581			 */
1582			if ((p->p_sflag & PS_INMEM) == 0)
1583				limit = 0;	/* XXX */
1584			PROC_UNLOCK(p);
1585
1586			size = vmspace_resident_count(p->p_vmspace);
1587			if (limit >= 0 && size >= limit) {
1588				vm_pageout_map_deactivate_pages(
1589				    &p->p_vmspace->vm_map, limit);
1590			}
1591		}
1592		sx_sunlock(&allproc_lock);
1593	}
1594}
1595#endif			/* !defined(NO_SWAPPING) */
1596