vm_pageout.c revision 118931
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 *	The proverbial page-out daemon.
71 */
72
73#include <sys/cdefs.h>
74__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 118931 2003-08-15 05:13:36Z alc $");
75
76#include "opt_vm.h"
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/kernel.h>
80#include <sys/eventhandler.h>
81#include <sys/lock.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/kthread.h>
85#include <sys/ktr.h>
86#include <sys/resourcevar.h>
87#include <sys/sched.h>
88#include <sys/signalvar.h>
89#include <sys/vnode.h>
90#include <sys/vmmeter.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/vm_object.h>
97#include <vm/vm_page.h>
98#include <vm/vm_map.h>
99#include <vm/vm_pageout.h>
100#include <vm/vm_pager.h>
101#include <vm/swap_pager.h>
102#include <vm/vm_extern.h>
103#include <vm/uma.h>
104
105#include <machine/mutex.h>
106
107/*
108 * System initialization
109 */
110
111/* the kernel process "vm_pageout"*/
112static void vm_pageout(void);
113static int vm_pageout_clean(vm_page_t);
114static void vm_pageout_page_free(vm_page_t);
115static void vm_pageout_pmap_collect(void);
116static void vm_pageout_scan(int pass);
117static int vm_pageout_free_page_calc(vm_size_t count);
118struct proc *pageproc;
119
120static struct kproc_desc page_kp = {
121	"pagedaemon",
122	vm_pageout,
123	&pageproc
124};
125SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
126
127#if !defined(NO_SWAPPING)
128/* the kernel process "vm_daemon"*/
129static void vm_daemon(void);
130static struct	proc *vmproc;
131
132static struct kproc_desc vm_kp = {
133	"vmdaemon",
134	vm_daemon,
135	&vmproc
136};
137SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
138#endif
139
140
141int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142int vm_pageout_deficit;		/* Estimated number of pages deficit */
143int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144
145#if !defined(NO_SWAPPING)
146static int vm_pageout_req_swapout;	/* XXX */
147static int vm_daemon_needed;
148#endif
149static int vm_max_launder = 32;
150static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
151static int vm_pageout_full_stats_interval = 0;
152static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
153static int defer_swap_pageouts=0;
154static int disable_swap_pageouts=0;
155
156#if defined(NO_SWAPPING)
157static int vm_swap_enabled=0;
158static int vm_swap_idle_enabled=0;
159#else
160static int vm_swap_enabled=1;
161static int vm_swap_idle_enabled=0;
162#endif
163
164SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
165	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
166
167SYSCTL_INT(_vm, OID_AUTO, max_launder,
168	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
169
170SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
171	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
174	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
175
176SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
177	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
178
179SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
180	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
181
182#if defined(NO_SWAPPING)
183SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184	CTLFLAG_RD, &vm_swap_enabled, 0, "");
185SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
187#else
188SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192#endif
193
194SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200static int pageout_lock_miss;
201SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204#define VM_PAGEOUT_PAGE_COUNT 16
205int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
208
209#if !defined(NO_SWAPPING)
210static void vm_pageout_map_deactivate_pages(vm_map_t, long);
211static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
212static void vm_req_vmdaemon(void);
213#endif
214static void vm_pageout_page_stats(void);
215
216/*
217 * vm_pageout_clean:
218 *
219 * Clean the page and remove it from the laundry.
220 *
221 * We set the busy bit to cause potential page faults on this page to
222 * block.  Note the careful timing, however, the busy bit isn't set till
223 * late and we cannot do anything that will mess with the page.
224 */
225static int
226vm_pageout_clean(m)
227	vm_page_t m;
228{
229	vm_object_t object;
230	vm_page_t mc[2*vm_pageout_page_count];
231	int numpagedout, pageout_count;
232	int ib, is, page_base;
233	vm_pindex_t pindex = m->pindex;
234
235	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
236
237	/*
238	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
239	 * with the new swapper, but we could have serious problems paging
240	 * out other object types if there is insufficient memory.
241	 *
242	 * Unfortunately, checking free memory here is far too late, so the
243	 * check has been moved up a procedural level.
244	 */
245
246	/*
247	 * Don't mess with the page if it's busy, held, or special
248	 */
249	if ((m->hold_count != 0) ||
250	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED))) ||
251	    !VM_OBJECT_TRYLOCK(m->object)) {
252		return 0;
253	}
254
255	mc[vm_pageout_page_count] = m;
256	pageout_count = 1;
257	page_base = vm_pageout_page_count;
258	ib = 1;
259	is = 1;
260
261	/*
262	 * Scan object for clusterable pages.
263	 *
264	 * We can cluster ONLY if: ->> the page is NOT
265	 * clean, wired, busy, held, or mapped into a
266	 * buffer, and one of the following:
267	 * 1) The page is inactive, or a seldom used
268	 *    active page.
269	 * -or-
270	 * 2) we force the issue.
271	 *
272	 * During heavy mmap/modification loads the pageout
273	 * daemon can really fragment the underlying file
274	 * due to flushing pages out of order and not trying
275	 * align the clusters (which leave sporatic out-of-order
276	 * holes).  To solve this problem we do the reverse scan
277	 * first and attempt to align our cluster, then do a
278	 * forward scan if room remains.
279	 */
280	object = m->object;
281more:
282	while (ib && pageout_count < vm_pageout_page_count) {
283		vm_page_t p;
284
285		if (ib > pindex) {
286			ib = 0;
287			break;
288		}
289
290		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
291			ib = 0;
292			break;
293		}
294		if (((p->queue - p->pc) == PQ_CACHE) ||
295		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
296			ib = 0;
297			break;
298		}
299		vm_page_test_dirty(p);
300		if ((p->dirty & p->valid) == 0 ||
301		    p->queue != PQ_INACTIVE ||
302		    p->wire_count != 0 ||	/* may be held by buf cache */
303		    p->hold_count != 0) {	/* may be undergoing I/O */
304			ib = 0;
305			break;
306		}
307		mc[--page_base] = p;
308		++pageout_count;
309		++ib;
310		/*
311		 * alignment boundry, stop here and switch directions.  Do
312		 * not clear ib.
313		 */
314		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
315			break;
316	}
317
318	while (pageout_count < vm_pageout_page_count &&
319	    pindex + is < object->size) {
320		vm_page_t p;
321
322		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
323			break;
324		if (((p->queue - p->pc) == PQ_CACHE) ||
325		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
326			break;
327		}
328		vm_page_test_dirty(p);
329		if ((p->dirty & p->valid) == 0 ||
330		    p->queue != PQ_INACTIVE ||
331		    p->wire_count != 0 ||	/* may be held by buf cache */
332		    p->hold_count != 0) {	/* may be undergoing I/O */
333			break;
334		}
335		mc[page_base + pageout_count] = p;
336		++pageout_count;
337		++is;
338	}
339
340	/*
341	 * If we exhausted our forward scan, continue with the reverse scan
342	 * when possible, even past a page boundry.  This catches boundry
343	 * conditions.
344	 */
345	if (ib && pageout_count < vm_pageout_page_count)
346		goto more;
347
348	/*
349	 * we allow reads during pageouts...
350	 */
351	numpagedout = vm_pageout_flush(&mc[page_base], pageout_count, 0, TRUE);
352	VM_OBJECT_UNLOCK(object);
353	return (numpagedout);
354}
355
356/*
357 * vm_pageout_flush() - launder the given pages
358 *
359 *	The given pages are laundered.  Note that we setup for the start of
360 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
361 *	reference count all in here rather then in the parent.  If we want
362 *	the parent to do more sophisticated things we may have to change
363 *	the ordering.
364 */
365int
366vm_pageout_flush(mc, count, flags, is_object_locked)
367	vm_page_t *mc;
368	int count;
369	int flags;
370	int is_object_locked;
371{
372	vm_object_t object;
373	int pageout_status[count];
374	int numpagedout = 0;
375	int i;
376
377	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
378	/*
379	 * Initiate I/O.  Bump the vm_page_t->busy counter and
380	 * mark the pages read-only.
381	 *
382	 * We do not have to fixup the clean/dirty bits here... we can
383	 * allow the pager to do it after the I/O completes.
384	 *
385	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
386	 * edge case with file fragments.
387	 */
388	for (i = 0; i < count; i++) {
389		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
390		vm_page_io_start(mc[i]);
391		pmap_page_protect(mc[i], VM_PROT_READ);
392	}
393	object = mc[0]->object;
394	vm_page_unlock_queues();
395	if (!is_object_locked)
396		VM_OBJECT_LOCK(object);
397	vm_object_pip_add(object, count);
398	VM_OBJECT_UNLOCK(object);
399
400	vm_pager_put_pages(object, mc, count,
401	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
402	    pageout_status);
403
404	VM_OBJECT_LOCK(object);
405	vm_page_lock_queues();
406	for (i = 0; i < count; i++) {
407		vm_page_t mt = mc[i];
408
409		switch (pageout_status[i]) {
410		case VM_PAGER_OK:
411		case VM_PAGER_PEND:
412			numpagedout++;
413			break;
414		case VM_PAGER_BAD:
415			/*
416			 * Page outside of range of object. Right now we
417			 * essentially lose the changes by pretending it
418			 * worked.
419			 */
420			pmap_clear_modify(mt);
421			vm_page_undirty(mt);
422			break;
423		case VM_PAGER_ERROR:
424		case VM_PAGER_FAIL:
425			/*
426			 * If page couldn't be paged out, then reactivate the
427			 * page so it doesn't clog the inactive list.  (We
428			 * will try paging out it again later).
429			 */
430			vm_page_activate(mt);
431			break;
432		case VM_PAGER_AGAIN:
433			break;
434		}
435
436		/*
437		 * If the operation is still going, leave the page busy to
438		 * block all other accesses. Also, leave the paging in
439		 * progress indicator set so that we don't attempt an object
440		 * collapse.
441		 */
442		if (pageout_status[i] != VM_PAGER_PEND) {
443			vm_object_pip_wakeup(object);
444			vm_page_io_finish(mt);
445			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
446				pmap_page_protect(mt, VM_PROT_READ);
447		}
448	}
449	if (!is_object_locked)
450		VM_OBJECT_UNLOCK(object);
451	return numpagedout;
452}
453
454#if !defined(NO_SWAPPING)
455/*
456 *	vm_pageout_object_deactivate_pages
457 *
458 *	deactivate enough pages to satisfy the inactive target
459 *	requirements or if vm_page_proc_limit is set, then
460 *	deactivate all of the pages in the object and its
461 *	backing_objects.
462 *
463 *	The object and map must be locked.
464 */
465static void
466vm_pageout_object_deactivate_pages(pmap, first_object, desired)
467	pmap_t pmap;
468	vm_object_t first_object;
469	long desired;
470{
471	vm_object_t backing_object, object;
472	vm_page_t p, next;
473	int actcount, rcount, remove_mode;
474
475	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
476	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
477		return;
478	for (object = first_object;; object = backing_object) {
479		if (pmap_resident_count(pmap) <= desired)
480			goto unlock_return;
481		if (object->paging_in_progress)
482			goto unlock_return;
483
484		remove_mode = 0;
485		if (object->shadow_count > 1)
486			remove_mode = 1;
487		/*
488		 * scan the objects entire memory queue
489		 */
490		rcount = object->resident_page_count;
491		p = TAILQ_FIRST(&object->memq);
492		vm_page_lock_queues();
493		while (p && (rcount-- > 0)) {
494			if (pmap_resident_count(pmap) <= desired) {
495				vm_page_unlock_queues();
496				goto unlock_return;
497			}
498			next = TAILQ_NEXT(p, listq);
499			cnt.v_pdpages++;
500			if (p->wire_count != 0 ||
501			    p->hold_count != 0 ||
502			    p->busy != 0 ||
503			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
504			    !pmap_page_exists_quick(pmap, p)) {
505				p = next;
506				continue;
507			}
508			actcount = pmap_ts_referenced(p);
509			if (actcount) {
510				vm_page_flag_set(p, PG_REFERENCED);
511			} else if (p->flags & PG_REFERENCED) {
512				actcount = 1;
513			}
514			if ((p->queue != PQ_ACTIVE) &&
515				(p->flags & PG_REFERENCED)) {
516				vm_page_activate(p);
517				p->act_count += actcount;
518				vm_page_flag_clear(p, PG_REFERENCED);
519			} else if (p->queue == PQ_ACTIVE) {
520				if ((p->flags & PG_REFERENCED) == 0) {
521					p->act_count -= min(p->act_count, ACT_DECLINE);
522					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
523						pmap_remove_all(p);
524						vm_page_deactivate(p);
525					} else {
526						vm_pageq_requeue(p);
527					}
528				} else {
529					vm_page_activate(p);
530					vm_page_flag_clear(p, PG_REFERENCED);
531					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
532						p->act_count += ACT_ADVANCE;
533					vm_pageq_requeue(p);
534				}
535			} else if (p->queue == PQ_INACTIVE) {
536				pmap_remove_all(p);
537			}
538			p = next;
539		}
540		vm_page_unlock_queues();
541		if ((backing_object = object->backing_object) == NULL)
542			goto unlock_return;
543		VM_OBJECT_LOCK(backing_object);
544		if (object != first_object)
545			VM_OBJECT_UNLOCK(object);
546	}
547unlock_return:
548	if (object != first_object)
549		VM_OBJECT_UNLOCK(object);
550}
551
552/*
553 * deactivate some number of pages in a map, try to do it fairly, but
554 * that is really hard to do.
555 */
556static void
557vm_pageout_map_deactivate_pages(map, desired)
558	vm_map_t map;
559	long desired;
560{
561	vm_map_entry_t tmpe;
562	vm_object_t obj, bigobj;
563	int nothingwired;
564
565	if (!vm_map_trylock(map))
566		return;
567
568	bigobj = NULL;
569	nothingwired = TRUE;
570
571	/*
572	 * first, search out the biggest object, and try to free pages from
573	 * that.
574	 */
575	tmpe = map->header.next;
576	while (tmpe != &map->header) {
577		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
578			obj = tmpe->object.vm_object;
579			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
580				if (obj->shadow_count <= 1 &&
581				    (bigobj == NULL ||
582				     bigobj->resident_page_count < obj->resident_page_count)) {
583					if (bigobj != NULL)
584						VM_OBJECT_UNLOCK(bigobj);
585					bigobj = obj;
586				} else
587					VM_OBJECT_UNLOCK(obj);
588			}
589		}
590		if (tmpe->wired_count > 0)
591			nothingwired = FALSE;
592		tmpe = tmpe->next;
593	}
594
595	if (bigobj != NULL) {
596		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
597		VM_OBJECT_UNLOCK(bigobj);
598	}
599	/*
600	 * Next, hunt around for other pages to deactivate.  We actually
601	 * do this search sort of wrong -- .text first is not the best idea.
602	 */
603	tmpe = map->header.next;
604	while (tmpe != &map->header) {
605		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
606			break;
607		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
608			obj = tmpe->object.vm_object;
609			if (obj != NULL) {
610				VM_OBJECT_LOCK(obj);
611				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
612				VM_OBJECT_UNLOCK(obj);
613			}
614		}
615		tmpe = tmpe->next;
616	}
617
618	/*
619	 * Remove all mappings if a process is swapped out, this will free page
620	 * table pages.
621	 */
622	if (desired == 0 && nothingwired) {
623		GIANT_REQUIRED;
624		vm_page_lock_queues();
625		pmap_remove(vm_map_pmap(map), vm_map_min(map),
626		    vm_map_max(map));
627		vm_page_unlock_queues();
628	}
629	vm_map_unlock(map);
630}
631#endif		/* !defined(NO_SWAPPING) */
632
633/*
634 * Warning! The page queue lock is released and reacquired.
635 */
636static void
637vm_pageout_page_free(vm_page_t m)
638{
639	vm_object_t object = m->object;
640
641	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
642	vm_page_busy(m);
643	vm_page_unlock_queues();
644	/*
645	 * Avoid a lock order reversal.  The page must be busy.
646	 */
647	VM_OBJECT_LOCK(object);
648	vm_page_lock_queues();
649	pmap_remove_all(m);
650	vm_page_free(m);
651	VM_OBJECT_UNLOCK(object);
652	cnt.v_dfree++;
653}
654
655/*
656 * This routine is very drastic, but can save the system
657 * in a pinch.
658 */
659static void
660vm_pageout_pmap_collect(void)
661{
662	int i;
663	vm_page_t m;
664	static int warningdone;
665
666	if (pmap_pagedaemon_waken == 0)
667		return;
668	if (warningdone < 5) {
669		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
670		warningdone++;
671	}
672	vm_page_lock_queues();
673	for (i = 0; i < vm_page_array_size; i++) {
674		m = &vm_page_array[i];
675		if (m->wire_count || m->hold_count || m->busy ||
676		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
677			continue;
678		pmap_remove_all(m);
679	}
680	vm_page_unlock_queues();
681	pmap_pagedaemon_waken = 0;
682}
683
684/*
685 *	vm_pageout_scan does the dirty work for the pageout daemon.
686 */
687static void
688vm_pageout_scan(int pass)
689{
690	vm_page_t m, next;
691	struct vm_page marker;
692	int save_page_shortage;
693	int save_inactive_count;
694	int page_shortage, maxscan, pcount;
695	int addl_page_shortage, addl_page_shortage_init;
696	struct proc *p, *bigproc;
697	vm_offset_t size, bigsize;
698	vm_object_t object;
699	int actcount;
700	int vnodes_skipped = 0;
701	int maxlaunder;
702	int s;
703	struct thread *td;
704
705	GIANT_REQUIRED;
706	/*
707	 * Decrease registered cache sizes.
708	 */
709	EVENTHANDLER_INVOKE(vm_lowmem, 0);
710	/*
711	 * We do this explicitly after the caches have been drained above.
712	 */
713	uma_reclaim();
714	/*
715	 * Do whatever cleanup that the pmap code can.
716	 */
717	vm_pageout_pmap_collect();
718
719	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
720
721	/*
722	 * Calculate the number of pages we want to either free or move
723	 * to the cache.
724	 */
725	page_shortage = vm_paging_target() + addl_page_shortage_init;
726	save_page_shortage = page_shortage;
727	save_inactive_count = cnt.v_inactive_count;
728
729	/*
730	 * Initialize our marker
731	 */
732	bzero(&marker, sizeof(marker));
733	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
734	marker.queue = PQ_INACTIVE;
735	marker.wire_count = 1;
736
737	/*
738	 * Start scanning the inactive queue for pages we can move to the
739	 * cache or free.  The scan will stop when the target is reached or
740	 * we have scanned the entire inactive queue.  Note that m->act_count
741	 * is not used to form decisions for the inactive queue, only for the
742	 * active queue.
743	 *
744	 * maxlaunder limits the number of dirty pages we flush per scan.
745	 * For most systems a smaller value (16 or 32) is more robust under
746	 * extreme memory and disk pressure because any unnecessary writes
747	 * to disk can result in extreme performance degredation.  However,
748	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
749	 * used) will die horribly with limited laundering.  If the pageout
750	 * daemon cannot clean enough pages in the first pass, we let it go
751	 * all out in succeeding passes.
752	 */
753	if ((maxlaunder = vm_max_launder) <= 1)
754		maxlaunder = 1;
755	if (pass)
756		maxlaunder = 10000;
757	vm_page_lock_queues();
758rescan0:
759	addl_page_shortage = addl_page_shortage_init;
760	maxscan = cnt.v_inactive_count;
761
762	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
763	     m != NULL && maxscan-- > 0 && page_shortage > 0;
764	     m = next) {
765
766		cnt.v_pdpages++;
767
768		if (m->queue != PQ_INACTIVE) {
769			goto rescan0;
770		}
771
772		next = TAILQ_NEXT(m, pageq);
773
774		/*
775		 * skip marker pages
776		 */
777		if (m->flags & PG_MARKER)
778			continue;
779
780		/*
781		 * A held page may be undergoing I/O, so skip it.
782		 */
783		if (m->hold_count) {
784			vm_pageq_requeue(m);
785			addl_page_shortage++;
786			continue;
787		}
788		/*
789		 * Don't mess with busy pages, keep in the front of the
790		 * queue, most likely are being paged out.
791		 */
792		if (m->busy || (m->flags & PG_BUSY)) {
793			addl_page_shortage++;
794			continue;
795		}
796
797		/*
798		 * If the object is not being used, we ignore previous
799		 * references.
800		 */
801		if (m->object->ref_count == 0) {
802			vm_page_flag_clear(m, PG_REFERENCED);
803			pmap_clear_reference(m);
804
805		/*
806		 * Otherwise, if the page has been referenced while in the
807		 * inactive queue, we bump the "activation count" upwards,
808		 * making it less likely that the page will be added back to
809		 * the inactive queue prematurely again.  Here we check the
810		 * page tables (or emulated bits, if any), given the upper
811		 * level VM system not knowing anything about existing
812		 * references.
813		 */
814		} else if (((m->flags & PG_REFERENCED) == 0) &&
815			(actcount = pmap_ts_referenced(m))) {
816			vm_page_activate(m);
817			m->act_count += (actcount + ACT_ADVANCE);
818			continue;
819		}
820
821		/*
822		 * If the upper level VM system knows about any page
823		 * references, we activate the page.  We also set the
824		 * "activation count" higher than normal so that we will less
825		 * likely place pages back onto the inactive queue again.
826		 */
827		if ((m->flags & PG_REFERENCED) != 0) {
828			vm_page_flag_clear(m, PG_REFERENCED);
829			actcount = pmap_ts_referenced(m);
830			vm_page_activate(m);
831			m->act_count += (actcount + ACT_ADVANCE + 1);
832			continue;
833		}
834
835		/*
836		 * If the upper level VM system doesn't know anything about
837		 * the page being dirty, we have to check for it again.  As
838		 * far as the VM code knows, any partially dirty pages are
839		 * fully dirty.
840		 */
841		if (m->dirty == 0) {
842			vm_page_test_dirty(m);
843		} else {
844			vm_page_dirty(m);
845		}
846
847		/*
848		 * Invalid pages can be easily freed
849		 */
850		if (m->valid == 0) {
851			vm_pageout_page_free(m);
852			--page_shortage;
853
854		/*
855		 * Clean pages can be placed onto the cache queue.  This
856		 * effectively frees them.
857		 */
858		} else if (m->dirty == 0) {
859			vm_page_cache(m);
860			--page_shortage;
861		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
862			/*
863			 * Dirty pages need to be paged out, but flushing
864			 * a page is extremely expensive verses freeing
865			 * a clean page.  Rather then artificially limiting
866			 * the number of pages we can flush, we instead give
867			 * dirty pages extra priority on the inactive queue
868			 * by forcing them to be cycled through the queue
869			 * twice before being flushed, after which the
870			 * (now clean) page will cycle through once more
871			 * before being freed.  This significantly extends
872			 * the thrash point for a heavily loaded machine.
873			 */
874			vm_page_flag_set(m, PG_WINATCFLS);
875			vm_pageq_requeue(m);
876		} else if (maxlaunder > 0) {
877			/*
878			 * We always want to try to flush some dirty pages if
879			 * we encounter them, to keep the system stable.
880			 * Normally this number is small, but under extreme
881			 * pressure where there are insufficient clean pages
882			 * on the inactive queue, we may have to go all out.
883			 */
884			int swap_pageouts_ok;
885			struct vnode *vp = NULL;
886			struct mount *mp;
887
888			object = m->object;
889
890			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
891				swap_pageouts_ok = 1;
892			} else {
893				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
894				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
895				vm_page_count_min());
896
897			}
898
899			/*
900			 * We don't bother paging objects that are "dead".
901			 * Those objects are in a "rundown" state.
902			 */
903			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
904				vm_pageq_requeue(m);
905				continue;
906			}
907
908			/*
909			 * The object is already known NOT to be dead.   It
910			 * is possible for the vget() to block the whole
911			 * pageout daemon, but the new low-memory handling
912			 * code should prevent it.
913			 *
914			 * The previous code skipped locked vnodes and, worse,
915			 * reordered pages in the queue.  This results in
916			 * completely non-deterministic operation and, on a
917			 * busy system, can lead to extremely non-optimal
918			 * pageouts.  For example, it can cause clean pages
919			 * to be freed and dirty pages to be moved to the end
920			 * of the queue.  Since dirty pages are also moved to
921			 * the end of the queue once-cleaned, this gives
922			 * way too large a weighting to defering the freeing
923			 * of dirty pages.
924			 *
925			 * We can't wait forever for the vnode lock, we might
926			 * deadlock due to a vn_read() getting stuck in
927			 * vm_wait while holding this vnode.  We skip the
928			 * vnode if we can't get it in a reasonable amount
929			 * of time.
930			 */
931			if (object->type == OBJT_VNODE) {
932				vp = object->handle;
933
934				mp = NULL;
935				if (vp->v_type == VREG)
936					vn_start_write(vp, &mp, V_NOWAIT);
937				vm_page_unlock_queues();
938				if (vget(vp, LK_EXCLUSIVE|LK_TIMELOCK, curthread)) {
939					vm_page_lock_queues();
940					++pageout_lock_miss;
941					vn_finished_write(mp);
942					if (object->flags & OBJ_MIGHTBEDIRTY)
943						vnodes_skipped++;
944					continue;
945				}
946				vm_page_lock_queues();
947				/*
948				 * The page might have been moved to another
949				 * queue during potential blocking in vget()
950				 * above.  The page might have been freed and
951				 * reused for another vnode.  The object might
952				 * have been reused for another vnode.
953				 */
954				if (m->queue != PQ_INACTIVE ||
955				    m->object != object ||
956				    object->handle != vp) {
957					if (object->flags & OBJ_MIGHTBEDIRTY)
958						vnodes_skipped++;
959					vput(vp);
960					vn_finished_write(mp);
961					continue;
962				}
963
964				/*
965				 * The page may have been busied during the
966				 * blocking in vput();  We don't move the
967				 * page back onto the end of the queue so that
968				 * statistics are more correct if we don't.
969				 */
970				if (m->busy || (m->flags & PG_BUSY)) {
971					vput(vp);
972					vn_finished_write(mp);
973					continue;
974				}
975
976				/*
977				 * If the page has become held it might
978				 * be undergoing I/O, so skip it
979				 */
980				if (m->hold_count) {
981					vm_pageq_requeue(m);
982					if (object->flags & OBJ_MIGHTBEDIRTY)
983						vnodes_skipped++;
984					vput(vp);
985					vn_finished_write(mp);
986					continue;
987				}
988			}
989
990			/*
991			 * If a page is dirty, then it is either being washed
992			 * (but not yet cleaned) or it is still in the
993			 * laundry.  If it is still in the laundry, then we
994			 * start the cleaning operation.
995			 *
996			 * This operation may cluster, invalidating the 'next'
997			 * pointer.  To prevent an inordinate number of
998			 * restarts we use our marker to remember our place.
999			 *
1000			 * decrement page_shortage on success to account for
1001			 * the (future) cleaned page.  Otherwise we could wind
1002			 * up laundering or cleaning too many pages.
1003			 */
1004			s = splvm();
1005			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1006			splx(s);
1007			if (vm_pageout_clean(m) != 0) {
1008				--page_shortage;
1009				--maxlaunder;
1010			}
1011			s = splvm();
1012			next = TAILQ_NEXT(&marker, pageq);
1013			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1014			splx(s);
1015			if (vp) {
1016				vput(vp);
1017				vn_finished_write(mp);
1018			}
1019		}
1020	}
1021
1022	/*
1023	 * Compute the number of pages we want to try to move from the
1024	 * active queue to the inactive queue.
1025	 */
1026	page_shortage = vm_paging_target() +
1027		cnt.v_inactive_target - cnt.v_inactive_count;
1028	page_shortage += addl_page_shortage;
1029
1030	/*
1031	 * Scan the active queue for things we can deactivate. We nominally
1032	 * track the per-page activity counter and use it to locate
1033	 * deactivation candidates.
1034	 */
1035	pcount = cnt.v_active_count;
1036	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1037
1038	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1039
1040		/*
1041		 * This is a consistency check, and should likely be a panic
1042		 * or warning.
1043		 */
1044		if (m->queue != PQ_ACTIVE) {
1045			break;
1046		}
1047
1048		next = TAILQ_NEXT(m, pageq);
1049		/*
1050		 * Don't deactivate pages that are busy.
1051		 */
1052		if ((m->busy != 0) ||
1053		    (m->flags & PG_BUSY) ||
1054		    (m->hold_count != 0)) {
1055			vm_pageq_requeue(m);
1056			m = next;
1057			continue;
1058		}
1059
1060		/*
1061		 * The count for pagedaemon pages is done after checking the
1062		 * page for eligibility...
1063		 */
1064		cnt.v_pdpages++;
1065
1066		/*
1067		 * Check to see "how much" the page has been used.
1068		 */
1069		actcount = 0;
1070		if (m->object->ref_count != 0) {
1071			if (m->flags & PG_REFERENCED) {
1072				actcount += 1;
1073			}
1074			actcount += pmap_ts_referenced(m);
1075			if (actcount) {
1076				m->act_count += ACT_ADVANCE + actcount;
1077				if (m->act_count > ACT_MAX)
1078					m->act_count = ACT_MAX;
1079			}
1080		}
1081
1082		/*
1083		 * Since we have "tested" this bit, we need to clear it now.
1084		 */
1085		vm_page_flag_clear(m, PG_REFERENCED);
1086
1087		/*
1088		 * Only if an object is currently being used, do we use the
1089		 * page activation count stats.
1090		 */
1091		if (actcount && (m->object->ref_count != 0)) {
1092			vm_pageq_requeue(m);
1093		} else {
1094			m->act_count -= min(m->act_count, ACT_DECLINE);
1095			if (vm_pageout_algorithm ||
1096			    m->object->ref_count == 0 ||
1097			    m->act_count == 0) {
1098				page_shortage--;
1099				if (m->object->ref_count == 0) {
1100					pmap_remove_all(m);
1101					if (m->dirty == 0)
1102						vm_page_cache(m);
1103					else
1104						vm_page_deactivate(m);
1105				} else {
1106					vm_page_deactivate(m);
1107				}
1108			} else {
1109				vm_pageq_requeue(m);
1110			}
1111		}
1112		m = next;
1113	}
1114	s = splvm();
1115
1116	/*
1117	 * We try to maintain some *really* free pages, this allows interrupt
1118	 * code to be guaranteed space.  Since both cache and free queues
1119	 * are considered basically 'free', moving pages from cache to free
1120	 * does not effect other calculations.
1121	 */
1122	while (cnt.v_free_count < cnt.v_free_reserved) {
1123		static int cache_rover = 0;
1124		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1125		if (!m)
1126			break;
1127		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1128		    m->busy ||
1129		    m->hold_count ||
1130		    m->wire_count) {
1131#ifdef INVARIANTS
1132			printf("Warning: busy page %p found in cache\n", m);
1133#endif
1134			vm_page_deactivate(m);
1135			continue;
1136		}
1137		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1138		vm_pageout_page_free(m);
1139	}
1140	splx(s);
1141	vm_page_unlock_queues();
1142#if !defined(NO_SWAPPING)
1143	/*
1144	 * Idle process swapout -- run once per second.
1145	 */
1146	if (vm_swap_idle_enabled) {
1147		static long lsec;
1148		if (time_second != lsec) {
1149			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1150			vm_req_vmdaemon();
1151			lsec = time_second;
1152		}
1153	}
1154#endif
1155
1156	/*
1157	 * If we didn't get enough free pages, and we have skipped a vnode
1158	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1159	 * if we did not get enough free pages.
1160	 */
1161	if (vm_paging_target() > 0) {
1162		if (vnodes_skipped && vm_page_count_min())
1163			(void) speedup_syncer();
1164#if !defined(NO_SWAPPING)
1165		if (vm_swap_enabled && vm_page_count_target()) {
1166			vm_req_vmdaemon();
1167			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1168		}
1169#endif
1170	}
1171
1172	/*
1173	 * If we are critically low on one of RAM or swap and low on
1174	 * the other, kill the largest process.  However, we avoid
1175	 * doing this on the first pass in order to give ourselves a
1176	 * chance to flush out dirty vnode-backed pages and to allow
1177	 * active pages to be moved to the inactive queue and reclaimed.
1178	 *
1179	 * We keep the process bigproc locked once we find it to keep anyone
1180	 * from messing with it; however, there is a possibility of
1181	 * deadlock if process B is bigproc and one of it's child processes
1182	 * attempts to propagate a signal to B while we are waiting for A's
1183	 * lock while walking this list.  To avoid this, we don't block on
1184	 * the process lock but just skip a process if it is already locked.
1185	 */
1186	if (pass != 0 &&
1187	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1188	     (swap_pager_full && vm_paging_target() > 0))) {
1189		bigproc = NULL;
1190		bigsize = 0;
1191		sx_slock(&allproc_lock);
1192		FOREACH_PROC_IN_SYSTEM(p) {
1193			int breakout;
1194			/*
1195			 * If this process is already locked, skip it.
1196			 */
1197			if (PROC_TRYLOCK(p) == 0)
1198				continue;
1199			/*
1200			 * If this is a system or protected process, skip it.
1201			 */
1202			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1203			    (p->p_flag & P_PROTECTED) ||
1204			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1205				PROC_UNLOCK(p);
1206				continue;
1207			}
1208			/*
1209			 * if the process is in a non-running type state,
1210			 * don't touch it. Check all the threads individually.
1211			 */
1212			mtx_lock_spin(&sched_lock);
1213			breakout = 0;
1214			FOREACH_THREAD_IN_PROC(p, td) {
1215				if (!TD_ON_RUNQ(td) &&
1216				    !TD_IS_RUNNING(td) &&
1217				    !TD_IS_SLEEPING(td)) {
1218					breakout = 1;
1219					break;
1220				}
1221			}
1222			if (breakout) {
1223				mtx_unlock_spin(&sched_lock);
1224				PROC_UNLOCK(p);
1225				continue;
1226			}
1227			mtx_unlock_spin(&sched_lock);
1228			/*
1229			 * get the process size
1230			 */
1231			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1232				PROC_UNLOCK(p);
1233				continue;
1234			}
1235			size = vmspace_swap_count(p->p_vmspace);
1236			vm_map_unlock_read(&p->p_vmspace->vm_map);
1237			size += vmspace_resident_count(p->p_vmspace);
1238			/*
1239			 * if the this process is bigger than the biggest one
1240			 * remember it.
1241			 */
1242			if (size > bigsize) {
1243				if (bigproc != NULL)
1244					PROC_UNLOCK(bigproc);
1245				bigproc = p;
1246				bigsize = size;
1247			} else
1248				PROC_UNLOCK(p);
1249		}
1250		sx_sunlock(&allproc_lock);
1251		if (bigproc != NULL) {
1252			struct ksegrp *kg;
1253			killproc(bigproc, "out of swap space");
1254			mtx_lock_spin(&sched_lock);
1255			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1256				sched_nice(kg, PRIO_MIN); /* XXXKSE ??? */
1257			}
1258			mtx_unlock_spin(&sched_lock);
1259			PROC_UNLOCK(bigproc);
1260			wakeup(&cnt.v_free_count);
1261		}
1262	}
1263}
1264
1265/*
1266 * This routine tries to maintain the pseudo LRU active queue,
1267 * so that during long periods of time where there is no paging,
1268 * that some statistic accumulation still occurs.  This code
1269 * helps the situation where paging just starts to occur.
1270 */
1271static void
1272vm_pageout_page_stats()
1273{
1274	vm_page_t m,next;
1275	int pcount,tpcount;		/* Number of pages to check */
1276	static int fullintervalcount = 0;
1277	int page_shortage;
1278	int s0;
1279
1280	page_shortage =
1281	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1282	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1283
1284	if (page_shortage <= 0)
1285		return;
1286
1287	s0 = splvm();
1288	vm_page_lock_queues();
1289	pcount = cnt.v_active_count;
1290	fullintervalcount += vm_pageout_stats_interval;
1291	if (fullintervalcount < vm_pageout_full_stats_interval) {
1292		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1293		if (pcount > tpcount)
1294			pcount = tpcount;
1295	} else {
1296		fullintervalcount = 0;
1297	}
1298
1299	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1300	while ((m != NULL) && (pcount-- > 0)) {
1301		int actcount;
1302
1303		if (m->queue != PQ_ACTIVE) {
1304			break;
1305		}
1306
1307		next = TAILQ_NEXT(m, pageq);
1308		/*
1309		 * Don't deactivate pages that are busy.
1310		 */
1311		if ((m->busy != 0) ||
1312		    (m->flags & PG_BUSY) ||
1313		    (m->hold_count != 0)) {
1314			vm_pageq_requeue(m);
1315			m = next;
1316			continue;
1317		}
1318
1319		actcount = 0;
1320		if (m->flags & PG_REFERENCED) {
1321			vm_page_flag_clear(m, PG_REFERENCED);
1322			actcount += 1;
1323		}
1324
1325		actcount += pmap_ts_referenced(m);
1326		if (actcount) {
1327			m->act_count += ACT_ADVANCE + actcount;
1328			if (m->act_count > ACT_MAX)
1329				m->act_count = ACT_MAX;
1330			vm_pageq_requeue(m);
1331		} else {
1332			if (m->act_count == 0) {
1333				/*
1334				 * We turn off page access, so that we have
1335				 * more accurate RSS stats.  We don't do this
1336				 * in the normal page deactivation when the
1337				 * system is loaded VM wise, because the
1338				 * cost of the large number of page protect
1339				 * operations would be higher than the value
1340				 * of doing the operation.
1341				 */
1342				pmap_remove_all(m);
1343				vm_page_deactivate(m);
1344			} else {
1345				m->act_count -= min(m->act_count, ACT_DECLINE);
1346				vm_pageq_requeue(m);
1347			}
1348		}
1349
1350		m = next;
1351	}
1352	vm_page_unlock_queues();
1353	splx(s0);
1354}
1355
1356static int
1357vm_pageout_free_page_calc(count)
1358vm_size_t count;
1359{
1360	if (count < cnt.v_page_count)
1361		 return 0;
1362	/*
1363	 * free_reserved needs to include enough for the largest swap pager
1364	 * structures plus enough for any pv_entry structs when paging.
1365	 */
1366	if (cnt.v_page_count > 1024)
1367		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1368	else
1369		cnt.v_free_min = 4;
1370	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1371		cnt.v_interrupt_free_min;
1372	cnt.v_free_reserved = vm_pageout_page_count +
1373		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1374	cnt.v_free_severe = cnt.v_free_min / 2;
1375	cnt.v_free_min += cnt.v_free_reserved;
1376	cnt.v_free_severe += cnt.v_free_reserved;
1377	return 1;
1378}
1379
1380/*
1381 *	vm_pageout is the high level pageout daemon.
1382 */
1383static void
1384vm_pageout()
1385{
1386	int error, pass, s;
1387
1388	mtx_lock(&Giant);
1389
1390	/*
1391	 * Initialize some paging parameters.
1392	 */
1393	cnt.v_interrupt_free_min = 2;
1394	if (cnt.v_page_count < 2000)
1395		vm_pageout_page_count = 8;
1396
1397	vm_pageout_free_page_calc(cnt.v_page_count);
1398	/*
1399	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1400	 * that these are more a measure of the VM cache queue hysteresis
1401	 * then the VM free queue.  Specifically, v_free_target is the
1402	 * high water mark (free+cache pages).
1403	 *
1404	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1405	 * low water mark, while v_free_min is the stop.  v_cache_min must
1406	 * be big enough to handle memory needs while the pageout daemon
1407	 * is signalled and run to free more pages.
1408	 */
1409	if (cnt.v_free_count > 6144)
1410		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1411	else
1412		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1413
1414	if (cnt.v_free_count > 2048) {
1415		cnt.v_cache_min = cnt.v_free_target;
1416		cnt.v_cache_max = 2 * cnt.v_cache_min;
1417		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1418	} else {
1419		cnt.v_cache_min = 0;
1420		cnt.v_cache_max = 0;
1421		cnt.v_inactive_target = cnt.v_free_count / 4;
1422	}
1423	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1424		cnt.v_inactive_target = cnt.v_free_count / 3;
1425
1426	/* XXX does not really belong here */
1427	if (vm_page_max_wired == 0)
1428		vm_page_max_wired = cnt.v_free_count / 3;
1429
1430	if (vm_pageout_stats_max == 0)
1431		vm_pageout_stats_max = cnt.v_free_target;
1432
1433	/*
1434	 * Set interval in seconds for stats scan.
1435	 */
1436	if (vm_pageout_stats_interval == 0)
1437		vm_pageout_stats_interval = 5;
1438	if (vm_pageout_full_stats_interval == 0)
1439		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1440
1441	/*
1442	 * Set maximum free per pass
1443	 */
1444	if (vm_pageout_stats_free_max == 0)
1445		vm_pageout_stats_free_max = 5;
1446
1447	swap_pager_swap_init();
1448	pass = 0;
1449	/*
1450	 * The pageout daemon is never done, so loop forever.
1451	 */
1452	while (TRUE) {
1453		s = splvm();
1454		vm_page_lock_queues();
1455		/*
1456		 * If we have enough free memory, wakeup waiters.  Do
1457		 * not clear vm_pages_needed until we reach our target,
1458		 * otherwise we may be woken up over and over again and
1459		 * waste a lot of cpu.
1460		 */
1461		if (vm_pages_needed && !vm_page_count_min()) {
1462			if (!vm_paging_needed())
1463				vm_pages_needed = 0;
1464			wakeup(&cnt.v_free_count);
1465		}
1466		if (vm_pages_needed) {
1467			/*
1468			 * Still not done, take a second pass without waiting
1469			 * (unlimited dirty cleaning), otherwise sleep a bit
1470			 * and try again.
1471			 */
1472			++pass;
1473			if (pass > 1)
1474				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1475				       "psleep", hz/2);
1476		} else {
1477			/*
1478			 * Good enough, sleep & handle stats.  Prime the pass
1479			 * for the next run.
1480			 */
1481			if (pass > 1)
1482				pass = 1;
1483			else
1484				pass = 0;
1485			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1486				    "psleep", vm_pageout_stats_interval * hz);
1487			if (error && !vm_pages_needed) {
1488				vm_page_unlock_queues();
1489				splx(s);
1490				pass = 0;
1491				vm_pageout_page_stats();
1492				continue;
1493			}
1494		}
1495		if (vm_pages_needed)
1496			cnt.v_pdwakeups++;
1497		vm_page_unlock_queues();
1498		splx(s);
1499		vm_pageout_scan(pass);
1500	}
1501}
1502
1503/*
1504 * Unless the page queue lock is held by the caller, this function
1505 * should be regarded as advisory.  Specifically, the caller should
1506 * not msleep() on &cnt.v_free_count following this function unless
1507 * the page queue lock is held until the msleep() is performed.
1508 */
1509void
1510pagedaemon_wakeup()
1511{
1512
1513	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1514		vm_pages_needed = 1;
1515		wakeup(&vm_pages_needed);
1516	}
1517}
1518
1519#if !defined(NO_SWAPPING)
1520static void
1521vm_req_vmdaemon()
1522{
1523	static int lastrun = 0;
1524
1525	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1526		wakeup(&vm_daemon_needed);
1527		lastrun = ticks;
1528	}
1529}
1530
1531static void
1532vm_daemon()
1533{
1534	struct proc *p;
1535	int breakout;
1536	struct thread *td;
1537
1538	mtx_lock(&Giant);
1539	while (TRUE) {
1540		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1541		if (vm_pageout_req_swapout) {
1542			swapout_procs(vm_pageout_req_swapout);
1543			vm_pageout_req_swapout = 0;
1544		}
1545		/*
1546		 * scan the processes for exceeding their rlimits or if
1547		 * process is swapped out -- deactivate pages
1548		 */
1549		sx_slock(&allproc_lock);
1550		LIST_FOREACH(p, &allproc, p_list) {
1551			vm_pindex_t limit, size;
1552
1553			/*
1554			 * if this is a system process or if we have already
1555			 * looked at this process, skip it.
1556			 */
1557			PROC_LOCK(p);
1558			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1559				PROC_UNLOCK(p);
1560				continue;
1561			}
1562			/*
1563			 * if the process is in a non-running type state,
1564			 * don't touch it.
1565			 */
1566			mtx_lock_spin(&sched_lock);
1567			breakout = 0;
1568			FOREACH_THREAD_IN_PROC(p, td) {
1569				if (!TD_ON_RUNQ(td) &&
1570				    !TD_IS_RUNNING(td) &&
1571				    !TD_IS_SLEEPING(td)) {
1572					breakout = 1;
1573					break;
1574				}
1575			}
1576			mtx_unlock_spin(&sched_lock);
1577			if (breakout) {
1578				PROC_UNLOCK(p);
1579				continue;
1580			}
1581			/*
1582			 * get a limit
1583			 */
1584			limit = OFF_TO_IDX(
1585			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1586				p->p_rlimit[RLIMIT_RSS].rlim_max));
1587
1588			/*
1589			 * let processes that are swapped out really be
1590			 * swapped out set the limit to nothing (will force a
1591			 * swap-out.)
1592			 */
1593			if ((p->p_sflag & PS_INMEM) == 0)
1594				limit = 0;	/* XXX */
1595			PROC_UNLOCK(p);
1596
1597			size = vmspace_resident_count(p->p_vmspace);
1598			if (limit >= 0 && size >= limit) {
1599				vm_pageout_map_deactivate_pages(
1600				    &p->p_vmspace->vm_map, limit);
1601			}
1602		}
1603		sx_sunlock(&allproc_lock);
1604	}
1605}
1606#endif			/* !defined(NO_SWAPPING) */
1607