vm_pageout.c revision 117038
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 *	The proverbial page-out daemon.
71 */
72
73#include <sys/cdefs.h>
74__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 117038 2003-06-29 19:51:24Z alc $");
75
76#include "opt_vm.h"
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/kernel.h>
80#include <sys/eventhandler.h>
81#include <sys/lock.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/kthread.h>
85#include <sys/ktr.h>
86#include <sys/resourcevar.h>
87#include <sys/sched.h>
88#include <sys/signalvar.h>
89#include <sys/vnode.h>
90#include <sys/vmmeter.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/vm_object.h>
97#include <vm/vm_page.h>
98#include <vm/vm_map.h>
99#include <vm/vm_pageout.h>
100#include <vm/vm_pager.h>
101#include <vm/swap_pager.h>
102#include <vm/vm_extern.h>
103#include <vm/uma.h>
104
105#include <machine/mutex.h>
106
107/*
108 * System initialization
109 */
110
111/* the kernel process "vm_pageout"*/
112static void vm_pageout(void);
113static int vm_pageout_clean(vm_page_t);
114static void vm_pageout_page_free(vm_page_t);
115static void vm_pageout_pmap_collect(void);
116static void vm_pageout_scan(int pass);
117static int vm_pageout_free_page_calc(vm_size_t count);
118struct proc *pageproc;
119
120static struct kproc_desc page_kp = {
121	"pagedaemon",
122	vm_pageout,
123	&pageproc
124};
125SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
126
127#if !defined(NO_SWAPPING)
128/* the kernel process "vm_daemon"*/
129static void vm_daemon(void);
130static struct	proc *vmproc;
131
132static struct kproc_desc vm_kp = {
133	"vmdaemon",
134	vm_daemon,
135	&vmproc
136};
137SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
138#endif
139
140
141int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142int vm_pageout_deficit;		/* Estimated number of pages deficit */
143int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144
145#if !defined(NO_SWAPPING)
146static int vm_pageout_req_swapout;	/* XXX */
147static int vm_daemon_needed;
148#endif
149static int vm_max_launder = 32;
150static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
151static int vm_pageout_full_stats_interval = 0;
152static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
153static int defer_swap_pageouts=0;
154static int disable_swap_pageouts=0;
155
156#if defined(NO_SWAPPING)
157static int vm_swap_enabled=0;
158static int vm_swap_idle_enabled=0;
159#else
160static int vm_swap_enabled=1;
161static int vm_swap_idle_enabled=0;
162#endif
163
164SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
165	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
166
167SYSCTL_INT(_vm, OID_AUTO, max_launder,
168	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
169
170SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
171	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
174	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
175
176SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
177	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
178
179SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
180	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
181
182#if defined(NO_SWAPPING)
183SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184	CTLFLAG_RD, &vm_swap_enabled, 0, "");
185SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
187#else
188SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192#endif
193
194SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200static int pageout_lock_miss;
201SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204#define VM_PAGEOUT_PAGE_COUNT 16
205int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
208
209#if !defined(NO_SWAPPING)
210typedef void freeer_fcn_t(vm_map_t, vm_object_t, vm_pindex_t);
211static void vm_pageout_map_deactivate_pages(vm_map_t, vm_pindex_t);
212static freeer_fcn_t vm_pageout_object_deactivate_pages;
213static void vm_req_vmdaemon(void);
214#endif
215static void vm_pageout_page_stats(void);
216
217/*
218 * vm_pageout_clean:
219 *
220 * Clean the page and remove it from the laundry.
221 *
222 * We set the busy bit to cause potential page faults on this page to
223 * block.  Note the careful timing, however, the busy bit isn't set till
224 * late and we cannot do anything that will mess with the page.
225 */
226static int
227vm_pageout_clean(m)
228	vm_page_t m;
229{
230	vm_object_t object;
231	vm_page_t mc[2*vm_pageout_page_count];
232	int numpagedout, pageout_count;
233	int ib, is, page_base;
234	vm_pindex_t pindex = m->pindex;
235
236	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
237
238	/*
239	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
240	 * with the new swapper, but we could have serious problems paging
241	 * out other object types if there is insufficient memory.
242	 *
243	 * Unfortunately, checking free memory here is far too late, so the
244	 * check has been moved up a procedural level.
245	 */
246
247	/*
248	 * Don't mess with the page if it's busy, held, or special
249	 */
250	if ((m->hold_count != 0) ||
251	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED))) ||
252	    !VM_OBJECT_TRYLOCK(m->object)) {
253		return 0;
254	}
255
256	mc[vm_pageout_page_count] = m;
257	pageout_count = 1;
258	page_base = vm_pageout_page_count;
259	ib = 1;
260	is = 1;
261
262	/*
263	 * Scan object for clusterable pages.
264	 *
265	 * We can cluster ONLY if: ->> the page is NOT
266	 * clean, wired, busy, held, or mapped into a
267	 * buffer, and one of the following:
268	 * 1) The page is inactive, or a seldom used
269	 *    active page.
270	 * -or-
271	 * 2) we force the issue.
272	 *
273	 * During heavy mmap/modification loads the pageout
274	 * daemon can really fragment the underlying file
275	 * due to flushing pages out of order and not trying
276	 * align the clusters (which leave sporatic out-of-order
277	 * holes).  To solve this problem we do the reverse scan
278	 * first and attempt to align our cluster, then do a
279	 * forward scan if room remains.
280	 */
281	object = m->object;
282more:
283	while (ib && pageout_count < vm_pageout_page_count) {
284		vm_page_t p;
285
286		if (ib > pindex) {
287			ib = 0;
288			break;
289		}
290
291		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
292			ib = 0;
293			break;
294		}
295		if (((p->queue - p->pc) == PQ_CACHE) ||
296		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
297			ib = 0;
298			break;
299		}
300		vm_page_test_dirty(p);
301		if ((p->dirty & p->valid) == 0 ||
302		    p->queue != PQ_INACTIVE ||
303		    p->wire_count != 0 ||	/* may be held by buf cache */
304		    p->hold_count != 0) {	/* may be undergoing I/O */
305			ib = 0;
306			break;
307		}
308		mc[--page_base] = p;
309		++pageout_count;
310		++ib;
311		/*
312		 * alignment boundry, stop here and switch directions.  Do
313		 * not clear ib.
314		 */
315		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
316			break;
317	}
318
319	while (pageout_count < vm_pageout_page_count &&
320	    pindex + is < object->size) {
321		vm_page_t p;
322
323		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
324			break;
325		if (((p->queue - p->pc) == PQ_CACHE) ||
326		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
327			break;
328		}
329		vm_page_test_dirty(p);
330		if ((p->dirty & p->valid) == 0 ||
331		    p->queue != PQ_INACTIVE ||
332		    p->wire_count != 0 ||	/* may be held by buf cache */
333		    p->hold_count != 0) {	/* may be undergoing I/O */
334			break;
335		}
336		mc[page_base + pageout_count] = p;
337		++pageout_count;
338		++is;
339	}
340
341	/*
342	 * If we exhausted our forward scan, continue with the reverse scan
343	 * when possible, even past a page boundry.  This catches boundry
344	 * conditions.
345	 */
346	if (ib && pageout_count < vm_pageout_page_count)
347		goto more;
348
349	/*
350	 * we allow reads during pageouts...
351	 */
352	numpagedout = vm_pageout_flush(&mc[page_base], pageout_count, 0, TRUE);
353	VM_OBJECT_UNLOCK(object);
354	return (numpagedout);
355}
356
357/*
358 * vm_pageout_flush() - launder the given pages
359 *
360 *	The given pages are laundered.  Note that we setup for the start of
361 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
362 *	reference count all in here rather then in the parent.  If we want
363 *	the parent to do more sophisticated things we may have to change
364 *	the ordering.
365 */
366int
367vm_pageout_flush(mc, count, flags, is_object_locked)
368	vm_page_t *mc;
369	int count;
370	int flags;
371	int is_object_locked;
372{
373	vm_object_t object;
374	int pageout_status[count];
375	int numpagedout = 0;
376	int i;
377
378	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
379	/*
380	 * Initiate I/O.  Bump the vm_page_t->busy counter and
381	 * mark the pages read-only.
382	 *
383	 * We do not have to fixup the clean/dirty bits here... we can
384	 * allow the pager to do it after the I/O completes.
385	 *
386	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
387	 * edge case with file fragments.
388	 */
389	for (i = 0; i < count; i++) {
390		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
391		vm_page_io_start(mc[i]);
392		pmap_page_protect(mc[i], VM_PROT_READ);
393	}
394	object = mc[0]->object;
395	vm_page_unlock_queues();
396	if (!is_object_locked)
397		VM_OBJECT_LOCK(object);
398	vm_object_pip_add(object, count);
399	VM_OBJECT_UNLOCK(object);
400
401	vm_pager_put_pages(object, mc, count,
402	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
403	    pageout_status);
404
405	VM_OBJECT_LOCK(object);
406	vm_page_lock_queues();
407	for (i = 0; i < count; i++) {
408		vm_page_t mt = mc[i];
409
410		switch (pageout_status[i]) {
411		case VM_PAGER_OK:
412		case VM_PAGER_PEND:
413			numpagedout++;
414			break;
415		case VM_PAGER_BAD:
416			/*
417			 * Page outside of range of object. Right now we
418			 * essentially lose the changes by pretending it
419			 * worked.
420			 */
421			pmap_clear_modify(mt);
422			vm_page_undirty(mt);
423			break;
424		case VM_PAGER_ERROR:
425		case VM_PAGER_FAIL:
426			/*
427			 * If page couldn't be paged out, then reactivate the
428			 * page so it doesn't clog the inactive list.  (We
429			 * will try paging out it again later).
430			 */
431			vm_page_activate(mt);
432			break;
433		case VM_PAGER_AGAIN:
434			break;
435		}
436
437		/*
438		 * If the operation is still going, leave the page busy to
439		 * block all other accesses. Also, leave the paging in
440		 * progress indicator set so that we don't attempt an object
441		 * collapse.
442		 */
443		if (pageout_status[i] != VM_PAGER_PEND) {
444			vm_object_pip_wakeup(object);
445			vm_page_io_finish(mt);
446			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
447				pmap_page_protect(mt, VM_PROT_READ);
448		}
449	}
450	if (!is_object_locked)
451		VM_OBJECT_UNLOCK(object);
452	return numpagedout;
453}
454
455#if !defined(NO_SWAPPING)
456/*
457 *	vm_pageout_object_deactivate_pages
458 *
459 *	deactivate enough pages to satisfy the inactive target
460 *	requirements or if vm_page_proc_limit is set, then
461 *	deactivate all of the pages in the object and its
462 *	backing_objects.
463 *
464 *	The object and map must be locked.
465 */
466static void
467vm_pageout_object_deactivate_pages(map, object, desired)
468	vm_map_t map;
469	vm_object_t object;
470	vm_pindex_t desired;
471{
472	vm_page_t p, next;
473	int actcount, rcount, remove_mode;
474
475	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
476	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
477		return;
478
479	while (object) {
480		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
481			return;
482		if (object->paging_in_progress)
483			return;
484
485		remove_mode = 0;
486		if (object->shadow_count > 1)
487			remove_mode = 1;
488		/*
489		 * scan the objects entire memory queue
490		 */
491		rcount = object->resident_page_count;
492		p = TAILQ_FIRST(&object->memq);
493		vm_page_lock_queues();
494		while (p && (rcount-- > 0)) {
495			if (pmap_resident_count(map->pmap) <= desired) {
496				vm_page_unlock_queues();
497				return;
498			}
499			next = TAILQ_NEXT(p, listq);
500			cnt.v_pdpages++;
501			if (p->wire_count != 0 ||
502			    p->hold_count != 0 ||
503			    p->busy != 0 ||
504			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
505			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
506				p = next;
507				continue;
508			}
509			actcount = pmap_ts_referenced(p);
510			if (actcount) {
511				vm_page_flag_set(p, PG_REFERENCED);
512			} else if (p->flags & PG_REFERENCED) {
513				actcount = 1;
514			}
515			if ((p->queue != PQ_ACTIVE) &&
516				(p->flags & PG_REFERENCED)) {
517				vm_page_activate(p);
518				p->act_count += actcount;
519				vm_page_flag_clear(p, PG_REFERENCED);
520			} else if (p->queue == PQ_ACTIVE) {
521				if ((p->flags & PG_REFERENCED) == 0) {
522					p->act_count -= min(p->act_count, ACT_DECLINE);
523					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
524						pmap_remove_all(p);
525						vm_page_deactivate(p);
526					} else {
527						vm_pageq_requeue(p);
528					}
529				} else {
530					vm_page_activate(p);
531					vm_page_flag_clear(p, PG_REFERENCED);
532					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
533						p->act_count += ACT_ADVANCE;
534					vm_pageq_requeue(p);
535				}
536			} else if (p->queue == PQ_INACTIVE) {
537				pmap_remove_all(p);
538			}
539			p = next;
540		}
541		vm_page_unlock_queues();
542		object = object->backing_object;
543	}
544}
545
546/*
547 * deactivate some number of pages in a map, try to do it fairly, but
548 * that is really hard to do.
549 */
550static void
551vm_pageout_map_deactivate_pages(map, desired)
552	vm_map_t map;
553	vm_pindex_t desired;
554{
555	vm_map_entry_t tmpe;
556	vm_object_t obj, bigobj;
557	int nothingwired;
558
559	if (!vm_map_trylock(map))
560		return;
561
562	bigobj = NULL;
563	nothingwired = TRUE;
564
565	/*
566	 * first, search out the biggest object, and try to free pages from
567	 * that.
568	 */
569	tmpe = map->header.next;
570	while (tmpe != &map->header) {
571		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
572			obj = tmpe->object.vm_object;
573			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
574				if (obj->shadow_count <= 1 &&
575				    (bigobj == NULL ||
576				     bigobj->resident_page_count < obj->resident_page_count)) {
577					if (bigobj != NULL)
578						VM_OBJECT_UNLOCK(bigobj);
579					bigobj = obj;
580				} else
581					VM_OBJECT_UNLOCK(obj);
582			}
583		}
584		if (tmpe->wired_count > 0)
585			nothingwired = FALSE;
586		tmpe = tmpe->next;
587	}
588
589	if (bigobj != NULL) {
590		vm_pageout_object_deactivate_pages(map, bigobj, desired);
591		VM_OBJECT_UNLOCK(bigobj);
592	}
593	/*
594	 * Next, hunt around for other pages to deactivate.  We actually
595	 * do this search sort of wrong -- .text first is not the best idea.
596	 */
597	tmpe = map->header.next;
598	while (tmpe != &map->header) {
599		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
600			break;
601		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
602			obj = tmpe->object.vm_object;
603			if (obj != NULL) {
604				VM_OBJECT_LOCK(obj);
605				vm_pageout_object_deactivate_pages(map, obj, desired);
606				VM_OBJECT_UNLOCK(obj);
607			}
608		}
609		tmpe = tmpe->next;
610	}
611
612	/*
613	 * Remove all mappings if a process is swapped out, this will free page
614	 * table pages.
615	 */
616	if (desired == 0 && nothingwired) {
617		GIANT_REQUIRED;
618		vm_page_lock_queues();
619		pmap_remove(vm_map_pmap(map), vm_map_min(map),
620		    vm_map_max(map));
621		vm_page_unlock_queues();
622	}
623	vm_map_unlock(map);
624}
625#endif		/* !defined(NO_SWAPPING) */
626
627/*
628 * Warning! The page queue lock is released and reacquired.
629 */
630static void
631vm_pageout_page_free(vm_page_t m)
632{
633	vm_object_t object = m->object;
634
635	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
636	vm_page_busy(m);
637	vm_page_unlock_queues();
638	/*
639	 * Avoid a lock order reversal.  The page must be busy.
640	 */
641	VM_OBJECT_LOCK(object);
642	vm_page_lock_queues();
643	pmap_remove_all(m);
644	vm_page_free(m);
645	VM_OBJECT_UNLOCK(object);
646	cnt.v_dfree++;
647}
648
649/*
650 * This routine is very drastic, but can save the system
651 * in a pinch.
652 */
653static void
654vm_pageout_pmap_collect(void)
655{
656	int i;
657	vm_page_t m;
658	static int warningdone;
659
660	if (pmap_pagedaemon_waken == 0)
661		return;
662	if (warningdone < 5) {
663		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
664		warningdone++;
665	}
666	vm_page_lock_queues();
667	for (i = 0; i < vm_page_array_size; i++) {
668		m = &vm_page_array[i];
669		if (m->wire_count || m->hold_count || m->busy ||
670		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
671			continue;
672		pmap_remove_all(m);
673	}
674	vm_page_unlock_queues();
675	pmap_pagedaemon_waken = 0;
676}
677
678/*
679 *	vm_pageout_scan does the dirty work for the pageout daemon.
680 */
681static void
682vm_pageout_scan(int pass)
683{
684	vm_page_t m, next;
685	struct vm_page marker;
686	int save_page_shortage;
687	int save_inactive_count;
688	int page_shortage, maxscan, pcount;
689	int addl_page_shortage, addl_page_shortage_init;
690	struct proc *p, *bigproc;
691	vm_offset_t size, bigsize;
692	vm_object_t object;
693	int actcount;
694	int vnodes_skipped = 0;
695	int maxlaunder;
696	int s;
697	struct thread *td;
698
699	GIANT_REQUIRED;
700	/*
701	 * Decrease registered cache sizes.
702	 */
703	EVENTHANDLER_INVOKE(vm_lowmem, 0);
704	/*
705	 * We do this explicitly after the caches have been drained above.
706	 */
707	uma_reclaim();
708	/*
709	 * Do whatever cleanup that the pmap code can.
710	 */
711	vm_pageout_pmap_collect();
712
713	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
714
715	/*
716	 * Calculate the number of pages we want to either free or move
717	 * to the cache.
718	 */
719	page_shortage = vm_paging_target() + addl_page_shortage_init;
720	save_page_shortage = page_shortage;
721	save_inactive_count = cnt.v_inactive_count;
722
723	/*
724	 * Initialize our marker
725	 */
726	bzero(&marker, sizeof(marker));
727	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
728	marker.queue = PQ_INACTIVE;
729	marker.wire_count = 1;
730
731	/*
732	 * Start scanning the inactive queue for pages we can move to the
733	 * cache or free.  The scan will stop when the target is reached or
734	 * we have scanned the entire inactive queue.  Note that m->act_count
735	 * is not used to form decisions for the inactive queue, only for the
736	 * active queue.
737	 *
738	 * maxlaunder limits the number of dirty pages we flush per scan.
739	 * For most systems a smaller value (16 or 32) is more robust under
740	 * extreme memory and disk pressure because any unnecessary writes
741	 * to disk can result in extreme performance degredation.  However,
742	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
743	 * used) will die horribly with limited laundering.  If the pageout
744	 * daemon cannot clean enough pages in the first pass, we let it go
745	 * all out in succeeding passes.
746	 */
747	if ((maxlaunder = vm_max_launder) <= 1)
748		maxlaunder = 1;
749	if (pass)
750		maxlaunder = 10000;
751rescan0:
752	addl_page_shortage = addl_page_shortage_init;
753	maxscan = cnt.v_inactive_count;
754
755	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
756	     m != NULL && maxscan-- > 0 && page_shortage > 0;
757	     m = next) {
758
759		cnt.v_pdpages++;
760
761		if (m->queue != PQ_INACTIVE) {
762			goto rescan0;
763		}
764
765		next = TAILQ_NEXT(m, pageq);
766
767		/*
768		 * skip marker pages
769		 */
770		if (m->flags & PG_MARKER)
771			continue;
772
773		/*
774		 * A held page may be undergoing I/O, so skip it.
775		 */
776		if (m->hold_count) {
777			vm_pageq_requeue(m);
778			addl_page_shortage++;
779			continue;
780		}
781		/*
782		 * Don't mess with busy pages, keep in the front of the
783		 * queue, most likely are being paged out.
784		 */
785		if (m->busy || (m->flags & PG_BUSY)) {
786			addl_page_shortage++;
787			continue;
788		}
789
790		vm_page_lock_queues();
791		/*
792		 * If the object is not being used, we ignore previous
793		 * references.
794		 */
795		if (m->object->ref_count == 0) {
796			vm_page_flag_clear(m, PG_REFERENCED);
797			pmap_clear_reference(m);
798
799		/*
800		 * Otherwise, if the page has been referenced while in the
801		 * inactive queue, we bump the "activation count" upwards,
802		 * making it less likely that the page will be added back to
803		 * the inactive queue prematurely again.  Here we check the
804		 * page tables (or emulated bits, if any), given the upper
805		 * level VM system not knowing anything about existing
806		 * references.
807		 */
808		} else if (((m->flags & PG_REFERENCED) == 0) &&
809			(actcount = pmap_ts_referenced(m))) {
810			vm_page_activate(m);
811			vm_page_unlock_queues();
812			m->act_count += (actcount + ACT_ADVANCE);
813			continue;
814		}
815
816		/*
817		 * If the upper level VM system knows about any page
818		 * references, we activate the page.  We also set the
819		 * "activation count" higher than normal so that we will less
820		 * likely place pages back onto the inactive queue again.
821		 */
822		if ((m->flags & PG_REFERENCED) != 0) {
823			vm_page_flag_clear(m, PG_REFERENCED);
824			actcount = pmap_ts_referenced(m);
825			vm_page_activate(m);
826			vm_page_unlock_queues();
827			m->act_count += (actcount + ACT_ADVANCE + 1);
828			continue;
829		}
830
831		/*
832		 * If the upper level VM system doesn't know anything about
833		 * the page being dirty, we have to check for it again.  As
834		 * far as the VM code knows, any partially dirty pages are
835		 * fully dirty.
836		 */
837		if (m->dirty == 0) {
838			vm_page_test_dirty(m);
839		} else {
840			vm_page_dirty(m);
841		}
842		vm_page_unlock_queues();
843
844		/*
845		 * Invalid pages can be easily freed
846		 */
847		if (m->valid == 0) {
848			vm_page_lock_queues();
849			vm_pageout_page_free(m);
850			vm_page_unlock_queues();
851			--page_shortage;
852
853		/*
854		 * Clean pages can be placed onto the cache queue.  This
855		 * effectively frees them.
856		 */
857		} else if (m->dirty == 0) {
858			vm_page_lock_queues();
859			vm_page_cache(m);
860			vm_page_unlock_queues();
861			--page_shortage;
862		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
863			/*
864			 * Dirty pages need to be paged out, but flushing
865			 * a page is extremely expensive verses freeing
866			 * a clean page.  Rather then artificially limiting
867			 * the number of pages we can flush, we instead give
868			 * dirty pages extra priority on the inactive queue
869			 * by forcing them to be cycled through the queue
870			 * twice before being flushed, after which the
871			 * (now clean) page will cycle through once more
872			 * before being freed.  This significantly extends
873			 * the thrash point for a heavily loaded machine.
874			 */
875			vm_page_lock_queues();
876			vm_page_flag_set(m, PG_WINATCFLS);
877			vm_pageq_requeue(m);
878			vm_page_unlock_queues();
879		} else if (maxlaunder > 0) {
880			/*
881			 * We always want to try to flush some dirty pages if
882			 * we encounter them, to keep the system stable.
883			 * Normally this number is small, but under extreme
884			 * pressure where there are insufficient clean pages
885			 * on the inactive queue, we may have to go all out.
886			 */
887			int swap_pageouts_ok;
888			struct vnode *vp = NULL;
889			struct mount *mp;
890
891			object = m->object;
892
893			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
894				swap_pageouts_ok = 1;
895			} else {
896				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
897				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
898				vm_page_count_min());
899
900			}
901
902			/*
903			 * We don't bother paging objects that are "dead".
904			 * Those objects are in a "rundown" state.
905			 */
906			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
907				vm_pageq_requeue(m);
908				continue;
909			}
910
911			/*
912			 * The object is already known NOT to be dead.   It
913			 * is possible for the vget() to block the whole
914			 * pageout daemon, but the new low-memory handling
915			 * code should prevent it.
916			 *
917			 * The previous code skipped locked vnodes and, worse,
918			 * reordered pages in the queue.  This results in
919			 * completely non-deterministic operation and, on a
920			 * busy system, can lead to extremely non-optimal
921			 * pageouts.  For example, it can cause clean pages
922			 * to be freed and dirty pages to be moved to the end
923			 * of the queue.  Since dirty pages are also moved to
924			 * the end of the queue once-cleaned, this gives
925			 * way too large a weighting to defering the freeing
926			 * of dirty pages.
927			 *
928			 * We can't wait forever for the vnode lock, we might
929			 * deadlock due to a vn_read() getting stuck in
930			 * vm_wait while holding this vnode.  We skip the
931			 * vnode if we can't get it in a reasonable amount
932			 * of time.
933			 */
934			if (object->type == OBJT_VNODE) {
935				vp = object->handle;
936
937				mp = NULL;
938				if (vp->v_type == VREG)
939					vn_start_write(vp, &mp, V_NOWAIT);
940				if (vget(vp, LK_EXCLUSIVE|LK_TIMELOCK, curthread)) {
941					++pageout_lock_miss;
942					vn_finished_write(mp);
943					if (object->flags & OBJ_MIGHTBEDIRTY)
944						vnodes_skipped++;
945					continue;
946				}
947
948				/*
949				 * The page might have been moved to another
950				 * queue during potential blocking in vget()
951				 * above.  The page might have been freed and
952				 * reused for another vnode.  The object might
953				 * have been reused for another vnode.
954				 */
955				if (m->queue != PQ_INACTIVE ||
956				    m->object != object ||
957				    object->handle != vp) {
958					if (object->flags & OBJ_MIGHTBEDIRTY)
959						vnodes_skipped++;
960					vput(vp);
961					vn_finished_write(mp);
962					continue;
963				}
964
965				/*
966				 * The page may have been busied during the
967				 * blocking in vput();  We don't move the
968				 * page back onto the end of the queue so that
969				 * statistics are more correct if we don't.
970				 */
971				if (m->busy || (m->flags & PG_BUSY)) {
972					vput(vp);
973					vn_finished_write(mp);
974					continue;
975				}
976
977				/*
978				 * If the page has become held it might
979				 * be undergoing I/O, so skip it
980				 */
981				if (m->hold_count) {
982					vm_pageq_requeue(m);
983					if (object->flags & OBJ_MIGHTBEDIRTY)
984						vnodes_skipped++;
985					vput(vp);
986					vn_finished_write(mp);
987					continue;
988				}
989			}
990
991			/*
992			 * If a page is dirty, then it is either being washed
993			 * (but not yet cleaned) or it is still in the
994			 * laundry.  If it is still in the laundry, then we
995			 * start the cleaning operation.
996			 *
997			 * This operation may cluster, invalidating the 'next'
998			 * pointer.  To prevent an inordinate number of
999			 * restarts we use our marker to remember our place.
1000			 *
1001			 * decrement page_shortage on success to account for
1002			 * the (future) cleaned page.  Otherwise we could wind
1003			 * up laundering or cleaning too many pages.
1004			 */
1005			vm_page_lock_queues();
1006			s = splvm();
1007			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1008			splx(s);
1009			if (vm_pageout_clean(m) != 0) {
1010				--page_shortage;
1011				--maxlaunder;
1012			}
1013			s = splvm();
1014			next = TAILQ_NEXT(&marker, pageq);
1015			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1016			splx(s);
1017			vm_page_unlock_queues();
1018			if (vp) {
1019				vput(vp);
1020				vn_finished_write(mp);
1021			}
1022		}
1023	}
1024
1025	/*
1026	 * Compute the number of pages we want to try to move from the
1027	 * active queue to the inactive queue.
1028	 */
1029	page_shortage = vm_paging_target() +
1030		cnt.v_inactive_target - cnt.v_inactive_count;
1031	page_shortage += addl_page_shortage;
1032
1033	vm_page_lock_queues();
1034	/*
1035	 * Scan the active queue for things we can deactivate. We nominally
1036	 * track the per-page activity counter and use it to locate
1037	 * deactivation candidates.
1038	 */
1039	pcount = cnt.v_active_count;
1040	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1041
1042	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1043
1044		/*
1045		 * This is a consistency check, and should likely be a panic
1046		 * or warning.
1047		 */
1048		if (m->queue != PQ_ACTIVE) {
1049			break;
1050		}
1051
1052		next = TAILQ_NEXT(m, pageq);
1053		/*
1054		 * Don't deactivate pages that are busy.
1055		 */
1056		if ((m->busy != 0) ||
1057		    (m->flags & PG_BUSY) ||
1058		    (m->hold_count != 0)) {
1059			vm_pageq_requeue(m);
1060			m = next;
1061			continue;
1062		}
1063
1064		/*
1065		 * The count for pagedaemon pages is done after checking the
1066		 * page for eligibility...
1067		 */
1068		cnt.v_pdpages++;
1069
1070		/*
1071		 * Check to see "how much" the page has been used.
1072		 */
1073		actcount = 0;
1074		if (m->object->ref_count != 0) {
1075			if (m->flags & PG_REFERENCED) {
1076				actcount += 1;
1077			}
1078			actcount += pmap_ts_referenced(m);
1079			if (actcount) {
1080				m->act_count += ACT_ADVANCE + actcount;
1081				if (m->act_count > ACT_MAX)
1082					m->act_count = ACT_MAX;
1083			}
1084		}
1085
1086		/*
1087		 * Since we have "tested" this bit, we need to clear it now.
1088		 */
1089		vm_page_flag_clear(m, PG_REFERENCED);
1090
1091		/*
1092		 * Only if an object is currently being used, do we use the
1093		 * page activation count stats.
1094		 */
1095		if (actcount && (m->object->ref_count != 0)) {
1096			vm_pageq_requeue(m);
1097		} else {
1098			m->act_count -= min(m->act_count, ACT_DECLINE);
1099			if (vm_pageout_algorithm ||
1100			    m->object->ref_count == 0 ||
1101			    m->act_count == 0) {
1102				page_shortage--;
1103				if (m->object->ref_count == 0) {
1104					pmap_remove_all(m);
1105					if (m->dirty == 0)
1106						vm_page_cache(m);
1107					else
1108						vm_page_deactivate(m);
1109				} else {
1110					vm_page_deactivate(m);
1111				}
1112			} else {
1113				vm_pageq_requeue(m);
1114			}
1115		}
1116		m = next;
1117	}
1118	s = splvm();
1119
1120	/*
1121	 * We try to maintain some *really* free pages, this allows interrupt
1122	 * code to be guaranteed space.  Since both cache and free queues
1123	 * are considered basically 'free', moving pages from cache to free
1124	 * does not effect other calculations.
1125	 */
1126	while (cnt.v_free_count < cnt.v_free_reserved) {
1127		static int cache_rover = 0;
1128		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1129		if (!m)
1130			break;
1131		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1132		    m->busy ||
1133		    m->hold_count ||
1134		    m->wire_count) {
1135#ifdef INVARIANTS
1136			printf("Warning: busy page %p found in cache\n", m);
1137#endif
1138			vm_page_deactivate(m);
1139			continue;
1140		}
1141		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1142		vm_pageout_page_free(m);
1143	}
1144	splx(s);
1145	vm_page_unlock_queues();
1146#if !defined(NO_SWAPPING)
1147	/*
1148	 * Idle process swapout -- run once per second.
1149	 */
1150	if (vm_swap_idle_enabled) {
1151		static long lsec;
1152		if (time_second != lsec) {
1153			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1154			vm_req_vmdaemon();
1155			lsec = time_second;
1156		}
1157	}
1158#endif
1159
1160	/*
1161	 * If we didn't get enough free pages, and we have skipped a vnode
1162	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1163	 * if we did not get enough free pages.
1164	 */
1165	if (vm_paging_target() > 0) {
1166		if (vnodes_skipped && vm_page_count_min())
1167			(void) speedup_syncer();
1168#if !defined(NO_SWAPPING)
1169		if (vm_swap_enabled && vm_page_count_target()) {
1170			vm_req_vmdaemon();
1171			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1172		}
1173#endif
1174	}
1175
1176	/*
1177	 * If we are critically low on one of RAM or swap and low on
1178	 * the other, kill the largest process.  However, we avoid
1179	 * doing this on the first pass in order to give ourselves a
1180	 * chance to flush out dirty vnode-backed pages and to allow
1181	 * active pages to be moved to the inactive queue and reclaimed.
1182	 *
1183	 * We keep the process bigproc locked once we find it to keep anyone
1184	 * from messing with it; however, there is a possibility of
1185	 * deadlock if process B is bigproc and one of it's child processes
1186	 * attempts to propagate a signal to B while we are waiting for A's
1187	 * lock while walking this list.  To avoid this, we don't block on
1188	 * the process lock but just skip a process if it is already locked.
1189	 */
1190	if (pass != 0 &&
1191	    ((vm_swap_size < 64 && vm_page_count_min()) ||
1192	     (swap_pager_full && vm_paging_target() > 0))) {
1193		bigproc = NULL;
1194		bigsize = 0;
1195		sx_slock(&allproc_lock);
1196		FOREACH_PROC_IN_SYSTEM(p) {
1197			int breakout;
1198			/*
1199			 * If this process is already locked, skip it.
1200			 */
1201			if (PROC_TRYLOCK(p) == 0)
1202				continue;
1203			/*
1204			 * If this is a system or protected process, skip it.
1205			 */
1206			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1207			    (p->p_flag & P_PROTECTED) ||
1208			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1209				PROC_UNLOCK(p);
1210				continue;
1211			}
1212			/*
1213			 * if the process is in a non-running type state,
1214			 * don't touch it. Check all the threads individually.
1215			 */
1216			mtx_lock_spin(&sched_lock);
1217			breakout = 0;
1218			FOREACH_THREAD_IN_PROC(p, td) {
1219				if (!TD_ON_RUNQ(td) &&
1220				    !TD_IS_RUNNING(td) &&
1221				    !TD_IS_SLEEPING(td)) {
1222					breakout = 1;
1223					break;
1224				}
1225			}
1226			if (breakout) {
1227				mtx_unlock_spin(&sched_lock);
1228				PROC_UNLOCK(p);
1229				continue;
1230			}
1231			mtx_unlock_spin(&sched_lock);
1232			/*
1233			 * get the process size
1234			 */
1235			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1236				PROC_UNLOCK(p);
1237				continue;
1238			}
1239			size = vmspace_swap_count(p->p_vmspace);
1240			vm_map_unlock_read(&p->p_vmspace->vm_map);
1241			size += vmspace_resident_count(p->p_vmspace);
1242			/*
1243			 * if the this process is bigger than the biggest one
1244			 * remember it.
1245			 */
1246			if (size > bigsize) {
1247				if (bigproc != NULL)
1248					PROC_UNLOCK(bigproc);
1249				bigproc = p;
1250				bigsize = size;
1251			} else
1252				PROC_UNLOCK(p);
1253		}
1254		sx_sunlock(&allproc_lock);
1255		if (bigproc != NULL) {
1256			struct ksegrp *kg;
1257			killproc(bigproc, "out of swap space");
1258			mtx_lock_spin(&sched_lock);
1259			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1260				sched_nice(kg, PRIO_MIN); /* XXXKSE ??? */
1261			}
1262			mtx_unlock_spin(&sched_lock);
1263			PROC_UNLOCK(bigproc);
1264			wakeup(&cnt.v_free_count);
1265		}
1266	}
1267}
1268
1269/*
1270 * This routine tries to maintain the pseudo LRU active queue,
1271 * so that during long periods of time where there is no paging,
1272 * that some statistic accumulation still occurs.  This code
1273 * helps the situation where paging just starts to occur.
1274 */
1275static void
1276vm_pageout_page_stats()
1277{
1278	vm_page_t m,next;
1279	int pcount,tpcount;		/* Number of pages to check */
1280	static int fullintervalcount = 0;
1281	int page_shortage;
1282	int s0;
1283
1284	page_shortage =
1285	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1286	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1287
1288	if (page_shortage <= 0)
1289		return;
1290
1291	s0 = splvm();
1292	vm_page_lock_queues();
1293	pcount = cnt.v_active_count;
1294	fullintervalcount += vm_pageout_stats_interval;
1295	if (fullintervalcount < vm_pageout_full_stats_interval) {
1296		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1297		if (pcount > tpcount)
1298			pcount = tpcount;
1299	} else {
1300		fullintervalcount = 0;
1301	}
1302
1303	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1304	while ((m != NULL) && (pcount-- > 0)) {
1305		int actcount;
1306
1307		if (m->queue != PQ_ACTIVE) {
1308			break;
1309		}
1310
1311		next = TAILQ_NEXT(m, pageq);
1312		/*
1313		 * Don't deactivate pages that are busy.
1314		 */
1315		if ((m->busy != 0) ||
1316		    (m->flags & PG_BUSY) ||
1317		    (m->hold_count != 0)) {
1318			vm_pageq_requeue(m);
1319			m = next;
1320			continue;
1321		}
1322
1323		actcount = 0;
1324		if (m->flags & PG_REFERENCED) {
1325			vm_page_flag_clear(m, PG_REFERENCED);
1326			actcount += 1;
1327		}
1328
1329		actcount += pmap_ts_referenced(m);
1330		if (actcount) {
1331			m->act_count += ACT_ADVANCE + actcount;
1332			if (m->act_count > ACT_MAX)
1333				m->act_count = ACT_MAX;
1334			vm_pageq_requeue(m);
1335		} else {
1336			if (m->act_count == 0) {
1337				/*
1338				 * We turn off page access, so that we have
1339				 * more accurate RSS stats.  We don't do this
1340				 * in the normal page deactivation when the
1341				 * system is loaded VM wise, because the
1342				 * cost of the large number of page protect
1343				 * operations would be higher than the value
1344				 * of doing the operation.
1345				 */
1346				pmap_remove_all(m);
1347				vm_page_deactivate(m);
1348			} else {
1349				m->act_count -= min(m->act_count, ACT_DECLINE);
1350				vm_pageq_requeue(m);
1351			}
1352		}
1353
1354		m = next;
1355	}
1356	vm_page_unlock_queues();
1357	splx(s0);
1358}
1359
1360static int
1361vm_pageout_free_page_calc(count)
1362vm_size_t count;
1363{
1364	if (count < cnt.v_page_count)
1365		 return 0;
1366	/*
1367	 * free_reserved needs to include enough for the largest swap pager
1368	 * structures plus enough for any pv_entry structs when paging.
1369	 */
1370	if (cnt.v_page_count > 1024)
1371		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1372	else
1373		cnt.v_free_min = 4;
1374	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1375		cnt.v_interrupt_free_min;
1376	cnt.v_free_reserved = vm_pageout_page_count +
1377		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1378	cnt.v_free_severe = cnt.v_free_min / 2;
1379	cnt.v_free_min += cnt.v_free_reserved;
1380	cnt.v_free_severe += cnt.v_free_reserved;
1381	return 1;
1382}
1383
1384/*
1385 *	vm_pageout is the high level pageout daemon.
1386 */
1387static void
1388vm_pageout()
1389{
1390	int error, pass, s;
1391
1392	mtx_lock(&Giant);
1393
1394	/*
1395	 * Initialize some paging parameters.
1396	 */
1397	cnt.v_interrupt_free_min = 2;
1398	if (cnt.v_page_count < 2000)
1399		vm_pageout_page_count = 8;
1400
1401	vm_pageout_free_page_calc(cnt.v_page_count);
1402	/*
1403	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1404	 * that these are more a measure of the VM cache queue hysteresis
1405	 * then the VM free queue.  Specifically, v_free_target is the
1406	 * high water mark (free+cache pages).
1407	 *
1408	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1409	 * low water mark, while v_free_min is the stop.  v_cache_min must
1410	 * be big enough to handle memory needs while the pageout daemon
1411	 * is signalled and run to free more pages.
1412	 */
1413	if (cnt.v_free_count > 6144)
1414		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1415	else
1416		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1417
1418	if (cnt.v_free_count > 2048) {
1419		cnt.v_cache_min = cnt.v_free_target;
1420		cnt.v_cache_max = 2 * cnt.v_cache_min;
1421		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1422	} else {
1423		cnt.v_cache_min = 0;
1424		cnt.v_cache_max = 0;
1425		cnt.v_inactive_target = cnt.v_free_count / 4;
1426	}
1427	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1428		cnt.v_inactive_target = cnt.v_free_count / 3;
1429
1430	/* XXX does not really belong here */
1431	if (vm_page_max_wired == 0)
1432		vm_page_max_wired = cnt.v_free_count / 3;
1433
1434	if (vm_pageout_stats_max == 0)
1435		vm_pageout_stats_max = cnt.v_free_target;
1436
1437	/*
1438	 * Set interval in seconds for stats scan.
1439	 */
1440	if (vm_pageout_stats_interval == 0)
1441		vm_pageout_stats_interval = 5;
1442	if (vm_pageout_full_stats_interval == 0)
1443		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1444
1445	/*
1446	 * Set maximum free per pass
1447	 */
1448	if (vm_pageout_stats_free_max == 0)
1449		vm_pageout_stats_free_max = 5;
1450
1451	swap_pager_swap_init();
1452	pass = 0;
1453	/*
1454	 * The pageout daemon is never done, so loop forever.
1455	 */
1456	while (TRUE) {
1457		s = splvm();
1458		vm_page_lock_queues();
1459		/*
1460		 * If we have enough free memory, wakeup waiters.  Do
1461		 * not clear vm_pages_needed until we reach our target,
1462		 * otherwise we may be woken up over and over again and
1463		 * waste a lot of cpu.
1464		 */
1465		if (vm_pages_needed && !vm_page_count_min()) {
1466			if (!vm_paging_needed())
1467				vm_pages_needed = 0;
1468			wakeup(&cnt.v_free_count);
1469		}
1470		if (vm_pages_needed) {
1471			/*
1472			 * Still not done, take a second pass without waiting
1473			 * (unlimited dirty cleaning), otherwise sleep a bit
1474			 * and try again.
1475			 */
1476			++pass;
1477			if (pass > 1)
1478				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1479				       "psleep", hz/2);
1480		} else {
1481			/*
1482			 * Good enough, sleep & handle stats.  Prime the pass
1483			 * for the next run.
1484			 */
1485			if (pass > 1)
1486				pass = 1;
1487			else
1488				pass = 0;
1489			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1490				    "psleep", vm_pageout_stats_interval * hz);
1491			if (error && !vm_pages_needed) {
1492				vm_page_unlock_queues();
1493				splx(s);
1494				pass = 0;
1495				vm_pageout_page_stats();
1496				continue;
1497			}
1498		}
1499		if (vm_pages_needed)
1500			cnt.v_pdwakeups++;
1501		vm_page_unlock_queues();
1502		splx(s);
1503		vm_pageout_scan(pass);
1504	}
1505}
1506
1507/*
1508 * Unless the page queue lock is held by the caller, this function
1509 * should be regarded as advisory.  Specifically, the caller should
1510 * not msleep() on &cnt.v_free_count following this function unless
1511 * the page queue lock is held until the msleep() is performed.
1512 */
1513void
1514pagedaemon_wakeup()
1515{
1516
1517	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1518		vm_pages_needed = 1;
1519		wakeup(&vm_pages_needed);
1520	}
1521}
1522
1523#if !defined(NO_SWAPPING)
1524static void
1525vm_req_vmdaemon()
1526{
1527	static int lastrun = 0;
1528
1529	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1530		wakeup(&vm_daemon_needed);
1531		lastrun = ticks;
1532	}
1533}
1534
1535static void
1536vm_daemon()
1537{
1538	struct proc *p;
1539	int breakout;
1540	struct thread *td;
1541
1542	mtx_lock(&Giant);
1543	while (TRUE) {
1544		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1545		if (vm_pageout_req_swapout) {
1546			swapout_procs(vm_pageout_req_swapout);
1547			vm_pageout_req_swapout = 0;
1548		}
1549		/*
1550		 * scan the processes for exceeding their rlimits or if
1551		 * process is swapped out -- deactivate pages
1552		 */
1553		sx_slock(&allproc_lock);
1554		LIST_FOREACH(p, &allproc, p_list) {
1555			vm_pindex_t limit, size;
1556
1557			/*
1558			 * if this is a system process or if we have already
1559			 * looked at this process, skip it.
1560			 */
1561			PROC_LOCK(p);
1562			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1563				PROC_UNLOCK(p);
1564				continue;
1565			}
1566			/*
1567			 * if the process is in a non-running type state,
1568			 * don't touch it.
1569			 */
1570			mtx_lock_spin(&sched_lock);
1571			breakout = 0;
1572			FOREACH_THREAD_IN_PROC(p, td) {
1573				if (!TD_ON_RUNQ(td) &&
1574				    !TD_IS_RUNNING(td) &&
1575				    !TD_IS_SLEEPING(td)) {
1576					breakout = 1;
1577					break;
1578				}
1579			}
1580			mtx_unlock_spin(&sched_lock);
1581			if (breakout) {
1582				PROC_UNLOCK(p);
1583				continue;
1584			}
1585			/*
1586			 * get a limit
1587			 */
1588			limit = OFF_TO_IDX(
1589			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1590				p->p_rlimit[RLIMIT_RSS].rlim_max));
1591
1592			/*
1593			 * let processes that are swapped out really be
1594			 * swapped out set the limit to nothing (will force a
1595			 * swap-out.)
1596			 */
1597			if ((p->p_sflag & PS_INMEM) == 0)
1598				limit = 0;	/* XXX */
1599			PROC_UNLOCK(p);
1600
1601			size = vmspace_resident_count(p->p_vmspace);
1602			if (limit >= 0 && size >= limit) {
1603				vm_pageout_map_deactivate_pages(
1604				    &p->p_vmspace->vm_map, limit);
1605			}
1606		}
1607		sx_sunlock(&allproc_lock);
1608	}
1609}
1610#endif			/* !defined(NO_SWAPPING) */
1611