vm_pageout.c revision 115146
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 115146 2003-05-19 00:51:07Z das $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/eventhandler.h>
80#include <sys/lock.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/kthread.h>
84#include <sys/ktr.h>
85#include <sys/resourcevar.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#include <sys/vnode.h>
89#include <sys/vmmeter.h>
90#include <sys/sx.h>
91#include <sys/sysctl.h>
92
93#include <vm/vm.h>
94#include <vm/vm_param.h>
95#include <vm/vm_object.h>
96#include <vm/vm_page.h>
97#include <vm/vm_map.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/swap_pager.h>
101#include <vm/vm_extern.h>
102#include <vm/uma.h>
103
104#include <machine/mutex.h>
105
106/*
107 * System initialization
108 */
109
110/* the kernel process "vm_pageout"*/
111static void vm_pageout(void);
112static int vm_pageout_clean(vm_page_t);
113static void vm_pageout_page_free(vm_page_t);
114static void vm_pageout_pmap_collect(void);
115static void vm_pageout_scan(int pass);
116static int vm_pageout_free_page_calc(vm_size_t count);
117struct proc *pageproc;
118
119static struct kproc_desc page_kp = {
120	"pagedaemon",
121	vm_pageout,
122	&pageproc
123};
124SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
125
126#if !defined(NO_SWAPPING)
127/* the kernel process "vm_daemon"*/
128static void vm_daemon(void);
129static struct	proc *vmproc;
130
131static struct kproc_desc vm_kp = {
132	"vmdaemon",
133	vm_daemon,
134	&vmproc
135};
136SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
137#endif
138
139
140int vm_pages_needed;		/* Event on which pageout daemon sleeps */
141int vm_pageout_deficit;		/* Estimated number of pages deficit */
142int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
143
144#if !defined(NO_SWAPPING)
145static int vm_pageout_req_swapout;	/* XXX */
146static int vm_daemon_needed;
147#endif
148static int vm_max_launder = 32;
149static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
150static int vm_pageout_full_stats_interval = 0;
151static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
152static int defer_swap_pageouts=0;
153static int disable_swap_pageouts=0;
154
155#if defined(NO_SWAPPING)
156static int vm_swap_enabled=0;
157static int vm_swap_idle_enabled=0;
158#else
159static int vm_swap_enabled=1;
160static int vm_swap_idle_enabled=0;
161#endif
162
163SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
164	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
165
166SYSCTL_INT(_vm, OID_AUTO, max_launder,
167	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
170	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
173	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
176	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
177
178SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
179	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
180
181#if defined(NO_SWAPPING)
182SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183	CTLFLAG_RD, &vm_swap_enabled, 0, "");
184SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
186#else
187SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
188	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
189SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
190	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
191#endif
192
193SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
194	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
195
196SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
197	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
198
199static int pageout_lock_miss;
200SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
201	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
202
203#define VM_PAGEOUT_PAGE_COUNT 16
204int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
205
206int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
207
208#if !defined(NO_SWAPPING)
209typedef void freeer_fcn_t(vm_map_t, vm_object_t, vm_pindex_t);
210static void vm_pageout_map_deactivate_pages(vm_map_t, vm_pindex_t);
211static freeer_fcn_t vm_pageout_object_deactivate_pages;
212static void vm_req_vmdaemon(void);
213#endif
214static void vm_pageout_page_stats(void);
215
216/*
217 * vm_pageout_clean:
218 *
219 * Clean the page and remove it from the laundry.
220 *
221 * We set the busy bit to cause potential page faults on this page to
222 * block.  Note the careful timing, however, the busy bit isn't set till
223 * late and we cannot do anything that will mess with the page.
224 */
225static int
226vm_pageout_clean(m)
227	vm_page_t m;
228{
229	vm_object_t object;
230	vm_page_t mc[2*vm_pageout_page_count];
231	int pageout_count;
232	int ib, is, page_base;
233	vm_pindex_t pindex = m->pindex;
234
235	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
236
237	object = m->object;
238
239	/*
240	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
241	 * with the new swapper, but we could have serious problems paging
242	 * out other object types if there is insufficient memory.
243	 *
244	 * Unfortunately, checking free memory here is far too late, so the
245	 * check has been moved up a procedural level.
246	 */
247
248	/*
249	 * Don't mess with the page if it's busy, held, or special
250	 */
251	if ((m->hold_count != 0) ||
252	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
253		return 0;
254	}
255
256	mc[vm_pageout_page_count] = m;
257	pageout_count = 1;
258	page_base = vm_pageout_page_count;
259	ib = 1;
260	is = 1;
261
262	/*
263	 * Scan object for clusterable pages.
264	 *
265	 * We can cluster ONLY if: ->> the page is NOT
266	 * clean, wired, busy, held, or mapped into a
267	 * buffer, and one of the following:
268	 * 1) The page is inactive, or a seldom used
269	 *    active page.
270	 * -or-
271	 * 2) we force the issue.
272	 *
273	 * During heavy mmap/modification loads the pageout
274	 * daemon can really fragment the underlying file
275	 * due to flushing pages out of order and not trying
276	 * align the clusters (which leave sporatic out-of-order
277	 * holes).  To solve this problem we do the reverse scan
278	 * first and attempt to align our cluster, then do a
279	 * forward scan if room remains.
280	 */
281more:
282	while (ib && pageout_count < vm_pageout_page_count) {
283		vm_page_t p;
284
285		if (ib > pindex) {
286			ib = 0;
287			break;
288		}
289
290		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
291			ib = 0;
292			break;
293		}
294		if (((p->queue - p->pc) == PQ_CACHE) ||
295		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
296			ib = 0;
297			break;
298		}
299		vm_page_test_dirty(p);
300		if ((p->dirty & p->valid) == 0 ||
301		    p->queue != PQ_INACTIVE ||
302		    p->wire_count != 0 ||	/* may be held by buf cache */
303		    p->hold_count != 0) {	/* may be undergoing I/O */
304			ib = 0;
305			break;
306		}
307		mc[--page_base] = p;
308		++pageout_count;
309		++ib;
310		/*
311		 * alignment boundry, stop here and switch directions.  Do
312		 * not clear ib.
313		 */
314		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
315			break;
316	}
317
318	while (pageout_count < vm_pageout_page_count &&
319	    pindex + is < object->size) {
320		vm_page_t p;
321
322		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
323			break;
324		if (((p->queue - p->pc) == PQ_CACHE) ||
325		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
326			break;
327		}
328		vm_page_test_dirty(p);
329		if ((p->dirty & p->valid) == 0 ||
330		    p->queue != PQ_INACTIVE ||
331		    p->wire_count != 0 ||	/* may be held by buf cache */
332		    p->hold_count != 0) {	/* may be undergoing I/O */
333			break;
334		}
335		mc[page_base + pageout_count] = p;
336		++pageout_count;
337		++is;
338	}
339
340	/*
341	 * If we exhausted our forward scan, continue with the reverse scan
342	 * when possible, even past a page boundry.  This catches boundry
343	 * conditions.
344	 */
345	if (ib && pageout_count < vm_pageout_page_count)
346		goto more;
347
348	/*
349	 * we allow reads during pageouts...
350	 */
351	return vm_pageout_flush(&mc[page_base], pageout_count, 0, FALSE);
352}
353
354/*
355 * vm_pageout_flush() - launder the given pages
356 *
357 *	The given pages are laundered.  Note that we setup for the start of
358 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
359 *	reference count all in here rather then in the parent.  If we want
360 *	the parent to do more sophisticated things we may have to change
361 *	the ordering.
362 */
363int
364vm_pageout_flush(mc, count, flags, is_object_locked)
365	vm_page_t *mc;
366	int count;
367	int flags;
368	int is_object_locked;
369{
370	vm_object_t object;
371	int pageout_status[count];
372	int numpagedout = 0;
373	int i;
374
375	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
376	/*
377	 * Initiate I/O.  Bump the vm_page_t->busy counter and
378	 * mark the pages read-only.
379	 *
380	 * We do not have to fixup the clean/dirty bits here... we can
381	 * allow the pager to do it after the I/O completes.
382	 *
383	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
384	 * edge case with file fragments.
385	 */
386	for (i = 0; i < count; i++) {
387		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
388		vm_page_io_start(mc[i]);
389		pmap_page_protect(mc[i], VM_PROT_READ);
390	}
391	object = mc[0]->object;
392	vm_page_unlock_queues();
393	if (!is_object_locked)
394		VM_OBJECT_LOCK(object);
395	vm_object_pip_add(object, count);
396	VM_OBJECT_UNLOCK(object);
397
398	vm_pager_put_pages(object, mc, count,
399	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
400	    pageout_status);
401
402	VM_OBJECT_LOCK(object);
403	vm_page_lock_queues();
404	for (i = 0; i < count; i++) {
405		vm_page_t mt = mc[i];
406
407		switch (pageout_status[i]) {
408		case VM_PAGER_OK:
409		case VM_PAGER_PEND:
410			numpagedout++;
411			break;
412		case VM_PAGER_BAD:
413			/*
414			 * Page outside of range of object. Right now we
415			 * essentially lose the changes by pretending it
416			 * worked.
417			 */
418			pmap_clear_modify(mt);
419			vm_page_undirty(mt);
420			break;
421		case VM_PAGER_ERROR:
422		case VM_PAGER_FAIL:
423			/*
424			 * If page couldn't be paged out, then reactivate the
425			 * page so it doesn't clog the inactive list.  (We
426			 * will try paging out it again later).
427			 */
428			vm_page_activate(mt);
429			break;
430		case VM_PAGER_AGAIN:
431			break;
432		}
433
434		/*
435		 * If the operation is still going, leave the page busy to
436		 * block all other accesses. Also, leave the paging in
437		 * progress indicator set so that we don't attempt an object
438		 * collapse.
439		 */
440		if (pageout_status[i] != VM_PAGER_PEND) {
441			vm_object_pip_wakeup(object);
442			vm_page_io_finish(mt);
443			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
444				pmap_page_protect(mt, VM_PROT_READ);
445		}
446	}
447	if (!is_object_locked)
448		VM_OBJECT_UNLOCK(object);
449	return numpagedout;
450}
451
452#if !defined(NO_SWAPPING)
453/*
454 *	vm_pageout_object_deactivate_pages
455 *
456 *	deactivate enough pages to satisfy the inactive target
457 *	requirements or if vm_page_proc_limit is set, then
458 *	deactivate all of the pages in the object and its
459 *	backing_objects.
460 *
461 *	The object and map must be locked.
462 */
463static void
464vm_pageout_object_deactivate_pages(map, object, desired)
465	vm_map_t map;
466	vm_object_t object;
467	vm_pindex_t desired;
468{
469	vm_page_t p, next;
470	int actcount, rcount, remove_mode;
471
472	GIANT_REQUIRED;
473	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
474		return;
475
476	while (object) {
477		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
478			return;
479		if (object->paging_in_progress)
480			return;
481
482		remove_mode = 0;
483		if (object->shadow_count > 1)
484			remove_mode = 1;
485		/*
486		 * scan the objects entire memory queue
487		 */
488		rcount = object->resident_page_count;
489		p = TAILQ_FIRST(&object->memq);
490		vm_page_lock_queues();
491		while (p && (rcount-- > 0)) {
492			if (pmap_resident_count(map->pmap) <= desired) {
493				vm_page_unlock_queues();
494				return;
495			}
496			next = TAILQ_NEXT(p, listq);
497			cnt.v_pdpages++;
498			if (p->wire_count != 0 ||
499			    p->hold_count != 0 ||
500			    p->busy != 0 ||
501			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
502			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
503				p = next;
504				continue;
505			}
506			actcount = pmap_ts_referenced(p);
507			if (actcount) {
508				vm_page_flag_set(p, PG_REFERENCED);
509			} else if (p->flags & PG_REFERENCED) {
510				actcount = 1;
511			}
512			if ((p->queue != PQ_ACTIVE) &&
513				(p->flags & PG_REFERENCED)) {
514				vm_page_activate(p);
515				p->act_count += actcount;
516				vm_page_flag_clear(p, PG_REFERENCED);
517			} else if (p->queue == PQ_ACTIVE) {
518				if ((p->flags & PG_REFERENCED) == 0) {
519					p->act_count -= min(p->act_count, ACT_DECLINE);
520					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
521						pmap_remove_all(p);
522						vm_page_deactivate(p);
523					} else {
524						vm_pageq_requeue(p);
525					}
526				} else {
527					vm_page_activate(p);
528					vm_page_flag_clear(p, PG_REFERENCED);
529					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
530						p->act_count += ACT_ADVANCE;
531					vm_pageq_requeue(p);
532				}
533			} else if (p->queue == PQ_INACTIVE) {
534				pmap_remove_all(p);
535			}
536			p = next;
537		}
538		vm_page_unlock_queues();
539		object = object->backing_object;
540	}
541}
542
543/*
544 * deactivate some number of pages in a map, try to do it fairly, but
545 * that is really hard to do.
546 */
547static void
548vm_pageout_map_deactivate_pages(map, desired)
549	vm_map_t map;
550	vm_pindex_t desired;
551{
552	vm_map_entry_t tmpe;
553	vm_object_t obj, bigobj;
554	int nothingwired;
555
556	GIANT_REQUIRED;
557	if (!vm_map_trylock(map))
558		return;
559
560	bigobj = NULL;
561	nothingwired = TRUE;
562
563	/*
564	 * first, search out the biggest object, and try to free pages from
565	 * that.
566	 */
567	tmpe = map->header.next;
568	while (tmpe != &map->header) {
569		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
570			obj = tmpe->object.vm_object;
571			if ((obj != NULL) && (obj->shadow_count <= 1) &&
572				((bigobj == NULL) ||
573				 (bigobj->resident_page_count < obj->resident_page_count))) {
574				bigobj = obj;
575			}
576		}
577		if (tmpe->wired_count > 0)
578			nothingwired = FALSE;
579		tmpe = tmpe->next;
580	}
581
582	if (bigobj)
583		vm_pageout_object_deactivate_pages(map, bigobj, desired);
584
585	/*
586	 * Next, hunt around for other pages to deactivate.  We actually
587	 * do this search sort of wrong -- .text first is not the best idea.
588	 */
589	tmpe = map->header.next;
590	while (tmpe != &map->header) {
591		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
592			break;
593		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
594			obj = tmpe->object.vm_object;
595			if (obj)
596				vm_pageout_object_deactivate_pages(map, obj, desired);
597		}
598		tmpe = tmpe->next;
599	}
600
601	/*
602	 * Remove all mappings if a process is swapped out, this will free page
603	 * table pages.
604	 */
605	if (desired == 0 && nothingwired) {
606		vm_page_lock_queues();
607		pmap_remove(vm_map_pmap(map), vm_map_min(map),
608		    vm_map_max(map));
609		vm_page_unlock_queues();
610	}
611	vm_map_unlock(map);
612}
613#endif		/* !defined(NO_SWAPPING) */
614
615/*
616 * Warning! The page queue lock is released and reacquired.
617 */
618static void
619vm_pageout_page_free(vm_page_t m)
620{
621	vm_object_t object = m->object;
622
623	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
624	vm_page_busy(m);
625	vm_page_unlock_queues();
626	/*
627	 * Avoid a lock order reversal.  The page must be busy.
628	 */
629	VM_OBJECT_LOCK(object);
630	vm_page_lock_queues();
631	pmap_remove_all(m);
632	vm_page_free(m);
633	VM_OBJECT_UNLOCK(object);
634	cnt.v_dfree++;
635}
636
637/*
638 * This routine is very drastic, but can save the system
639 * in a pinch.
640 */
641static void
642vm_pageout_pmap_collect(void)
643{
644	int i;
645	vm_page_t m;
646	static int warningdone;
647
648	if (pmap_pagedaemon_waken == 0)
649		return;
650	if (warningdone < 5) {
651		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
652		warningdone++;
653	}
654	vm_page_lock_queues();
655	for (i = 0; i < vm_page_array_size; i++) {
656		m = &vm_page_array[i];
657		if (m->wire_count || m->hold_count || m->busy ||
658		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
659			continue;
660		pmap_remove_all(m);
661	}
662	vm_page_unlock_queues();
663	pmap_pagedaemon_waken = 0;
664}
665
666/*
667 *	vm_pageout_scan does the dirty work for the pageout daemon.
668 */
669static void
670vm_pageout_scan(int pass)
671{
672	vm_page_t m, next;
673	struct vm_page marker;
674	int save_page_shortage;
675	int save_inactive_count;
676	int page_shortage, maxscan, pcount;
677	int addl_page_shortage, addl_page_shortage_init;
678	struct proc *p, *bigproc;
679	vm_offset_t size, bigsize;
680	vm_object_t object;
681	int actcount;
682	int vnodes_skipped = 0;
683	int maxlaunder;
684	int s;
685	struct thread *td;
686
687	GIANT_REQUIRED;
688	/*
689	 * Decrease registered cache sizes.
690	 */
691	EVENTHANDLER_INVOKE(vm_lowmem, 0);
692	/*
693	 * We do this explicitly after the caches have been drained above.
694	 */
695	uma_reclaim();
696	/*
697	 * Do whatever cleanup that the pmap code can.
698	 */
699	vm_pageout_pmap_collect();
700
701	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
702
703	/*
704	 * Calculate the number of pages we want to either free or move
705	 * to the cache.
706	 */
707	page_shortage = vm_paging_target() + addl_page_shortage_init;
708	save_page_shortage = page_shortage;
709	save_inactive_count = cnt.v_inactive_count;
710
711	/*
712	 * Initialize our marker
713	 */
714	bzero(&marker, sizeof(marker));
715	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
716	marker.queue = PQ_INACTIVE;
717	marker.wire_count = 1;
718
719	/*
720	 * Start scanning the inactive queue for pages we can move to the
721	 * cache or free.  The scan will stop when the target is reached or
722	 * we have scanned the entire inactive queue.  Note that m->act_count
723	 * is not used to form decisions for the inactive queue, only for the
724	 * active queue.
725	 *
726	 * maxlaunder limits the number of dirty pages we flush per scan.
727	 * For most systems a smaller value (16 or 32) is more robust under
728	 * extreme memory and disk pressure because any unnecessary writes
729	 * to disk can result in extreme performance degredation.  However,
730	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
731	 * used) will die horribly with limited laundering.  If the pageout
732	 * daemon cannot clean enough pages in the first pass, we let it go
733	 * all out in succeeding passes.
734	 */
735	if ((maxlaunder = vm_max_launder) <= 1)
736		maxlaunder = 1;
737	if (pass)
738		maxlaunder = 10000;
739rescan0:
740	addl_page_shortage = addl_page_shortage_init;
741	maxscan = cnt.v_inactive_count;
742
743	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
744	     m != NULL && maxscan-- > 0 && page_shortage > 0;
745	     m = next) {
746
747		cnt.v_pdpages++;
748
749		if (m->queue != PQ_INACTIVE) {
750			goto rescan0;
751		}
752
753		next = TAILQ_NEXT(m, pageq);
754
755		/*
756		 * skip marker pages
757		 */
758		if (m->flags & PG_MARKER)
759			continue;
760
761		/*
762		 * A held page may be undergoing I/O, so skip it.
763		 */
764		if (m->hold_count) {
765			vm_pageq_requeue(m);
766			addl_page_shortage++;
767			continue;
768		}
769		/*
770		 * Don't mess with busy pages, keep in the front of the
771		 * queue, most likely are being paged out.
772		 */
773		if (m->busy || (m->flags & PG_BUSY)) {
774			addl_page_shortage++;
775			continue;
776		}
777
778		vm_page_lock_queues();
779		/*
780		 * If the object is not being used, we ignore previous
781		 * references.
782		 */
783		if (m->object->ref_count == 0) {
784			vm_page_flag_clear(m, PG_REFERENCED);
785			pmap_clear_reference(m);
786
787		/*
788		 * Otherwise, if the page has been referenced while in the
789		 * inactive queue, we bump the "activation count" upwards,
790		 * making it less likely that the page will be added back to
791		 * the inactive queue prematurely again.  Here we check the
792		 * page tables (or emulated bits, if any), given the upper
793		 * level VM system not knowing anything about existing
794		 * references.
795		 */
796		} else if (((m->flags & PG_REFERENCED) == 0) &&
797			(actcount = pmap_ts_referenced(m))) {
798			vm_page_activate(m);
799			vm_page_unlock_queues();
800			m->act_count += (actcount + ACT_ADVANCE);
801			continue;
802		}
803
804		/*
805		 * If the upper level VM system knows about any page
806		 * references, we activate the page.  We also set the
807		 * "activation count" higher than normal so that we will less
808		 * likely place pages back onto the inactive queue again.
809		 */
810		if ((m->flags & PG_REFERENCED) != 0) {
811			vm_page_flag_clear(m, PG_REFERENCED);
812			actcount = pmap_ts_referenced(m);
813			vm_page_activate(m);
814			vm_page_unlock_queues();
815			m->act_count += (actcount + ACT_ADVANCE + 1);
816			continue;
817		}
818
819		/*
820		 * If the upper level VM system doesn't know anything about
821		 * the page being dirty, we have to check for it again.  As
822		 * far as the VM code knows, any partially dirty pages are
823		 * fully dirty.
824		 */
825		if (m->dirty == 0) {
826			vm_page_test_dirty(m);
827		} else {
828			vm_page_dirty(m);
829		}
830		vm_page_unlock_queues();
831
832		/*
833		 * Invalid pages can be easily freed
834		 */
835		if (m->valid == 0) {
836			vm_page_lock_queues();
837			vm_pageout_page_free(m);
838			vm_page_unlock_queues();
839			--page_shortage;
840
841		/*
842		 * Clean pages can be placed onto the cache queue.  This
843		 * effectively frees them.
844		 */
845		} else if (m->dirty == 0) {
846			vm_page_lock_queues();
847			vm_page_cache(m);
848			vm_page_unlock_queues();
849			--page_shortage;
850		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
851			/*
852			 * Dirty pages need to be paged out, but flushing
853			 * a page is extremely expensive verses freeing
854			 * a clean page.  Rather then artificially limiting
855			 * the number of pages we can flush, we instead give
856			 * dirty pages extra priority on the inactive queue
857			 * by forcing them to be cycled through the queue
858			 * twice before being flushed, after which the
859			 * (now clean) page will cycle through once more
860			 * before being freed.  This significantly extends
861			 * the thrash point for a heavily loaded machine.
862			 */
863			vm_page_lock_queues();
864			vm_page_flag_set(m, PG_WINATCFLS);
865			vm_pageq_requeue(m);
866			vm_page_unlock_queues();
867		} else if (maxlaunder > 0) {
868			/*
869			 * We always want to try to flush some dirty pages if
870			 * we encounter them, to keep the system stable.
871			 * Normally this number is small, but under extreme
872			 * pressure where there are insufficient clean pages
873			 * on the inactive queue, we may have to go all out.
874			 */
875			int swap_pageouts_ok;
876			struct vnode *vp = NULL;
877			struct mount *mp;
878
879			object = m->object;
880
881			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
882				swap_pageouts_ok = 1;
883			} else {
884				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
885				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
886				vm_page_count_min());
887
888			}
889
890			/*
891			 * We don't bother paging objects that are "dead".
892			 * Those objects are in a "rundown" state.
893			 */
894			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
895				vm_pageq_requeue(m);
896				continue;
897			}
898
899			/*
900			 * The object is already known NOT to be dead.   It
901			 * is possible for the vget() to block the whole
902			 * pageout daemon, but the new low-memory handling
903			 * code should prevent it.
904			 *
905			 * The previous code skipped locked vnodes and, worse,
906			 * reordered pages in the queue.  This results in
907			 * completely non-deterministic operation and, on a
908			 * busy system, can lead to extremely non-optimal
909			 * pageouts.  For example, it can cause clean pages
910			 * to be freed and dirty pages to be moved to the end
911			 * of the queue.  Since dirty pages are also moved to
912			 * the end of the queue once-cleaned, this gives
913			 * way too large a weighting to defering the freeing
914			 * of dirty pages.
915			 *
916			 * We can't wait forever for the vnode lock, we might
917			 * deadlock due to a vn_read() getting stuck in
918			 * vm_wait while holding this vnode.  We skip the
919			 * vnode if we can't get it in a reasonable amount
920			 * of time.
921			 */
922			if (object->type == OBJT_VNODE) {
923				vp = object->handle;
924
925				mp = NULL;
926				if (vp->v_type == VREG)
927					vn_start_write(vp, &mp, V_NOWAIT);
928				if (vget(vp, LK_EXCLUSIVE|LK_TIMELOCK, curthread)) {
929					++pageout_lock_miss;
930					vn_finished_write(mp);
931					if (object->flags & OBJ_MIGHTBEDIRTY)
932						vnodes_skipped++;
933					continue;
934				}
935
936				/*
937				 * The page might have been moved to another
938				 * queue during potential blocking in vget()
939				 * above.  The page might have been freed and
940				 * reused for another vnode.  The object might
941				 * have been reused for another vnode.
942				 */
943				if (m->queue != PQ_INACTIVE ||
944				    m->object != object ||
945				    object->handle != vp) {
946					if (object->flags & OBJ_MIGHTBEDIRTY)
947						vnodes_skipped++;
948					vput(vp);
949					vn_finished_write(mp);
950					continue;
951				}
952
953				/*
954				 * The page may have been busied during the
955				 * blocking in vput();  We don't move the
956				 * page back onto the end of the queue so that
957				 * statistics are more correct if we don't.
958				 */
959				if (m->busy || (m->flags & PG_BUSY)) {
960					vput(vp);
961					vn_finished_write(mp);
962					continue;
963				}
964
965				/*
966				 * If the page has become held it might
967				 * be undergoing I/O, so skip it
968				 */
969				if (m->hold_count) {
970					vm_pageq_requeue(m);
971					if (object->flags & OBJ_MIGHTBEDIRTY)
972						vnodes_skipped++;
973					vput(vp);
974					vn_finished_write(mp);
975					continue;
976				}
977			}
978
979			/*
980			 * If a page is dirty, then it is either being washed
981			 * (but not yet cleaned) or it is still in the
982			 * laundry.  If it is still in the laundry, then we
983			 * start the cleaning operation.
984			 *
985			 * This operation may cluster, invalidating the 'next'
986			 * pointer.  To prevent an inordinate number of
987			 * restarts we use our marker to remember our place.
988			 *
989			 * decrement page_shortage on success to account for
990			 * the (future) cleaned page.  Otherwise we could wind
991			 * up laundering or cleaning too many pages.
992			 */
993			vm_page_lock_queues();
994			s = splvm();
995			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
996			splx(s);
997			if (vm_pageout_clean(m) != 0) {
998				--page_shortage;
999				--maxlaunder;
1000			}
1001			s = splvm();
1002			next = TAILQ_NEXT(&marker, pageq);
1003			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1004			splx(s);
1005			vm_page_unlock_queues();
1006			if (vp) {
1007				vput(vp);
1008				vn_finished_write(mp);
1009			}
1010		}
1011	}
1012
1013	/*
1014	 * Compute the number of pages we want to try to move from the
1015	 * active queue to the inactive queue.
1016	 */
1017	page_shortage = vm_paging_target() +
1018		cnt.v_inactive_target - cnt.v_inactive_count;
1019	page_shortage += addl_page_shortage;
1020
1021	vm_page_lock_queues();
1022	/*
1023	 * Scan the active queue for things we can deactivate. We nominally
1024	 * track the per-page activity counter and use it to locate
1025	 * deactivation candidates.
1026	 */
1027	pcount = cnt.v_active_count;
1028	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1029
1030	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1031
1032		/*
1033		 * This is a consistency check, and should likely be a panic
1034		 * or warning.
1035		 */
1036		if (m->queue != PQ_ACTIVE) {
1037			break;
1038		}
1039
1040		next = TAILQ_NEXT(m, pageq);
1041		/*
1042		 * Don't deactivate pages that are busy.
1043		 */
1044		if ((m->busy != 0) ||
1045		    (m->flags & PG_BUSY) ||
1046		    (m->hold_count != 0)) {
1047			vm_pageq_requeue(m);
1048			m = next;
1049			continue;
1050		}
1051
1052		/*
1053		 * The count for pagedaemon pages is done after checking the
1054		 * page for eligibility...
1055		 */
1056		cnt.v_pdpages++;
1057
1058		/*
1059		 * Check to see "how much" the page has been used.
1060		 */
1061		actcount = 0;
1062		if (m->object->ref_count != 0) {
1063			if (m->flags & PG_REFERENCED) {
1064				actcount += 1;
1065			}
1066			actcount += pmap_ts_referenced(m);
1067			if (actcount) {
1068				m->act_count += ACT_ADVANCE + actcount;
1069				if (m->act_count > ACT_MAX)
1070					m->act_count = ACT_MAX;
1071			}
1072		}
1073
1074		/*
1075		 * Since we have "tested" this bit, we need to clear it now.
1076		 */
1077		vm_page_flag_clear(m, PG_REFERENCED);
1078
1079		/*
1080		 * Only if an object is currently being used, do we use the
1081		 * page activation count stats.
1082		 */
1083		if (actcount && (m->object->ref_count != 0)) {
1084			vm_pageq_requeue(m);
1085		} else {
1086			m->act_count -= min(m->act_count, ACT_DECLINE);
1087			if (vm_pageout_algorithm ||
1088			    m->object->ref_count == 0 ||
1089			    m->act_count == 0) {
1090				page_shortage--;
1091				if (m->object->ref_count == 0) {
1092					pmap_remove_all(m);
1093					if (m->dirty == 0)
1094						vm_page_cache(m);
1095					else
1096						vm_page_deactivate(m);
1097				} else {
1098					vm_page_deactivate(m);
1099				}
1100			} else {
1101				vm_pageq_requeue(m);
1102			}
1103		}
1104		m = next;
1105	}
1106	s = splvm();
1107
1108	/*
1109	 * We try to maintain some *really* free pages, this allows interrupt
1110	 * code to be guaranteed space.  Since both cache and free queues
1111	 * are considered basically 'free', moving pages from cache to free
1112	 * does not effect other calculations.
1113	 */
1114	while (cnt.v_free_count < cnt.v_free_reserved) {
1115		static int cache_rover = 0;
1116		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1117		if (!m)
1118			break;
1119		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1120		    m->busy ||
1121		    m->hold_count ||
1122		    m->wire_count) {
1123#ifdef INVARIANTS
1124			printf("Warning: busy page %p found in cache\n", m);
1125#endif
1126			vm_page_deactivate(m);
1127			continue;
1128		}
1129		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1130		vm_pageout_page_free(m);
1131	}
1132	splx(s);
1133	vm_page_unlock_queues();
1134#if !defined(NO_SWAPPING)
1135	/*
1136	 * Idle process swapout -- run once per second.
1137	 */
1138	if (vm_swap_idle_enabled) {
1139		static long lsec;
1140		if (time_second != lsec) {
1141			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1142			vm_req_vmdaemon();
1143			lsec = time_second;
1144		}
1145	}
1146#endif
1147
1148	/*
1149	 * If we didn't get enough free pages, and we have skipped a vnode
1150	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1151	 * if we did not get enough free pages.
1152	 */
1153	if (vm_paging_target() > 0) {
1154		if (vnodes_skipped && vm_page_count_min())
1155			(void) speedup_syncer();
1156#if !defined(NO_SWAPPING)
1157		if (vm_swap_enabled && vm_page_count_target()) {
1158			vm_req_vmdaemon();
1159			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1160		}
1161#endif
1162	}
1163
1164	/*
1165	 * If we are critically low on one of RAM or swap and low on
1166	 * the other, kill the largest process.  However, we avoid
1167	 * doing this on the first pass in order to give ourselves a
1168	 * chance to flush out dirty vnode-backed pages and to allow
1169	 * active pages to be moved to the inactive queue and reclaimed.
1170	 *
1171	 * We keep the process bigproc locked once we find it to keep anyone
1172	 * from messing with it; however, there is a possibility of
1173	 * deadlock if process B is bigproc and one of it's child processes
1174	 * attempts to propagate a signal to B while we are waiting for A's
1175	 * lock while walking this list.  To avoid this, we don't block on
1176	 * the process lock but just skip a process if it is already locked.
1177	 */
1178	if (pass != 0 &&
1179	    ((vm_swap_size < 64 && vm_page_count_min()) ||
1180	     (swap_pager_full && vm_paging_target() > 0))) {
1181		bigproc = NULL;
1182		bigsize = 0;
1183		sx_slock(&allproc_lock);
1184		FOREACH_PROC_IN_SYSTEM(p) {
1185			int breakout;
1186			/*
1187			 * If this process is already locked, skip it.
1188			 */
1189			if (PROC_TRYLOCK(p) == 0)
1190				continue;
1191			/*
1192			 * If this is a system or protected process, skip it.
1193			 */
1194			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1195			    (p->p_flag & P_PROTECTED) ||
1196			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1197				PROC_UNLOCK(p);
1198				continue;
1199			}
1200			/*
1201			 * if the process is in a non-running type state,
1202			 * don't touch it. Check all the threads individually.
1203			 */
1204			mtx_lock_spin(&sched_lock);
1205			breakout = 0;
1206			FOREACH_THREAD_IN_PROC(p, td) {
1207				if (!TD_ON_RUNQ(td) &&
1208				    !TD_IS_RUNNING(td) &&
1209				    !TD_IS_SLEEPING(td)) {
1210					breakout = 1;
1211					break;
1212				}
1213			}
1214			if (breakout) {
1215				mtx_unlock_spin(&sched_lock);
1216				PROC_UNLOCK(p);
1217				continue;
1218			}
1219			mtx_unlock_spin(&sched_lock);
1220			/*
1221			 * get the process size
1222			 */
1223			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1224				PROC_UNLOCK(p);
1225				continue;
1226			}
1227			size = vmspace_swap_count(p->p_vmspace);
1228			vm_map_unlock_read(&p->p_vmspace->vm_map);
1229			size += vmspace_resident_count(p->p_vmspace);
1230			/*
1231			 * if the this process is bigger than the biggest one
1232			 * remember it.
1233			 */
1234			if (size > bigsize) {
1235				if (bigproc != NULL)
1236					PROC_UNLOCK(bigproc);
1237				bigproc = p;
1238				bigsize = size;
1239			} else
1240				PROC_UNLOCK(p);
1241		}
1242		sx_sunlock(&allproc_lock);
1243		if (bigproc != NULL) {
1244			struct ksegrp *kg;
1245			killproc(bigproc, "out of swap space");
1246			mtx_lock_spin(&sched_lock);
1247			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1248				sched_nice(kg, PRIO_MIN); /* XXXKSE ??? */
1249			}
1250			mtx_unlock_spin(&sched_lock);
1251			PROC_UNLOCK(bigproc);
1252			wakeup(&cnt.v_free_count);
1253		}
1254	}
1255}
1256
1257/*
1258 * This routine tries to maintain the pseudo LRU active queue,
1259 * so that during long periods of time where there is no paging,
1260 * that some statistic accumulation still occurs.  This code
1261 * helps the situation where paging just starts to occur.
1262 */
1263static void
1264vm_pageout_page_stats()
1265{
1266	vm_page_t m,next;
1267	int pcount,tpcount;		/* Number of pages to check */
1268	static int fullintervalcount = 0;
1269	int page_shortage;
1270	int s0;
1271
1272	page_shortage =
1273	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1274	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1275
1276	if (page_shortage <= 0)
1277		return;
1278
1279	s0 = splvm();
1280	vm_page_lock_queues();
1281	pcount = cnt.v_active_count;
1282	fullintervalcount += vm_pageout_stats_interval;
1283	if (fullintervalcount < vm_pageout_full_stats_interval) {
1284		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1285		if (pcount > tpcount)
1286			pcount = tpcount;
1287	} else {
1288		fullintervalcount = 0;
1289	}
1290
1291	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1292	while ((m != NULL) && (pcount-- > 0)) {
1293		int actcount;
1294
1295		if (m->queue != PQ_ACTIVE) {
1296			break;
1297		}
1298
1299		next = TAILQ_NEXT(m, pageq);
1300		/*
1301		 * Don't deactivate pages that are busy.
1302		 */
1303		if ((m->busy != 0) ||
1304		    (m->flags & PG_BUSY) ||
1305		    (m->hold_count != 0)) {
1306			vm_pageq_requeue(m);
1307			m = next;
1308			continue;
1309		}
1310
1311		actcount = 0;
1312		if (m->flags & PG_REFERENCED) {
1313			vm_page_flag_clear(m, PG_REFERENCED);
1314			actcount += 1;
1315		}
1316
1317		actcount += pmap_ts_referenced(m);
1318		if (actcount) {
1319			m->act_count += ACT_ADVANCE + actcount;
1320			if (m->act_count > ACT_MAX)
1321				m->act_count = ACT_MAX;
1322			vm_pageq_requeue(m);
1323		} else {
1324			if (m->act_count == 0) {
1325				/*
1326				 * We turn off page access, so that we have
1327				 * more accurate RSS stats.  We don't do this
1328				 * in the normal page deactivation when the
1329				 * system is loaded VM wise, because the
1330				 * cost of the large number of page protect
1331				 * operations would be higher than the value
1332				 * of doing the operation.
1333				 */
1334				pmap_remove_all(m);
1335				vm_page_deactivate(m);
1336			} else {
1337				m->act_count -= min(m->act_count, ACT_DECLINE);
1338				vm_pageq_requeue(m);
1339			}
1340		}
1341
1342		m = next;
1343	}
1344	vm_page_unlock_queues();
1345	splx(s0);
1346}
1347
1348static int
1349vm_pageout_free_page_calc(count)
1350vm_size_t count;
1351{
1352	if (count < cnt.v_page_count)
1353		 return 0;
1354	/*
1355	 * free_reserved needs to include enough for the largest swap pager
1356	 * structures plus enough for any pv_entry structs when paging.
1357	 */
1358	if (cnt.v_page_count > 1024)
1359		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1360	else
1361		cnt.v_free_min = 4;
1362	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1363		cnt.v_interrupt_free_min;
1364	cnt.v_free_reserved = vm_pageout_page_count +
1365		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1366	cnt.v_free_severe = cnt.v_free_min / 2;
1367	cnt.v_free_min += cnt.v_free_reserved;
1368	cnt.v_free_severe += cnt.v_free_reserved;
1369	return 1;
1370}
1371
1372/*
1373 *	vm_pageout is the high level pageout daemon.
1374 */
1375static void
1376vm_pageout()
1377{
1378	int error, pass, s;
1379
1380	mtx_lock(&Giant);
1381
1382	/*
1383	 * Initialize some paging parameters.
1384	 */
1385	cnt.v_interrupt_free_min = 2;
1386	if (cnt.v_page_count < 2000)
1387		vm_pageout_page_count = 8;
1388
1389	vm_pageout_free_page_calc(cnt.v_page_count);
1390	/*
1391	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1392	 * that these are more a measure of the VM cache queue hysteresis
1393	 * then the VM free queue.  Specifically, v_free_target is the
1394	 * high water mark (free+cache pages).
1395	 *
1396	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1397	 * low water mark, while v_free_min is the stop.  v_cache_min must
1398	 * be big enough to handle memory needs while the pageout daemon
1399	 * is signalled and run to free more pages.
1400	 */
1401	if (cnt.v_free_count > 6144)
1402		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1403	else
1404		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1405
1406	if (cnt.v_free_count > 2048) {
1407		cnt.v_cache_min = cnt.v_free_target;
1408		cnt.v_cache_max = 2 * cnt.v_cache_min;
1409		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1410	} else {
1411		cnt.v_cache_min = 0;
1412		cnt.v_cache_max = 0;
1413		cnt.v_inactive_target = cnt.v_free_count / 4;
1414	}
1415	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1416		cnt.v_inactive_target = cnt.v_free_count / 3;
1417
1418	/* XXX does not really belong here */
1419	if (vm_page_max_wired == 0)
1420		vm_page_max_wired = cnt.v_free_count / 3;
1421
1422	if (vm_pageout_stats_max == 0)
1423		vm_pageout_stats_max = cnt.v_free_target;
1424
1425	/*
1426	 * Set interval in seconds for stats scan.
1427	 */
1428	if (vm_pageout_stats_interval == 0)
1429		vm_pageout_stats_interval = 5;
1430	if (vm_pageout_full_stats_interval == 0)
1431		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1432
1433	/*
1434	 * Set maximum free per pass
1435	 */
1436	if (vm_pageout_stats_free_max == 0)
1437		vm_pageout_stats_free_max = 5;
1438
1439	swap_pager_swap_init();
1440	pass = 0;
1441	/*
1442	 * The pageout daemon is never done, so loop forever.
1443	 */
1444	while (TRUE) {
1445		s = splvm();
1446		vm_page_lock_queues();
1447		/*
1448		 * If we have enough free memory, wakeup waiters.  Do
1449		 * not clear vm_pages_needed until we reach our target,
1450		 * otherwise we may be woken up over and over again and
1451		 * waste a lot of cpu.
1452		 */
1453		if (vm_pages_needed && !vm_page_count_min()) {
1454			if (!vm_paging_needed())
1455				vm_pages_needed = 0;
1456			wakeup(&cnt.v_free_count);
1457		}
1458		if (vm_pages_needed) {
1459			/*
1460			 * Still not done, take a second pass without waiting
1461			 * (unlimited dirty cleaning), otherwise sleep a bit
1462			 * and try again.
1463			 */
1464			++pass;
1465			if (pass > 1)
1466				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1467				       "psleep", hz/2);
1468		} else {
1469			/*
1470			 * Good enough, sleep & handle stats.  Prime the pass
1471			 * for the next run.
1472			 */
1473			if (pass > 1)
1474				pass = 1;
1475			else
1476				pass = 0;
1477			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1478				    "psleep", vm_pageout_stats_interval * hz);
1479			if (error && !vm_pages_needed) {
1480				vm_page_unlock_queues();
1481				splx(s);
1482				pass = 0;
1483				vm_pageout_page_stats();
1484				continue;
1485			}
1486		}
1487		if (vm_pages_needed)
1488			cnt.v_pdwakeups++;
1489		vm_page_unlock_queues();
1490		splx(s);
1491		vm_pageout_scan(pass);
1492	}
1493}
1494
1495/*
1496 * Unless the page queue lock is held by the caller, this function
1497 * should be regarded as advisory.  Specifically, the caller should
1498 * not msleep() on &cnt.v_free_count following this function unless
1499 * the page queue lock is held until the msleep() is performed.
1500 */
1501void
1502pagedaemon_wakeup()
1503{
1504
1505	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1506		vm_pages_needed = 1;
1507		wakeup(&vm_pages_needed);
1508	}
1509}
1510
1511#if !defined(NO_SWAPPING)
1512static void
1513vm_req_vmdaemon()
1514{
1515	static int lastrun = 0;
1516
1517	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1518		wakeup(&vm_daemon_needed);
1519		lastrun = ticks;
1520	}
1521}
1522
1523static void
1524vm_daemon()
1525{
1526	struct proc *p;
1527	int breakout;
1528	struct thread *td;
1529
1530	mtx_lock(&Giant);
1531	while (TRUE) {
1532		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1533		if (vm_pageout_req_swapout) {
1534			swapout_procs(vm_pageout_req_swapout);
1535			vm_pageout_req_swapout = 0;
1536		}
1537		/*
1538		 * scan the processes for exceeding their rlimits or if
1539		 * process is swapped out -- deactivate pages
1540		 */
1541		sx_slock(&allproc_lock);
1542		LIST_FOREACH(p, &allproc, p_list) {
1543			vm_pindex_t limit, size;
1544
1545			/*
1546			 * if this is a system process or if we have already
1547			 * looked at this process, skip it.
1548			 */
1549			PROC_LOCK(p);
1550			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1551				PROC_UNLOCK(p);
1552				continue;
1553			}
1554			/*
1555			 * if the process is in a non-running type state,
1556			 * don't touch it.
1557			 */
1558			mtx_lock_spin(&sched_lock);
1559			breakout = 0;
1560			FOREACH_THREAD_IN_PROC(p, td) {
1561				if (!TD_ON_RUNQ(td) &&
1562				    !TD_IS_RUNNING(td) &&
1563				    !TD_IS_SLEEPING(td)) {
1564					breakout = 1;
1565					break;
1566				}
1567			}
1568			mtx_unlock_spin(&sched_lock);
1569			if (breakout) {
1570				PROC_UNLOCK(p);
1571				continue;
1572			}
1573			/*
1574			 * get a limit
1575			 */
1576			limit = OFF_TO_IDX(
1577			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1578				p->p_rlimit[RLIMIT_RSS].rlim_max));
1579
1580			/*
1581			 * let processes that are swapped out really be
1582			 * swapped out set the limit to nothing (will force a
1583			 * swap-out.)
1584			 */
1585			if ((p->p_sflag & PS_INMEM) == 0)
1586				limit = 0;	/* XXX */
1587			PROC_UNLOCK(p);
1588
1589			size = vmspace_resident_count(p->p_vmspace);
1590			if (limit >= 0 && size >= limit) {
1591				vm_pageout_map_deactivate_pages(
1592				    &p->p_vmspace->vm_map, limit);
1593			}
1594		}
1595		sx_sunlock(&allproc_lock);
1596	}
1597}
1598#endif			/* !defined(NO_SWAPPING) */
1599