vm_pageout.c revision 113869
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 113869 2003-04-22 20:03:08Z jhb $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/eventhandler.h>
80#include <sys/lock.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/kthread.h>
84#include <sys/ktr.h>
85#include <sys/resourcevar.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#include <sys/vnode.h>
89#include <sys/vmmeter.h>
90#include <sys/sx.h>
91#include <sys/sysctl.h>
92
93#include <vm/vm.h>
94#include <vm/vm_param.h>
95#include <vm/vm_object.h>
96#include <vm/vm_page.h>
97#include <vm/vm_map.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/swap_pager.h>
101#include <vm/vm_extern.h>
102#include <vm/uma.h>
103
104#include <machine/mutex.h>
105
106/*
107 * System initialization
108 */
109
110/* the kernel process "vm_pageout"*/
111static void vm_pageout(void);
112static int vm_pageout_clean(vm_page_t);
113static void vm_pageout_page_free(vm_page_t);
114static void vm_pageout_pmap_collect(void);
115static void vm_pageout_scan(int pass);
116static int vm_pageout_free_page_calc(vm_size_t count);
117struct proc *pageproc;
118
119static struct kproc_desc page_kp = {
120	"pagedaemon",
121	vm_pageout,
122	&pageproc
123};
124SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
125
126#if !defined(NO_SWAPPING)
127/* the kernel process "vm_daemon"*/
128static void vm_daemon(void);
129static struct	proc *vmproc;
130
131static struct kproc_desc vm_kp = {
132	"vmdaemon",
133	vm_daemon,
134	&vmproc
135};
136SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
137#endif
138
139
140int vm_pages_needed;		/* Event on which pageout daemon sleeps */
141int vm_pageout_deficit;		/* Estimated number of pages deficit */
142int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
143
144#if !defined(NO_SWAPPING)
145static int vm_pageout_req_swapout;	/* XXX */
146static int vm_daemon_needed;
147#endif
148static int vm_max_launder = 32;
149static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
150static int vm_pageout_full_stats_interval = 0;
151static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
152static int defer_swap_pageouts=0;
153static int disable_swap_pageouts=0;
154
155#if defined(NO_SWAPPING)
156static int vm_swap_enabled=0;
157static int vm_swap_idle_enabled=0;
158#else
159static int vm_swap_enabled=1;
160static int vm_swap_idle_enabled=0;
161#endif
162
163SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
164	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
165
166SYSCTL_INT(_vm, OID_AUTO, max_launder,
167	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
170	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
173	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
176	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
177
178SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
179	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
180
181#if defined(NO_SWAPPING)
182SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183	CTLFLAG_RD, &vm_swap_enabled, 0, "");
184SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
186#else
187SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
188	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
189SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
190	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
191#endif
192
193SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
194	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
195
196SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
197	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
198
199static int pageout_lock_miss;
200SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
201	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
202
203#define VM_PAGEOUT_PAGE_COUNT 16
204int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
205
206int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
207
208#if !defined(NO_SWAPPING)
209typedef void freeer_fcn_t(vm_map_t, vm_object_t, vm_pindex_t, int);
210static void vm_pageout_map_deactivate_pages(vm_map_t, vm_pindex_t);
211static freeer_fcn_t vm_pageout_object_deactivate_pages;
212static void vm_req_vmdaemon(void);
213#endif
214static void vm_pageout_page_stats(void);
215
216/*
217 * vm_pageout_clean:
218 *
219 * Clean the page and remove it from the laundry.
220 *
221 * We set the busy bit to cause potential page faults on this page to
222 * block.  Note the careful timing, however, the busy bit isn't set till
223 * late and we cannot do anything that will mess with the page.
224 */
225static int
226vm_pageout_clean(m)
227	vm_page_t m;
228{
229	vm_object_t object;
230	vm_page_t mc[2*vm_pageout_page_count];
231	int pageout_count;
232	int ib, is, page_base;
233	vm_pindex_t pindex = m->pindex;
234
235	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
236
237	object = m->object;
238
239	/*
240	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
241	 * with the new swapper, but we could have serious problems paging
242	 * out other object types if there is insufficient memory.
243	 *
244	 * Unfortunately, checking free memory here is far too late, so the
245	 * check has been moved up a procedural level.
246	 */
247
248	/*
249	 * Don't mess with the page if it's busy, held, or special
250	 */
251	if ((m->hold_count != 0) ||
252	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
253		return 0;
254	}
255
256	mc[vm_pageout_page_count] = m;
257	pageout_count = 1;
258	page_base = vm_pageout_page_count;
259	ib = 1;
260	is = 1;
261
262	/*
263	 * Scan object for clusterable pages.
264	 *
265	 * We can cluster ONLY if: ->> the page is NOT
266	 * clean, wired, busy, held, or mapped into a
267	 * buffer, and one of the following:
268	 * 1) The page is inactive, or a seldom used
269	 *    active page.
270	 * -or-
271	 * 2) we force the issue.
272	 *
273	 * During heavy mmap/modification loads the pageout
274	 * daemon can really fragment the underlying file
275	 * due to flushing pages out of order and not trying
276	 * align the clusters (which leave sporatic out-of-order
277	 * holes).  To solve this problem we do the reverse scan
278	 * first and attempt to align our cluster, then do a
279	 * forward scan if room remains.
280	 */
281more:
282	while (ib && pageout_count < vm_pageout_page_count) {
283		vm_page_t p;
284
285		if (ib > pindex) {
286			ib = 0;
287			break;
288		}
289
290		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
291			ib = 0;
292			break;
293		}
294		if (((p->queue - p->pc) == PQ_CACHE) ||
295		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
296			ib = 0;
297			break;
298		}
299		vm_page_test_dirty(p);
300		if ((p->dirty & p->valid) == 0 ||
301		    p->queue != PQ_INACTIVE ||
302		    p->wire_count != 0 ||	/* may be held by buf cache */
303		    p->hold_count != 0) {	/* may be undergoing I/O */
304			ib = 0;
305			break;
306		}
307		mc[--page_base] = p;
308		++pageout_count;
309		++ib;
310		/*
311		 * alignment boundry, stop here and switch directions.  Do
312		 * not clear ib.
313		 */
314		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
315			break;
316	}
317
318	while (pageout_count < vm_pageout_page_count &&
319	    pindex + is < object->size) {
320		vm_page_t p;
321
322		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
323			break;
324		if (((p->queue - p->pc) == PQ_CACHE) ||
325		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
326			break;
327		}
328		vm_page_test_dirty(p);
329		if ((p->dirty & p->valid) == 0 ||
330		    p->queue != PQ_INACTIVE ||
331		    p->wire_count != 0 ||	/* may be held by buf cache */
332		    p->hold_count != 0) {	/* may be undergoing I/O */
333			break;
334		}
335		mc[page_base + pageout_count] = p;
336		++pageout_count;
337		++is;
338	}
339
340	/*
341	 * If we exhausted our forward scan, continue with the reverse scan
342	 * when possible, even past a page boundry.  This catches boundry
343	 * conditions.
344	 */
345	if (ib && pageout_count < vm_pageout_page_count)
346		goto more;
347
348	/*
349	 * we allow reads during pageouts...
350	 */
351	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
352}
353
354/*
355 * vm_pageout_flush() - launder the given pages
356 *
357 *	The given pages are laundered.  Note that we setup for the start of
358 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
359 *	reference count all in here rather then in the parent.  If we want
360 *	the parent to do more sophisticated things we may have to change
361 *	the ordering.
362 */
363int
364vm_pageout_flush(mc, count, flags)
365	vm_page_t *mc;
366	int count;
367	int flags;
368{
369	vm_object_t object;
370	int pageout_status[count];
371	int numpagedout = 0;
372	int i;
373
374	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
375	/*
376	 * Initiate I/O.  Bump the vm_page_t->busy counter and
377	 * mark the pages read-only.
378	 *
379	 * We do not have to fixup the clean/dirty bits here... we can
380	 * allow the pager to do it after the I/O completes.
381	 *
382	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
383	 * edge case with file fragments.
384	 */
385	for (i = 0; i < count; i++) {
386		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
387		vm_page_io_start(mc[i]);
388		pmap_page_protect(mc[i], VM_PROT_READ);
389	}
390	object = mc[0]->object;
391	vm_page_unlock_queues();
392	VM_OBJECT_LOCK(object);
393	vm_object_pip_add(object, count);
394	VM_OBJECT_UNLOCK(object);
395
396	vm_pager_put_pages(object, mc, count,
397	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
398	    pageout_status);
399
400	VM_OBJECT_LOCK(object);
401	vm_page_lock_queues();
402	for (i = 0; i < count; i++) {
403		vm_page_t mt = mc[i];
404
405		switch (pageout_status[i]) {
406		case VM_PAGER_OK:
407		case VM_PAGER_PEND:
408			numpagedout++;
409			break;
410		case VM_PAGER_BAD:
411			/*
412			 * Page outside of range of object. Right now we
413			 * essentially lose the changes by pretending it
414			 * worked.
415			 */
416			pmap_clear_modify(mt);
417			vm_page_undirty(mt);
418			break;
419		case VM_PAGER_ERROR:
420		case VM_PAGER_FAIL:
421			/*
422			 * If page couldn't be paged out, then reactivate the
423			 * page so it doesn't clog the inactive list.  (We
424			 * will try paging out it again later).
425			 */
426			vm_page_activate(mt);
427			break;
428		case VM_PAGER_AGAIN:
429			break;
430		}
431
432		/*
433		 * If the operation is still going, leave the page busy to
434		 * block all other accesses. Also, leave the paging in
435		 * progress indicator set so that we don't attempt an object
436		 * collapse.
437		 */
438		if (pageout_status[i] != VM_PAGER_PEND) {
439			vm_object_pip_wakeup(object);
440			vm_page_io_finish(mt);
441			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
442				pmap_page_protect(mt, VM_PROT_READ);
443		}
444	}
445	VM_OBJECT_UNLOCK(object);
446	return numpagedout;
447}
448
449#if !defined(NO_SWAPPING)
450/*
451 *	vm_pageout_object_deactivate_pages
452 *
453 *	deactivate enough pages to satisfy the inactive target
454 *	requirements or if vm_page_proc_limit is set, then
455 *	deactivate all of the pages in the object and its
456 *	backing_objects.
457 *
458 *	The object and map must be locked.
459 */
460static void
461vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
462	vm_map_t map;
463	vm_object_t object;
464	vm_pindex_t desired;
465	int map_remove_only;
466{
467	vm_page_t p, next;
468	int actcount, rcount, remove_mode;
469
470	GIANT_REQUIRED;
471	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
472		return;
473
474	while (object) {
475		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
476			return;
477		if (object->paging_in_progress)
478			return;
479
480		remove_mode = map_remove_only;
481		if (object->shadow_count > 1)
482			remove_mode = 1;
483		/*
484		 * scan the objects entire memory queue
485		 */
486		rcount = object->resident_page_count;
487		p = TAILQ_FIRST(&object->memq);
488		vm_page_lock_queues();
489		while (p && (rcount-- > 0)) {
490			if (pmap_resident_count(map->pmap) <= desired) {
491				vm_page_unlock_queues();
492				return;
493			}
494			next = TAILQ_NEXT(p, listq);
495			cnt.v_pdpages++;
496			if (p->wire_count != 0 ||
497			    p->hold_count != 0 ||
498			    p->busy != 0 ||
499			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
500			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
501				p = next;
502				continue;
503			}
504			actcount = pmap_ts_referenced(p);
505			if (actcount) {
506				vm_page_flag_set(p, PG_REFERENCED);
507			} else if (p->flags & PG_REFERENCED) {
508				actcount = 1;
509			}
510			if ((p->queue != PQ_ACTIVE) &&
511				(p->flags & PG_REFERENCED)) {
512				vm_page_activate(p);
513				p->act_count += actcount;
514				vm_page_flag_clear(p, PG_REFERENCED);
515			} else if (p->queue == PQ_ACTIVE) {
516				if ((p->flags & PG_REFERENCED) == 0) {
517					p->act_count -= min(p->act_count, ACT_DECLINE);
518					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
519						pmap_remove_all(p);
520						vm_page_deactivate(p);
521					} else {
522						vm_pageq_requeue(p);
523					}
524				} else {
525					vm_page_activate(p);
526					vm_page_flag_clear(p, PG_REFERENCED);
527					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
528						p->act_count += ACT_ADVANCE;
529					vm_pageq_requeue(p);
530				}
531			} else if (p->queue == PQ_INACTIVE) {
532				pmap_remove_all(p);
533			}
534			p = next;
535		}
536		vm_page_unlock_queues();
537		object = object->backing_object;
538	}
539}
540
541/*
542 * deactivate some number of pages in a map, try to do it fairly, but
543 * that is really hard to do.
544 */
545static void
546vm_pageout_map_deactivate_pages(map, desired)
547	vm_map_t map;
548	vm_pindex_t desired;
549{
550	vm_map_entry_t tmpe;
551	vm_object_t obj, bigobj;
552	int nothingwired;
553
554	GIANT_REQUIRED;
555	if (!vm_map_trylock(map))
556		return;
557
558	bigobj = NULL;
559	nothingwired = TRUE;
560
561	/*
562	 * first, search out the biggest object, and try to free pages from
563	 * that.
564	 */
565	tmpe = map->header.next;
566	while (tmpe != &map->header) {
567		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
568			obj = tmpe->object.vm_object;
569			if ((obj != NULL) && (obj->shadow_count <= 1) &&
570				((bigobj == NULL) ||
571				 (bigobj->resident_page_count < obj->resident_page_count))) {
572				bigobj = obj;
573			}
574		}
575		if (tmpe->wired_count > 0)
576			nothingwired = FALSE;
577		tmpe = tmpe->next;
578	}
579
580	if (bigobj)
581		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
582
583	/*
584	 * Next, hunt around for other pages to deactivate.  We actually
585	 * do this search sort of wrong -- .text first is not the best idea.
586	 */
587	tmpe = map->header.next;
588	while (tmpe != &map->header) {
589		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
590			break;
591		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
592			obj = tmpe->object.vm_object;
593			if (obj)
594				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
595		}
596		tmpe = tmpe->next;
597	}
598
599	/*
600	 * Remove all mappings if a process is swapped out, this will free page
601	 * table pages.
602	 */
603	if (desired == 0 && nothingwired) {
604		vm_page_lock_queues();
605		pmap_remove(vm_map_pmap(map), vm_map_min(map),
606		    vm_map_max(map));
607		vm_page_unlock_queues();
608	}
609	vm_map_unlock(map);
610}
611#endif		/* !defined(NO_SWAPPING) */
612
613/*
614 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
615 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
616 * which we know can be trivially freed.
617 */
618static void
619vm_pageout_page_free(vm_page_t m)
620{
621	vm_object_t object = m->object;
622	int type = object->type;
623
624	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
625	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
626		vm_object_reference(object);
627	vm_page_busy(m);
628	pmap_remove_all(m);
629	vm_page_free(m);
630	cnt.v_dfree++;
631	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
632		vm_object_deallocate(object);
633}
634
635/*
636 * This routine is very drastic, but can save the system
637 * in a pinch.
638 */
639static void
640vm_pageout_pmap_collect(void)
641{
642	int i;
643	vm_page_t m;
644	static int warningdone;
645
646	if (pmap_pagedaemon_waken == 0)
647		return;
648	if (warningdone < 5) {
649		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
650		warningdone++;
651	}
652	vm_page_lock_queues();
653	for (i = 0; i < vm_page_array_size; i++) {
654		m = &vm_page_array[i];
655		if (m->wire_count || m->hold_count || m->busy ||
656		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
657			continue;
658		pmap_remove_all(m);
659	}
660	vm_page_unlock_queues();
661	pmap_pagedaemon_waken = 0;
662}
663
664/*
665 *	vm_pageout_scan does the dirty work for the pageout daemon.
666 */
667static void
668vm_pageout_scan(int pass)
669{
670	vm_page_t m, next;
671	struct vm_page marker;
672	int save_page_shortage;
673	int save_inactive_count;
674	int page_shortage, maxscan, pcount;
675	int addl_page_shortage, addl_page_shortage_init;
676	struct proc *p, *bigproc;
677	vm_offset_t size, bigsize;
678	vm_object_t object;
679	int actcount;
680	int vnodes_skipped = 0;
681	int maxlaunder;
682	int s;
683	struct thread *td;
684
685	GIANT_REQUIRED;
686	/*
687	 * Decrease registered cache sizes.
688	 */
689	EVENTHANDLER_INVOKE(vm_lowmem, 0);
690	/*
691	 * We do this explicitly after the caches have been drained above.
692	 */
693	uma_reclaim();
694	/*
695	 * Do whatever cleanup that the pmap code can.
696	 */
697	vm_pageout_pmap_collect();
698
699	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
700
701	/*
702	 * Calculate the number of pages we want to either free or move
703	 * to the cache.
704	 */
705	page_shortage = vm_paging_target() + addl_page_shortage_init;
706	save_page_shortage = page_shortage;
707	save_inactive_count = cnt.v_inactive_count;
708
709	/*
710	 * Initialize our marker
711	 */
712	bzero(&marker, sizeof(marker));
713	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
714	marker.queue = PQ_INACTIVE;
715	marker.wire_count = 1;
716
717	/*
718	 * Start scanning the inactive queue for pages we can move to the
719	 * cache or free.  The scan will stop when the target is reached or
720	 * we have scanned the entire inactive queue.  Note that m->act_count
721	 * is not used to form decisions for the inactive queue, only for the
722	 * active queue.
723	 *
724	 * maxlaunder limits the number of dirty pages we flush per scan.
725	 * For most systems a smaller value (16 or 32) is more robust under
726	 * extreme memory and disk pressure because any unnecessary writes
727	 * to disk can result in extreme performance degredation.  However,
728	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
729	 * used) will die horribly with limited laundering.  If the pageout
730	 * daemon cannot clean enough pages in the first pass, we let it go
731	 * all out in succeeding passes.
732	 */
733	if ((maxlaunder = vm_max_launder) <= 1)
734		maxlaunder = 1;
735	if (pass)
736		maxlaunder = 10000;
737rescan0:
738	addl_page_shortage = addl_page_shortage_init;
739	maxscan = cnt.v_inactive_count;
740
741	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
742	     m != NULL && maxscan-- > 0 && page_shortage > 0;
743	     m = next) {
744
745		cnt.v_pdpages++;
746
747		if (m->queue != PQ_INACTIVE) {
748			goto rescan0;
749		}
750
751		next = TAILQ_NEXT(m, pageq);
752
753		/*
754		 * skip marker pages
755		 */
756		if (m->flags & PG_MARKER)
757			continue;
758
759		/*
760		 * A held page may be undergoing I/O, so skip it.
761		 */
762		if (m->hold_count) {
763			vm_pageq_requeue(m);
764			addl_page_shortage++;
765			continue;
766		}
767		/*
768		 * Don't mess with busy pages, keep in the front of the
769		 * queue, most likely are being paged out.
770		 */
771		if (m->busy || (m->flags & PG_BUSY)) {
772			addl_page_shortage++;
773			continue;
774		}
775
776		vm_page_lock_queues();
777		/*
778		 * If the object is not being used, we ignore previous
779		 * references.
780		 */
781		if (m->object->ref_count == 0) {
782			vm_page_flag_clear(m, PG_REFERENCED);
783			pmap_clear_reference(m);
784
785		/*
786		 * Otherwise, if the page has been referenced while in the
787		 * inactive queue, we bump the "activation count" upwards,
788		 * making it less likely that the page will be added back to
789		 * the inactive queue prematurely again.  Here we check the
790		 * page tables (or emulated bits, if any), given the upper
791		 * level VM system not knowing anything about existing
792		 * references.
793		 */
794		} else if (((m->flags & PG_REFERENCED) == 0) &&
795			(actcount = pmap_ts_referenced(m))) {
796			vm_page_activate(m);
797			vm_page_unlock_queues();
798			m->act_count += (actcount + ACT_ADVANCE);
799			continue;
800		}
801
802		/*
803		 * If the upper level VM system knows about any page
804		 * references, we activate the page.  We also set the
805		 * "activation count" higher than normal so that we will less
806		 * likely place pages back onto the inactive queue again.
807		 */
808		if ((m->flags & PG_REFERENCED) != 0) {
809			vm_page_flag_clear(m, PG_REFERENCED);
810			actcount = pmap_ts_referenced(m);
811			vm_page_activate(m);
812			vm_page_unlock_queues();
813			m->act_count += (actcount + ACT_ADVANCE + 1);
814			continue;
815		}
816
817		/*
818		 * If the upper level VM system doesn't know anything about
819		 * the page being dirty, we have to check for it again.  As
820		 * far as the VM code knows, any partially dirty pages are
821		 * fully dirty.
822		 */
823		if (m->dirty == 0) {
824			vm_page_test_dirty(m);
825		} else {
826			vm_page_dirty(m);
827		}
828		vm_page_unlock_queues();
829
830		/*
831		 * Invalid pages can be easily freed
832		 */
833		if (m->valid == 0) {
834			vm_page_lock_queues();
835			vm_pageout_page_free(m);
836			vm_page_unlock_queues();
837			--page_shortage;
838
839		/*
840		 * Clean pages can be placed onto the cache queue.  This
841		 * effectively frees them.
842		 */
843		} else if (m->dirty == 0) {
844			vm_page_lock_queues();
845			vm_page_cache(m);
846			vm_page_unlock_queues();
847			--page_shortage;
848		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
849			/*
850			 * Dirty pages need to be paged out, but flushing
851			 * a page is extremely expensive verses freeing
852			 * a clean page.  Rather then artificially limiting
853			 * the number of pages we can flush, we instead give
854			 * dirty pages extra priority on the inactive queue
855			 * by forcing them to be cycled through the queue
856			 * twice before being flushed, after which the
857			 * (now clean) page will cycle through once more
858			 * before being freed.  This significantly extends
859			 * the thrash point for a heavily loaded machine.
860			 */
861			vm_page_lock_queues();
862			vm_page_flag_set(m, PG_WINATCFLS);
863			vm_pageq_requeue(m);
864			vm_page_unlock_queues();
865		} else if (maxlaunder > 0) {
866			/*
867			 * We always want to try to flush some dirty pages if
868			 * we encounter them, to keep the system stable.
869			 * Normally this number is small, but under extreme
870			 * pressure where there are insufficient clean pages
871			 * on the inactive queue, we may have to go all out.
872			 */
873			int swap_pageouts_ok;
874			struct vnode *vp = NULL;
875			struct mount *mp;
876
877			object = m->object;
878
879			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
880				swap_pageouts_ok = 1;
881			} else {
882				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
883				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
884				vm_page_count_min());
885
886			}
887
888			/*
889			 * We don't bother paging objects that are "dead".
890			 * Those objects are in a "rundown" state.
891			 */
892			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
893				vm_pageq_requeue(m);
894				continue;
895			}
896
897			/*
898			 * The object is already known NOT to be dead.   It
899			 * is possible for the vget() to block the whole
900			 * pageout daemon, but the new low-memory handling
901			 * code should prevent it.
902			 *
903			 * The previous code skipped locked vnodes and, worse,
904			 * reordered pages in the queue.  This results in
905			 * completely non-deterministic operation and, on a
906			 * busy system, can lead to extremely non-optimal
907			 * pageouts.  For example, it can cause clean pages
908			 * to be freed and dirty pages to be moved to the end
909			 * of the queue.  Since dirty pages are also moved to
910			 * the end of the queue once-cleaned, this gives
911			 * way too large a weighting to defering the freeing
912			 * of dirty pages.
913			 *
914			 * We can't wait forever for the vnode lock, we might
915			 * deadlock due to a vn_read() getting stuck in
916			 * vm_wait while holding this vnode.  We skip the
917			 * vnode if we can't get it in a reasonable amount
918			 * of time.
919			 */
920			if (object->type == OBJT_VNODE) {
921				vp = object->handle;
922
923				mp = NULL;
924				if (vp->v_type == VREG)
925					vn_start_write(vp, &mp, V_NOWAIT);
926				if (vget(vp, LK_EXCLUSIVE|LK_TIMELOCK, curthread)) {
927					++pageout_lock_miss;
928					vn_finished_write(mp);
929					if (object->flags & OBJ_MIGHTBEDIRTY)
930						vnodes_skipped++;
931					continue;
932				}
933
934				/*
935				 * The page might have been moved to another
936				 * queue during potential blocking in vget()
937				 * above.  The page might have been freed and
938				 * reused for another vnode.  The object might
939				 * have been reused for another vnode.
940				 */
941				if (m->queue != PQ_INACTIVE ||
942				    m->object != object ||
943				    object->handle != vp) {
944					if (object->flags & OBJ_MIGHTBEDIRTY)
945						vnodes_skipped++;
946					vput(vp);
947					vn_finished_write(mp);
948					continue;
949				}
950
951				/*
952				 * The page may have been busied during the
953				 * blocking in vput();  We don't move the
954				 * page back onto the end of the queue so that
955				 * statistics are more correct if we don't.
956				 */
957				if (m->busy || (m->flags & PG_BUSY)) {
958					vput(vp);
959					vn_finished_write(mp);
960					continue;
961				}
962
963				/*
964				 * If the page has become held it might
965				 * be undergoing I/O, so skip it
966				 */
967				if (m->hold_count) {
968					vm_pageq_requeue(m);
969					if (object->flags & OBJ_MIGHTBEDIRTY)
970						vnodes_skipped++;
971					vput(vp);
972					vn_finished_write(mp);
973					continue;
974				}
975			}
976
977			/*
978			 * If a page is dirty, then it is either being washed
979			 * (but not yet cleaned) or it is still in the
980			 * laundry.  If it is still in the laundry, then we
981			 * start the cleaning operation.
982			 *
983			 * This operation may cluster, invalidating the 'next'
984			 * pointer.  To prevent an inordinate number of
985			 * restarts we use our marker to remember our place.
986			 *
987			 * decrement page_shortage on success to account for
988			 * the (future) cleaned page.  Otherwise we could wind
989			 * up laundering or cleaning too many pages.
990			 */
991			vm_page_lock_queues();
992			s = splvm();
993			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
994			splx(s);
995			if (vm_pageout_clean(m) != 0) {
996				--page_shortage;
997				--maxlaunder;
998			}
999			s = splvm();
1000			next = TAILQ_NEXT(&marker, pageq);
1001			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1002			splx(s);
1003			vm_page_unlock_queues();
1004			if (vp) {
1005				vput(vp);
1006				vn_finished_write(mp);
1007			}
1008		}
1009	}
1010
1011	/*
1012	 * Compute the number of pages we want to try to move from the
1013	 * active queue to the inactive queue.
1014	 */
1015	page_shortage = vm_paging_target() +
1016		cnt.v_inactive_target - cnt.v_inactive_count;
1017	page_shortage += addl_page_shortage;
1018
1019	vm_page_lock_queues();
1020	/*
1021	 * Scan the active queue for things we can deactivate. We nominally
1022	 * track the per-page activity counter and use it to locate
1023	 * deactivation candidates.
1024	 */
1025	pcount = cnt.v_active_count;
1026	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1027
1028	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1029
1030		/*
1031		 * This is a consistency check, and should likely be a panic
1032		 * or warning.
1033		 */
1034		if (m->queue != PQ_ACTIVE) {
1035			break;
1036		}
1037
1038		next = TAILQ_NEXT(m, pageq);
1039		/*
1040		 * Don't deactivate pages that are busy.
1041		 */
1042		if ((m->busy != 0) ||
1043		    (m->flags & PG_BUSY) ||
1044		    (m->hold_count != 0)) {
1045			vm_pageq_requeue(m);
1046			m = next;
1047			continue;
1048		}
1049
1050		/*
1051		 * The count for pagedaemon pages is done after checking the
1052		 * page for eligibility...
1053		 */
1054		cnt.v_pdpages++;
1055
1056		/*
1057		 * Check to see "how much" the page has been used.
1058		 */
1059		actcount = 0;
1060		if (m->object->ref_count != 0) {
1061			if (m->flags & PG_REFERENCED) {
1062				actcount += 1;
1063			}
1064			actcount += pmap_ts_referenced(m);
1065			if (actcount) {
1066				m->act_count += ACT_ADVANCE + actcount;
1067				if (m->act_count > ACT_MAX)
1068					m->act_count = ACT_MAX;
1069			}
1070		}
1071
1072		/*
1073		 * Since we have "tested" this bit, we need to clear it now.
1074		 */
1075		vm_page_flag_clear(m, PG_REFERENCED);
1076
1077		/*
1078		 * Only if an object is currently being used, do we use the
1079		 * page activation count stats.
1080		 */
1081		if (actcount && (m->object->ref_count != 0)) {
1082			vm_pageq_requeue(m);
1083		} else {
1084			m->act_count -= min(m->act_count, ACT_DECLINE);
1085			if (vm_pageout_algorithm ||
1086			    m->object->ref_count == 0 ||
1087			    m->act_count == 0) {
1088				page_shortage--;
1089				if (m->object->ref_count == 0) {
1090					pmap_remove_all(m);
1091					if (m->dirty == 0)
1092						vm_page_cache(m);
1093					else
1094						vm_page_deactivate(m);
1095				} else {
1096					vm_page_deactivate(m);
1097				}
1098			} else {
1099				vm_pageq_requeue(m);
1100			}
1101		}
1102		m = next;
1103	}
1104	s = splvm();
1105
1106	/*
1107	 * We try to maintain some *really* free pages, this allows interrupt
1108	 * code to be guaranteed space.  Since both cache and free queues
1109	 * are considered basically 'free', moving pages from cache to free
1110	 * does not effect other calculations.
1111	 */
1112	while (cnt.v_free_count < cnt.v_free_reserved) {
1113		static int cache_rover = 0;
1114		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1115		if (!m)
1116			break;
1117		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1118		    m->busy ||
1119		    m->hold_count ||
1120		    m->wire_count) {
1121#ifdef INVARIANTS
1122			printf("Warning: busy page %p found in cache\n", m);
1123#endif
1124			vm_page_deactivate(m);
1125			continue;
1126		}
1127		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1128		vm_pageout_page_free(m);
1129	}
1130	splx(s);
1131	vm_page_unlock_queues();
1132#if !defined(NO_SWAPPING)
1133	/*
1134	 * Idle process swapout -- run once per second.
1135	 */
1136	if (vm_swap_idle_enabled) {
1137		static long lsec;
1138		if (time_second != lsec) {
1139			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1140			vm_req_vmdaemon();
1141			lsec = time_second;
1142		}
1143	}
1144#endif
1145
1146	/*
1147	 * If we didn't get enough free pages, and we have skipped a vnode
1148	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1149	 * if we did not get enough free pages.
1150	 */
1151	if (vm_paging_target() > 0) {
1152		if (vnodes_skipped && vm_page_count_min())
1153			(void) speedup_syncer();
1154#if !defined(NO_SWAPPING)
1155		if (vm_swap_enabled && vm_page_count_target()) {
1156			vm_req_vmdaemon();
1157			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1158		}
1159#endif
1160	}
1161
1162	/*
1163	 * If we are out of swap and were not able to reach our paging
1164	 * target, kill the largest process.
1165	 *
1166	 * We keep the process bigproc locked once we find it to keep anyone
1167	 * from messing with it; however, there is a possibility of
1168	 * deadlock if process B is bigproc and one of it's child processes
1169	 * attempts to propagate a signal to B while we are waiting for A's
1170	 * lock while walking this list.  To avoid this, we don't block on
1171	 * the process lock but just skip a process if it is already locked.
1172	 */
1173	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1174	    (swap_pager_full && vm_paging_target() > 0)) {
1175#if 0
1176	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1177#endif
1178		bigproc = NULL;
1179		bigsize = 0;
1180		sx_slock(&allproc_lock);
1181		FOREACH_PROC_IN_SYSTEM(p) {
1182			int breakout;
1183			/*
1184			 * If this process is already locked, skip it.
1185			 */
1186			if (PROC_TRYLOCK(p) == 0)
1187				continue;
1188			/*
1189			 * If this is a system or protected process, skip it.
1190			 */
1191			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1192			    (p->p_flag & P_PROTECTED) ||
1193			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1194				PROC_UNLOCK(p);
1195				continue;
1196			}
1197			/*
1198			 * if the process is in a non-running type state,
1199			 * don't touch it. Check all the threads individually.
1200			 */
1201			mtx_lock_spin(&sched_lock);
1202			breakout = 0;
1203			FOREACH_THREAD_IN_PROC(p, td) {
1204				if (!TD_ON_RUNQ(td) &&
1205				    !TD_IS_RUNNING(td) &&
1206				    !TD_IS_SLEEPING(td)) {
1207					breakout = 1;
1208					break;
1209				}
1210			}
1211			if (breakout) {
1212				mtx_unlock_spin(&sched_lock);
1213				PROC_UNLOCK(p);
1214				continue;
1215			}
1216			mtx_unlock_spin(&sched_lock);
1217			/*
1218			 * get the process size
1219			 */
1220			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1221				PROC_UNLOCK(p);
1222				continue;
1223			}
1224			size = vmspace_swap_count(p->p_vmspace);
1225			vm_map_unlock_read(&p->p_vmspace->vm_map);
1226			size += vmspace_resident_count(p->p_vmspace);
1227			/*
1228			 * if the this process is bigger than the biggest one
1229			 * remember it.
1230			 */
1231			if (size > bigsize) {
1232				if (bigproc != NULL)
1233					PROC_UNLOCK(bigproc);
1234				bigproc = p;
1235				bigsize = size;
1236			} else
1237				PROC_UNLOCK(p);
1238		}
1239		sx_sunlock(&allproc_lock);
1240		if (bigproc != NULL) {
1241			struct ksegrp *kg;
1242			killproc(bigproc, "out of swap space");
1243			mtx_lock_spin(&sched_lock);
1244			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1245				sched_nice(kg, PRIO_MIN); /* XXXKSE ??? */
1246			}
1247			mtx_unlock_spin(&sched_lock);
1248			PROC_UNLOCK(bigproc);
1249			wakeup(&cnt.v_free_count);
1250		}
1251	}
1252}
1253
1254/*
1255 * This routine tries to maintain the pseudo LRU active queue,
1256 * so that during long periods of time where there is no paging,
1257 * that some statistic accumulation still occurs.  This code
1258 * helps the situation where paging just starts to occur.
1259 */
1260static void
1261vm_pageout_page_stats()
1262{
1263	vm_page_t m,next;
1264	int pcount,tpcount;		/* Number of pages to check */
1265	static int fullintervalcount = 0;
1266	int page_shortage;
1267	int s0;
1268
1269	page_shortage =
1270	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1271	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1272
1273	if (page_shortage <= 0)
1274		return;
1275
1276	s0 = splvm();
1277	vm_page_lock_queues();
1278	pcount = cnt.v_active_count;
1279	fullintervalcount += vm_pageout_stats_interval;
1280	if (fullintervalcount < vm_pageout_full_stats_interval) {
1281		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1282		if (pcount > tpcount)
1283			pcount = tpcount;
1284	} else {
1285		fullintervalcount = 0;
1286	}
1287
1288	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1289	while ((m != NULL) && (pcount-- > 0)) {
1290		int actcount;
1291
1292		if (m->queue != PQ_ACTIVE) {
1293			break;
1294		}
1295
1296		next = TAILQ_NEXT(m, pageq);
1297		/*
1298		 * Don't deactivate pages that are busy.
1299		 */
1300		if ((m->busy != 0) ||
1301		    (m->flags & PG_BUSY) ||
1302		    (m->hold_count != 0)) {
1303			vm_pageq_requeue(m);
1304			m = next;
1305			continue;
1306		}
1307
1308		actcount = 0;
1309		if (m->flags & PG_REFERENCED) {
1310			vm_page_flag_clear(m, PG_REFERENCED);
1311			actcount += 1;
1312		}
1313
1314		actcount += pmap_ts_referenced(m);
1315		if (actcount) {
1316			m->act_count += ACT_ADVANCE + actcount;
1317			if (m->act_count > ACT_MAX)
1318				m->act_count = ACT_MAX;
1319			vm_pageq_requeue(m);
1320		} else {
1321			if (m->act_count == 0) {
1322				/*
1323				 * We turn off page access, so that we have
1324				 * more accurate RSS stats.  We don't do this
1325				 * in the normal page deactivation when the
1326				 * system is loaded VM wise, because the
1327				 * cost of the large number of page protect
1328				 * operations would be higher than the value
1329				 * of doing the operation.
1330				 */
1331				pmap_remove_all(m);
1332				vm_page_deactivate(m);
1333			} else {
1334				m->act_count -= min(m->act_count, ACT_DECLINE);
1335				vm_pageq_requeue(m);
1336			}
1337		}
1338
1339		m = next;
1340	}
1341	vm_page_unlock_queues();
1342	splx(s0);
1343}
1344
1345static int
1346vm_pageout_free_page_calc(count)
1347vm_size_t count;
1348{
1349	if (count < cnt.v_page_count)
1350		 return 0;
1351	/*
1352	 * free_reserved needs to include enough for the largest swap pager
1353	 * structures plus enough for any pv_entry structs when paging.
1354	 */
1355	if (cnt.v_page_count > 1024)
1356		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1357	else
1358		cnt.v_free_min = 4;
1359	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1360		cnt.v_interrupt_free_min;
1361	cnt.v_free_reserved = vm_pageout_page_count +
1362		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1363	cnt.v_free_severe = cnt.v_free_min / 2;
1364	cnt.v_free_min += cnt.v_free_reserved;
1365	cnt.v_free_severe += cnt.v_free_reserved;
1366	return 1;
1367}
1368
1369/*
1370 *	vm_pageout is the high level pageout daemon.
1371 */
1372static void
1373vm_pageout()
1374{
1375	int error, pass, s;
1376
1377	mtx_lock(&Giant);
1378
1379	/*
1380	 * Initialize some paging parameters.
1381	 */
1382	cnt.v_interrupt_free_min = 2;
1383	if (cnt.v_page_count < 2000)
1384		vm_pageout_page_count = 8;
1385
1386	vm_pageout_free_page_calc(cnt.v_page_count);
1387	/*
1388	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1389	 * that these are more a measure of the VM cache queue hysteresis
1390	 * then the VM free queue.  Specifically, v_free_target is the
1391	 * high water mark (free+cache pages).
1392	 *
1393	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1394	 * low water mark, while v_free_min is the stop.  v_cache_min must
1395	 * be big enough to handle memory needs while the pageout daemon
1396	 * is signalled and run to free more pages.
1397	 */
1398	if (cnt.v_free_count > 6144)
1399		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1400	else
1401		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1402
1403	if (cnt.v_free_count > 2048) {
1404		cnt.v_cache_min = cnt.v_free_target;
1405		cnt.v_cache_max = 2 * cnt.v_cache_min;
1406		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1407	} else {
1408		cnt.v_cache_min = 0;
1409		cnt.v_cache_max = 0;
1410		cnt.v_inactive_target = cnt.v_free_count / 4;
1411	}
1412	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1413		cnt.v_inactive_target = cnt.v_free_count / 3;
1414
1415	/* XXX does not really belong here */
1416	if (vm_page_max_wired == 0)
1417		vm_page_max_wired = cnt.v_free_count / 3;
1418
1419	if (vm_pageout_stats_max == 0)
1420		vm_pageout_stats_max = cnt.v_free_target;
1421
1422	/*
1423	 * Set interval in seconds for stats scan.
1424	 */
1425	if (vm_pageout_stats_interval == 0)
1426		vm_pageout_stats_interval = 5;
1427	if (vm_pageout_full_stats_interval == 0)
1428		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1429
1430	/*
1431	 * Set maximum free per pass
1432	 */
1433	if (vm_pageout_stats_free_max == 0)
1434		vm_pageout_stats_free_max = 5;
1435
1436	swap_pager_swap_init();
1437	pass = 0;
1438	/*
1439	 * The pageout daemon is never done, so loop forever.
1440	 */
1441	while (TRUE) {
1442		s = splvm();
1443		vm_page_lock_queues();
1444		/*
1445		 * If we have enough free memory, wakeup waiters.  Do
1446		 * not clear vm_pages_needed until we reach our target,
1447		 * otherwise we may be woken up over and over again and
1448		 * waste a lot of cpu.
1449		 */
1450		if (vm_pages_needed && !vm_page_count_min()) {
1451			if (!vm_paging_needed())
1452				vm_pages_needed = 0;
1453			wakeup(&cnt.v_free_count);
1454		}
1455		if (vm_pages_needed) {
1456			/*
1457			 * Still not done, take a second pass without waiting
1458			 * (unlimited dirty cleaning), otherwise sleep a bit
1459			 * and try again.
1460			 */
1461			++pass;
1462			if (pass > 1)
1463				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1464				       "psleep", hz/2);
1465		} else {
1466			/*
1467			 * Good enough, sleep & handle stats.  Prime the pass
1468			 * for the next run.
1469			 */
1470			if (pass > 1)
1471				pass = 1;
1472			else
1473				pass = 0;
1474			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1475				    "psleep", vm_pageout_stats_interval * hz);
1476			if (error && !vm_pages_needed) {
1477				vm_page_unlock_queues();
1478				splx(s);
1479				pass = 0;
1480				vm_pageout_page_stats();
1481				continue;
1482			}
1483		}
1484		if (vm_pages_needed)
1485			cnt.v_pdwakeups++;
1486		vm_page_unlock_queues();
1487		splx(s);
1488		vm_pageout_scan(pass);
1489	}
1490}
1491
1492/*
1493 * Unless the page queue lock is held by the caller, this function
1494 * should be regarded as advisory.  Specifically, the caller should
1495 * not msleep() on &cnt.v_free_count following this function unless
1496 * the page queue lock is held until the msleep() is performed.
1497 */
1498void
1499pagedaemon_wakeup()
1500{
1501
1502	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1503		vm_pages_needed = 1;
1504		wakeup(&vm_pages_needed);
1505	}
1506}
1507
1508#if !defined(NO_SWAPPING)
1509static void
1510vm_req_vmdaemon()
1511{
1512	static int lastrun = 0;
1513
1514	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1515		wakeup(&vm_daemon_needed);
1516		lastrun = ticks;
1517	}
1518}
1519
1520static void
1521vm_daemon()
1522{
1523	struct proc *p;
1524	int breakout;
1525	struct thread *td;
1526
1527	mtx_lock(&Giant);
1528	while (TRUE) {
1529		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1530		if (vm_pageout_req_swapout) {
1531			swapout_procs(vm_pageout_req_swapout);
1532			vm_pageout_req_swapout = 0;
1533		}
1534		/*
1535		 * scan the processes for exceeding their rlimits or if
1536		 * process is swapped out -- deactivate pages
1537		 */
1538		sx_slock(&allproc_lock);
1539		LIST_FOREACH(p, &allproc, p_list) {
1540			vm_pindex_t limit, size;
1541
1542			/*
1543			 * if this is a system process or if we have already
1544			 * looked at this process, skip it.
1545			 */
1546			PROC_LOCK(p);
1547			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1548				PROC_UNLOCK(p);
1549				continue;
1550			}
1551			/*
1552			 * if the process is in a non-running type state,
1553			 * don't touch it.
1554			 */
1555			mtx_lock_spin(&sched_lock);
1556			breakout = 0;
1557			FOREACH_THREAD_IN_PROC(p, td) {
1558				if (!TD_ON_RUNQ(td) &&
1559				    !TD_IS_RUNNING(td) &&
1560				    !TD_IS_SLEEPING(td)) {
1561					breakout = 1;
1562					break;
1563				}
1564			}
1565			mtx_unlock_spin(&sched_lock);
1566			if (breakout) {
1567				PROC_UNLOCK(p);
1568				continue;
1569			}
1570			/*
1571			 * get a limit
1572			 */
1573			limit = OFF_TO_IDX(
1574			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1575				p->p_rlimit[RLIMIT_RSS].rlim_max));
1576
1577			/*
1578			 * let processes that are swapped out really be
1579			 * swapped out set the limit to nothing (will force a
1580			 * swap-out.)
1581			 */
1582			if ((p->p_sflag & PS_INMEM) == 0)
1583				limit = 0;	/* XXX */
1584			PROC_UNLOCK(p);
1585
1586			size = vmspace_resident_count(p->p_vmspace);
1587			if (limit >= 0 && size >= limit) {
1588				vm_pageout_map_deactivate_pages(
1589				    &p->p_vmspace->vm_map, limit);
1590			}
1591		}
1592		sx_sunlock(&allproc_lock);
1593	}
1594}
1595#endif			/* !defined(NO_SWAPPING) */
1596