vm_pageout.c revision 112881
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 112881 2003-03-31 21:09:57Z wes $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/eventhandler.h>
80#include <sys/lock.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/kthread.h>
84#include <sys/ktr.h>
85#include <sys/resourcevar.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#include <sys/vnode.h>
89#include <sys/vmmeter.h>
90#include <sys/sx.h>
91#include <sys/sysctl.h>
92
93#include <vm/vm.h>
94#include <vm/vm_param.h>
95#include <vm/vm_object.h>
96#include <vm/vm_page.h>
97#include <vm/vm_map.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/swap_pager.h>
101#include <vm/vm_extern.h>
102#include <vm/uma.h>
103
104#include <machine/mutex.h>
105
106/*
107 * System initialization
108 */
109
110/* the kernel process "vm_pageout"*/
111static void vm_pageout(void);
112static int vm_pageout_clean(vm_page_t);
113static void vm_pageout_page_free(vm_page_t);
114static void vm_pageout_pmap_collect(void);
115static void vm_pageout_scan(int pass);
116static int vm_pageout_free_page_calc(vm_size_t count);
117struct proc *pageproc;
118
119static struct kproc_desc page_kp = {
120	"pagedaemon",
121	vm_pageout,
122	&pageproc
123};
124SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
125
126#if !defined(NO_SWAPPING)
127/* the kernel process "vm_daemon"*/
128static void vm_daemon(void);
129static struct	proc *vmproc;
130
131static struct kproc_desc vm_kp = {
132	"vmdaemon",
133	vm_daemon,
134	&vmproc
135};
136SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
137#endif
138
139
140int vm_pages_needed;		/* Event on which pageout daemon sleeps */
141int vm_pageout_deficit;		/* Estimated number of pages deficit */
142int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
143
144#if !defined(NO_SWAPPING)
145static int vm_pageout_req_swapout;	/* XXX */
146static int vm_daemon_needed;
147#endif
148static int vm_max_launder = 32;
149static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
150static int vm_pageout_full_stats_interval = 0;
151static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
152static int defer_swap_pageouts=0;
153static int disable_swap_pageouts=0;
154
155#if defined(NO_SWAPPING)
156static int vm_swap_enabled=0;
157static int vm_swap_idle_enabled=0;
158#else
159static int vm_swap_enabled=1;
160static int vm_swap_idle_enabled=0;
161#endif
162
163SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
164	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
165
166SYSCTL_INT(_vm, OID_AUTO, max_launder,
167	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
170	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
173	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
176	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
177
178SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
179	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
180
181#if defined(NO_SWAPPING)
182SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183	CTLFLAG_RD, &vm_swap_enabled, 0, "");
184SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
186#else
187SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
188	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
189SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
190	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
191#endif
192
193SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
194	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
195
196SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
197	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
198
199static int pageout_lock_miss;
200SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
201	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
202
203#define VM_PAGEOUT_PAGE_COUNT 16
204int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
205
206int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
207
208#if !defined(NO_SWAPPING)
209typedef void freeer_fcn_t(vm_map_t, vm_object_t, vm_pindex_t, int);
210static void vm_pageout_map_deactivate_pages(vm_map_t, vm_pindex_t);
211static freeer_fcn_t vm_pageout_object_deactivate_pages;
212static void vm_req_vmdaemon(void);
213#endif
214static void vm_pageout_page_stats(void);
215
216/*
217 * vm_pageout_clean:
218 *
219 * Clean the page and remove it from the laundry.
220 *
221 * We set the busy bit to cause potential page faults on this page to
222 * block.  Note the careful timing, however, the busy bit isn't set till
223 * late and we cannot do anything that will mess with the page.
224 */
225static int
226vm_pageout_clean(m)
227	vm_page_t m;
228{
229	vm_object_t object;
230	vm_page_t mc[2*vm_pageout_page_count];
231	int pageout_count;
232	int ib, is, page_base;
233	vm_pindex_t pindex = m->pindex;
234
235	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
236
237	object = m->object;
238
239	/*
240	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
241	 * with the new swapper, but we could have serious problems paging
242	 * out other object types if there is insufficient memory.
243	 *
244	 * Unfortunately, checking free memory here is far too late, so the
245	 * check has been moved up a procedural level.
246	 */
247
248	/*
249	 * Don't mess with the page if it's busy, held, or special
250	 */
251	if ((m->hold_count != 0) ||
252	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
253		return 0;
254	}
255
256	mc[vm_pageout_page_count] = m;
257	pageout_count = 1;
258	page_base = vm_pageout_page_count;
259	ib = 1;
260	is = 1;
261
262	/*
263	 * Scan object for clusterable pages.
264	 *
265	 * We can cluster ONLY if: ->> the page is NOT
266	 * clean, wired, busy, held, or mapped into a
267	 * buffer, and one of the following:
268	 * 1) The page is inactive, or a seldom used
269	 *    active page.
270	 * -or-
271	 * 2) we force the issue.
272	 *
273	 * During heavy mmap/modification loads the pageout
274	 * daemon can really fragment the underlying file
275	 * due to flushing pages out of order and not trying
276	 * align the clusters (which leave sporatic out-of-order
277	 * holes).  To solve this problem we do the reverse scan
278	 * first and attempt to align our cluster, then do a
279	 * forward scan if room remains.
280	 */
281more:
282	while (ib && pageout_count < vm_pageout_page_count) {
283		vm_page_t p;
284
285		if (ib > pindex) {
286			ib = 0;
287			break;
288		}
289
290		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
291			ib = 0;
292			break;
293		}
294		if (((p->queue - p->pc) == PQ_CACHE) ||
295		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
296			ib = 0;
297			break;
298		}
299		vm_page_test_dirty(p);
300		if ((p->dirty & p->valid) == 0 ||
301		    p->queue != PQ_INACTIVE ||
302		    p->wire_count != 0 ||	/* may be held by buf cache */
303		    p->hold_count != 0) {	/* may be undergoing I/O */
304			ib = 0;
305			break;
306		}
307		mc[--page_base] = p;
308		++pageout_count;
309		++ib;
310		/*
311		 * alignment boundry, stop here and switch directions.  Do
312		 * not clear ib.
313		 */
314		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
315			break;
316	}
317
318	while (pageout_count < vm_pageout_page_count &&
319	    pindex + is < object->size) {
320		vm_page_t p;
321
322		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
323			break;
324		if (((p->queue - p->pc) == PQ_CACHE) ||
325		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
326			break;
327		}
328		vm_page_test_dirty(p);
329		if ((p->dirty & p->valid) == 0 ||
330		    p->queue != PQ_INACTIVE ||
331		    p->wire_count != 0 ||	/* may be held by buf cache */
332		    p->hold_count != 0) {	/* may be undergoing I/O */
333			break;
334		}
335		mc[page_base + pageout_count] = p;
336		++pageout_count;
337		++is;
338	}
339
340	/*
341	 * If we exhausted our forward scan, continue with the reverse scan
342	 * when possible, even past a page boundry.  This catches boundry
343	 * conditions.
344	 */
345	if (ib && pageout_count < vm_pageout_page_count)
346		goto more;
347
348	/*
349	 * we allow reads during pageouts...
350	 */
351	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
352}
353
354/*
355 * vm_pageout_flush() - launder the given pages
356 *
357 *	The given pages are laundered.  Note that we setup for the start of
358 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
359 *	reference count all in here rather then in the parent.  If we want
360 *	the parent to do more sophisticated things we may have to change
361 *	the ordering.
362 */
363int
364vm_pageout_flush(mc, count, flags)
365	vm_page_t *mc;
366	int count;
367	int flags;
368{
369	vm_object_t object;
370	int pageout_status[count];
371	int numpagedout = 0;
372	int i;
373
374	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
375	/*
376	 * Initiate I/O.  Bump the vm_page_t->busy counter and
377	 * mark the pages read-only.
378	 *
379	 * We do not have to fixup the clean/dirty bits here... we can
380	 * allow the pager to do it after the I/O completes.
381	 *
382	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
383	 * edge case with file fragments.
384	 */
385	for (i = 0; i < count; i++) {
386		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
387		vm_page_io_start(mc[i]);
388		pmap_page_protect(mc[i], VM_PROT_READ);
389	}
390	object = mc[0]->object;
391	vm_page_unlock_queues();
392	vm_object_pip_add(object, count);
393
394	vm_pager_put_pages(object, mc, count,
395	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
396	    pageout_status);
397
398	vm_page_lock_queues();
399	for (i = 0; i < count; i++) {
400		vm_page_t mt = mc[i];
401
402		switch (pageout_status[i]) {
403		case VM_PAGER_OK:
404			numpagedout++;
405			break;
406		case VM_PAGER_PEND:
407			numpagedout++;
408			break;
409		case VM_PAGER_BAD:
410			/*
411			 * Page outside of range of object. Right now we
412			 * essentially lose the changes by pretending it
413			 * worked.
414			 */
415			pmap_clear_modify(mt);
416			vm_page_undirty(mt);
417			break;
418		case VM_PAGER_ERROR:
419		case VM_PAGER_FAIL:
420			/*
421			 * If page couldn't be paged out, then reactivate the
422			 * page so it doesn't clog the inactive list.  (We
423			 * will try paging out it again later).
424			 */
425			vm_page_activate(mt);
426			break;
427		case VM_PAGER_AGAIN:
428			break;
429		}
430
431		/*
432		 * If the operation is still going, leave the page busy to
433		 * block all other accesses. Also, leave the paging in
434		 * progress indicator set so that we don't attempt an object
435		 * collapse.
436		 */
437		if (pageout_status[i] != VM_PAGER_PEND) {
438			vm_object_pip_wakeup(object);
439			vm_page_io_finish(mt);
440			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
441				pmap_page_protect(mt, VM_PROT_READ);
442		}
443	}
444	return numpagedout;
445}
446
447#if !defined(NO_SWAPPING)
448/*
449 *	vm_pageout_object_deactivate_pages
450 *
451 *	deactivate enough pages to satisfy the inactive target
452 *	requirements or if vm_page_proc_limit is set, then
453 *	deactivate all of the pages in the object and its
454 *	backing_objects.
455 *
456 *	The object and map must be locked.
457 */
458static void
459vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
460	vm_map_t map;
461	vm_object_t object;
462	vm_pindex_t desired;
463	int map_remove_only;
464{
465	vm_page_t p, next;
466	int actcount, rcount, remove_mode;
467
468	GIANT_REQUIRED;
469	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
470		return;
471
472	while (object) {
473		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
474			return;
475		if (object->paging_in_progress)
476			return;
477
478		remove_mode = map_remove_only;
479		if (object->shadow_count > 1)
480			remove_mode = 1;
481		/*
482		 * scan the objects entire memory queue
483		 */
484		rcount = object->resident_page_count;
485		p = TAILQ_FIRST(&object->memq);
486		vm_page_lock_queues();
487		while (p && (rcount-- > 0)) {
488			if (pmap_resident_count(map->pmap) <= desired) {
489				vm_page_unlock_queues();
490				return;
491			}
492			next = TAILQ_NEXT(p, listq);
493			cnt.v_pdpages++;
494			if (p->wire_count != 0 ||
495			    p->hold_count != 0 ||
496			    p->busy != 0 ||
497			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
498			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
499				p = next;
500				continue;
501			}
502			actcount = pmap_ts_referenced(p);
503			if (actcount) {
504				vm_page_flag_set(p, PG_REFERENCED);
505			} else if (p->flags & PG_REFERENCED) {
506				actcount = 1;
507			}
508			if ((p->queue != PQ_ACTIVE) &&
509				(p->flags & PG_REFERENCED)) {
510				vm_page_activate(p);
511				p->act_count += actcount;
512				vm_page_flag_clear(p, PG_REFERENCED);
513			} else if (p->queue == PQ_ACTIVE) {
514				if ((p->flags & PG_REFERENCED) == 0) {
515					p->act_count -= min(p->act_count, ACT_DECLINE);
516					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
517						pmap_remove_all(p);
518						vm_page_deactivate(p);
519					} else {
520						vm_pageq_requeue(p);
521					}
522				} else {
523					vm_page_activate(p);
524					vm_page_flag_clear(p, PG_REFERENCED);
525					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
526						p->act_count += ACT_ADVANCE;
527					vm_pageq_requeue(p);
528				}
529			} else if (p->queue == PQ_INACTIVE) {
530				pmap_remove_all(p);
531			}
532			p = next;
533		}
534		vm_page_unlock_queues();
535		object = object->backing_object;
536	}
537}
538
539/*
540 * deactivate some number of pages in a map, try to do it fairly, but
541 * that is really hard to do.
542 */
543static void
544vm_pageout_map_deactivate_pages(map, desired)
545	vm_map_t map;
546	vm_pindex_t desired;
547{
548	vm_map_entry_t tmpe;
549	vm_object_t obj, bigobj;
550	int nothingwired;
551
552	GIANT_REQUIRED;
553	if (!vm_map_trylock(map))
554		return;
555
556	bigobj = NULL;
557	nothingwired = TRUE;
558
559	/*
560	 * first, search out the biggest object, and try to free pages from
561	 * that.
562	 */
563	tmpe = map->header.next;
564	while (tmpe != &map->header) {
565		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
566			obj = tmpe->object.vm_object;
567			if ((obj != NULL) && (obj->shadow_count <= 1) &&
568				((bigobj == NULL) ||
569				 (bigobj->resident_page_count < obj->resident_page_count))) {
570				bigobj = obj;
571			}
572		}
573		if (tmpe->wired_count > 0)
574			nothingwired = FALSE;
575		tmpe = tmpe->next;
576	}
577
578	if (bigobj)
579		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
580
581	/*
582	 * Next, hunt around for other pages to deactivate.  We actually
583	 * do this search sort of wrong -- .text first is not the best idea.
584	 */
585	tmpe = map->header.next;
586	while (tmpe != &map->header) {
587		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
588			break;
589		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
590			obj = tmpe->object.vm_object;
591			if (obj)
592				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
593		}
594		tmpe = tmpe->next;
595	}
596
597	/*
598	 * Remove all mappings if a process is swapped out, this will free page
599	 * table pages.
600	 */
601	if (desired == 0 && nothingwired) {
602		vm_page_lock_queues();
603		pmap_remove(vm_map_pmap(map), vm_map_min(map),
604		    vm_map_max(map));
605		vm_page_unlock_queues();
606	}
607	vm_map_unlock(map);
608}
609#endif		/* !defined(NO_SWAPPING) */
610
611/*
612 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
613 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
614 * which we know can be trivially freed.
615 */
616static void
617vm_pageout_page_free(vm_page_t m)
618{
619	vm_object_t object = m->object;
620	int type = object->type;
621
622	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
623	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
624		vm_object_reference(object);
625	vm_page_busy(m);
626	pmap_remove_all(m);
627	vm_page_free(m);
628	cnt.v_dfree++;
629	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
630		vm_object_deallocate(object);
631}
632
633/*
634 * This routine is very drastic, but can save the system
635 * in a pinch.
636 */
637static void
638vm_pageout_pmap_collect(void)
639{
640	int i;
641	vm_page_t m;
642	static int warningdone;
643
644	if (pmap_pagedaemon_waken == 0)
645		return;
646	if (warningdone < 5) {
647		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
648		warningdone++;
649	}
650	vm_page_lock_queues();
651	for (i = 0; i < vm_page_array_size; i++) {
652		m = &vm_page_array[i];
653		if (m->wire_count || m->hold_count || m->busy ||
654		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
655			continue;
656		pmap_remove_all(m);
657	}
658	vm_page_unlock_queues();
659	pmap_pagedaemon_waken = 0;
660}
661
662/*
663 *	vm_pageout_scan does the dirty work for the pageout daemon.
664 */
665static void
666vm_pageout_scan(int pass)
667{
668	vm_page_t m, next;
669	struct vm_page marker;
670	int save_page_shortage;
671	int save_inactive_count;
672	int page_shortage, maxscan, pcount;
673	int addl_page_shortage, addl_page_shortage_init;
674	struct proc *p, *bigproc;
675	vm_offset_t size, bigsize;
676	vm_object_t object;
677	int actcount;
678	int vnodes_skipped = 0;
679	int maxlaunder;
680	int s;
681	struct thread *td;
682
683	GIANT_REQUIRED;
684	/*
685	 * Decrease registered cache sizes.
686	 */
687	EVENTHANDLER_INVOKE(vm_lowmem, 0);
688	/*
689	 * We do this explicitly after the caches have been drained above.
690	 */
691	uma_reclaim();
692	/*
693	 * Do whatever cleanup that the pmap code can.
694	 */
695	vm_pageout_pmap_collect();
696
697	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
698
699	/*
700	 * Calculate the number of pages we want to either free or move
701	 * to the cache.
702	 */
703	page_shortage = vm_paging_target() + addl_page_shortage_init;
704	save_page_shortage = page_shortage;
705	save_inactive_count = cnt.v_inactive_count;
706
707	/*
708	 * Initialize our marker
709	 */
710	bzero(&marker, sizeof(marker));
711	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
712	marker.queue = PQ_INACTIVE;
713	marker.wire_count = 1;
714
715	/*
716	 * Start scanning the inactive queue for pages we can move to the
717	 * cache or free.  The scan will stop when the target is reached or
718	 * we have scanned the entire inactive queue.  Note that m->act_count
719	 * is not used to form decisions for the inactive queue, only for the
720	 * active queue.
721	 *
722	 * maxlaunder limits the number of dirty pages we flush per scan.
723	 * For most systems a smaller value (16 or 32) is more robust under
724	 * extreme memory and disk pressure because any unnecessary writes
725	 * to disk can result in extreme performance degredation.  However,
726	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
727	 * used) will die horribly with limited laundering.  If the pageout
728	 * daemon cannot clean enough pages in the first pass, we let it go
729	 * all out in succeeding passes.
730	 */
731	if ((maxlaunder = vm_max_launder) <= 1)
732		maxlaunder = 1;
733	if (pass)
734		maxlaunder = 10000;
735rescan0:
736	addl_page_shortage = addl_page_shortage_init;
737	maxscan = cnt.v_inactive_count;
738
739	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
740	     m != NULL && maxscan-- > 0 && page_shortage > 0;
741	     m = next) {
742
743		cnt.v_pdpages++;
744
745		if (m->queue != PQ_INACTIVE) {
746			goto rescan0;
747		}
748
749		next = TAILQ_NEXT(m, pageq);
750
751		/*
752		 * skip marker pages
753		 */
754		if (m->flags & PG_MARKER)
755			continue;
756
757		/*
758		 * A held page may be undergoing I/O, so skip it.
759		 */
760		if (m->hold_count) {
761			vm_pageq_requeue(m);
762			addl_page_shortage++;
763			continue;
764		}
765		/*
766		 * Don't mess with busy pages, keep in the front of the
767		 * queue, most likely are being paged out.
768		 */
769		if (m->busy || (m->flags & PG_BUSY)) {
770			addl_page_shortage++;
771			continue;
772		}
773
774		vm_page_lock_queues();
775		/*
776		 * If the object is not being used, we ignore previous
777		 * references.
778		 */
779		if (m->object->ref_count == 0) {
780			vm_page_flag_clear(m, PG_REFERENCED);
781			pmap_clear_reference(m);
782
783		/*
784		 * Otherwise, if the page has been referenced while in the
785		 * inactive queue, we bump the "activation count" upwards,
786		 * making it less likely that the page will be added back to
787		 * the inactive queue prematurely again.  Here we check the
788		 * page tables (or emulated bits, if any), given the upper
789		 * level VM system not knowing anything about existing
790		 * references.
791		 */
792		} else if (((m->flags & PG_REFERENCED) == 0) &&
793			(actcount = pmap_ts_referenced(m))) {
794			vm_page_activate(m);
795			vm_page_unlock_queues();
796			m->act_count += (actcount + ACT_ADVANCE);
797			continue;
798		}
799
800		/*
801		 * If the upper level VM system knows about any page
802		 * references, we activate the page.  We also set the
803		 * "activation count" higher than normal so that we will less
804		 * likely place pages back onto the inactive queue again.
805		 */
806		if ((m->flags & PG_REFERENCED) != 0) {
807			vm_page_flag_clear(m, PG_REFERENCED);
808			actcount = pmap_ts_referenced(m);
809			vm_page_activate(m);
810			vm_page_unlock_queues();
811			m->act_count += (actcount + ACT_ADVANCE + 1);
812			continue;
813		}
814
815		/*
816		 * If the upper level VM system doesn't know anything about
817		 * the page being dirty, we have to check for it again.  As
818		 * far as the VM code knows, any partially dirty pages are
819		 * fully dirty.
820		 */
821		if (m->dirty == 0) {
822			vm_page_test_dirty(m);
823		} else {
824			vm_page_dirty(m);
825		}
826		vm_page_unlock_queues();
827
828		/*
829		 * Invalid pages can be easily freed
830		 */
831		if (m->valid == 0) {
832			vm_page_lock_queues();
833			vm_pageout_page_free(m);
834			vm_page_unlock_queues();
835			--page_shortage;
836
837		/*
838		 * Clean pages can be placed onto the cache queue.  This
839		 * effectively frees them.
840		 */
841		} else if (m->dirty == 0) {
842			vm_page_lock_queues();
843			vm_page_cache(m);
844			vm_page_unlock_queues();
845			--page_shortage;
846		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
847			/*
848			 * Dirty pages need to be paged out, but flushing
849			 * a page is extremely expensive verses freeing
850			 * a clean page.  Rather then artificially limiting
851			 * the number of pages we can flush, we instead give
852			 * dirty pages extra priority on the inactive queue
853			 * by forcing them to be cycled through the queue
854			 * twice before being flushed, after which the
855			 * (now clean) page will cycle through once more
856			 * before being freed.  This significantly extends
857			 * the thrash point for a heavily loaded machine.
858			 */
859			vm_page_lock_queues();
860			vm_page_flag_set(m, PG_WINATCFLS);
861			vm_pageq_requeue(m);
862			vm_page_unlock_queues();
863		} else if (maxlaunder > 0) {
864			/*
865			 * We always want to try to flush some dirty pages if
866			 * we encounter them, to keep the system stable.
867			 * Normally this number is small, but under extreme
868			 * pressure where there are insufficient clean pages
869			 * on the inactive queue, we may have to go all out.
870			 */
871			int swap_pageouts_ok;
872			struct vnode *vp = NULL;
873			struct mount *mp;
874
875			object = m->object;
876
877			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
878				swap_pageouts_ok = 1;
879			} else {
880				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
881				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
882				vm_page_count_min());
883
884			}
885
886			/*
887			 * We don't bother paging objects that are "dead".
888			 * Those objects are in a "rundown" state.
889			 */
890			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
891				vm_pageq_requeue(m);
892				continue;
893			}
894
895			/*
896			 * The object is already known NOT to be dead.   It
897			 * is possible for the vget() to block the whole
898			 * pageout daemon, but the new low-memory handling
899			 * code should prevent it.
900			 *
901			 * The previous code skipped locked vnodes and, worse,
902			 * reordered pages in the queue.  This results in
903			 * completely non-deterministic operation and, on a
904			 * busy system, can lead to extremely non-optimal
905			 * pageouts.  For example, it can cause clean pages
906			 * to be freed and dirty pages to be moved to the end
907			 * of the queue.  Since dirty pages are also moved to
908			 * the end of the queue once-cleaned, this gives
909			 * way too large a weighting to defering the freeing
910			 * of dirty pages.
911			 *
912			 * We can't wait forever for the vnode lock, we might
913			 * deadlock due to a vn_read() getting stuck in
914			 * vm_wait while holding this vnode.  We skip the
915			 * vnode if we can't get it in a reasonable amount
916			 * of time.
917			 */
918			if (object->type == OBJT_VNODE) {
919				vp = object->handle;
920
921				mp = NULL;
922				if (vp->v_type == VREG)
923					vn_start_write(vp, &mp, V_NOWAIT);
924				if (vget(vp, LK_EXCLUSIVE|LK_TIMELOCK, curthread)) {
925					++pageout_lock_miss;
926					vn_finished_write(mp);
927					if (object->flags & OBJ_MIGHTBEDIRTY)
928						vnodes_skipped++;
929					continue;
930				}
931
932				/*
933				 * The page might have been moved to another
934				 * queue during potential blocking in vget()
935				 * above.  The page might have been freed and
936				 * reused for another vnode.  The object might
937				 * have been reused for another vnode.
938				 */
939				if (m->queue != PQ_INACTIVE ||
940				    m->object != object ||
941				    object->handle != vp) {
942					if (object->flags & OBJ_MIGHTBEDIRTY)
943						vnodes_skipped++;
944					vput(vp);
945					vn_finished_write(mp);
946					continue;
947				}
948
949				/*
950				 * The page may have been busied during the
951				 * blocking in vput();  We don't move the
952				 * page back onto the end of the queue so that
953				 * statistics are more correct if we don't.
954				 */
955				if (m->busy || (m->flags & PG_BUSY)) {
956					vput(vp);
957					vn_finished_write(mp);
958					continue;
959				}
960
961				/*
962				 * If the page has become held it might
963				 * be undergoing I/O, so skip it
964				 */
965				if (m->hold_count) {
966					vm_pageq_requeue(m);
967					if (object->flags & OBJ_MIGHTBEDIRTY)
968						vnodes_skipped++;
969					vput(vp);
970					vn_finished_write(mp);
971					continue;
972				}
973			}
974
975			/*
976			 * If a page is dirty, then it is either being washed
977			 * (but not yet cleaned) or it is still in the
978			 * laundry.  If it is still in the laundry, then we
979			 * start the cleaning operation.
980			 *
981			 * This operation may cluster, invalidating the 'next'
982			 * pointer.  To prevent an inordinate number of
983			 * restarts we use our marker to remember our place.
984			 *
985			 * decrement page_shortage on success to account for
986			 * the (future) cleaned page.  Otherwise we could wind
987			 * up laundering or cleaning too many pages.
988			 */
989			vm_page_lock_queues();
990			s = splvm();
991			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
992			splx(s);
993			if (vm_pageout_clean(m) != 0) {
994				--page_shortage;
995				--maxlaunder;
996			}
997			s = splvm();
998			next = TAILQ_NEXT(&marker, pageq);
999			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1000			splx(s);
1001			vm_page_unlock_queues();
1002			if (vp) {
1003				vput(vp);
1004				vn_finished_write(mp);
1005			}
1006		}
1007	}
1008
1009	/*
1010	 * Compute the number of pages we want to try to move from the
1011	 * active queue to the inactive queue.
1012	 */
1013	page_shortage = vm_paging_target() +
1014		cnt.v_inactive_target - cnt.v_inactive_count;
1015	page_shortage += addl_page_shortage;
1016
1017	vm_page_lock_queues();
1018	/*
1019	 * Scan the active queue for things we can deactivate. We nominally
1020	 * track the per-page activity counter and use it to locate
1021	 * deactivation candidates.
1022	 */
1023	pcount = cnt.v_active_count;
1024	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1025
1026	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1027
1028		/*
1029		 * This is a consistency check, and should likely be a panic
1030		 * or warning.
1031		 */
1032		if (m->queue != PQ_ACTIVE) {
1033			break;
1034		}
1035
1036		next = TAILQ_NEXT(m, pageq);
1037		/*
1038		 * Don't deactivate pages that are busy.
1039		 */
1040		if ((m->busy != 0) ||
1041		    (m->flags & PG_BUSY) ||
1042		    (m->hold_count != 0)) {
1043			vm_pageq_requeue(m);
1044			m = next;
1045			continue;
1046		}
1047
1048		/*
1049		 * The count for pagedaemon pages is done after checking the
1050		 * page for eligibility...
1051		 */
1052		cnt.v_pdpages++;
1053
1054		/*
1055		 * Check to see "how much" the page has been used.
1056		 */
1057		actcount = 0;
1058		if (m->object->ref_count != 0) {
1059			if (m->flags & PG_REFERENCED) {
1060				actcount += 1;
1061			}
1062			actcount += pmap_ts_referenced(m);
1063			if (actcount) {
1064				m->act_count += ACT_ADVANCE + actcount;
1065				if (m->act_count > ACT_MAX)
1066					m->act_count = ACT_MAX;
1067			}
1068		}
1069
1070		/*
1071		 * Since we have "tested" this bit, we need to clear it now.
1072		 */
1073		vm_page_flag_clear(m, PG_REFERENCED);
1074
1075		/*
1076		 * Only if an object is currently being used, do we use the
1077		 * page activation count stats.
1078		 */
1079		if (actcount && (m->object->ref_count != 0)) {
1080			vm_pageq_requeue(m);
1081		} else {
1082			m->act_count -= min(m->act_count, ACT_DECLINE);
1083			if (vm_pageout_algorithm ||
1084			    m->object->ref_count == 0 ||
1085			    m->act_count == 0) {
1086				page_shortage--;
1087				if (m->object->ref_count == 0) {
1088					pmap_remove_all(m);
1089					if (m->dirty == 0)
1090						vm_page_cache(m);
1091					else
1092						vm_page_deactivate(m);
1093				} else {
1094					vm_page_deactivate(m);
1095				}
1096			} else {
1097				vm_pageq_requeue(m);
1098			}
1099		}
1100		m = next;
1101	}
1102	s = splvm();
1103
1104	/*
1105	 * We try to maintain some *really* free pages, this allows interrupt
1106	 * code to be guaranteed space.  Since both cache and free queues
1107	 * are considered basically 'free', moving pages from cache to free
1108	 * does not effect other calculations.
1109	 */
1110	while (cnt.v_free_count < cnt.v_free_reserved) {
1111		static int cache_rover = 0;
1112		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1113		if (!m)
1114			break;
1115		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1116		    m->busy ||
1117		    m->hold_count ||
1118		    m->wire_count) {
1119#ifdef INVARIANTS
1120			printf("Warning: busy page %p found in cache\n", m);
1121#endif
1122			vm_page_deactivate(m);
1123			continue;
1124		}
1125		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1126		vm_pageout_page_free(m);
1127	}
1128	splx(s);
1129	vm_page_unlock_queues();
1130#if !defined(NO_SWAPPING)
1131	/*
1132	 * Idle process swapout -- run once per second.
1133	 */
1134	if (vm_swap_idle_enabled) {
1135		static long lsec;
1136		if (time_second != lsec) {
1137			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1138			vm_req_vmdaemon();
1139			lsec = time_second;
1140		}
1141	}
1142#endif
1143
1144	/*
1145	 * If we didn't get enough free pages, and we have skipped a vnode
1146	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1147	 * if we did not get enough free pages.
1148	 */
1149	if (vm_paging_target() > 0) {
1150		if (vnodes_skipped && vm_page_count_min())
1151			(void) speedup_syncer();
1152#if !defined(NO_SWAPPING)
1153		if (vm_swap_enabled && vm_page_count_target()) {
1154			vm_req_vmdaemon();
1155			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1156		}
1157#endif
1158	}
1159
1160	/*
1161	 * If we are out of swap and were not able to reach our paging
1162	 * target, kill the largest process.
1163	 *
1164	 * We keep the process bigproc locked once we find it to keep anyone
1165	 * from messing with it; however, there is a possibility of
1166	 * deadlock if process B is bigproc and one of it's child processes
1167	 * attempts to propagate a signal to B while we are waiting for A's
1168	 * lock while walking this list.  To avoid this, we don't block on
1169	 * the process lock but just skip a process if it is already locked.
1170	 */
1171	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1172	    (swap_pager_full && vm_paging_target() > 0)) {
1173#if 0
1174	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1175#endif
1176		bigproc = NULL;
1177		bigsize = 0;
1178		sx_slock(&allproc_lock);
1179		FOREACH_PROC_IN_SYSTEM(p) {
1180			int breakout;
1181			/*
1182			 * If this process is already locked, skip it.
1183			 */
1184			if (PROC_TRYLOCK(p) == 0)
1185				continue;
1186			/*
1187			 * If this is a system or protected process, skip it.
1188			 */
1189			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1190			    (p->p_flag & P_PROTECTED) ||
1191			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1192				PROC_UNLOCK(p);
1193				continue;
1194			}
1195			/*
1196			 * if the process is in a non-running type state,
1197			 * don't touch it. Check all the threads individually.
1198			 */
1199			mtx_lock_spin(&sched_lock);
1200			breakout = 0;
1201			FOREACH_THREAD_IN_PROC(p, td) {
1202				if (!TD_ON_RUNQ(td) &&
1203				    !TD_IS_RUNNING(td) &&
1204				    !TD_IS_SLEEPING(td)) {
1205					breakout = 1;
1206					break;
1207				}
1208			}
1209			if (breakout) {
1210				mtx_unlock_spin(&sched_lock);
1211				PROC_UNLOCK(p);
1212				continue;
1213			}
1214			mtx_unlock_spin(&sched_lock);
1215			/*
1216			 * get the process size
1217			 */
1218			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1219				PROC_UNLOCK(p);
1220				continue;
1221			}
1222			size = vmspace_swap_count(p->p_vmspace);
1223			vm_map_unlock_read(&p->p_vmspace->vm_map);
1224			size += vmspace_resident_count(p->p_vmspace);
1225			/*
1226			 * if the this process is bigger than the biggest one
1227			 * remember it.
1228			 */
1229			if (size > bigsize) {
1230				if (bigproc != NULL)
1231					PROC_UNLOCK(bigproc);
1232				bigproc = p;
1233				bigsize = size;
1234			} else
1235				PROC_UNLOCK(p);
1236		}
1237		sx_sunlock(&allproc_lock);
1238		if (bigproc != NULL) {
1239			struct ksegrp *kg;
1240			killproc(bigproc, "out of swap space");
1241			mtx_lock_spin(&sched_lock);
1242			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1243				sched_nice(kg, PRIO_MIN); /* XXXKSE ??? */
1244			}
1245			mtx_unlock_spin(&sched_lock);
1246			PROC_UNLOCK(bigproc);
1247			wakeup(&cnt.v_free_count);
1248		}
1249	}
1250}
1251
1252/*
1253 * This routine tries to maintain the pseudo LRU active queue,
1254 * so that during long periods of time where there is no paging,
1255 * that some statistic accumulation still occurs.  This code
1256 * helps the situation where paging just starts to occur.
1257 */
1258static void
1259vm_pageout_page_stats()
1260{
1261	vm_page_t m,next;
1262	int pcount,tpcount;		/* Number of pages to check */
1263	static int fullintervalcount = 0;
1264	int page_shortage;
1265	int s0;
1266
1267	page_shortage =
1268	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1269	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1270
1271	if (page_shortage <= 0)
1272		return;
1273
1274	s0 = splvm();
1275	vm_page_lock_queues();
1276	pcount = cnt.v_active_count;
1277	fullintervalcount += vm_pageout_stats_interval;
1278	if (fullintervalcount < vm_pageout_full_stats_interval) {
1279		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1280		if (pcount > tpcount)
1281			pcount = tpcount;
1282	} else {
1283		fullintervalcount = 0;
1284	}
1285
1286	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1287	while ((m != NULL) && (pcount-- > 0)) {
1288		int actcount;
1289
1290		if (m->queue != PQ_ACTIVE) {
1291			break;
1292		}
1293
1294		next = TAILQ_NEXT(m, pageq);
1295		/*
1296		 * Don't deactivate pages that are busy.
1297		 */
1298		if ((m->busy != 0) ||
1299		    (m->flags & PG_BUSY) ||
1300		    (m->hold_count != 0)) {
1301			vm_pageq_requeue(m);
1302			m = next;
1303			continue;
1304		}
1305
1306		actcount = 0;
1307		if (m->flags & PG_REFERENCED) {
1308			vm_page_flag_clear(m, PG_REFERENCED);
1309			actcount += 1;
1310		}
1311
1312		actcount += pmap_ts_referenced(m);
1313		if (actcount) {
1314			m->act_count += ACT_ADVANCE + actcount;
1315			if (m->act_count > ACT_MAX)
1316				m->act_count = ACT_MAX;
1317			vm_pageq_requeue(m);
1318		} else {
1319			if (m->act_count == 0) {
1320				/*
1321				 * We turn off page access, so that we have
1322				 * more accurate RSS stats.  We don't do this
1323				 * in the normal page deactivation when the
1324				 * system is loaded VM wise, because the
1325				 * cost of the large number of page protect
1326				 * operations would be higher than the value
1327				 * of doing the operation.
1328				 */
1329				pmap_remove_all(m);
1330				vm_page_deactivate(m);
1331			} else {
1332				m->act_count -= min(m->act_count, ACT_DECLINE);
1333				vm_pageq_requeue(m);
1334			}
1335		}
1336
1337		m = next;
1338	}
1339	vm_page_unlock_queues();
1340	splx(s0);
1341}
1342
1343static int
1344vm_pageout_free_page_calc(count)
1345vm_size_t count;
1346{
1347	if (count < cnt.v_page_count)
1348		 return 0;
1349	/*
1350	 * free_reserved needs to include enough for the largest swap pager
1351	 * structures plus enough for any pv_entry structs when paging.
1352	 */
1353	if (cnt.v_page_count > 1024)
1354		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1355	else
1356		cnt.v_free_min = 4;
1357	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1358		cnt.v_interrupt_free_min;
1359	cnt.v_free_reserved = vm_pageout_page_count +
1360		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1361	cnt.v_free_severe = cnt.v_free_min / 2;
1362	cnt.v_free_min += cnt.v_free_reserved;
1363	cnt.v_free_severe += cnt.v_free_reserved;
1364	return 1;
1365}
1366
1367/*
1368 *	vm_pageout is the high level pageout daemon.
1369 */
1370static void
1371vm_pageout()
1372{
1373	int error, pass, s;
1374
1375	mtx_lock(&Giant);
1376
1377	/*
1378	 * Initialize some paging parameters.
1379	 */
1380	cnt.v_interrupt_free_min = 2;
1381	if (cnt.v_page_count < 2000)
1382		vm_pageout_page_count = 8;
1383
1384	vm_pageout_free_page_calc(cnt.v_page_count);
1385	/*
1386	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1387	 * that these are more a measure of the VM cache queue hysteresis
1388	 * then the VM free queue.  Specifically, v_free_target is the
1389	 * high water mark (free+cache pages).
1390	 *
1391	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1392	 * low water mark, while v_free_min is the stop.  v_cache_min must
1393	 * be big enough to handle memory needs while the pageout daemon
1394	 * is signalled and run to free more pages.
1395	 */
1396	if (cnt.v_free_count > 6144)
1397		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1398	else
1399		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1400
1401	if (cnt.v_free_count > 2048) {
1402		cnt.v_cache_min = cnt.v_free_target;
1403		cnt.v_cache_max = 2 * cnt.v_cache_min;
1404		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1405	} else {
1406		cnt.v_cache_min = 0;
1407		cnt.v_cache_max = 0;
1408		cnt.v_inactive_target = cnt.v_free_count / 4;
1409	}
1410	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1411		cnt.v_inactive_target = cnt.v_free_count / 3;
1412
1413	/* XXX does not really belong here */
1414	if (vm_page_max_wired == 0)
1415		vm_page_max_wired = cnt.v_free_count / 3;
1416
1417	if (vm_pageout_stats_max == 0)
1418		vm_pageout_stats_max = cnt.v_free_target;
1419
1420	/*
1421	 * Set interval in seconds for stats scan.
1422	 */
1423	if (vm_pageout_stats_interval == 0)
1424		vm_pageout_stats_interval = 5;
1425	if (vm_pageout_full_stats_interval == 0)
1426		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1427
1428	/*
1429	 * Set maximum free per pass
1430	 */
1431	if (vm_pageout_stats_free_max == 0)
1432		vm_pageout_stats_free_max = 5;
1433
1434	swap_pager_swap_init();
1435	pass = 0;
1436	/*
1437	 * The pageout daemon is never done, so loop forever.
1438	 */
1439	while (TRUE) {
1440		s = splvm();
1441		vm_page_lock_queues();
1442		/*
1443		 * If we have enough free memory, wakeup waiters.  Do
1444		 * not clear vm_pages_needed until we reach our target,
1445		 * otherwise we may be woken up over and over again and
1446		 * waste a lot of cpu.
1447		 */
1448		if (vm_pages_needed && !vm_page_count_min()) {
1449			if (!vm_paging_needed())
1450				vm_pages_needed = 0;
1451			wakeup(&cnt.v_free_count);
1452		}
1453		if (vm_pages_needed) {
1454			/*
1455			 * Still not done, take a second pass without waiting
1456			 * (unlimited dirty cleaning), otherwise sleep a bit
1457			 * and try again.
1458			 */
1459			++pass;
1460			if (pass > 1)
1461				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1462				       "psleep", hz/2);
1463		} else {
1464			/*
1465			 * Good enough, sleep & handle stats.  Prime the pass
1466			 * for the next run.
1467			 */
1468			if (pass > 1)
1469				pass = 1;
1470			else
1471				pass = 0;
1472			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1473				    "psleep", vm_pageout_stats_interval * hz);
1474			if (error && !vm_pages_needed) {
1475				vm_page_unlock_queues();
1476				splx(s);
1477				pass = 0;
1478				vm_pageout_page_stats();
1479				continue;
1480			}
1481		}
1482		if (vm_pages_needed)
1483			cnt.v_pdwakeups++;
1484		vm_page_unlock_queues();
1485		splx(s);
1486		vm_pageout_scan(pass);
1487	}
1488}
1489
1490/*
1491 * Unless the page queue lock is held by the caller, this function
1492 * should be regarded as advisory.  Specifically, the caller should
1493 * not msleep() on &cnt.v_free_count following this function unless
1494 * the page queue lock is held until the msleep() is performed.
1495 */
1496void
1497pagedaemon_wakeup()
1498{
1499
1500	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1501		vm_pages_needed = 1;
1502		wakeup(&vm_pages_needed);
1503	}
1504}
1505
1506#if !defined(NO_SWAPPING)
1507static void
1508vm_req_vmdaemon()
1509{
1510	static int lastrun = 0;
1511
1512	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1513		wakeup(&vm_daemon_needed);
1514		lastrun = ticks;
1515	}
1516}
1517
1518static void
1519vm_daemon()
1520{
1521	struct proc *p;
1522	int breakout;
1523	struct thread *td;
1524
1525	mtx_lock(&Giant);
1526	while (TRUE) {
1527		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1528		if (vm_pageout_req_swapout) {
1529			swapout_procs(vm_pageout_req_swapout);
1530			vm_pageout_req_swapout = 0;
1531		}
1532		/*
1533		 * scan the processes for exceeding their rlimits or if
1534		 * process is swapped out -- deactivate pages
1535		 */
1536		sx_slock(&allproc_lock);
1537		LIST_FOREACH(p, &allproc, p_list) {
1538			vm_pindex_t limit, size;
1539
1540			/*
1541			 * if this is a system process or if we have already
1542			 * looked at this process, skip it.
1543			 */
1544			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1545				continue;
1546			}
1547			/*
1548			 * if the process is in a non-running type state,
1549			 * don't touch it.
1550			 */
1551			mtx_lock_spin(&sched_lock);
1552			breakout = 0;
1553			FOREACH_THREAD_IN_PROC(p, td) {
1554				if (!TD_ON_RUNQ(td) &&
1555				    !TD_IS_RUNNING(td) &&
1556				    !TD_IS_SLEEPING(td)) {
1557					breakout = 1;
1558					break;
1559				}
1560			}
1561			if (breakout) {
1562				mtx_unlock_spin(&sched_lock);
1563				continue;
1564			}
1565			/*
1566			 * get a limit
1567			 */
1568			limit = OFF_TO_IDX(
1569			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1570				p->p_rlimit[RLIMIT_RSS].rlim_max));
1571
1572			/*
1573			 * let processes that are swapped out really be
1574			 * swapped out set the limit to nothing (will force a
1575			 * swap-out.)
1576			 */
1577			if ((p->p_sflag & PS_INMEM) == 0)
1578				limit = 0;	/* XXX */
1579			mtx_unlock_spin(&sched_lock);
1580
1581			size = vmspace_resident_count(p->p_vmspace);
1582			if (limit >= 0 && size >= limit) {
1583				vm_pageout_map_deactivate_pages(
1584				    &p->p_vmspace->vm_map, limit);
1585			}
1586		}
1587		sx_sunlock(&allproc_lock);
1588	}
1589}
1590#endif			/* !defined(NO_SWAPPING) */
1591