vm_pageout.c revision 108011
1117397Skan/*
2117397Skan * Copyright (c) 1991 Regents of the University of California.
3169691Skan * All rights reserved.
4117397Skan * Copyright (c) 1994 John S. Dyson
5117397Skan * All rights reserved.
6117397Skan * Copyright (c) 1994 David Greenman
7117397Skan * All rights reserved.
8117397Skan *
9117397Skan * This code is derived from software contributed to Berkeley by
10117397Skan * The Mach Operating System project at Carnegie-Mellon University.
11117397Skan *
12117397Skan * Redistribution and use in source and binary forms, with or without
13117397Skan * modification, are permitted provided that the following conditions
14117397Skan * are met:
15117397Skan * 1. Redistributions of source code must retain the above copyright
16117397Skan *    notice, this list of conditions and the following disclaimer.
17117397Skan * 2. Redistributions in binary form must reproduce the above copyright
18169691Skan *    notice, this list of conditions and the following disclaimer in the
19117397Skan *    documentation and/or other materials provided with the distribution.
20117397Skan * 3. All advertising materials mentioning features or use of this software
21117397Skan *    must display the following acknowledgement:
22117397Skan *	This product includes software developed by the University of
23117397Skan *	California, Berkeley and its contributors.
24117397Skan * 4. Neither the name of the University nor the names of its contributors
25117397Skan *    may be used to endorse or promote products derived from this software
26117397Skan *    without specific prior written permission.
27117397Skan *
28117397Skan * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29117397Skan * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30132720Skan * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31132720Skan * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32117397Skan * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33117397Skan * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34117397Skan * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35117397Skan * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36117397Skan * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 108011 2002-12-18 04:02:02Z alc $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/eventhandler.h>
80#include <sys/lock.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/kthread.h>
84#include <sys/ktr.h>
85#include <sys/resourcevar.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#include <sys/vnode.h>
89#include <sys/vmmeter.h>
90#include <sys/sx.h>
91#include <sys/sysctl.h>
92
93#include <vm/vm.h>
94#include <vm/vm_param.h>
95#include <vm/vm_object.h>
96#include <vm/vm_page.h>
97#include <vm/vm_map.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/swap_pager.h>
101#include <vm/vm_extern.h>
102#include <vm/uma.h>
103
104#include <machine/mutex.h>
105
106/*
107 * System initialization
108 */
109
110/* the kernel process "vm_pageout"*/
111static void vm_pageout(void);
112static int vm_pageout_clean(vm_page_t);
113static void vm_pageout_pmap_collect(void);
114static void vm_pageout_scan(int pass);
115static int vm_pageout_free_page_calc(vm_size_t count);
116struct proc *pageproc;
117
118static struct kproc_desc page_kp = {
119	"pagedaemon",
120	vm_pageout,
121	&pageproc
122};
123SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
124
125#if !defined(NO_SWAPPING)
126/* the kernel process "vm_daemon"*/
127static void vm_daemon(void);
128static struct	proc *vmproc;
129
130static struct kproc_desc vm_kp = {
131	"vmdaemon",
132	vm_daemon,
133	&vmproc
134};
135SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
136#endif
137
138
139int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
140int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
141int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
142
143#if !defined(NO_SWAPPING)
144static int vm_pageout_req_swapout;	/* XXX */
145static int vm_daemon_needed;
146#endif
147extern int vm_swap_size;
148static int vm_max_launder = 32;
149static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
150static int vm_pageout_full_stats_interval = 0;
151static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
152static int defer_swap_pageouts=0;
153static int disable_swap_pageouts=0;
154
155#if defined(NO_SWAPPING)
156static int vm_swap_enabled=0;
157static int vm_swap_idle_enabled=0;
158#else
159static int vm_swap_enabled=1;
160static int vm_swap_idle_enabled=0;
161#endif
162
163SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
164	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
165
166SYSCTL_INT(_vm, OID_AUTO, max_launder,
167	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
170	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
173	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
176	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
177
178SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
179	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
180
181#if defined(NO_SWAPPING)
182SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183	CTLFLAG_RD, &vm_swap_enabled, 0, "");
184SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
186#else
187SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
188	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
189SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
190	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
191#endif
192
193SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
194	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
195
196SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
197	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
198
199static int pageout_lock_miss;
200SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
201	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
202
203#define VM_PAGEOUT_PAGE_COUNT 16
204int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
205
206int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
207
208#if !defined(NO_SWAPPING)
209typedef void freeer_fcn_t(vm_map_t, vm_object_t, vm_pindex_t, int);
210static void vm_pageout_map_deactivate_pages(vm_map_t, vm_pindex_t);
211static freeer_fcn_t vm_pageout_object_deactivate_pages;
212static void vm_req_vmdaemon(void);
213#endif
214static void vm_pageout_page_stats(void);
215
216/*
217 * vm_pageout_clean:
218 *
219 * Clean the page and remove it from the laundry.
220 *
221 * We set the busy bit to cause potential page faults on this page to
222 * block.  Note the careful timing, however, the busy bit isn't set till
223 * late and we cannot do anything that will mess with the page.
224 */
225static int
226vm_pageout_clean(m)
227	vm_page_t m;
228{
229	vm_object_t object;
230	vm_page_t mc[2*vm_pageout_page_count];
231	int pageout_count;
232	int ib, is, page_base;
233	vm_pindex_t pindex = m->pindex;
234
235	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
236
237	object = m->object;
238
239	/*
240	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
241	 * with the new swapper, but we could have serious problems paging
242	 * out other object types if there is insufficient memory.
243	 *
244	 * Unfortunately, checking free memory here is far too late, so the
245	 * check has been moved up a procedural level.
246	 */
247
248	/*
249	 * Don't mess with the page if it's busy, held, or special
250	 */
251	if ((m->hold_count != 0) ||
252	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
253		return 0;
254	}
255
256	mc[vm_pageout_page_count] = m;
257	pageout_count = 1;
258	page_base = vm_pageout_page_count;
259	ib = 1;
260	is = 1;
261
262	/*
263	 * Scan object for clusterable pages.
264	 *
265	 * We can cluster ONLY if: ->> the page is NOT
266	 * clean, wired, busy, held, or mapped into a
267	 * buffer, and one of the following:
268	 * 1) The page is inactive, or a seldom used
269	 *    active page.
270	 * -or-
271	 * 2) we force the issue.
272	 *
273	 * During heavy mmap/modification loads the pageout
274	 * daemon can really fragment the underlying file
275	 * due to flushing pages out of order and not trying
276	 * align the clusters (which leave sporatic out-of-order
277	 * holes).  To solve this problem we do the reverse scan
278	 * first and attempt to align our cluster, then do a
279	 * forward scan if room remains.
280	 */
281more:
282	while (ib && pageout_count < vm_pageout_page_count) {
283		vm_page_t p;
284
285		if (ib > pindex) {
286			ib = 0;
287			break;
288		}
289
290		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
291			ib = 0;
292			break;
293		}
294		if (((p->queue - p->pc) == PQ_CACHE) ||
295		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
296			ib = 0;
297			break;
298		}
299		vm_page_test_dirty(p);
300		if ((p->dirty & p->valid) == 0 ||
301		    p->queue != PQ_INACTIVE ||
302		    p->wire_count != 0 ||	/* may be held by buf cache */
303		    p->hold_count != 0) {	/* may be undergoing I/O */
304			ib = 0;
305			break;
306		}
307		mc[--page_base] = p;
308		++pageout_count;
309		++ib;
310		/*
311		 * alignment boundry, stop here and switch directions.  Do
312		 * not clear ib.
313		 */
314		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
315			break;
316	}
317
318	while (pageout_count < vm_pageout_page_count &&
319	    pindex + is < object->size) {
320		vm_page_t p;
321
322		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
323			break;
324		if (((p->queue - p->pc) == PQ_CACHE) ||
325		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
326			break;
327		}
328		vm_page_test_dirty(p);
329		if ((p->dirty & p->valid) == 0 ||
330		    p->queue != PQ_INACTIVE ||
331		    p->wire_count != 0 ||	/* may be held by buf cache */
332		    p->hold_count != 0) {	/* may be undergoing I/O */
333			break;
334		}
335		mc[page_base + pageout_count] = p;
336		++pageout_count;
337		++is;
338	}
339
340	/*
341	 * If we exhausted our forward scan, continue with the reverse scan
342	 * when possible, even past a page boundry.  This catches boundry
343	 * conditions.
344	 */
345	if (ib && pageout_count < vm_pageout_page_count)
346		goto more;
347
348	/*
349	 * we allow reads during pageouts...
350	 */
351	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
352}
353
354/*
355 * vm_pageout_flush() - launder the given pages
356 *
357 *	The given pages are laundered.  Note that we setup for the start of
358 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
359 *	reference count all in here rather then in the parent.  If we want
360 *	the parent to do more sophisticated things we may have to change
361 *	the ordering.
362 */
363int
364vm_pageout_flush(mc, count, flags)
365	vm_page_t *mc;
366	int count;
367	int flags;
368{
369	vm_object_t object;
370	int pageout_status[count];
371	int numpagedout = 0;
372	int i;
373
374	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
375	/*
376	 * Initiate I/O.  Bump the vm_page_t->busy counter and
377	 * mark the pages read-only.
378	 *
379	 * We do not have to fixup the clean/dirty bits here... we can
380	 * allow the pager to do it after the I/O completes.
381	 *
382	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
383	 * edge case with file fragments.
384	 */
385	for (i = 0; i < count; i++) {
386		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
387		vm_page_io_start(mc[i]);
388		pmap_page_protect(mc[i], VM_PROT_READ);
389	}
390	object = mc[0]->object;
391	vm_page_unlock_queues();
392	vm_object_pip_add(object, count);
393
394	vm_pager_put_pages(object, mc, count,
395	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
396	    pageout_status);
397
398	vm_page_lock_queues();
399	for (i = 0; i < count; i++) {
400		vm_page_t mt = mc[i];
401
402		switch (pageout_status[i]) {
403		case VM_PAGER_OK:
404			numpagedout++;
405			break;
406		case VM_PAGER_PEND:
407			numpagedout++;
408			break;
409		case VM_PAGER_BAD:
410			/*
411			 * Page outside of range of object. Right now we
412			 * essentially lose the changes by pretending it
413			 * worked.
414			 */
415			pmap_clear_modify(mt);
416			vm_page_undirty(mt);
417			break;
418		case VM_PAGER_ERROR:
419		case VM_PAGER_FAIL:
420			/*
421			 * If page couldn't be paged out, then reactivate the
422			 * page so it doesn't clog the inactive list.  (We
423			 * will try paging out it again later).
424			 */
425			vm_page_activate(mt);
426			break;
427		case VM_PAGER_AGAIN:
428			break;
429		}
430
431		/*
432		 * If the operation is still going, leave the page busy to
433		 * block all other accesses. Also, leave the paging in
434		 * progress indicator set so that we don't attempt an object
435		 * collapse.
436		 */
437		if (pageout_status[i] != VM_PAGER_PEND) {
438			vm_object_pip_wakeup(object);
439			vm_page_io_finish(mt);
440			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
441				pmap_page_protect(mt, VM_PROT_READ);
442		}
443	}
444	return numpagedout;
445}
446
447#if !defined(NO_SWAPPING)
448/*
449 *	vm_pageout_object_deactivate_pages
450 *
451 *	deactivate enough pages to satisfy the inactive target
452 *	requirements or if vm_page_proc_limit is set, then
453 *	deactivate all of the pages in the object and its
454 *	backing_objects.
455 *
456 *	The object and map must be locked.
457 */
458static void
459vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
460	vm_map_t map;
461	vm_object_t object;
462	vm_pindex_t desired;
463	int map_remove_only;
464{
465	vm_page_t p, next;
466	int actcount, rcount, remove_mode;
467
468	GIANT_REQUIRED;
469	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
470		return;
471
472	while (object) {
473		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
474			return;
475		if (object->paging_in_progress)
476			return;
477
478		remove_mode = map_remove_only;
479		if (object->shadow_count > 1)
480			remove_mode = 1;
481		/*
482		 * scan the objects entire memory queue
483		 */
484		rcount = object->resident_page_count;
485		p = TAILQ_FIRST(&object->memq);
486		vm_page_lock_queues();
487		while (p && (rcount-- > 0)) {
488			if (pmap_resident_count(map->pmap) <= desired) {
489				vm_page_unlock_queues();
490				return;
491			}
492			next = TAILQ_NEXT(p, listq);
493			cnt.v_pdpages++;
494			if (p->wire_count != 0 ||
495			    p->hold_count != 0 ||
496			    p->busy != 0 ||
497			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
498			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
499				p = next;
500				continue;
501			}
502			actcount = pmap_ts_referenced(p);
503			if (actcount) {
504				vm_page_flag_set(p, PG_REFERENCED);
505			} else if (p->flags & PG_REFERENCED) {
506				actcount = 1;
507			}
508			if ((p->queue != PQ_ACTIVE) &&
509				(p->flags & PG_REFERENCED)) {
510				vm_page_activate(p);
511				p->act_count += actcount;
512				vm_page_flag_clear(p, PG_REFERENCED);
513			} else if (p->queue == PQ_ACTIVE) {
514				if ((p->flags & PG_REFERENCED) == 0) {
515					p->act_count -= min(p->act_count, ACT_DECLINE);
516					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
517						pmap_remove_all(p);
518						vm_page_deactivate(p);
519					} else {
520						vm_pageq_requeue(p);
521					}
522				} else {
523					vm_page_activate(p);
524					vm_page_flag_clear(p, PG_REFERENCED);
525					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
526						p->act_count += ACT_ADVANCE;
527					vm_pageq_requeue(p);
528				}
529			} else if (p->queue == PQ_INACTIVE) {
530				pmap_remove_all(p);
531			}
532			p = next;
533		}
534		vm_page_unlock_queues();
535		object = object->backing_object;
536	}
537}
538
539/*
540 * deactivate some number of pages in a map, try to do it fairly, but
541 * that is really hard to do.
542 */
543static void
544vm_pageout_map_deactivate_pages(map, desired)
545	vm_map_t map;
546	vm_pindex_t desired;
547{
548	vm_map_entry_t tmpe;
549	vm_object_t obj, bigobj;
550	int nothingwired;
551
552	GIANT_REQUIRED;
553	if (!vm_map_trylock(map))
554		return;
555
556	bigobj = NULL;
557	nothingwired = TRUE;
558
559	/*
560	 * first, search out the biggest object, and try to free pages from
561	 * that.
562	 */
563	tmpe = map->header.next;
564	while (tmpe != &map->header) {
565		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
566			obj = tmpe->object.vm_object;
567			if ((obj != NULL) && (obj->shadow_count <= 1) &&
568				((bigobj == NULL) ||
569				 (bigobj->resident_page_count < obj->resident_page_count))) {
570				bigobj = obj;
571			}
572		}
573		if (tmpe->wired_count > 0)
574			nothingwired = FALSE;
575		tmpe = tmpe->next;
576	}
577
578	if (bigobj)
579		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
580
581	/*
582	 * Next, hunt around for other pages to deactivate.  We actually
583	 * do this search sort of wrong -- .text first is not the best idea.
584	 */
585	tmpe = map->header.next;
586	while (tmpe != &map->header) {
587		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
588			break;
589		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
590			obj = tmpe->object.vm_object;
591			if (obj)
592				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
593		}
594		tmpe = tmpe->next;
595	}
596
597	/*
598	 * Remove all mappings if a process is swapped out, this will free page
599	 * table pages.
600	 */
601	if (desired == 0 && nothingwired) {
602		vm_page_lock_queues();
603		pmap_remove(vm_map_pmap(map), vm_map_min(map),
604		    vm_map_max(map));
605		vm_page_unlock_queues();
606	}
607	vm_map_unlock(map);
608}
609#endif		/* !defined(NO_SWAPPING) */
610
611/*
612 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
613 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
614 * which we know can be trivially freed.
615 */
616void
617vm_pageout_page_free(vm_page_t m)
618{
619	vm_object_t object = m->object;
620	int type = object->type;
621
622	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
623	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
624		vm_object_reference(object);
625	vm_page_busy(m);
626	pmap_remove_all(m);
627	vm_page_free(m);
628	cnt.v_dfree++;
629	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
630		vm_object_deallocate(object);
631}
632
633/*
634 * This routine is very drastic, but can save the system
635 * in a pinch.
636 */
637static void
638vm_pageout_pmap_collect(void)
639{
640	int i;
641	vm_page_t m;
642	static int warningdone;
643
644	if (pmap_pagedaemon_waken == 0)
645		return;
646	if (warningdone < 5) {
647		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
648		warningdone++;
649	}
650	vm_page_lock_queues();
651	for (i = 0; i < vm_page_array_size; i++) {
652		m = &vm_page_array[i];
653		if (m->wire_count || m->hold_count || m->busy ||
654		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
655			continue;
656		pmap_remove_all(m);
657	}
658	vm_page_unlock_queues();
659	pmap_pagedaemon_waken = 0;
660}
661
662/*
663 *	vm_pageout_scan does the dirty work for the pageout daemon.
664 */
665static void
666vm_pageout_scan(int pass)
667{
668	vm_page_t m, next;
669	struct vm_page marker;
670	int save_page_shortage;
671	int save_inactive_count;
672	int page_shortage, maxscan, pcount;
673	int addl_page_shortage, addl_page_shortage_init;
674	struct proc *p, *bigproc;
675	vm_offset_t size, bigsize;
676	vm_object_t object;
677	int actcount;
678	int vnodes_skipped = 0;
679	int maxlaunder;
680	int s;
681	struct thread *td;
682
683	GIANT_REQUIRED;
684	/*
685	 * Decrease registered cache sizes.
686	 */
687	EVENTHANDLER_INVOKE(vm_lowmem, 0);
688	/*
689	 * We do this explicitly after the caches have been drained above.
690	 */
691	uma_reclaim();
692	/*
693	 * Do whatever cleanup that the pmap code can.
694	 */
695	vm_pageout_pmap_collect();
696
697	addl_page_shortage_init = vm_pageout_deficit;
698	vm_pageout_deficit = 0;
699
700	/*
701	 * Calculate the number of pages we want to either free or move
702	 * to the cache.
703	 */
704	page_shortage = vm_paging_target() + addl_page_shortage_init;
705	save_page_shortage = page_shortage;
706	save_inactive_count = cnt.v_inactive_count;
707
708	/*
709	 * Initialize our marker
710	 */
711	bzero(&marker, sizeof(marker));
712	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
713	marker.queue = PQ_INACTIVE;
714	marker.wire_count = 1;
715
716	/*
717	 * Start scanning the inactive queue for pages we can move to the
718	 * cache or free.  The scan will stop when the target is reached or
719	 * we have scanned the entire inactive queue.  Note that m->act_count
720	 * is not used to form decisions for the inactive queue, only for the
721	 * active queue.
722	 *
723	 * maxlaunder limits the number of dirty pages we flush per scan.
724	 * For most systems a smaller value (16 or 32) is more robust under
725	 * extreme memory and disk pressure because any unnecessary writes
726	 * to disk can result in extreme performance degredation.  However,
727	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
728	 * used) will die horribly with limited laundering.  If the pageout
729	 * daemon cannot clean enough pages in the first pass, we let it go
730	 * all out in succeeding passes.
731	 */
732	if ((maxlaunder = vm_max_launder) <= 1)
733		maxlaunder = 1;
734	if (pass)
735		maxlaunder = 10000;
736rescan0:
737	addl_page_shortage = addl_page_shortage_init;
738	maxscan = cnt.v_inactive_count;
739
740	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
741	     m != NULL && maxscan-- > 0 && page_shortage > 0;
742	     m = next) {
743
744		cnt.v_pdpages++;
745
746		if (m->queue != PQ_INACTIVE) {
747			goto rescan0;
748		}
749
750		next = TAILQ_NEXT(m, pageq);
751
752		/*
753		 * skip marker pages
754		 */
755		if (m->flags & PG_MARKER)
756			continue;
757
758		/*
759		 * A held page may be undergoing I/O, so skip it.
760		 */
761		if (m->hold_count) {
762			vm_pageq_requeue(m);
763			addl_page_shortage++;
764			continue;
765		}
766		/*
767		 * Don't mess with busy pages, keep in the front of the
768		 * queue, most likely are being paged out.
769		 */
770		if (m->busy || (m->flags & PG_BUSY)) {
771			addl_page_shortage++;
772			continue;
773		}
774
775		vm_page_lock_queues();
776		/*
777		 * If the object is not being used, we ignore previous
778		 * references.
779		 */
780		if (m->object->ref_count == 0) {
781			vm_page_flag_clear(m, PG_REFERENCED);
782			pmap_clear_reference(m);
783
784		/*
785		 * Otherwise, if the page has been referenced while in the
786		 * inactive queue, we bump the "activation count" upwards,
787		 * making it less likely that the page will be added back to
788		 * the inactive queue prematurely again.  Here we check the
789		 * page tables (or emulated bits, if any), given the upper
790		 * level VM system not knowing anything about existing
791		 * references.
792		 */
793		} else if (((m->flags & PG_REFERENCED) == 0) &&
794			(actcount = pmap_ts_referenced(m))) {
795			vm_page_activate(m);
796			vm_page_unlock_queues();
797			m->act_count += (actcount + ACT_ADVANCE);
798			continue;
799		}
800
801		/*
802		 * If the upper level VM system knows about any page
803		 * references, we activate the page.  We also set the
804		 * "activation count" higher than normal so that we will less
805		 * likely place pages back onto the inactive queue again.
806		 */
807		if ((m->flags & PG_REFERENCED) != 0) {
808			vm_page_flag_clear(m, PG_REFERENCED);
809			actcount = pmap_ts_referenced(m);
810			vm_page_activate(m);
811			vm_page_unlock_queues();
812			m->act_count += (actcount + ACT_ADVANCE + 1);
813			continue;
814		}
815
816		/*
817		 * If the upper level VM system doesn't know anything about
818		 * the page being dirty, we have to check for it again.  As
819		 * far as the VM code knows, any partially dirty pages are
820		 * fully dirty.
821		 */
822		if (m->dirty == 0) {
823			vm_page_test_dirty(m);
824		} else {
825			vm_page_dirty(m);
826		}
827		vm_page_unlock_queues();
828
829		/*
830		 * Invalid pages can be easily freed
831		 */
832		if (m->valid == 0) {
833			vm_page_lock_queues();
834			vm_pageout_page_free(m);
835			vm_page_unlock_queues();
836			--page_shortage;
837
838		/*
839		 * Clean pages can be placed onto the cache queue.  This
840		 * effectively frees them.
841		 */
842		} else if (m->dirty == 0) {
843			vm_page_lock_queues();
844			vm_page_cache(m);
845			vm_page_unlock_queues();
846			--page_shortage;
847		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
848			/*
849			 * Dirty pages need to be paged out, but flushing
850			 * a page is extremely expensive verses freeing
851			 * a clean page.  Rather then artificially limiting
852			 * the number of pages we can flush, we instead give
853			 * dirty pages extra priority on the inactive queue
854			 * by forcing them to be cycled through the queue
855			 * twice before being flushed, after which the
856			 * (now clean) page will cycle through once more
857			 * before being freed.  This significantly extends
858			 * the thrash point for a heavily loaded machine.
859			 */
860			vm_page_lock_queues();
861			vm_page_flag_set(m, PG_WINATCFLS);
862			vm_pageq_requeue(m);
863			vm_page_unlock_queues();
864		} else if (maxlaunder > 0) {
865			/*
866			 * We always want to try to flush some dirty pages if
867			 * we encounter them, to keep the system stable.
868			 * Normally this number is small, but under extreme
869			 * pressure where there are insufficient clean pages
870			 * on the inactive queue, we may have to go all out.
871			 */
872			int swap_pageouts_ok;
873			struct vnode *vp = NULL;
874			struct mount *mp;
875
876			object = m->object;
877
878			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
879				swap_pageouts_ok = 1;
880			} else {
881				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
882				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
883				vm_page_count_min());
884
885			}
886
887			/*
888			 * We don't bother paging objects that are "dead".
889			 * Those objects are in a "rundown" state.
890			 */
891			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
892				vm_pageq_requeue(m);
893				continue;
894			}
895
896			/*
897			 * The object is already known NOT to be dead.   It
898			 * is possible for the vget() to block the whole
899			 * pageout daemon, but the new low-memory handling
900			 * code should prevent it.
901			 *
902			 * The previous code skipped locked vnodes and, worse,
903			 * reordered pages in the queue.  This results in
904			 * completely non-deterministic operation and, on a
905			 * busy system, can lead to extremely non-optimal
906			 * pageouts.  For example, it can cause clean pages
907			 * to be freed and dirty pages to be moved to the end
908			 * of the queue.  Since dirty pages are also moved to
909			 * the end of the queue once-cleaned, this gives
910			 * way too large a weighting to defering the freeing
911			 * of dirty pages.
912			 *
913			 * We can't wait forever for the vnode lock, we might
914			 * deadlock due to a vn_read() getting stuck in
915			 * vm_wait while holding this vnode.  We skip the
916			 * vnode if we can't get it in a reasonable amount
917			 * of time.
918			 */
919			if (object->type == OBJT_VNODE) {
920				vp = object->handle;
921
922				mp = NULL;
923				if (vp->v_type == VREG)
924					vn_start_write(vp, &mp, V_NOWAIT);
925				if (vget(vp, LK_EXCLUSIVE|LK_TIMELOCK, curthread)) {
926					++pageout_lock_miss;
927					vn_finished_write(mp);
928					if (object->flags & OBJ_MIGHTBEDIRTY)
929						vnodes_skipped++;
930					continue;
931				}
932
933				/*
934				 * The page might have been moved to another
935				 * queue during potential blocking in vget()
936				 * above.  The page might have been freed and
937				 * reused for another vnode.  The object might
938				 * have been reused for another vnode.
939				 */
940				if (m->queue != PQ_INACTIVE ||
941				    m->object != object ||
942				    object->handle != vp) {
943					if (object->flags & OBJ_MIGHTBEDIRTY)
944						vnodes_skipped++;
945					vput(vp);
946					vn_finished_write(mp);
947					continue;
948				}
949
950				/*
951				 * The page may have been busied during the
952				 * blocking in vput();  We don't move the
953				 * page back onto the end of the queue so that
954				 * statistics are more correct if we don't.
955				 */
956				if (m->busy || (m->flags & PG_BUSY)) {
957					vput(vp);
958					vn_finished_write(mp);
959					continue;
960				}
961
962				/*
963				 * If the page has become held it might
964				 * be undergoing I/O, so skip it
965				 */
966				if (m->hold_count) {
967					vm_pageq_requeue(m);
968					if (object->flags & OBJ_MIGHTBEDIRTY)
969						vnodes_skipped++;
970					vput(vp);
971					vn_finished_write(mp);
972					continue;
973				}
974			}
975
976			/*
977			 * If a page is dirty, then it is either being washed
978			 * (but not yet cleaned) or it is still in the
979			 * laundry.  If it is still in the laundry, then we
980			 * start the cleaning operation.
981			 *
982			 * This operation may cluster, invalidating the 'next'
983			 * pointer.  To prevent an inordinate number of
984			 * restarts we use our marker to remember our place.
985			 *
986			 * decrement page_shortage on success to account for
987			 * the (future) cleaned page.  Otherwise we could wind
988			 * up laundering or cleaning too many pages.
989			 */
990			vm_page_lock_queues();
991			s = splvm();
992			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
993			splx(s);
994			if (vm_pageout_clean(m) != 0) {
995				--page_shortage;
996				--maxlaunder;
997			}
998			s = splvm();
999			next = TAILQ_NEXT(&marker, pageq);
1000			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1001			splx(s);
1002			vm_page_unlock_queues();
1003			if (vp) {
1004				vput(vp);
1005				vn_finished_write(mp);
1006			}
1007		}
1008	}
1009
1010	/*
1011	 * Compute the number of pages we want to try to move from the
1012	 * active queue to the inactive queue.
1013	 */
1014	page_shortage = vm_paging_target() +
1015		cnt.v_inactive_target - cnt.v_inactive_count;
1016	page_shortage += addl_page_shortage;
1017
1018	vm_page_lock_queues();
1019	/*
1020	 * Scan the active queue for things we can deactivate. We nominally
1021	 * track the per-page activity counter and use it to locate
1022	 * deactivation candidates.
1023	 */
1024	pcount = cnt.v_active_count;
1025	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1026
1027	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1028
1029		/*
1030		 * This is a consistency check, and should likely be a panic
1031		 * or warning.
1032		 */
1033		if (m->queue != PQ_ACTIVE) {
1034			break;
1035		}
1036
1037		next = TAILQ_NEXT(m, pageq);
1038		/*
1039		 * Don't deactivate pages that are busy.
1040		 */
1041		if ((m->busy != 0) ||
1042		    (m->flags & PG_BUSY) ||
1043		    (m->hold_count != 0)) {
1044			vm_pageq_requeue(m);
1045			m = next;
1046			continue;
1047		}
1048
1049		/*
1050		 * The count for pagedaemon pages is done after checking the
1051		 * page for eligibility...
1052		 */
1053		cnt.v_pdpages++;
1054
1055		/*
1056		 * Check to see "how much" the page has been used.
1057		 */
1058		actcount = 0;
1059		if (m->object->ref_count != 0) {
1060			if (m->flags & PG_REFERENCED) {
1061				actcount += 1;
1062			}
1063			actcount += pmap_ts_referenced(m);
1064			if (actcount) {
1065				m->act_count += ACT_ADVANCE + actcount;
1066				if (m->act_count > ACT_MAX)
1067					m->act_count = ACT_MAX;
1068			}
1069		}
1070
1071		/*
1072		 * Since we have "tested" this bit, we need to clear it now.
1073		 */
1074		vm_page_flag_clear(m, PG_REFERENCED);
1075
1076		/*
1077		 * Only if an object is currently being used, do we use the
1078		 * page activation count stats.
1079		 */
1080		if (actcount && (m->object->ref_count != 0)) {
1081			vm_pageq_requeue(m);
1082		} else {
1083			m->act_count -= min(m->act_count, ACT_DECLINE);
1084			if (vm_pageout_algorithm ||
1085			    m->object->ref_count == 0 ||
1086			    m->act_count == 0) {
1087				page_shortage--;
1088				if (m->object->ref_count == 0) {
1089					pmap_remove_all(m);
1090					if (m->dirty == 0)
1091						vm_page_cache(m);
1092					else
1093						vm_page_deactivate(m);
1094				} else {
1095					vm_page_deactivate(m);
1096				}
1097			} else {
1098				vm_pageq_requeue(m);
1099			}
1100		}
1101		m = next;
1102	}
1103	s = splvm();
1104
1105	/*
1106	 * We try to maintain some *really* free pages, this allows interrupt
1107	 * code to be guaranteed space.  Since both cache and free queues
1108	 * are considered basically 'free', moving pages from cache to free
1109	 * does not effect other calculations.
1110	 */
1111	while (cnt.v_free_count < cnt.v_free_reserved) {
1112		static int cache_rover = 0;
1113		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1114		if (!m)
1115			break;
1116		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1117		    m->busy ||
1118		    m->hold_count ||
1119		    m->wire_count) {
1120#ifdef INVARIANTS
1121			printf("Warning: busy page %p found in cache\n", m);
1122#endif
1123			vm_page_deactivate(m);
1124			continue;
1125		}
1126		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1127		vm_pageout_page_free(m);
1128	}
1129	splx(s);
1130	vm_page_unlock_queues();
1131#if !defined(NO_SWAPPING)
1132	/*
1133	 * Idle process swapout -- run once per second.
1134	 */
1135	if (vm_swap_idle_enabled) {
1136		static long lsec;
1137		if (time_second != lsec) {
1138			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1139			vm_req_vmdaemon();
1140			lsec = time_second;
1141		}
1142	}
1143#endif
1144
1145	/*
1146	 * If we didn't get enough free pages, and we have skipped a vnode
1147	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1148	 * if we did not get enough free pages.
1149	 */
1150	if (vm_paging_target() > 0) {
1151		if (vnodes_skipped && vm_page_count_min())
1152			(void) speedup_syncer();
1153#if !defined(NO_SWAPPING)
1154		if (vm_swap_enabled && vm_page_count_target()) {
1155			vm_req_vmdaemon();
1156			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1157		}
1158#endif
1159	}
1160
1161	/*
1162	 * If we are out of swap and were not able to reach our paging
1163	 * target, kill the largest process.
1164	 *
1165	 * We keep the process bigproc locked once we find it to keep anyone
1166	 * from messing with it; however, there is a possibility of
1167	 * deadlock if process B is bigproc and one of it's child processes
1168	 * attempts to propagate a signal to B while we are waiting for A's
1169	 * lock while walking this list.  To avoid this, we don't block on
1170	 * the process lock but just skip a process if it is already locked.
1171	 */
1172	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1173	    (swap_pager_full && vm_paging_target() > 0)) {
1174#if 0
1175	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1176#endif
1177		bigproc = NULL;
1178		bigsize = 0;
1179		sx_slock(&allproc_lock);
1180		FOREACH_PROC_IN_SYSTEM(p) {
1181			int breakout;
1182			/*
1183			 * If this process is already locked, skip it.
1184			 */
1185			if (PROC_TRYLOCK(p) == 0)
1186				continue;
1187			/*
1188			 * if this is a system process, skip it
1189			 */
1190			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1191			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1192				PROC_UNLOCK(p);
1193				continue;
1194			}
1195			/*
1196			 * if the process is in a non-running type state,
1197			 * don't touch it. Check all the threads individually.
1198			 */
1199			mtx_lock_spin(&sched_lock);
1200			breakout = 0;
1201			FOREACH_THREAD_IN_PROC(p, td) {
1202				if (!TD_ON_RUNQ(td) &&
1203				    !TD_IS_RUNNING(td) &&
1204				    !TD_IS_SLEEPING(td)) {
1205					breakout = 1;
1206					break;
1207				}
1208			}
1209			if (breakout) {
1210				mtx_unlock_spin(&sched_lock);
1211				PROC_UNLOCK(p);
1212				continue;
1213			}
1214			mtx_unlock_spin(&sched_lock);
1215			/*
1216			 * get the process size
1217			 */
1218			size = vmspace_resident_count(p->p_vmspace) +
1219				vmspace_swap_count(p->p_vmspace);
1220			/*
1221			 * if the this process is bigger than the biggest one
1222			 * remember it.
1223			 */
1224			if (size > bigsize) {
1225				if (bigproc != NULL)
1226					PROC_UNLOCK(bigproc);
1227				bigproc = p;
1228				bigsize = size;
1229			} else
1230				PROC_UNLOCK(p);
1231		}
1232		sx_sunlock(&allproc_lock);
1233		if (bigproc != NULL) {
1234			struct ksegrp *kg;
1235			killproc(bigproc, "out of swap space");
1236			mtx_lock_spin(&sched_lock);
1237			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1238				sched_nice(kg, PRIO_MIN); /* XXXKSE ??? */
1239			}
1240			mtx_unlock_spin(&sched_lock);
1241			PROC_UNLOCK(bigproc);
1242			wakeup(&cnt.v_free_count);
1243		}
1244	}
1245}
1246
1247/*
1248 * This routine tries to maintain the pseudo LRU active queue,
1249 * so that during long periods of time where there is no paging,
1250 * that some statistic accumulation still occurs.  This code
1251 * helps the situation where paging just starts to occur.
1252 */
1253static void
1254vm_pageout_page_stats()
1255{
1256	vm_page_t m,next;
1257	int pcount,tpcount;		/* Number of pages to check */
1258	static int fullintervalcount = 0;
1259	int page_shortage;
1260	int s0;
1261
1262	page_shortage =
1263	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1264	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1265
1266	if (page_shortage <= 0)
1267		return;
1268
1269	s0 = splvm();
1270	vm_page_lock_queues();
1271	pcount = cnt.v_active_count;
1272	fullintervalcount += vm_pageout_stats_interval;
1273	if (fullintervalcount < vm_pageout_full_stats_interval) {
1274		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1275		if (pcount > tpcount)
1276			pcount = tpcount;
1277	} else {
1278		fullintervalcount = 0;
1279	}
1280
1281	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1282	while ((m != NULL) && (pcount-- > 0)) {
1283		int actcount;
1284
1285		if (m->queue != PQ_ACTIVE) {
1286			break;
1287		}
1288
1289		next = TAILQ_NEXT(m, pageq);
1290		/*
1291		 * Don't deactivate pages that are busy.
1292		 */
1293		if ((m->busy != 0) ||
1294		    (m->flags & PG_BUSY) ||
1295		    (m->hold_count != 0)) {
1296			vm_pageq_requeue(m);
1297			m = next;
1298			continue;
1299		}
1300
1301		actcount = 0;
1302		if (m->flags & PG_REFERENCED) {
1303			vm_page_flag_clear(m, PG_REFERENCED);
1304			actcount += 1;
1305		}
1306
1307		actcount += pmap_ts_referenced(m);
1308		if (actcount) {
1309			m->act_count += ACT_ADVANCE + actcount;
1310			if (m->act_count > ACT_MAX)
1311				m->act_count = ACT_MAX;
1312			vm_pageq_requeue(m);
1313		} else {
1314			if (m->act_count == 0) {
1315				/*
1316				 * We turn off page access, so that we have
1317				 * more accurate RSS stats.  We don't do this
1318				 * in the normal page deactivation when the
1319				 * system is loaded VM wise, because the
1320				 * cost of the large number of page protect
1321				 * operations would be higher than the value
1322				 * of doing the operation.
1323				 */
1324				pmap_remove_all(m);
1325				vm_page_deactivate(m);
1326			} else {
1327				m->act_count -= min(m->act_count, ACT_DECLINE);
1328				vm_pageq_requeue(m);
1329			}
1330		}
1331
1332		m = next;
1333	}
1334	vm_page_unlock_queues();
1335	splx(s0);
1336}
1337
1338static int
1339vm_pageout_free_page_calc(count)
1340vm_size_t count;
1341{
1342	if (count < cnt.v_page_count)
1343		 return 0;
1344	/*
1345	 * free_reserved needs to include enough for the largest swap pager
1346	 * structures plus enough for any pv_entry structs when paging.
1347	 */
1348	if (cnt.v_page_count > 1024)
1349		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1350	else
1351		cnt.v_free_min = 4;
1352	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1353		cnt.v_interrupt_free_min;
1354	cnt.v_free_reserved = vm_pageout_page_count +
1355		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1356	cnt.v_free_severe = cnt.v_free_min / 2;
1357	cnt.v_free_min += cnt.v_free_reserved;
1358	cnt.v_free_severe += cnt.v_free_reserved;
1359	return 1;
1360}
1361
1362/*
1363 *	vm_pageout is the high level pageout daemon.
1364 */
1365static void
1366vm_pageout()
1367{
1368	int pass;
1369
1370	mtx_lock(&Giant);
1371
1372	/*
1373	 * Initialize some paging parameters.
1374	 */
1375	cnt.v_interrupt_free_min = 2;
1376	if (cnt.v_page_count < 2000)
1377		vm_pageout_page_count = 8;
1378
1379	vm_pageout_free_page_calc(cnt.v_page_count);
1380	/*
1381	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1382	 * that these are more a measure of the VM cache queue hysteresis
1383	 * then the VM free queue.  Specifically, v_free_target is the
1384	 * high water mark (free+cache pages).
1385	 *
1386	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1387	 * low water mark, while v_free_min is the stop.  v_cache_min must
1388	 * be big enough to handle memory needs while the pageout daemon
1389	 * is signalled and run to free more pages.
1390	 */
1391	if (cnt.v_free_count > 6144)
1392		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1393	else
1394		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1395
1396	if (cnt.v_free_count > 2048) {
1397		cnt.v_cache_min = cnt.v_free_target;
1398		cnt.v_cache_max = 2 * cnt.v_cache_min;
1399		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1400	} else {
1401		cnt.v_cache_min = 0;
1402		cnt.v_cache_max = 0;
1403		cnt.v_inactive_target = cnt.v_free_count / 4;
1404	}
1405	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1406		cnt.v_inactive_target = cnt.v_free_count / 3;
1407
1408	/* XXX does not really belong here */
1409	if (vm_page_max_wired == 0)
1410		vm_page_max_wired = cnt.v_free_count / 3;
1411
1412	if (vm_pageout_stats_max == 0)
1413		vm_pageout_stats_max = cnt.v_free_target;
1414
1415	/*
1416	 * Set interval in seconds for stats scan.
1417	 */
1418	if (vm_pageout_stats_interval == 0)
1419		vm_pageout_stats_interval = 5;
1420	if (vm_pageout_full_stats_interval == 0)
1421		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1422
1423	/*
1424	 * Set maximum free per pass
1425	 */
1426	if (vm_pageout_stats_free_max == 0)
1427		vm_pageout_stats_free_max = 5;
1428
1429	swap_pager_swap_init();
1430	pass = 0;
1431	/*
1432	 * The pageout daemon is never done, so loop forever.
1433	 */
1434	while (TRUE) {
1435		int error;
1436		int s = splvm();
1437
1438		/*
1439		 * If we have enough free memory, wakeup waiters.  Do
1440		 * not clear vm_pages_needed until we reach our target,
1441		 * otherwise we may be woken up over and over again and
1442		 * waste a lot of cpu.
1443		 */
1444		if (vm_pages_needed && !vm_page_count_min()) {
1445			if (vm_paging_needed() <= 0)
1446				vm_pages_needed = 0;
1447			wakeup(&cnt.v_free_count);
1448		}
1449		if (vm_pages_needed) {
1450			/*
1451			 * Still not done, take a second pass without waiting
1452			 * (unlimited dirty cleaning), otherwise sleep a bit
1453			 * and try again.
1454			 */
1455			++pass;
1456			if (pass > 1)
1457				tsleep(&vm_pages_needed, PVM,
1458				       "psleep", hz/2);
1459		} else {
1460			/*
1461			 * Good enough, sleep & handle stats.  Prime the pass
1462			 * for the next run.
1463			 */
1464			if (pass > 1)
1465				pass = 1;
1466			else
1467				pass = 0;
1468			error = tsleep(&vm_pages_needed, PVM,
1469				    "psleep", vm_pageout_stats_interval * hz);
1470			if (error && !vm_pages_needed) {
1471				splx(s);
1472				pass = 0;
1473				vm_pageout_page_stats();
1474				continue;
1475			}
1476		}
1477
1478		if (vm_pages_needed)
1479			cnt.v_pdwakeups++;
1480		splx(s);
1481		vm_pageout_scan(pass);
1482		vm_pageout_deficit = 0;
1483	}
1484}
1485
1486void
1487pagedaemon_wakeup()
1488{
1489	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1490		vm_pages_needed++;
1491		wakeup(&vm_pages_needed);
1492	}
1493}
1494
1495#if !defined(NO_SWAPPING)
1496static void
1497vm_req_vmdaemon()
1498{
1499	static int lastrun = 0;
1500
1501	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1502		wakeup(&vm_daemon_needed);
1503		lastrun = ticks;
1504	}
1505}
1506
1507static void
1508vm_daemon()
1509{
1510	struct proc *p;
1511	int breakout;
1512	struct thread *td;
1513
1514	mtx_lock(&Giant);
1515	while (TRUE) {
1516		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1517		if (vm_pageout_req_swapout) {
1518			swapout_procs(vm_pageout_req_swapout);
1519			vm_pageout_req_swapout = 0;
1520		}
1521		/*
1522		 * scan the processes for exceeding their rlimits or if
1523		 * process is swapped out -- deactivate pages
1524		 */
1525		sx_slock(&allproc_lock);
1526		LIST_FOREACH(p, &allproc, p_list) {
1527			vm_pindex_t limit, size;
1528
1529			/*
1530			 * if this is a system process or if we have already
1531			 * looked at this process, skip it.
1532			 */
1533			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1534				continue;
1535			}
1536			/*
1537			 * if the process is in a non-running type state,
1538			 * don't touch it.
1539			 */
1540			mtx_lock_spin(&sched_lock);
1541			breakout = 0;
1542			FOREACH_THREAD_IN_PROC(p, td) {
1543				if (!TD_ON_RUNQ(td) &&
1544				    !TD_IS_RUNNING(td) &&
1545				    !TD_IS_SLEEPING(td)) {
1546					breakout = 1;
1547					break;
1548				}
1549			}
1550			if (breakout) {
1551				mtx_unlock_spin(&sched_lock);
1552				continue;
1553			}
1554			/*
1555			 * get a limit
1556			 */
1557			limit = OFF_TO_IDX(
1558			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1559				p->p_rlimit[RLIMIT_RSS].rlim_max));
1560
1561			/*
1562			 * let processes that are swapped out really be
1563			 * swapped out set the limit to nothing (will force a
1564			 * swap-out.)
1565			 */
1566			if ((p->p_sflag & PS_INMEM) == 0)
1567				limit = 0;	/* XXX */
1568			mtx_unlock_spin(&sched_lock);
1569
1570			size = vmspace_resident_count(p->p_vmspace);
1571			if (limit >= 0 && size >= limit) {
1572				vm_pageout_map_deactivate_pages(
1573				    &p->p_vmspace->vm_map, limit);
1574			}
1575		}
1576		sx_sunlock(&allproc_lock);
1577	}
1578}
1579#endif			/* !defined(NO_SWAPPING) */
1580