vm_pageout.c revision 107185
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 107185 2002-11-23 08:08:54Z alc $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/eventhandler.h>
80#include <sys/lock.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/kthread.h>
84#include <sys/ktr.h>
85#include <sys/resourcevar.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#include <sys/vnode.h>
89#include <sys/vmmeter.h>
90#include <sys/sx.h>
91#include <sys/sysctl.h>
92
93#include <vm/vm.h>
94#include <vm/vm_param.h>
95#include <vm/vm_object.h>
96#include <vm/vm_page.h>
97#include <vm/vm_map.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/swap_pager.h>
101#include <vm/vm_extern.h>
102#include <vm/uma.h>
103
104#include <machine/mutex.h>
105
106/*
107 * System initialization
108 */
109
110/* the kernel process "vm_pageout"*/
111static void vm_pageout(void);
112static int vm_pageout_clean(vm_page_t);
113static void vm_pageout_pmap_collect(void);
114static void vm_pageout_scan(int pass);
115static int vm_pageout_free_page_calc(vm_size_t count);
116struct proc *pageproc;
117
118static struct kproc_desc page_kp = {
119	"pagedaemon",
120	vm_pageout,
121	&pageproc
122};
123SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
124
125#if !defined(NO_SWAPPING)
126/* the kernel process "vm_daemon"*/
127static void vm_daemon(void);
128static struct	proc *vmproc;
129
130static struct kproc_desc vm_kp = {
131	"vmdaemon",
132	vm_daemon,
133	&vmproc
134};
135SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
136#endif
137
138
139int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
140int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
141int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
142
143#if !defined(NO_SWAPPING)
144static int vm_pageout_req_swapout;	/* XXX */
145static int vm_daemon_needed;
146#endif
147extern int vm_swap_size;
148static int vm_max_launder = 32;
149static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
150static int vm_pageout_full_stats_interval = 0;
151static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
152static int defer_swap_pageouts=0;
153static int disable_swap_pageouts=0;
154
155#if defined(NO_SWAPPING)
156static int vm_swap_enabled=0;
157static int vm_swap_idle_enabled=0;
158#else
159static int vm_swap_enabled=1;
160static int vm_swap_idle_enabled=0;
161#endif
162
163SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
164	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
165
166SYSCTL_INT(_vm, OID_AUTO, max_launder,
167	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
170	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
173	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
176	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
177
178SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
179	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
180
181#if defined(NO_SWAPPING)
182SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183	CTLFLAG_RD, &vm_swap_enabled, 0, "");
184SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
186#else
187SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
188	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
189SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
190	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
191#endif
192
193SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
194	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
195
196SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
197	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
198
199static int pageout_lock_miss;
200SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
201	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
202
203#define VM_PAGEOUT_PAGE_COUNT 16
204int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
205
206int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
207
208#if !defined(NO_SWAPPING)
209typedef void freeer_fcn_t(vm_map_t, vm_object_t, vm_pindex_t, int);
210static void vm_pageout_map_deactivate_pages(vm_map_t, vm_pindex_t);
211static freeer_fcn_t vm_pageout_object_deactivate_pages;
212static void vm_req_vmdaemon(void);
213#endif
214static void vm_pageout_page_stats(void);
215
216/*
217 * vm_pageout_clean:
218 *
219 * Clean the page and remove it from the laundry.
220 *
221 * We set the busy bit to cause potential page faults on this page to
222 * block.  Note the careful timing, however, the busy bit isn't set till
223 * late and we cannot do anything that will mess with the page.
224 */
225static int
226vm_pageout_clean(m)
227	vm_page_t m;
228{
229	vm_object_t object;
230	vm_page_t mc[2*vm_pageout_page_count];
231	int pageout_count;
232	int ib, is, page_base;
233	vm_pindex_t pindex = m->pindex;
234
235	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
236
237	object = m->object;
238
239	/*
240	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
241	 * with the new swapper, but we could have serious problems paging
242	 * out other object types if there is insufficient memory.
243	 *
244	 * Unfortunately, checking free memory here is far too late, so the
245	 * check has been moved up a procedural level.
246	 */
247
248	/*
249	 * Don't mess with the page if it's busy, held, or special
250	 */
251	if ((m->hold_count != 0) ||
252	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
253		return 0;
254	}
255
256	mc[vm_pageout_page_count] = m;
257	pageout_count = 1;
258	page_base = vm_pageout_page_count;
259	ib = 1;
260	is = 1;
261
262	/*
263	 * Scan object for clusterable pages.
264	 *
265	 * We can cluster ONLY if: ->> the page is NOT
266	 * clean, wired, busy, held, or mapped into a
267	 * buffer, and one of the following:
268	 * 1) The page is inactive, or a seldom used
269	 *    active page.
270	 * -or-
271	 * 2) we force the issue.
272	 *
273	 * During heavy mmap/modification loads the pageout
274	 * daemon can really fragment the underlying file
275	 * due to flushing pages out of order and not trying
276	 * align the clusters (which leave sporatic out-of-order
277	 * holes).  To solve this problem we do the reverse scan
278	 * first and attempt to align our cluster, then do a
279	 * forward scan if room remains.
280	 */
281more:
282	while (ib && pageout_count < vm_pageout_page_count) {
283		vm_page_t p;
284
285		if (ib > pindex) {
286			ib = 0;
287			break;
288		}
289
290		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
291			ib = 0;
292			break;
293		}
294		if (((p->queue - p->pc) == PQ_CACHE) ||
295		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
296			ib = 0;
297			break;
298		}
299		vm_page_test_dirty(p);
300		if ((p->dirty & p->valid) == 0 ||
301		    p->queue != PQ_INACTIVE ||
302		    p->wire_count != 0 ||	/* may be held by buf cache */
303		    p->hold_count != 0) {	/* may be undergoing I/O */
304			ib = 0;
305			break;
306		}
307		mc[--page_base] = p;
308		++pageout_count;
309		++ib;
310		/*
311		 * alignment boundry, stop here and switch directions.  Do
312		 * not clear ib.
313		 */
314		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
315			break;
316	}
317
318	while (pageout_count < vm_pageout_page_count &&
319	    pindex + is < object->size) {
320		vm_page_t p;
321
322		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
323			break;
324		if (((p->queue - p->pc) == PQ_CACHE) ||
325		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
326			break;
327		}
328		vm_page_test_dirty(p);
329		if ((p->dirty & p->valid) == 0 ||
330		    p->queue != PQ_INACTIVE ||
331		    p->wire_count != 0 ||	/* may be held by buf cache */
332		    p->hold_count != 0) {	/* may be undergoing I/O */
333			break;
334		}
335		mc[page_base + pageout_count] = p;
336		++pageout_count;
337		++is;
338	}
339
340	/*
341	 * If we exhausted our forward scan, continue with the reverse scan
342	 * when possible, even past a page boundry.  This catches boundry
343	 * conditions.
344	 */
345	if (ib && pageout_count < vm_pageout_page_count)
346		goto more;
347
348	/*
349	 * we allow reads during pageouts...
350	 */
351	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
352}
353
354/*
355 * vm_pageout_flush() - launder the given pages
356 *
357 *	The given pages are laundered.  Note that we setup for the start of
358 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
359 *	reference count all in here rather then in the parent.  If we want
360 *	the parent to do more sophisticated things we may have to change
361 *	the ordering.
362 */
363int
364vm_pageout_flush(mc, count, flags)
365	vm_page_t *mc;
366	int count;
367	int flags;
368{
369	vm_object_t object;
370	int pageout_status[count];
371	int numpagedout = 0;
372	int i;
373
374	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
375	/*
376	 * Initiate I/O.  Bump the vm_page_t->busy counter and
377	 * mark the pages read-only.
378	 *
379	 * We do not have to fixup the clean/dirty bits here... we can
380	 * allow the pager to do it after the I/O completes.
381	 *
382	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
383	 * edge case with file fragments.
384	 */
385	for (i = 0; i < count; i++) {
386		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
387		vm_page_io_start(mc[i]);
388		pmap_page_protect(mc[i], VM_PROT_READ);
389	}
390	object = mc[0]->object;
391	vm_page_unlock_queues();
392	vm_object_pip_add(object, count);
393
394	vm_pager_put_pages(object, mc, count,
395	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
396	    pageout_status);
397
398	vm_page_lock_queues();
399	for (i = 0; i < count; i++) {
400		vm_page_t mt = mc[i];
401
402		switch (pageout_status[i]) {
403		case VM_PAGER_OK:
404			numpagedout++;
405			break;
406		case VM_PAGER_PEND:
407			numpagedout++;
408			break;
409		case VM_PAGER_BAD:
410			/*
411			 * Page outside of range of object. Right now we
412			 * essentially lose the changes by pretending it
413			 * worked.
414			 */
415			pmap_clear_modify(mt);
416			vm_page_undirty(mt);
417			break;
418		case VM_PAGER_ERROR:
419		case VM_PAGER_FAIL:
420			/*
421			 * If page couldn't be paged out, then reactivate the
422			 * page so it doesn't clog the inactive list.  (We
423			 * will try paging out it again later).
424			 */
425			vm_page_activate(mt);
426			break;
427		case VM_PAGER_AGAIN:
428			break;
429		}
430
431		/*
432		 * If the operation is still going, leave the page busy to
433		 * block all other accesses. Also, leave the paging in
434		 * progress indicator set so that we don't attempt an object
435		 * collapse.
436		 */
437		if (pageout_status[i] != VM_PAGER_PEND) {
438			vm_object_pip_wakeup(object);
439			vm_page_io_finish(mt);
440			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
441				pmap_page_protect(mt, VM_PROT_READ);
442		}
443	}
444	return numpagedout;
445}
446
447#if !defined(NO_SWAPPING)
448/*
449 *	vm_pageout_object_deactivate_pages
450 *
451 *	deactivate enough pages to satisfy the inactive target
452 *	requirements or if vm_page_proc_limit is set, then
453 *	deactivate all of the pages in the object and its
454 *	backing_objects.
455 *
456 *	The object and map must be locked.
457 */
458static void
459vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
460	vm_map_t map;
461	vm_object_t object;
462	vm_pindex_t desired;
463	int map_remove_only;
464{
465	vm_page_t p, next;
466	int actcount, rcount, remove_mode;
467
468	GIANT_REQUIRED;
469	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
470		return;
471
472	while (object) {
473		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
474			return;
475		if (object->paging_in_progress)
476			return;
477
478		remove_mode = map_remove_only;
479		if (object->shadow_count > 1)
480			remove_mode = 1;
481		/*
482		 * scan the objects entire memory queue
483		 */
484		rcount = object->resident_page_count;
485		p = TAILQ_FIRST(&object->memq);
486		vm_page_lock_queues();
487		while (p && (rcount-- > 0)) {
488			if (pmap_resident_count(map->pmap) <= desired) {
489				vm_page_unlock_queues();
490				return;
491			}
492			next = TAILQ_NEXT(p, listq);
493			cnt.v_pdpages++;
494			if (p->wire_count != 0 ||
495			    p->hold_count != 0 ||
496			    p->busy != 0 ||
497			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
498			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
499				p = next;
500				continue;
501			}
502			actcount = pmap_ts_referenced(p);
503			if (actcount) {
504				vm_page_flag_set(p, PG_REFERENCED);
505			} else if (p->flags & PG_REFERENCED) {
506				actcount = 1;
507			}
508			if ((p->queue != PQ_ACTIVE) &&
509				(p->flags & PG_REFERENCED)) {
510				vm_page_activate(p);
511				p->act_count += actcount;
512				vm_page_flag_clear(p, PG_REFERENCED);
513			} else if (p->queue == PQ_ACTIVE) {
514				if ((p->flags & PG_REFERENCED) == 0) {
515					p->act_count -= min(p->act_count, ACT_DECLINE);
516					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
517						pmap_remove_all(p);
518						vm_page_deactivate(p);
519					} else {
520						vm_pageq_requeue(p);
521					}
522				} else {
523					vm_page_activate(p);
524					vm_page_flag_clear(p, PG_REFERENCED);
525					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
526						p->act_count += ACT_ADVANCE;
527					vm_pageq_requeue(p);
528				}
529			} else if (p->queue == PQ_INACTIVE) {
530				pmap_remove_all(p);
531			}
532			p = next;
533		}
534		vm_page_unlock_queues();
535		object = object->backing_object;
536	}
537}
538
539/*
540 * deactivate some number of pages in a map, try to do it fairly, but
541 * that is really hard to do.
542 */
543static void
544vm_pageout_map_deactivate_pages(map, desired)
545	vm_map_t map;
546	vm_pindex_t desired;
547{
548	vm_map_entry_t tmpe;
549	vm_object_t obj, bigobj;
550	int nothingwired;
551
552	GIANT_REQUIRED;
553	if (!vm_map_trylock(map))
554		return;
555
556	bigobj = NULL;
557	nothingwired = TRUE;
558
559	/*
560	 * first, search out the biggest object, and try to free pages from
561	 * that.
562	 */
563	tmpe = map->header.next;
564	while (tmpe != &map->header) {
565		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
566			obj = tmpe->object.vm_object;
567			if ((obj != NULL) && (obj->shadow_count <= 1) &&
568				((bigobj == NULL) ||
569				 (bigobj->resident_page_count < obj->resident_page_count))) {
570				bigobj = obj;
571			}
572		}
573		if (tmpe->wired_count > 0)
574			nothingwired = FALSE;
575		tmpe = tmpe->next;
576	}
577
578	if (bigobj)
579		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
580
581	/*
582	 * Next, hunt around for other pages to deactivate.  We actually
583	 * do this search sort of wrong -- .text first is not the best idea.
584	 */
585	tmpe = map->header.next;
586	while (tmpe != &map->header) {
587		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
588			break;
589		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
590			obj = tmpe->object.vm_object;
591			if (obj)
592				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
593		}
594		tmpe = tmpe->next;
595	};
596
597	/*
598	 * Remove all mappings if a process is swapped out, this will free page
599	 * table pages.
600	 */
601	if (desired == 0 && nothingwired)
602		pmap_remove(vm_map_pmap(map), vm_map_min(map),
603		    vm_map_max(map));
604	vm_map_unlock(map);
605	return;
606}
607#endif		/* !defined(NO_SWAPPING) */
608
609/*
610 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
611 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
612 * which we know can be trivially freed.
613 */
614void
615vm_pageout_page_free(vm_page_t m)
616{
617	vm_object_t object = m->object;
618	int type = object->type;
619
620	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
621	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
622		vm_object_reference(object);
623	vm_page_busy(m);
624	pmap_remove_all(m);
625	vm_page_free(m);
626	cnt.v_dfree++;
627	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
628		vm_object_deallocate(object);
629}
630
631/*
632 * This routine is very drastic, but can save the system
633 * in a pinch.
634 */
635static void
636vm_pageout_pmap_collect(void)
637{
638	int i;
639	vm_page_t m;
640	static int warningdone;
641
642	if (pmap_pagedaemon_waken == 0)
643		return;
644	if (warningdone < 5) {
645		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
646		warningdone++;
647	}
648	vm_page_lock_queues();
649	for (i = 0; i < vm_page_array_size; i++) {
650		m = &vm_page_array[i];
651		if (m->wire_count || m->hold_count || m->busy ||
652		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
653			continue;
654		pmap_remove_all(m);
655	}
656	vm_page_unlock_queues();
657	pmap_pagedaemon_waken = 0;
658}
659
660/*
661 *	vm_pageout_scan does the dirty work for the pageout daemon.
662 */
663static void
664vm_pageout_scan(int pass)
665{
666	vm_page_t m, next;
667	struct vm_page marker;
668	int save_page_shortage;
669	int save_inactive_count;
670	int page_shortage, maxscan, pcount;
671	int addl_page_shortage, addl_page_shortage_init;
672	struct proc *p, *bigproc;
673	vm_offset_t size, bigsize;
674	vm_object_t object;
675	int actcount;
676	int vnodes_skipped = 0;
677	int maxlaunder;
678	int s;
679	struct thread *td;
680
681	GIANT_REQUIRED;
682	/*
683	 * Decrease registered cache sizes.
684	 */
685	EVENTHANDLER_INVOKE(vm_lowmem, 0);
686	/*
687	 * We do this explicitly after the caches have been drained above.
688	 */
689	uma_reclaim();
690	/*
691	 * Do whatever cleanup that the pmap code can.
692	 */
693	vm_pageout_pmap_collect();
694
695	addl_page_shortage_init = vm_pageout_deficit;
696	vm_pageout_deficit = 0;
697
698	/*
699	 * Calculate the number of pages we want to either free or move
700	 * to the cache.
701	 */
702	page_shortage = vm_paging_target() + addl_page_shortage_init;
703	save_page_shortage = page_shortage;
704	save_inactive_count = cnt.v_inactive_count;
705
706	/*
707	 * Initialize our marker
708	 */
709	bzero(&marker, sizeof(marker));
710	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
711	marker.queue = PQ_INACTIVE;
712	marker.wire_count = 1;
713
714	/*
715	 * Start scanning the inactive queue for pages we can move to the
716	 * cache or free.  The scan will stop when the target is reached or
717	 * we have scanned the entire inactive queue.  Note that m->act_count
718	 * is not used to form decisions for the inactive queue, only for the
719	 * active queue.
720	 *
721	 * maxlaunder limits the number of dirty pages we flush per scan.
722	 * For most systems a smaller value (16 or 32) is more robust under
723	 * extreme memory and disk pressure because any unnecessary writes
724	 * to disk can result in extreme performance degredation.  However,
725	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
726	 * used) will die horribly with limited laundering.  If the pageout
727	 * daemon cannot clean enough pages in the first pass, we let it go
728	 * all out in succeeding passes.
729	 */
730	if ((maxlaunder = vm_max_launder) <= 1)
731		maxlaunder = 1;
732	if (pass)
733		maxlaunder = 10000;
734rescan0:
735	addl_page_shortage = addl_page_shortage_init;
736	maxscan = cnt.v_inactive_count;
737
738	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
739	     m != NULL && maxscan-- > 0 && page_shortage > 0;
740	     m = next) {
741
742		cnt.v_pdpages++;
743
744		if (m->queue != PQ_INACTIVE) {
745			goto rescan0;
746		}
747
748		next = TAILQ_NEXT(m, pageq);
749
750		/*
751		 * skip marker pages
752		 */
753		if (m->flags & PG_MARKER)
754			continue;
755
756		/*
757		 * A held page may be undergoing I/O, so skip it.
758		 */
759		if (m->hold_count) {
760			vm_pageq_requeue(m);
761			addl_page_shortage++;
762			continue;
763		}
764		/*
765		 * Don't mess with busy pages, keep in the front of the
766		 * queue, most likely are being paged out.
767		 */
768		if (m->busy || (m->flags & PG_BUSY)) {
769			addl_page_shortage++;
770			continue;
771		}
772
773		/*
774		 * If the object is not being used, we ignore previous
775		 * references.
776		 */
777		if (m->object->ref_count == 0) {
778			vm_page_flag_clear(m, PG_REFERENCED);
779			pmap_clear_reference(m);
780
781		/*
782		 * Otherwise, if the page has been referenced while in the
783		 * inactive queue, we bump the "activation count" upwards,
784		 * making it less likely that the page will be added back to
785		 * the inactive queue prematurely again.  Here we check the
786		 * page tables (or emulated bits, if any), given the upper
787		 * level VM system not knowing anything about existing
788		 * references.
789		 */
790		} else if (((m->flags & PG_REFERENCED) == 0) &&
791			(actcount = pmap_ts_referenced(m))) {
792			vm_page_lock_queues();
793			vm_page_activate(m);
794			vm_page_unlock_queues();
795			m->act_count += (actcount + ACT_ADVANCE);
796			continue;
797		}
798
799		/*
800		 * If the upper level VM system knows about any page
801		 * references, we activate the page.  We also set the
802		 * "activation count" higher than normal so that we will less
803		 * likely place pages back onto the inactive queue again.
804		 */
805		if ((m->flags & PG_REFERENCED) != 0) {
806			vm_page_flag_clear(m, PG_REFERENCED);
807			actcount = pmap_ts_referenced(m);
808			vm_page_lock_queues();
809			vm_page_activate(m);
810			vm_page_unlock_queues();
811			m->act_count += (actcount + ACT_ADVANCE + 1);
812			continue;
813		}
814
815		/*
816		 * If the upper level VM system doesn't know anything about
817		 * the page being dirty, we have to check for it again.  As
818		 * far as the VM code knows, any partially dirty pages are
819		 * fully dirty.
820		 */
821		if (m->dirty == 0) {
822			vm_page_test_dirty(m);
823		} else {
824			vm_page_dirty(m);
825		}
826
827		/*
828		 * Invalid pages can be easily freed
829		 */
830		if (m->valid == 0) {
831			vm_page_lock_queues();
832			vm_pageout_page_free(m);
833			vm_page_unlock_queues();
834			--page_shortage;
835
836		/*
837		 * Clean pages can be placed onto the cache queue.  This
838		 * effectively frees them.
839		 */
840		} else if (m->dirty == 0) {
841			vm_page_lock_queues();
842			vm_page_cache(m);
843			vm_page_unlock_queues();
844			--page_shortage;
845		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
846			/*
847			 * Dirty pages need to be paged out, but flushing
848			 * a page is extremely expensive verses freeing
849			 * a clean page.  Rather then artificially limiting
850			 * the number of pages we can flush, we instead give
851			 * dirty pages extra priority on the inactive queue
852			 * by forcing them to be cycled through the queue
853			 * twice before being flushed, after which the
854			 * (now clean) page will cycle through once more
855			 * before being freed.  This significantly extends
856			 * the thrash point for a heavily loaded machine.
857			 */
858			vm_page_flag_set(m, PG_WINATCFLS);
859			vm_pageq_requeue(m);
860		} else if (maxlaunder > 0) {
861			/*
862			 * We always want to try to flush some dirty pages if
863			 * we encounter them, to keep the system stable.
864			 * Normally this number is small, but under extreme
865			 * pressure where there are insufficient clean pages
866			 * on the inactive queue, we may have to go all out.
867			 */
868			int swap_pageouts_ok;
869			struct vnode *vp = NULL;
870			struct mount *mp;
871
872			object = m->object;
873
874			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
875				swap_pageouts_ok = 1;
876			} else {
877				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
878				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
879				vm_page_count_min());
880
881			}
882
883			/*
884			 * We don't bother paging objects that are "dead".
885			 * Those objects are in a "rundown" state.
886			 */
887			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
888				vm_pageq_requeue(m);
889				continue;
890			}
891
892			/*
893			 * The object is already known NOT to be dead.   It
894			 * is possible for the vget() to block the whole
895			 * pageout daemon, but the new low-memory handling
896			 * code should prevent it.
897			 *
898			 * The previous code skipped locked vnodes and, worse,
899			 * reordered pages in the queue.  This results in
900			 * completely non-deterministic operation and, on a
901			 * busy system, can lead to extremely non-optimal
902			 * pageouts.  For example, it can cause clean pages
903			 * to be freed and dirty pages to be moved to the end
904			 * of the queue.  Since dirty pages are also moved to
905			 * the end of the queue once-cleaned, this gives
906			 * way too large a weighting to defering the freeing
907			 * of dirty pages.
908			 *
909			 * We can't wait forever for the vnode lock, we might
910			 * deadlock due to a vn_read() getting stuck in
911			 * vm_wait while holding this vnode.  We skip the
912			 * vnode if we can't get it in a reasonable amount
913			 * of time.
914			 */
915			if (object->type == OBJT_VNODE) {
916				vp = object->handle;
917
918				mp = NULL;
919				if (vp->v_type == VREG)
920					vn_start_write(vp, &mp, V_NOWAIT);
921				if (vget(vp, LK_EXCLUSIVE|LK_TIMELOCK, curthread)) {
922					++pageout_lock_miss;
923					vn_finished_write(mp);
924					if (object->flags & OBJ_MIGHTBEDIRTY)
925						vnodes_skipped++;
926					continue;
927				}
928
929				/*
930				 * The page might have been moved to another
931				 * queue during potential blocking in vget()
932				 * above.  The page might have been freed and
933				 * reused for another vnode.  The object might
934				 * have been reused for another vnode.
935				 */
936				if (m->queue != PQ_INACTIVE ||
937				    m->object != object ||
938				    object->handle != vp) {
939					if (object->flags & OBJ_MIGHTBEDIRTY)
940						vnodes_skipped++;
941					vput(vp);
942					vn_finished_write(mp);
943					continue;
944				}
945
946				/*
947				 * The page may have been busied during the
948				 * blocking in vput();  We don't move the
949				 * page back onto the end of the queue so that
950				 * statistics are more correct if we don't.
951				 */
952				if (m->busy || (m->flags & PG_BUSY)) {
953					vput(vp);
954					vn_finished_write(mp);
955					continue;
956				}
957
958				/*
959				 * If the page has become held it might
960				 * be undergoing I/O, so skip it
961				 */
962				if (m->hold_count) {
963					vm_pageq_requeue(m);
964					if (object->flags & OBJ_MIGHTBEDIRTY)
965						vnodes_skipped++;
966					vput(vp);
967					vn_finished_write(mp);
968					continue;
969				}
970			}
971
972			/*
973			 * If a page is dirty, then it is either being washed
974			 * (but not yet cleaned) or it is still in the
975			 * laundry.  If it is still in the laundry, then we
976			 * start the cleaning operation.
977			 *
978			 * This operation may cluster, invalidating the 'next'
979			 * pointer.  To prevent an inordinate number of
980			 * restarts we use our marker to remember our place.
981			 *
982			 * decrement page_shortage on success to account for
983			 * the (future) cleaned page.  Otherwise we could wind
984			 * up laundering or cleaning too many pages.
985			 */
986			vm_page_lock_queues();
987			s = splvm();
988			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
989			splx(s);
990			if (vm_pageout_clean(m) != 0) {
991				--page_shortage;
992				--maxlaunder;
993			}
994			s = splvm();
995			next = TAILQ_NEXT(&marker, pageq);
996			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
997			splx(s);
998			vm_page_unlock_queues();
999			if (vp) {
1000				vput(vp);
1001				vn_finished_write(mp);
1002			}
1003		}
1004	}
1005
1006	/*
1007	 * Compute the number of pages we want to try to move from the
1008	 * active queue to the inactive queue.
1009	 */
1010	page_shortage = vm_paging_target() +
1011		cnt.v_inactive_target - cnt.v_inactive_count;
1012	page_shortage += addl_page_shortage;
1013
1014	vm_page_lock_queues();
1015	/*
1016	 * Scan the active queue for things we can deactivate. We nominally
1017	 * track the per-page activity counter and use it to locate
1018	 * deactivation candidates.
1019	 */
1020	pcount = cnt.v_active_count;
1021	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1022
1023	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1024
1025		/*
1026		 * This is a consistency check, and should likely be a panic
1027		 * or warning.
1028		 */
1029		if (m->queue != PQ_ACTIVE) {
1030			break;
1031		}
1032
1033		next = TAILQ_NEXT(m, pageq);
1034		/*
1035		 * Don't deactivate pages that are busy.
1036		 */
1037		if ((m->busy != 0) ||
1038		    (m->flags & PG_BUSY) ||
1039		    (m->hold_count != 0)) {
1040			vm_pageq_requeue(m);
1041			m = next;
1042			continue;
1043		}
1044
1045		/*
1046		 * The count for pagedaemon pages is done after checking the
1047		 * page for eligibility...
1048		 */
1049		cnt.v_pdpages++;
1050
1051		/*
1052		 * Check to see "how much" the page has been used.
1053		 */
1054		actcount = 0;
1055		if (m->object->ref_count != 0) {
1056			if (m->flags & PG_REFERENCED) {
1057				actcount += 1;
1058			}
1059			actcount += pmap_ts_referenced(m);
1060			if (actcount) {
1061				m->act_count += ACT_ADVANCE + actcount;
1062				if (m->act_count > ACT_MAX)
1063					m->act_count = ACT_MAX;
1064			}
1065		}
1066
1067		/*
1068		 * Since we have "tested" this bit, we need to clear it now.
1069		 */
1070		vm_page_flag_clear(m, PG_REFERENCED);
1071
1072		/*
1073		 * Only if an object is currently being used, do we use the
1074		 * page activation count stats.
1075		 */
1076		if (actcount && (m->object->ref_count != 0)) {
1077			vm_pageq_requeue(m);
1078		} else {
1079			m->act_count -= min(m->act_count, ACT_DECLINE);
1080			if (vm_pageout_algorithm ||
1081			    m->object->ref_count == 0 ||
1082			    m->act_count == 0) {
1083				page_shortage--;
1084				if (m->object->ref_count == 0) {
1085					pmap_remove_all(m);
1086					if (m->dirty == 0)
1087						vm_page_cache(m);
1088					else
1089						vm_page_deactivate(m);
1090				} else {
1091					vm_page_deactivate(m);
1092				}
1093			} else {
1094				vm_pageq_requeue(m);
1095			}
1096		}
1097		m = next;
1098	}
1099	s = splvm();
1100
1101	/*
1102	 * We try to maintain some *really* free pages, this allows interrupt
1103	 * code to be guaranteed space.  Since both cache and free queues
1104	 * are considered basically 'free', moving pages from cache to free
1105	 * does not effect other calculations.
1106	 */
1107	while (cnt.v_free_count < cnt.v_free_reserved) {
1108		static int cache_rover = 0;
1109		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1110		if (!m)
1111			break;
1112		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1113		    m->busy ||
1114		    m->hold_count ||
1115		    m->wire_count) {
1116#ifdef INVARIANTS
1117			printf("Warning: busy page %p found in cache\n", m);
1118#endif
1119			vm_page_deactivate(m);
1120			continue;
1121		}
1122		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1123		vm_pageout_page_free(m);
1124	}
1125	splx(s);
1126	vm_page_unlock_queues();
1127#if !defined(NO_SWAPPING)
1128	/*
1129	 * Idle process swapout -- run once per second.
1130	 */
1131	if (vm_swap_idle_enabled) {
1132		static long lsec;
1133		if (time_second != lsec) {
1134			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1135			vm_req_vmdaemon();
1136			lsec = time_second;
1137		}
1138	}
1139#endif
1140
1141	/*
1142	 * If we didn't get enough free pages, and we have skipped a vnode
1143	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1144	 * if we did not get enough free pages.
1145	 */
1146	if (vm_paging_target() > 0) {
1147		if (vnodes_skipped && vm_page_count_min())
1148			(void) speedup_syncer();
1149#if !defined(NO_SWAPPING)
1150		if (vm_swap_enabled && vm_page_count_target()) {
1151			vm_req_vmdaemon();
1152			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1153		}
1154#endif
1155	}
1156
1157	/*
1158	 * If we are out of swap and were not able to reach our paging
1159	 * target, kill the largest process.
1160	 *
1161	 * We keep the process bigproc locked once we find it to keep anyone
1162	 * from messing with it; however, there is a possibility of
1163	 * deadlock if process B is bigproc and one of it's child processes
1164	 * attempts to propagate a signal to B while we are waiting for A's
1165	 * lock while walking this list.  To avoid this, we don't block on
1166	 * the process lock but just skip a process if it is already locked.
1167	 */
1168	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1169	    (swap_pager_full && vm_paging_target() > 0)) {
1170#if 0
1171	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1172#endif
1173		bigproc = NULL;
1174		bigsize = 0;
1175		sx_slock(&allproc_lock);
1176		FOREACH_PROC_IN_SYSTEM(p) {
1177			int breakout;
1178			/*
1179			 * If this process is already locked, skip it.
1180			 */
1181			if (PROC_TRYLOCK(p) == 0)
1182				continue;
1183			/*
1184			 * if this is a system process, skip it
1185			 */
1186			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1187			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1188				PROC_UNLOCK(p);
1189				continue;
1190			}
1191			/*
1192			 * if the process is in a non-running type state,
1193			 * don't touch it. Check all the threads individually.
1194			 */
1195			mtx_lock_spin(&sched_lock);
1196			breakout = 0;
1197			FOREACH_THREAD_IN_PROC(p, td) {
1198				if (!TD_ON_RUNQ(td) &&
1199				    !TD_IS_RUNNING(td) &&
1200				    !TD_IS_SLEEPING(td)) {
1201					breakout = 1;
1202					break;
1203				}
1204			}
1205			if (breakout) {
1206				mtx_unlock_spin(&sched_lock);
1207				PROC_UNLOCK(p);
1208				continue;
1209			}
1210			mtx_unlock_spin(&sched_lock);
1211			/*
1212			 * get the process size
1213			 */
1214			size = vmspace_resident_count(p->p_vmspace) +
1215				vmspace_swap_count(p->p_vmspace);
1216			/*
1217			 * if the this process is bigger than the biggest one
1218			 * remember it.
1219			 */
1220			if (size > bigsize) {
1221				if (bigproc != NULL)
1222					PROC_UNLOCK(bigproc);
1223				bigproc = p;
1224				bigsize = size;
1225			} else
1226				PROC_UNLOCK(p);
1227		}
1228		sx_sunlock(&allproc_lock);
1229		if (bigproc != NULL) {
1230			struct ksegrp *kg;
1231			killproc(bigproc, "out of swap space");
1232			mtx_lock_spin(&sched_lock);
1233			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1234				sched_nice(kg, PRIO_MIN); /* XXXKSE ??? */
1235			}
1236			mtx_unlock_spin(&sched_lock);
1237			PROC_UNLOCK(bigproc);
1238			wakeup(&cnt.v_free_count);
1239		}
1240	}
1241}
1242
1243/*
1244 * This routine tries to maintain the pseudo LRU active queue,
1245 * so that during long periods of time where there is no paging,
1246 * that some statistic accumulation still occurs.  This code
1247 * helps the situation where paging just starts to occur.
1248 */
1249static void
1250vm_pageout_page_stats()
1251{
1252	vm_page_t m,next;
1253	int pcount,tpcount;		/* Number of pages to check */
1254	static int fullintervalcount = 0;
1255	int page_shortage;
1256	int s0;
1257
1258	page_shortage =
1259	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1260	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1261
1262	if (page_shortage <= 0)
1263		return;
1264
1265	s0 = splvm();
1266	vm_page_lock_queues();
1267	pcount = cnt.v_active_count;
1268	fullintervalcount += vm_pageout_stats_interval;
1269	if (fullintervalcount < vm_pageout_full_stats_interval) {
1270		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1271		if (pcount > tpcount)
1272			pcount = tpcount;
1273	} else {
1274		fullintervalcount = 0;
1275	}
1276
1277	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1278	while ((m != NULL) && (pcount-- > 0)) {
1279		int actcount;
1280
1281		if (m->queue != PQ_ACTIVE) {
1282			break;
1283		}
1284
1285		next = TAILQ_NEXT(m, pageq);
1286		/*
1287		 * Don't deactivate pages that are busy.
1288		 */
1289		if ((m->busy != 0) ||
1290		    (m->flags & PG_BUSY) ||
1291		    (m->hold_count != 0)) {
1292			vm_pageq_requeue(m);
1293			m = next;
1294			continue;
1295		}
1296
1297		actcount = 0;
1298		if (m->flags & PG_REFERENCED) {
1299			vm_page_flag_clear(m, PG_REFERENCED);
1300			actcount += 1;
1301		}
1302
1303		actcount += pmap_ts_referenced(m);
1304		if (actcount) {
1305			m->act_count += ACT_ADVANCE + actcount;
1306			if (m->act_count > ACT_MAX)
1307				m->act_count = ACT_MAX;
1308			vm_pageq_requeue(m);
1309		} else {
1310			if (m->act_count == 0) {
1311				/*
1312				 * We turn off page access, so that we have
1313				 * more accurate RSS stats.  We don't do this
1314				 * in the normal page deactivation when the
1315				 * system is loaded VM wise, because the
1316				 * cost of the large number of page protect
1317				 * operations would be higher than the value
1318				 * of doing the operation.
1319				 */
1320				pmap_remove_all(m);
1321				vm_page_deactivate(m);
1322			} else {
1323				m->act_count -= min(m->act_count, ACT_DECLINE);
1324				vm_pageq_requeue(m);
1325			}
1326		}
1327
1328		m = next;
1329	}
1330	vm_page_unlock_queues();
1331	splx(s0);
1332}
1333
1334static int
1335vm_pageout_free_page_calc(count)
1336vm_size_t count;
1337{
1338	if (count < cnt.v_page_count)
1339		 return 0;
1340	/*
1341	 * free_reserved needs to include enough for the largest swap pager
1342	 * structures plus enough for any pv_entry structs when paging.
1343	 */
1344	if (cnt.v_page_count > 1024)
1345		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1346	else
1347		cnt.v_free_min = 4;
1348	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1349		cnt.v_interrupt_free_min;
1350	cnt.v_free_reserved = vm_pageout_page_count +
1351		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1352	cnt.v_free_severe = cnt.v_free_min / 2;
1353	cnt.v_free_min += cnt.v_free_reserved;
1354	cnt.v_free_severe += cnt.v_free_reserved;
1355	return 1;
1356}
1357
1358/*
1359 *	vm_pageout is the high level pageout daemon.
1360 */
1361static void
1362vm_pageout()
1363{
1364	int pass;
1365
1366	mtx_lock(&Giant);
1367
1368	/*
1369	 * Initialize some paging parameters.
1370	 */
1371	cnt.v_interrupt_free_min = 2;
1372	if (cnt.v_page_count < 2000)
1373		vm_pageout_page_count = 8;
1374
1375	vm_pageout_free_page_calc(cnt.v_page_count);
1376	/*
1377	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1378	 * that these are more a measure of the VM cache queue hysteresis
1379	 * then the VM free queue.  Specifically, v_free_target is the
1380	 * high water mark (free+cache pages).
1381	 *
1382	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1383	 * low water mark, while v_free_min is the stop.  v_cache_min must
1384	 * be big enough to handle memory needs while the pageout daemon
1385	 * is signalled and run to free more pages.
1386	 */
1387	if (cnt.v_free_count > 6144)
1388		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1389	else
1390		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1391
1392	if (cnt.v_free_count > 2048) {
1393		cnt.v_cache_min = cnt.v_free_target;
1394		cnt.v_cache_max = 2 * cnt.v_cache_min;
1395		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1396	} else {
1397		cnt.v_cache_min = 0;
1398		cnt.v_cache_max = 0;
1399		cnt.v_inactive_target = cnt.v_free_count / 4;
1400	}
1401	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1402		cnt.v_inactive_target = cnt.v_free_count / 3;
1403
1404	/* XXX does not really belong here */
1405	if (vm_page_max_wired == 0)
1406		vm_page_max_wired = cnt.v_free_count / 3;
1407
1408	if (vm_pageout_stats_max == 0)
1409		vm_pageout_stats_max = cnt.v_free_target;
1410
1411	/*
1412	 * Set interval in seconds for stats scan.
1413	 */
1414	if (vm_pageout_stats_interval == 0)
1415		vm_pageout_stats_interval = 5;
1416	if (vm_pageout_full_stats_interval == 0)
1417		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1418
1419	/*
1420	 * Set maximum free per pass
1421	 */
1422	if (vm_pageout_stats_free_max == 0)
1423		vm_pageout_stats_free_max = 5;
1424
1425	swap_pager_swap_init();
1426	pass = 0;
1427	/*
1428	 * The pageout daemon is never done, so loop forever.
1429	 */
1430	while (TRUE) {
1431		int error;
1432		int s = splvm();
1433
1434		/*
1435		 * If we have enough free memory, wakeup waiters.  Do
1436		 * not clear vm_pages_needed until we reach our target,
1437		 * otherwise we may be woken up over and over again and
1438		 * waste a lot of cpu.
1439		 */
1440		if (vm_pages_needed && !vm_page_count_min()) {
1441			if (vm_paging_needed() <= 0)
1442				vm_pages_needed = 0;
1443			wakeup(&cnt.v_free_count);
1444		}
1445		if (vm_pages_needed) {
1446			/*
1447			 * Still not done, take a second pass without waiting
1448			 * (unlimited dirty cleaning), otherwise sleep a bit
1449			 * and try again.
1450			 */
1451			++pass;
1452			if (pass > 1)
1453				tsleep(&vm_pages_needed, PVM,
1454				       "psleep", hz/2);
1455		} else {
1456			/*
1457			 * Good enough, sleep & handle stats.  Prime the pass
1458			 * for the next run.
1459			 */
1460			if (pass > 1)
1461				pass = 1;
1462			else
1463				pass = 0;
1464			error = tsleep(&vm_pages_needed, PVM,
1465				    "psleep", vm_pageout_stats_interval * hz);
1466			if (error && !vm_pages_needed) {
1467				splx(s);
1468				pass = 0;
1469				vm_pageout_page_stats();
1470				continue;
1471			}
1472		}
1473
1474		if (vm_pages_needed)
1475			cnt.v_pdwakeups++;
1476		splx(s);
1477		vm_pageout_scan(pass);
1478		vm_pageout_deficit = 0;
1479	}
1480}
1481
1482void
1483pagedaemon_wakeup()
1484{
1485	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1486		vm_pages_needed++;
1487		wakeup(&vm_pages_needed);
1488	}
1489}
1490
1491#if !defined(NO_SWAPPING)
1492static void
1493vm_req_vmdaemon()
1494{
1495	static int lastrun = 0;
1496
1497	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1498		wakeup(&vm_daemon_needed);
1499		lastrun = ticks;
1500	}
1501}
1502
1503static void
1504vm_daemon()
1505{
1506	struct proc *p;
1507	int breakout;
1508	struct thread *td;
1509
1510	mtx_lock(&Giant);
1511	while (TRUE) {
1512		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1513		if (vm_pageout_req_swapout) {
1514			swapout_procs(vm_pageout_req_swapout);
1515			vm_pageout_req_swapout = 0;
1516		}
1517		/*
1518		 * scan the processes for exceeding their rlimits or if
1519		 * process is swapped out -- deactivate pages
1520		 */
1521		sx_slock(&allproc_lock);
1522		LIST_FOREACH(p, &allproc, p_list) {
1523			vm_pindex_t limit, size;
1524
1525			/*
1526			 * if this is a system process or if we have already
1527			 * looked at this process, skip it.
1528			 */
1529			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1530				continue;
1531			}
1532			/*
1533			 * if the process is in a non-running type state,
1534			 * don't touch it.
1535			 */
1536			mtx_lock_spin(&sched_lock);
1537			breakout = 0;
1538			FOREACH_THREAD_IN_PROC(p, td) {
1539				if (!TD_ON_RUNQ(td) &&
1540				    !TD_IS_RUNNING(td) &&
1541				    !TD_IS_SLEEPING(td)) {
1542					breakout = 1;
1543					break;
1544				}
1545			}
1546			if (breakout) {
1547				mtx_unlock_spin(&sched_lock);
1548				continue;
1549			}
1550			/*
1551			 * get a limit
1552			 */
1553			limit = OFF_TO_IDX(
1554			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1555				p->p_rlimit[RLIMIT_RSS].rlim_max));
1556
1557			/*
1558			 * let processes that are swapped out really be
1559			 * swapped out set the limit to nothing (will force a
1560			 * swap-out.)
1561			 */
1562			if ((p->p_sflag & PS_INMEM) == 0)
1563				limit = 0;	/* XXX */
1564			mtx_unlock_spin(&sched_lock);
1565
1566			size = vmspace_resident_count(p->p_vmspace);
1567			if (limit >= 0 && size >= limit) {
1568				vm_pageout_map_deactivate_pages(
1569				    &p->p_vmspace->vm_map, limit);
1570			}
1571		}
1572		sx_sunlock(&allproc_lock);
1573	}
1574}
1575#endif			/* !defined(NO_SWAPPING) */
1576