vm_pageout.c revision 107136
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 107136 2002-11-21 09:17:56Z jeff $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/eventhandler.h>
80#include <sys/lock.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/kthread.h>
84#include <sys/ktr.h>
85#include <sys/resourcevar.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#include <sys/vnode.h>
89#include <sys/vmmeter.h>
90#include <sys/sx.h>
91#include <sys/sysctl.h>
92
93#include <vm/vm.h>
94#include <vm/vm_param.h>
95#include <vm/vm_object.h>
96#include <vm/vm_page.h>
97#include <vm/vm_map.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/swap_pager.h>
101#include <vm/vm_extern.h>
102#include <vm/uma.h>
103
104#include <machine/mutex.h>
105
106/*
107 * System initialization
108 */
109
110/* the kernel process "vm_pageout"*/
111static void vm_pageout(void);
112static int vm_pageout_clean(vm_page_t);
113static void vm_pageout_pmap_collect(void);
114static void vm_pageout_scan(int pass);
115static int vm_pageout_free_page_calc(vm_size_t count);
116struct proc *pageproc;
117
118static struct kproc_desc page_kp = {
119	"pagedaemon",
120	vm_pageout,
121	&pageproc
122};
123SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
124
125#if !defined(NO_SWAPPING)
126/* the kernel process "vm_daemon"*/
127static void vm_daemon(void);
128static struct	proc *vmproc;
129
130static struct kproc_desc vm_kp = {
131	"vmdaemon",
132	vm_daemon,
133	&vmproc
134};
135SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
136#endif
137
138
139int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
140int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
141int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
142
143#if !defined(NO_SWAPPING)
144static int vm_pageout_req_swapout;	/* XXX */
145static int vm_daemon_needed;
146#endif
147extern int vm_swap_size;
148static int vm_max_launder = 32;
149static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
150static int vm_pageout_full_stats_interval = 0;
151static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
152static int defer_swap_pageouts=0;
153static int disable_swap_pageouts=0;
154
155#if defined(NO_SWAPPING)
156static int vm_swap_enabled=0;
157static int vm_swap_idle_enabled=0;
158#else
159static int vm_swap_enabled=1;
160static int vm_swap_idle_enabled=0;
161#endif
162
163SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
164	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
165
166SYSCTL_INT(_vm, OID_AUTO, max_launder,
167	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
170	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
173	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
176	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
177
178SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
179	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
180
181#if defined(NO_SWAPPING)
182SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183	CTLFLAG_RD, &vm_swap_enabled, 0, "");
184SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
186#else
187SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
188	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
189SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
190	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
191#endif
192
193SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
194	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
195
196SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
197	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
198
199static int pageout_lock_miss;
200SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
201	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
202
203#define VM_PAGEOUT_PAGE_COUNT 16
204int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
205
206int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
207
208#if !defined(NO_SWAPPING)
209typedef void freeer_fcn_t(vm_map_t, vm_object_t, vm_pindex_t, int);
210static void vm_pageout_map_deactivate_pages(vm_map_t, vm_pindex_t);
211static freeer_fcn_t vm_pageout_object_deactivate_pages;
212static void vm_req_vmdaemon(void);
213#endif
214static void vm_pageout_page_stats(void);
215
216/*
217 * vm_pageout_clean:
218 *
219 * Clean the page and remove it from the laundry.
220 *
221 * We set the busy bit to cause potential page faults on this page to
222 * block.  Note the careful timing, however, the busy bit isn't set till
223 * late and we cannot do anything that will mess with the page.
224 */
225static int
226vm_pageout_clean(m)
227	vm_page_t m;
228{
229	vm_object_t object;
230	vm_page_t mc[2*vm_pageout_page_count];
231	int pageout_count;
232	int ib, is, page_base;
233	vm_pindex_t pindex = m->pindex;
234
235	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
236
237	object = m->object;
238
239	/*
240	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
241	 * with the new swapper, but we could have serious problems paging
242	 * out other object types if there is insufficient memory.
243	 *
244	 * Unfortunately, checking free memory here is far too late, so the
245	 * check has been moved up a procedural level.
246	 */
247
248	/*
249	 * Don't mess with the page if it's busy, held, or special
250	 */
251	if ((m->hold_count != 0) ||
252	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
253		return 0;
254	}
255
256	mc[vm_pageout_page_count] = m;
257	pageout_count = 1;
258	page_base = vm_pageout_page_count;
259	ib = 1;
260	is = 1;
261
262	/*
263	 * Scan object for clusterable pages.
264	 *
265	 * We can cluster ONLY if: ->> the page is NOT
266	 * clean, wired, busy, held, or mapped into a
267	 * buffer, and one of the following:
268	 * 1) The page is inactive, or a seldom used
269	 *    active page.
270	 * -or-
271	 * 2) we force the issue.
272	 *
273	 * During heavy mmap/modification loads the pageout
274	 * daemon can really fragment the underlying file
275	 * due to flushing pages out of order and not trying
276	 * align the clusters (which leave sporatic out-of-order
277	 * holes).  To solve this problem we do the reverse scan
278	 * first and attempt to align our cluster, then do a
279	 * forward scan if room remains.
280	 */
281more:
282	while (ib && pageout_count < vm_pageout_page_count) {
283		vm_page_t p;
284
285		if (ib > pindex) {
286			ib = 0;
287			break;
288		}
289
290		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
291			ib = 0;
292			break;
293		}
294		if (((p->queue - p->pc) == PQ_CACHE) ||
295		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
296			ib = 0;
297			break;
298		}
299		vm_page_test_dirty(p);
300		if ((p->dirty & p->valid) == 0 ||
301		    p->queue != PQ_INACTIVE ||
302		    p->wire_count != 0 ||	/* may be held by buf cache */
303		    p->hold_count != 0) {	/* may be undergoing I/O */
304			ib = 0;
305			break;
306		}
307		mc[--page_base] = p;
308		++pageout_count;
309		++ib;
310		/*
311		 * alignment boundry, stop here and switch directions.  Do
312		 * not clear ib.
313		 */
314		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
315			break;
316	}
317
318	while (pageout_count < vm_pageout_page_count &&
319	    pindex + is < object->size) {
320		vm_page_t p;
321
322		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
323			break;
324		if (((p->queue - p->pc) == PQ_CACHE) ||
325		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
326			break;
327		}
328		vm_page_test_dirty(p);
329		if ((p->dirty & p->valid) == 0 ||
330		    p->queue != PQ_INACTIVE ||
331		    p->wire_count != 0 ||	/* may be held by buf cache */
332		    p->hold_count != 0) {	/* may be undergoing I/O */
333			break;
334		}
335		mc[page_base + pageout_count] = p;
336		++pageout_count;
337		++is;
338	}
339
340	/*
341	 * If we exhausted our forward scan, continue with the reverse scan
342	 * when possible, even past a page boundry.  This catches boundry
343	 * conditions.
344	 */
345	if (ib && pageout_count < vm_pageout_page_count)
346		goto more;
347
348	/*
349	 * we allow reads during pageouts...
350	 */
351	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
352}
353
354/*
355 * vm_pageout_flush() - launder the given pages
356 *
357 *	The given pages are laundered.  Note that we setup for the start of
358 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
359 *	reference count all in here rather then in the parent.  If we want
360 *	the parent to do more sophisticated things we may have to change
361 *	the ordering.
362 */
363int
364vm_pageout_flush(mc, count, flags)
365	vm_page_t *mc;
366	int count;
367	int flags;
368{
369	vm_object_t object;
370	int pageout_status[count];
371	int numpagedout = 0;
372	int i;
373
374	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
375	/*
376	 * Initiate I/O.  Bump the vm_page_t->busy counter and
377	 * mark the pages read-only.
378	 *
379	 * We do not have to fixup the clean/dirty bits here... we can
380	 * allow the pager to do it after the I/O completes.
381	 *
382	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
383	 * edge case with file fragments.
384	 */
385	for (i = 0; i < count; i++) {
386		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
387		vm_page_io_start(mc[i]);
388		pmap_page_protect(mc[i], VM_PROT_READ);
389	}
390	object = mc[0]->object;
391	vm_page_unlock_queues();
392	vm_object_pip_add(object, count);
393
394	vm_pager_put_pages(object, mc, count,
395	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
396	    pageout_status);
397
398	vm_page_lock_queues();
399	for (i = 0; i < count; i++) {
400		vm_page_t mt = mc[i];
401
402		switch (pageout_status[i]) {
403		case VM_PAGER_OK:
404			numpagedout++;
405			break;
406		case VM_PAGER_PEND:
407			numpagedout++;
408			break;
409		case VM_PAGER_BAD:
410			/*
411			 * Page outside of range of object. Right now we
412			 * essentially lose the changes by pretending it
413			 * worked.
414			 */
415			pmap_clear_modify(mt);
416			vm_page_undirty(mt);
417			break;
418		case VM_PAGER_ERROR:
419		case VM_PAGER_FAIL:
420			/*
421			 * If page couldn't be paged out, then reactivate the
422			 * page so it doesn't clog the inactive list.  (We
423			 * will try paging out it again later).
424			 */
425			vm_page_activate(mt);
426			break;
427		case VM_PAGER_AGAIN:
428			break;
429		}
430
431		/*
432		 * If the operation is still going, leave the page busy to
433		 * block all other accesses. Also, leave the paging in
434		 * progress indicator set so that we don't attempt an object
435		 * collapse.
436		 */
437		if (pageout_status[i] != VM_PAGER_PEND) {
438			vm_object_pip_wakeup(object);
439			vm_page_io_finish(mt);
440			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
441				pmap_page_protect(mt, VM_PROT_READ);
442		}
443	}
444	return numpagedout;
445}
446
447#if !defined(NO_SWAPPING)
448/*
449 *	vm_pageout_object_deactivate_pages
450 *
451 *	deactivate enough pages to satisfy the inactive target
452 *	requirements or if vm_page_proc_limit is set, then
453 *	deactivate all of the pages in the object and its
454 *	backing_objects.
455 *
456 *	The object and map must be locked.
457 */
458static void
459vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
460	vm_map_t map;
461	vm_object_t object;
462	vm_pindex_t desired;
463	int map_remove_only;
464{
465	vm_page_t p, next;
466	int actcount, rcount, remove_mode;
467
468	GIANT_REQUIRED;
469	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
470		return;
471
472	while (object) {
473		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
474			return;
475		if (object->paging_in_progress)
476			return;
477
478		remove_mode = map_remove_only;
479		if (object->shadow_count > 1)
480			remove_mode = 1;
481		/*
482		 * scan the objects entire memory queue
483		 */
484		rcount = object->resident_page_count;
485		p = TAILQ_FIRST(&object->memq);
486		vm_page_lock_queues();
487		while (p && (rcount-- > 0)) {
488			if (pmap_resident_count(map->pmap) <= desired) {
489				vm_page_unlock_queues();
490				return;
491			}
492			next = TAILQ_NEXT(p, listq);
493			cnt.v_pdpages++;
494			if (p->wire_count != 0 ||
495			    p->hold_count != 0 ||
496			    p->busy != 0 ||
497			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
498			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
499				p = next;
500				continue;
501			}
502			actcount = pmap_ts_referenced(p);
503			if (actcount) {
504				vm_page_flag_set(p, PG_REFERENCED);
505			} else if (p->flags & PG_REFERENCED) {
506				actcount = 1;
507			}
508			if ((p->queue != PQ_ACTIVE) &&
509				(p->flags & PG_REFERENCED)) {
510				vm_page_activate(p);
511				p->act_count += actcount;
512				vm_page_flag_clear(p, PG_REFERENCED);
513			} else if (p->queue == PQ_ACTIVE) {
514				if ((p->flags & PG_REFERENCED) == 0) {
515					p->act_count -= min(p->act_count, ACT_DECLINE);
516					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
517						pmap_remove_all(p);
518						vm_page_deactivate(p);
519					} else {
520						vm_pageq_requeue(p);
521					}
522				} else {
523					vm_page_activate(p);
524					vm_page_flag_clear(p, PG_REFERENCED);
525					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
526						p->act_count += ACT_ADVANCE;
527					vm_pageq_requeue(p);
528				}
529			} else if (p->queue == PQ_INACTIVE) {
530				pmap_remove_all(p);
531			}
532			p = next;
533		}
534		vm_page_unlock_queues();
535		object = object->backing_object;
536	}
537}
538
539/*
540 * deactivate some number of pages in a map, try to do it fairly, but
541 * that is really hard to do.
542 */
543static void
544vm_pageout_map_deactivate_pages(map, desired)
545	vm_map_t map;
546	vm_pindex_t desired;
547{
548	vm_map_entry_t tmpe;
549	vm_object_t obj, bigobj;
550	int nothingwired;
551
552	GIANT_REQUIRED;
553	if (!vm_map_trylock(map))
554		return;
555
556	bigobj = NULL;
557	nothingwired = TRUE;
558
559	/*
560	 * first, search out the biggest object, and try to free pages from
561	 * that.
562	 */
563	tmpe = map->header.next;
564	while (tmpe != &map->header) {
565		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
566			obj = tmpe->object.vm_object;
567			if ((obj != NULL) && (obj->shadow_count <= 1) &&
568				((bigobj == NULL) ||
569				 (bigobj->resident_page_count < obj->resident_page_count))) {
570				bigobj = obj;
571			}
572		}
573		if (tmpe->wired_count > 0)
574			nothingwired = FALSE;
575		tmpe = tmpe->next;
576	}
577
578	if (bigobj)
579		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
580
581	/*
582	 * Next, hunt around for other pages to deactivate.  We actually
583	 * do this search sort of wrong -- .text first is not the best idea.
584	 */
585	tmpe = map->header.next;
586	while (tmpe != &map->header) {
587		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
588			break;
589		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
590			obj = tmpe->object.vm_object;
591			if (obj)
592				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
593		}
594		tmpe = tmpe->next;
595	};
596
597	/*
598	 * Remove all mappings if a process is swapped out, this will free page
599	 * table pages.
600	 */
601	if (desired == 0 && nothingwired)
602		pmap_remove(vm_map_pmap(map), vm_map_min(map),
603		    vm_map_max(map));
604	vm_map_unlock(map);
605	return;
606}
607#endif		/* !defined(NO_SWAPPING) */
608
609/*
610 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
611 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
612 * which we know can be trivially freed.
613 */
614void
615vm_pageout_page_free(vm_page_t m) {
616	vm_object_t object = m->object;
617	int type = object->type;
618
619	GIANT_REQUIRED;
620	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
621		vm_object_reference(object);
622	vm_page_busy(m);
623	pmap_remove_all(m);
624	vm_page_free(m);
625	cnt.v_dfree++;
626	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
627		vm_object_deallocate(object);
628}
629
630/*
631 * This routine is very drastic, but can save the system
632 * in a pinch.
633 */
634static void
635vm_pageout_pmap_collect(void)
636{
637	int i;
638	vm_page_t m;
639	static int warningdone;
640
641	if (pmap_pagedaemon_waken == 0)
642		return;
643	if (warningdone < 5) {
644		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
645		warningdone++;
646	}
647	vm_page_lock_queues();
648	for (i = 0; i < vm_page_array_size; i++) {
649		m = &vm_page_array[i];
650		if (m->wire_count || m->hold_count || m->busy ||
651		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
652			continue;
653		pmap_remove_all(m);
654	}
655	vm_page_unlock_queues();
656	pmap_pagedaemon_waken = 0;
657}
658
659/*
660 *	vm_pageout_scan does the dirty work for the pageout daemon.
661 */
662static void
663vm_pageout_scan(int pass)
664{
665	vm_page_t m, next;
666	struct vm_page marker;
667	int save_page_shortage;
668	int save_inactive_count;
669	int page_shortage, maxscan, pcount;
670	int addl_page_shortage, addl_page_shortage_init;
671	struct proc *p, *bigproc;
672	vm_offset_t size, bigsize;
673	vm_object_t object;
674	int actcount;
675	int vnodes_skipped = 0;
676	int maxlaunder;
677	int s;
678	struct thread *td;
679
680	GIANT_REQUIRED;
681	/*
682	 * Decrease registered cache sizes.
683	 */
684	EVENTHANDLER_INVOKE(vm_lowmem, 0);
685	/*
686	 * We do this explicitly after the caches have been drained above.
687	 */
688	uma_reclaim();
689	/*
690	 * Do whatever cleanup that the pmap code can.
691	 */
692	vm_pageout_pmap_collect();
693
694	addl_page_shortage_init = vm_pageout_deficit;
695	vm_pageout_deficit = 0;
696
697	/*
698	 * Calculate the number of pages we want to either free or move
699	 * to the cache.
700	 */
701	page_shortage = vm_paging_target() + addl_page_shortage_init;
702	save_page_shortage = page_shortage;
703	save_inactive_count = cnt.v_inactive_count;
704
705	/*
706	 * Initialize our marker
707	 */
708	bzero(&marker, sizeof(marker));
709	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
710	marker.queue = PQ_INACTIVE;
711	marker.wire_count = 1;
712
713	/*
714	 * Start scanning the inactive queue for pages we can move to the
715	 * cache or free.  The scan will stop when the target is reached or
716	 * we have scanned the entire inactive queue.  Note that m->act_count
717	 * is not used to form decisions for the inactive queue, only for the
718	 * active queue.
719	 *
720	 * maxlaunder limits the number of dirty pages we flush per scan.
721	 * For most systems a smaller value (16 or 32) is more robust under
722	 * extreme memory and disk pressure because any unnecessary writes
723	 * to disk can result in extreme performance degredation.  However,
724	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
725	 * used) will die horribly with limited laundering.  If the pageout
726	 * daemon cannot clean enough pages in the first pass, we let it go
727	 * all out in succeeding passes.
728	 */
729	if ((maxlaunder = vm_max_launder) <= 1)
730		maxlaunder = 1;
731	if (pass)
732		maxlaunder = 10000;
733rescan0:
734	addl_page_shortage = addl_page_shortage_init;
735	maxscan = cnt.v_inactive_count;
736
737	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
738	     m != NULL && maxscan-- > 0 && page_shortage > 0;
739	     m = next) {
740
741		cnt.v_pdpages++;
742
743		if (m->queue != PQ_INACTIVE) {
744			goto rescan0;
745		}
746
747		next = TAILQ_NEXT(m, pageq);
748
749		/*
750		 * skip marker pages
751		 */
752		if (m->flags & PG_MARKER)
753			continue;
754
755		/*
756		 * A held page may be undergoing I/O, so skip it.
757		 */
758		if (m->hold_count) {
759			vm_pageq_requeue(m);
760			addl_page_shortage++;
761			continue;
762		}
763		/*
764		 * Don't mess with busy pages, keep in the front of the
765		 * queue, most likely are being paged out.
766		 */
767		if (m->busy || (m->flags & PG_BUSY)) {
768			addl_page_shortage++;
769			continue;
770		}
771
772		/*
773		 * If the object is not being used, we ignore previous
774		 * references.
775		 */
776		if (m->object->ref_count == 0) {
777			vm_page_flag_clear(m, PG_REFERENCED);
778			pmap_clear_reference(m);
779
780		/*
781		 * Otherwise, if the page has been referenced while in the
782		 * inactive queue, we bump the "activation count" upwards,
783		 * making it less likely that the page will be added back to
784		 * the inactive queue prematurely again.  Here we check the
785		 * page tables (or emulated bits, if any), given the upper
786		 * level VM system not knowing anything about existing
787		 * references.
788		 */
789		} else if (((m->flags & PG_REFERENCED) == 0) &&
790			(actcount = pmap_ts_referenced(m))) {
791			vm_page_lock_queues();
792			vm_page_activate(m);
793			vm_page_unlock_queues();
794			m->act_count += (actcount + ACT_ADVANCE);
795			continue;
796		}
797
798		/*
799		 * If the upper level VM system knows about any page
800		 * references, we activate the page.  We also set the
801		 * "activation count" higher than normal so that we will less
802		 * likely place pages back onto the inactive queue again.
803		 */
804		if ((m->flags & PG_REFERENCED) != 0) {
805			vm_page_flag_clear(m, PG_REFERENCED);
806			actcount = pmap_ts_referenced(m);
807			vm_page_lock_queues();
808			vm_page_activate(m);
809			vm_page_unlock_queues();
810			m->act_count += (actcount + ACT_ADVANCE + 1);
811			continue;
812		}
813
814		/*
815		 * If the upper level VM system doesn't know anything about
816		 * the page being dirty, we have to check for it again.  As
817		 * far as the VM code knows, any partially dirty pages are
818		 * fully dirty.
819		 */
820		if (m->dirty == 0) {
821			vm_page_test_dirty(m);
822		} else {
823			vm_page_dirty(m);
824		}
825
826		/*
827		 * Invalid pages can be easily freed
828		 */
829		if (m->valid == 0) {
830			vm_page_lock_queues();
831			vm_pageout_page_free(m);
832			vm_page_unlock_queues();
833			--page_shortage;
834
835		/*
836		 * Clean pages can be placed onto the cache queue.  This
837		 * effectively frees them.
838		 */
839		} else if (m->dirty == 0) {
840			vm_page_lock_queues();
841			vm_page_cache(m);
842			vm_page_unlock_queues();
843			--page_shortage;
844		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
845			/*
846			 * Dirty pages need to be paged out, but flushing
847			 * a page is extremely expensive verses freeing
848			 * a clean page.  Rather then artificially limiting
849			 * the number of pages we can flush, we instead give
850			 * dirty pages extra priority on the inactive queue
851			 * by forcing them to be cycled through the queue
852			 * twice before being flushed, after which the
853			 * (now clean) page will cycle through once more
854			 * before being freed.  This significantly extends
855			 * the thrash point for a heavily loaded machine.
856			 */
857			vm_page_flag_set(m, PG_WINATCFLS);
858			vm_pageq_requeue(m);
859		} else if (maxlaunder > 0) {
860			/*
861			 * We always want to try to flush some dirty pages if
862			 * we encounter them, to keep the system stable.
863			 * Normally this number is small, but under extreme
864			 * pressure where there are insufficient clean pages
865			 * on the inactive queue, we may have to go all out.
866			 */
867			int swap_pageouts_ok;
868			struct vnode *vp = NULL;
869			struct mount *mp;
870
871			object = m->object;
872
873			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
874				swap_pageouts_ok = 1;
875			} else {
876				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
877				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
878				vm_page_count_min());
879
880			}
881
882			/*
883			 * We don't bother paging objects that are "dead".
884			 * Those objects are in a "rundown" state.
885			 */
886			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
887				vm_pageq_requeue(m);
888				continue;
889			}
890
891			/*
892			 * The object is already known NOT to be dead.   It
893			 * is possible for the vget() to block the whole
894			 * pageout daemon, but the new low-memory handling
895			 * code should prevent it.
896			 *
897			 * The previous code skipped locked vnodes and, worse,
898			 * reordered pages in the queue.  This results in
899			 * completely non-deterministic operation and, on a
900			 * busy system, can lead to extremely non-optimal
901			 * pageouts.  For example, it can cause clean pages
902			 * to be freed and dirty pages to be moved to the end
903			 * of the queue.  Since dirty pages are also moved to
904			 * the end of the queue once-cleaned, this gives
905			 * way too large a weighting to defering the freeing
906			 * of dirty pages.
907			 *
908			 * We can't wait forever for the vnode lock, we might
909			 * deadlock due to a vn_read() getting stuck in
910			 * vm_wait while holding this vnode.  We skip the
911			 * vnode if we can't get it in a reasonable amount
912			 * of time.
913			 */
914			if (object->type == OBJT_VNODE) {
915				vp = object->handle;
916
917				mp = NULL;
918				if (vp->v_type == VREG)
919					vn_start_write(vp, &mp, V_NOWAIT);
920				if (vget(vp, LK_EXCLUSIVE|LK_TIMELOCK, curthread)) {
921					++pageout_lock_miss;
922					vn_finished_write(mp);
923					if (object->flags & OBJ_MIGHTBEDIRTY)
924						vnodes_skipped++;
925					continue;
926				}
927
928				/*
929				 * The page might have been moved to another
930				 * queue during potential blocking in vget()
931				 * above.  The page might have been freed and
932				 * reused for another vnode.  The object might
933				 * have been reused for another vnode.
934				 */
935				if (m->queue != PQ_INACTIVE ||
936				    m->object != object ||
937				    object->handle != vp) {
938					if (object->flags & OBJ_MIGHTBEDIRTY)
939						vnodes_skipped++;
940					vput(vp);
941					vn_finished_write(mp);
942					continue;
943				}
944
945				/*
946				 * The page may have been busied during the
947				 * blocking in vput();  We don't move the
948				 * page back onto the end of the queue so that
949				 * statistics are more correct if we don't.
950				 */
951				if (m->busy || (m->flags & PG_BUSY)) {
952					vput(vp);
953					vn_finished_write(mp);
954					continue;
955				}
956
957				/*
958				 * If the page has become held it might
959				 * be undergoing I/O, so skip it
960				 */
961				if (m->hold_count) {
962					vm_pageq_requeue(m);
963					if (object->flags & OBJ_MIGHTBEDIRTY)
964						vnodes_skipped++;
965					vput(vp);
966					vn_finished_write(mp);
967					continue;
968				}
969			}
970
971			/*
972			 * If a page is dirty, then it is either being washed
973			 * (but not yet cleaned) or it is still in the
974			 * laundry.  If it is still in the laundry, then we
975			 * start the cleaning operation.
976			 *
977			 * This operation may cluster, invalidating the 'next'
978			 * pointer.  To prevent an inordinate number of
979			 * restarts we use our marker to remember our place.
980			 *
981			 * decrement page_shortage on success to account for
982			 * the (future) cleaned page.  Otherwise we could wind
983			 * up laundering or cleaning too many pages.
984			 */
985			vm_page_lock_queues();
986			s = splvm();
987			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
988			splx(s);
989			if (vm_pageout_clean(m) != 0) {
990				--page_shortage;
991				--maxlaunder;
992			}
993			s = splvm();
994			next = TAILQ_NEXT(&marker, pageq);
995			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
996			splx(s);
997			vm_page_unlock_queues();
998			if (vp) {
999				vput(vp);
1000				vn_finished_write(mp);
1001			}
1002		}
1003	}
1004
1005	/*
1006	 * Compute the number of pages we want to try to move from the
1007	 * active queue to the inactive queue.
1008	 */
1009	page_shortage = vm_paging_target() +
1010		cnt.v_inactive_target - cnt.v_inactive_count;
1011	page_shortage += addl_page_shortage;
1012
1013	vm_page_lock_queues();
1014	/*
1015	 * Scan the active queue for things we can deactivate. We nominally
1016	 * track the per-page activity counter and use it to locate
1017	 * deactivation candidates.
1018	 */
1019	pcount = cnt.v_active_count;
1020	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1021
1022	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1023
1024		/*
1025		 * This is a consistency check, and should likely be a panic
1026		 * or warning.
1027		 */
1028		if (m->queue != PQ_ACTIVE) {
1029			break;
1030		}
1031
1032		next = TAILQ_NEXT(m, pageq);
1033		/*
1034		 * Don't deactivate pages that are busy.
1035		 */
1036		if ((m->busy != 0) ||
1037		    (m->flags & PG_BUSY) ||
1038		    (m->hold_count != 0)) {
1039			vm_pageq_requeue(m);
1040			m = next;
1041			continue;
1042		}
1043
1044		/*
1045		 * The count for pagedaemon pages is done after checking the
1046		 * page for eligibility...
1047		 */
1048		cnt.v_pdpages++;
1049
1050		/*
1051		 * Check to see "how much" the page has been used.
1052		 */
1053		actcount = 0;
1054		if (m->object->ref_count != 0) {
1055			if (m->flags & PG_REFERENCED) {
1056				actcount += 1;
1057			}
1058			actcount += pmap_ts_referenced(m);
1059			if (actcount) {
1060				m->act_count += ACT_ADVANCE + actcount;
1061				if (m->act_count > ACT_MAX)
1062					m->act_count = ACT_MAX;
1063			}
1064		}
1065
1066		/*
1067		 * Since we have "tested" this bit, we need to clear it now.
1068		 */
1069		vm_page_flag_clear(m, PG_REFERENCED);
1070
1071		/*
1072		 * Only if an object is currently being used, do we use the
1073		 * page activation count stats.
1074		 */
1075		if (actcount && (m->object->ref_count != 0)) {
1076			vm_pageq_requeue(m);
1077		} else {
1078			m->act_count -= min(m->act_count, ACT_DECLINE);
1079			if (vm_pageout_algorithm ||
1080			    m->object->ref_count == 0 ||
1081			    m->act_count == 0) {
1082				page_shortage--;
1083				if (m->object->ref_count == 0) {
1084					pmap_remove_all(m);
1085					if (m->dirty == 0)
1086						vm_page_cache(m);
1087					else
1088						vm_page_deactivate(m);
1089				} else {
1090					vm_page_deactivate(m);
1091				}
1092			} else {
1093				vm_pageq_requeue(m);
1094			}
1095		}
1096		m = next;
1097	}
1098	s = splvm();
1099
1100	/*
1101	 * We try to maintain some *really* free pages, this allows interrupt
1102	 * code to be guaranteed space.  Since both cache and free queues
1103	 * are considered basically 'free', moving pages from cache to free
1104	 * does not effect other calculations.
1105	 */
1106	while (cnt.v_free_count < cnt.v_free_reserved) {
1107		static int cache_rover = 0;
1108		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1109		if (!m)
1110			break;
1111		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1112		    m->busy ||
1113		    m->hold_count ||
1114		    m->wire_count) {
1115#ifdef INVARIANTS
1116			printf("Warning: busy page %p found in cache\n", m);
1117#endif
1118			vm_page_deactivate(m);
1119			continue;
1120		}
1121		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1122		vm_pageout_page_free(m);
1123	}
1124	splx(s);
1125	vm_page_unlock_queues();
1126#if !defined(NO_SWAPPING)
1127	/*
1128	 * Idle process swapout -- run once per second.
1129	 */
1130	if (vm_swap_idle_enabled) {
1131		static long lsec;
1132		if (time_second != lsec) {
1133			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1134			vm_req_vmdaemon();
1135			lsec = time_second;
1136		}
1137	}
1138#endif
1139
1140	/*
1141	 * If we didn't get enough free pages, and we have skipped a vnode
1142	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1143	 * if we did not get enough free pages.
1144	 */
1145	if (vm_paging_target() > 0) {
1146		if (vnodes_skipped && vm_page_count_min())
1147			(void) speedup_syncer();
1148#if !defined(NO_SWAPPING)
1149		if (vm_swap_enabled && vm_page_count_target()) {
1150			vm_req_vmdaemon();
1151			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1152		}
1153#endif
1154	}
1155
1156	/*
1157	 * If we are out of swap and were not able to reach our paging
1158	 * target, kill the largest process.
1159	 *
1160	 * We keep the process bigproc locked once we find it to keep anyone
1161	 * from messing with it; however, there is a possibility of
1162	 * deadlock if process B is bigproc and one of it's child processes
1163	 * attempts to propagate a signal to B while we are waiting for A's
1164	 * lock while walking this list.  To avoid this, we don't block on
1165	 * the process lock but just skip a process if it is already locked.
1166	 */
1167	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1168	    (swap_pager_full && vm_paging_target() > 0)) {
1169#if 0
1170	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1171#endif
1172		bigproc = NULL;
1173		bigsize = 0;
1174		sx_slock(&allproc_lock);
1175		FOREACH_PROC_IN_SYSTEM(p) {
1176			int breakout;
1177			/*
1178			 * If this process is already locked, skip it.
1179			 */
1180			if (PROC_TRYLOCK(p) == 0)
1181				continue;
1182			/*
1183			 * if this is a system process, skip it
1184			 */
1185			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1186			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1187				PROC_UNLOCK(p);
1188				continue;
1189			}
1190			/*
1191			 * if the process is in a non-running type state,
1192			 * don't touch it. Check all the threads individually.
1193			 */
1194			mtx_lock_spin(&sched_lock);
1195			breakout = 0;
1196			FOREACH_THREAD_IN_PROC(p, td) {
1197				if (!TD_ON_RUNQ(td) &&
1198				    !TD_IS_RUNNING(td) &&
1199				    !TD_IS_SLEEPING(td)) {
1200					breakout = 1;
1201					break;
1202				}
1203			}
1204			if (breakout) {
1205				mtx_unlock_spin(&sched_lock);
1206				PROC_UNLOCK(p);
1207				continue;
1208			}
1209			mtx_unlock_spin(&sched_lock);
1210			/*
1211			 * get the process size
1212			 */
1213			size = vmspace_resident_count(p->p_vmspace) +
1214				vmspace_swap_count(p->p_vmspace);
1215			/*
1216			 * if the this process is bigger than the biggest one
1217			 * remember it.
1218			 */
1219			if (size > bigsize) {
1220				if (bigproc != NULL)
1221					PROC_UNLOCK(bigproc);
1222				bigproc = p;
1223				bigsize = size;
1224			} else
1225				PROC_UNLOCK(p);
1226		}
1227		sx_sunlock(&allproc_lock);
1228		if (bigproc != NULL) {
1229			struct ksegrp *kg;
1230			killproc(bigproc, "out of swap space");
1231			mtx_lock_spin(&sched_lock);
1232			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1233				sched_nice(kg, PRIO_MIN); /* XXXKSE ??? */
1234			}
1235			mtx_unlock_spin(&sched_lock);
1236			PROC_UNLOCK(bigproc);
1237			wakeup(&cnt.v_free_count);
1238		}
1239	}
1240}
1241
1242/*
1243 * This routine tries to maintain the pseudo LRU active queue,
1244 * so that during long periods of time where there is no paging,
1245 * that some statistic accumulation still occurs.  This code
1246 * helps the situation where paging just starts to occur.
1247 */
1248static void
1249vm_pageout_page_stats()
1250{
1251	vm_page_t m,next;
1252	int pcount,tpcount;		/* Number of pages to check */
1253	static int fullintervalcount = 0;
1254	int page_shortage;
1255	int s0;
1256
1257	page_shortage =
1258	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1259	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1260
1261	if (page_shortage <= 0)
1262		return;
1263
1264	s0 = splvm();
1265	vm_page_lock_queues();
1266	pcount = cnt.v_active_count;
1267	fullintervalcount += vm_pageout_stats_interval;
1268	if (fullintervalcount < vm_pageout_full_stats_interval) {
1269		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1270		if (pcount > tpcount)
1271			pcount = tpcount;
1272	} else {
1273		fullintervalcount = 0;
1274	}
1275
1276	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1277	while ((m != NULL) && (pcount-- > 0)) {
1278		int actcount;
1279
1280		if (m->queue != PQ_ACTIVE) {
1281			break;
1282		}
1283
1284		next = TAILQ_NEXT(m, pageq);
1285		/*
1286		 * Don't deactivate pages that are busy.
1287		 */
1288		if ((m->busy != 0) ||
1289		    (m->flags & PG_BUSY) ||
1290		    (m->hold_count != 0)) {
1291			vm_pageq_requeue(m);
1292			m = next;
1293			continue;
1294		}
1295
1296		actcount = 0;
1297		if (m->flags & PG_REFERENCED) {
1298			vm_page_flag_clear(m, PG_REFERENCED);
1299			actcount += 1;
1300		}
1301
1302		actcount += pmap_ts_referenced(m);
1303		if (actcount) {
1304			m->act_count += ACT_ADVANCE + actcount;
1305			if (m->act_count > ACT_MAX)
1306				m->act_count = ACT_MAX;
1307			vm_pageq_requeue(m);
1308		} else {
1309			if (m->act_count == 0) {
1310				/*
1311				 * We turn off page access, so that we have
1312				 * more accurate RSS stats.  We don't do this
1313				 * in the normal page deactivation when the
1314				 * system is loaded VM wise, because the
1315				 * cost of the large number of page protect
1316				 * operations would be higher than the value
1317				 * of doing the operation.
1318				 */
1319				pmap_remove_all(m);
1320				vm_page_deactivate(m);
1321			} else {
1322				m->act_count -= min(m->act_count, ACT_DECLINE);
1323				vm_pageq_requeue(m);
1324			}
1325		}
1326
1327		m = next;
1328	}
1329	vm_page_unlock_queues();
1330	splx(s0);
1331}
1332
1333static int
1334vm_pageout_free_page_calc(count)
1335vm_size_t count;
1336{
1337	if (count < cnt.v_page_count)
1338		 return 0;
1339	/*
1340	 * free_reserved needs to include enough for the largest swap pager
1341	 * structures plus enough for any pv_entry structs when paging.
1342	 */
1343	if (cnt.v_page_count > 1024)
1344		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1345	else
1346		cnt.v_free_min = 4;
1347	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1348		cnt.v_interrupt_free_min;
1349	cnt.v_free_reserved = vm_pageout_page_count +
1350		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1351	cnt.v_free_severe = cnt.v_free_min / 2;
1352	cnt.v_free_min += cnt.v_free_reserved;
1353	cnt.v_free_severe += cnt.v_free_reserved;
1354	return 1;
1355}
1356
1357/*
1358 *	vm_pageout is the high level pageout daemon.
1359 */
1360static void
1361vm_pageout()
1362{
1363	int pass;
1364
1365	mtx_lock(&Giant);
1366
1367	/*
1368	 * Initialize some paging parameters.
1369	 */
1370	cnt.v_interrupt_free_min = 2;
1371	if (cnt.v_page_count < 2000)
1372		vm_pageout_page_count = 8;
1373
1374	vm_pageout_free_page_calc(cnt.v_page_count);
1375	/*
1376	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1377	 * that these are more a measure of the VM cache queue hysteresis
1378	 * then the VM free queue.  Specifically, v_free_target is the
1379	 * high water mark (free+cache pages).
1380	 *
1381	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1382	 * low water mark, while v_free_min is the stop.  v_cache_min must
1383	 * be big enough to handle memory needs while the pageout daemon
1384	 * is signalled and run to free more pages.
1385	 */
1386	if (cnt.v_free_count > 6144)
1387		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1388	else
1389		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1390
1391	if (cnt.v_free_count > 2048) {
1392		cnt.v_cache_min = cnt.v_free_target;
1393		cnt.v_cache_max = 2 * cnt.v_cache_min;
1394		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1395	} else {
1396		cnt.v_cache_min = 0;
1397		cnt.v_cache_max = 0;
1398		cnt.v_inactive_target = cnt.v_free_count / 4;
1399	}
1400	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1401		cnt.v_inactive_target = cnt.v_free_count / 3;
1402
1403	/* XXX does not really belong here */
1404	if (vm_page_max_wired == 0)
1405		vm_page_max_wired = cnt.v_free_count / 3;
1406
1407	if (vm_pageout_stats_max == 0)
1408		vm_pageout_stats_max = cnt.v_free_target;
1409
1410	/*
1411	 * Set interval in seconds for stats scan.
1412	 */
1413	if (vm_pageout_stats_interval == 0)
1414		vm_pageout_stats_interval = 5;
1415	if (vm_pageout_full_stats_interval == 0)
1416		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1417
1418	/*
1419	 * Set maximum free per pass
1420	 */
1421	if (vm_pageout_stats_free_max == 0)
1422		vm_pageout_stats_free_max = 5;
1423
1424	swap_pager_swap_init();
1425	pass = 0;
1426	/*
1427	 * The pageout daemon is never done, so loop forever.
1428	 */
1429	while (TRUE) {
1430		int error;
1431		int s = splvm();
1432
1433		/*
1434		 * If we have enough free memory, wakeup waiters.  Do
1435		 * not clear vm_pages_needed until we reach our target,
1436		 * otherwise we may be woken up over and over again and
1437		 * waste a lot of cpu.
1438		 */
1439		if (vm_pages_needed && !vm_page_count_min()) {
1440			if (vm_paging_needed() <= 0)
1441				vm_pages_needed = 0;
1442			wakeup(&cnt.v_free_count);
1443		}
1444		if (vm_pages_needed) {
1445			/*
1446			 * Still not done, take a second pass without waiting
1447			 * (unlimited dirty cleaning), otherwise sleep a bit
1448			 * and try again.
1449			 */
1450			++pass;
1451			if (pass > 1)
1452				tsleep(&vm_pages_needed, PVM,
1453				       "psleep", hz/2);
1454		} else {
1455			/*
1456			 * Good enough, sleep & handle stats.  Prime the pass
1457			 * for the next run.
1458			 */
1459			if (pass > 1)
1460				pass = 1;
1461			else
1462				pass = 0;
1463			error = tsleep(&vm_pages_needed, PVM,
1464				    "psleep", vm_pageout_stats_interval * hz);
1465			if (error && !vm_pages_needed) {
1466				splx(s);
1467				pass = 0;
1468				vm_pageout_page_stats();
1469				continue;
1470			}
1471		}
1472
1473		if (vm_pages_needed)
1474			cnt.v_pdwakeups++;
1475		splx(s);
1476		vm_pageout_scan(pass);
1477		vm_pageout_deficit = 0;
1478	}
1479}
1480
1481void
1482pagedaemon_wakeup()
1483{
1484	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1485		vm_pages_needed++;
1486		wakeup(&vm_pages_needed);
1487	}
1488}
1489
1490#if !defined(NO_SWAPPING)
1491static void
1492vm_req_vmdaemon()
1493{
1494	static int lastrun = 0;
1495
1496	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1497		wakeup(&vm_daemon_needed);
1498		lastrun = ticks;
1499	}
1500}
1501
1502static void
1503vm_daemon()
1504{
1505	struct proc *p;
1506	int breakout;
1507	struct thread *td;
1508
1509	mtx_lock(&Giant);
1510	while (TRUE) {
1511		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1512		if (vm_pageout_req_swapout) {
1513			swapout_procs(vm_pageout_req_swapout);
1514			vm_pageout_req_swapout = 0;
1515		}
1516		/*
1517		 * scan the processes for exceeding their rlimits or if
1518		 * process is swapped out -- deactivate pages
1519		 */
1520		sx_slock(&allproc_lock);
1521		LIST_FOREACH(p, &allproc, p_list) {
1522			vm_pindex_t limit, size;
1523
1524			/*
1525			 * if this is a system process or if we have already
1526			 * looked at this process, skip it.
1527			 */
1528			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1529				continue;
1530			}
1531			/*
1532			 * if the process is in a non-running type state,
1533			 * don't touch it.
1534			 */
1535			mtx_lock_spin(&sched_lock);
1536			breakout = 0;
1537			FOREACH_THREAD_IN_PROC(p, td) {
1538				if (!TD_ON_RUNQ(td) &&
1539				    !TD_IS_RUNNING(td) &&
1540				    !TD_IS_SLEEPING(td)) {
1541					breakout = 1;
1542					break;
1543				}
1544			}
1545			if (breakout) {
1546				mtx_unlock_spin(&sched_lock);
1547				continue;
1548			}
1549			/*
1550			 * get a limit
1551			 */
1552			limit = OFF_TO_IDX(
1553			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1554				p->p_rlimit[RLIMIT_RSS].rlim_max));
1555
1556			/*
1557			 * let processes that are swapped out really be
1558			 * swapped out set the limit to nothing (will force a
1559			 * swap-out.)
1560			 */
1561			if ((p->p_sflag & PS_INMEM) == 0)
1562				limit = 0;	/* XXX */
1563			mtx_unlock_spin(&sched_lock);
1564
1565			size = vmspace_resident_count(p->p_vmspace);
1566			if (limit >= 0 && size >= limit) {
1567				vm_pageout_map_deactivate_pages(
1568				    &p->p_vmspace->vm_map, limit);
1569			}
1570		}
1571		sx_sunlock(&allproc_lock);
1572	}
1573}
1574#endif			/* !defined(NO_SWAPPING) */
1575