vm_pageout.c revision 104964
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 104964 2002-10-12 05:32:24Z jeff $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mutex.h>
81#include <sys/proc.h>
82#include <sys/kthread.h>
83#include <sys/ktr.h>
84#include <sys/resourcevar.h>
85#include <sys/sched.h>
86#include <sys/signalvar.h>
87#include <sys/vnode.h>
88#include <sys/vmmeter.h>
89#include <sys/sx.h>
90#include <sys/sysctl.h>
91
92#include <vm/vm.h>
93#include <vm/vm_param.h>
94#include <vm/vm_object.h>
95#include <vm/vm_page.h>
96#include <vm/vm_map.h>
97#include <vm/vm_pageout.h>
98#include <vm/vm_pager.h>
99#include <vm/swap_pager.h>
100#include <vm/vm_extern.h>
101#include <vm/uma.h>
102
103#include <machine/mutex.h>
104
105/*
106 * System initialization
107 */
108
109/* the kernel process "vm_pageout"*/
110static void vm_pageout(void);
111static int vm_pageout_clean(vm_page_t);
112static void vm_pageout_scan(int pass);
113static int vm_pageout_free_page_calc(vm_size_t count);
114struct proc *pageproc;
115
116static struct kproc_desc page_kp = {
117	"pagedaemon",
118	vm_pageout,
119	&pageproc
120};
121SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
122
123#if !defined(NO_SWAPPING)
124/* the kernel process "vm_daemon"*/
125static void vm_daemon(void);
126static struct	proc *vmproc;
127
128static struct kproc_desc vm_kp = {
129	"vmdaemon",
130	vm_daemon,
131	&vmproc
132};
133SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
134#endif
135
136
137int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
138int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
139int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
140
141#if !defined(NO_SWAPPING)
142static int vm_pageout_req_swapout;	/* XXX */
143static int vm_daemon_needed;
144#endif
145extern int vm_swap_size;
146static int vm_max_launder = 32;
147static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
148static int vm_pageout_full_stats_interval = 0;
149static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
150static int defer_swap_pageouts=0;
151static int disable_swap_pageouts=0;
152
153#if defined(NO_SWAPPING)
154static int vm_swap_enabled=0;
155static int vm_swap_idle_enabled=0;
156#else
157static int vm_swap_enabled=1;
158static int vm_swap_idle_enabled=0;
159#endif
160
161SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
162	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
163
164SYSCTL_INT(_vm, OID_AUTO, max_launder,
165	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
166
167SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
168	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
169
170SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
171	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
174	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
175
176SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
177	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
178
179#if defined(NO_SWAPPING)
180SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
181	CTLFLAG_RD, &vm_swap_enabled, 0, "");
182SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
183	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
184#else
185SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
186	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
187SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
188	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
189#endif
190
191SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
192	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
193
194SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
195	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
196
197static int pageout_lock_miss;
198SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
199	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
200
201#define VM_PAGEOUT_PAGE_COUNT 16
202int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
203
204int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
205
206#if !defined(NO_SWAPPING)
207typedef void freeer_fcn_t(vm_map_t, vm_object_t, vm_pindex_t, int);
208static void vm_pageout_map_deactivate_pages(vm_map_t, vm_pindex_t);
209static freeer_fcn_t vm_pageout_object_deactivate_pages;
210static void vm_req_vmdaemon(void);
211#endif
212static void vm_pageout_page_stats(void);
213
214/*
215 * vm_pageout_clean:
216 *
217 * Clean the page and remove it from the laundry.
218 *
219 * We set the busy bit to cause potential page faults on this page to
220 * block.  Note the careful timing, however, the busy bit isn't set till
221 * late and we cannot do anything that will mess with the page.
222 */
223static int
224vm_pageout_clean(m)
225	vm_page_t m;
226{
227	vm_object_t object;
228	vm_page_t mc[2*vm_pageout_page_count];
229	int pageout_count;
230	int ib, is, page_base;
231	vm_pindex_t pindex = m->pindex;
232
233	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
234
235	object = m->object;
236
237	/*
238	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
239	 * with the new swapper, but we could have serious problems paging
240	 * out other object types if there is insufficient memory.
241	 *
242	 * Unfortunately, checking free memory here is far too late, so the
243	 * check has been moved up a procedural level.
244	 */
245
246	/*
247	 * Don't mess with the page if it's busy, held, or special
248	 */
249	if ((m->hold_count != 0) ||
250	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
251		return 0;
252	}
253
254	mc[vm_pageout_page_count] = m;
255	pageout_count = 1;
256	page_base = vm_pageout_page_count;
257	ib = 1;
258	is = 1;
259
260	/*
261	 * Scan object for clusterable pages.
262	 *
263	 * We can cluster ONLY if: ->> the page is NOT
264	 * clean, wired, busy, held, or mapped into a
265	 * buffer, and one of the following:
266	 * 1) The page is inactive, or a seldom used
267	 *    active page.
268	 * -or-
269	 * 2) we force the issue.
270	 *
271	 * During heavy mmap/modification loads the pageout
272	 * daemon can really fragment the underlying file
273	 * due to flushing pages out of order and not trying
274	 * align the clusters (which leave sporatic out-of-order
275	 * holes).  To solve this problem we do the reverse scan
276	 * first and attempt to align our cluster, then do a
277	 * forward scan if room remains.
278	 */
279more:
280	while (ib && pageout_count < vm_pageout_page_count) {
281		vm_page_t p;
282
283		if (ib > pindex) {
284			ib = 0;
285			break;
286		}
287
288		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
289			ib = 0;
290			break;
291		}
292		if (((p->queue - p->pc) == PQ_CACHE) ||
293		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
294			ib = 0;
295			break;
296		}
297		vm_page_test_dirty(p);
298		if ((p->dirty & p->valid) == 0 ||
299		    p->queue != PQ_INACTIVE ||
300		    p->wire_count != 0 ||	/* may be held by buf cache */
301		    p->hold_count != 0) {	/* may be undergoing I/O */
302			ib = 0;
303			break;
304		}
305		mc[--page_base] = p;
306		++pageout_count;
307		++ib;
308		/*
309		 * alignment boundry, stop here and switch directions.  Do
310		 * not clear ib.
311		 */
312		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
313			break;
314	}
315
316	while (pageout_count < vm_pageout_page_count &&
317	    pindex + is < object->size) {
318		vm_page_t p;
319
320		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
321			break;
322		if (((p->queue - p->pc) == PQ_CACHE) ||
323		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
324			break;
325		}
326		vm_page_test_dirty(p);
327		if ((p->dirty & p->valid) == 0 ||
328		    p->queue != PQ_INACTIVE ||
329		    p->wire_count != 0 ||	/* may be held by buf cache */
330		    p->hold_count != 0) {	/* may be undergoing I/O */
331			break;
332		}
333		mc[page_base + pageout_count] = p;
334		++pageout_count;
335		++is;
336	}
337
338	/*
339	 * If we exhausted our forward scan, continue with the reverse scan
340	 * when possible, even past a page boundry.  This catches boundry
341	 * conditions.
342	 */
343	if (ib && pageout_count < vm_pageout_page_count)
344		goto more;
345
346	/*
347	 * we allow reads during pageouts...
348	 */
349	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
350}
351
352/*
353 * vm_pageout_flush() - launder the given pages
354 *
355 *	The given pages are laundered.  Note that we setup for the start of
356 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
357 *	reference count all in here rather then in the parent.  If we want
358 *	the parent to do more sophisticated things we may have to change
359 *	the ordering.
360 */
361int
362vm_pageout_flush(mc, count, flags)
363	vm_page_t *mc;
364	int count;
365	int flags;
366{
367	vm_object_t object;
368	int pageout_status[count];
369	int numpagedout = 0;
370	int i;
371
372	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
373	/*
374	 * Initiate I/O.  Bump the vm_page_t->busy counter and
375	 * mark the pages read-only.
376	 *
377	 * We do not have to fixup the clean/dirty bits here... we can
378	 * allow the pager to do it after the I/O completes.
379	 *
380	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
381	 * edge case with file fragments.
382	 */
383	for (i = 0; i < count; i++) {
384		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
385		vm_page_io_start(mc[i]);
386		vm_page_protect(mc[i], VM_PROT_READ);
387	}
388	object = mc[0]->object;
389	vm_page_unlock_queues();
390	vm_object_pip_add(object, count);
391
392	vm_pager_put_pages(object, mc, count,
393	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
394	    pageout_status);
395
396	vm_page_lock_queues();
397	for (i = 0; i < count; i++) {
398		vm_page_t mt = mc[i];
399
400		switch (pageout_status[i]) {
401		case VM_PAGER_OK:
402			numpagedout++;
403			break;
404		case VM_PAGER_PEND:
405			numpagedout++;
406			break;
407		case VM_PAGER_BAD:
408			/*
409			 * Page outside of range of object. Right now we
410			 * essentially lose the changes by pretending it
411			 * worked.
412			 */
413			pmap_clear_modify(mt);
414			vm_page_undirty(mt);
415			break;
416		case VM_PAGER_ERROR:
417		case VM_PAGER_FAIL:
418			/*
419			 * If page couldn't be paged out, then reactivate the
420			 * page so it doesn't clog the inactive list.  (We
421			 * will try paging out it again later).
422			 */
423			vm_page_activate(mt);
424			break;
425		case VM_PAGER_AGAIN:
426			break;
427		}
428
429		/*
430		 * If the operation is still going, leave the page busy to
431		 * block all other accesses. Also, leave the paging in
432		 * progress indicator set so that we don't attempt an object
433		 * collapse.
434		 */
435		if (pageout_status[i] != VM_PAGER_PEND) {
436			vm_object_pip_wakeup(object);
437			vm_page_io_finish(mt);
438			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
439				vm_page_protect(mt, VM_PROT_READ);
440		}
441	}
442	return numpagedout;
443}
444
445#if !defined(NO_SWAPPING)
446/*
447 *	vm_pageout_object_deactivate_pages
448 *
449 *	deactivate enough pages to satisfy the inactive target
450 *	requirements or if vm_page_proc_limit is set, then
451 *	deactivate all of the pages in the object and its
452 *	backing_objects.
453 *
454 *	The object and map must be locked.
455 */
456static void
457vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
458	vm_map_t map;
459	vm_object_t object;
460	vm_pindex_t desired;
461	int map_remove_only;
462{
463	vm_page_t p, next;
464	int actcount, rcount, remove_mode;
465
466	GIANT_REQUIRED;
467	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
468		return;
469
470	while (object) {
471		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
472			return;
473		if (object->paging_in_progress)
474			return;
475
476		remove_mode = map_remove_only;
477		if (object->shadow_count > 1)
478			remove_mode = 1;
479		/*
480		 * scan the objects entire memory queue
481		 */
482		rcount = object->resident_page_count;
483		p = TAILQ_FIRST(&object->memq);
484		vm_page_lock_queues();
485		while (p && (rcount-- > 0)) {
486			if (pmap_resident_count(map->pmap) <= desired) {
487				vm_page_unlock_queues();
488				return;
489			}
490			next = TAILQ_NEXT(p, listq);
491			cnt.v_pdpages++;
492			if (p->wire_count != 0 ||
493			    p->hold_count != 0 ||
494			    p->busy != 0 ||
495			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
496			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
497				p = next;
498				continue;
499			}
500			actcount = pmap_ts_referenced(p);
501			if (actcount) {
502				vm_page_flag_set(p, PG_REFERENCED);
503			} else if (p->flags & PG_REFERENCED) {
504				actcount = 1;
505			}
506			if ((p->queue != PQ_ACTIVE) &&
507				(p->flags & PG_REFERENCED)) {
508				vm_page_activate(p);
509				p->act_count += actcount;
510				vm_page_flag_clear(p, PG_REFERENCED);
511			} else if (p->queue == PQ_ACTIVE) {
512				if ((p->flags & PG_REFERENCED) == 0) {
513					p->act_count -= min(p->act_count, ACT_DECLINE);
514					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
515						vm_page_protect(p, VM_PROT_NONE);
516						vm_page_deactivate(p);
517					} else {
518						vm_pageq_requeue(p);
519					}
520				} else {
521					vm_page_activate(p);
522					vm_page_flag_clear(p, PG_REFERENCED);
523					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
524						p->act_count += ACT_ADVANCE;
525					vm_pageq_requeue(p);
526				}
527			} else if (p->queue == PQ_INACTIVE) {
528				vm_page_protect(p, VM_PROT_NONE);
529			}
530			p = next;
531		}
532		vm_page_unlock_queues();
533		object = object->backing_object;
534	}
535}
536
537/*
538 * deactivate some number of pages in a map, try to do it fairly, but
539 * that is really hard to do.
540 */
541static void
542vm_pageout_map_deactivate_pages(map, desired)
543	vm_map_t map;
544	vm_pindex_t desired;
545{
546	vm_map_entry_t tmpe;
547	vm_object_t obj, bigobj;
548	int nothingwired;
549
550	GIANT_REQUIRED;
551	if (!vm_map_trylock(map))
552		return;
553
554	bigobj = NULL;
555	nothingwired = TRUE;
556
557	/*
558	 * first, search out the biggest object, and try to free pages from
559	 * that.
560	 */
561	tmpe = map->header.next;
562	while (tmpe != &map->header) {
563		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
564			obj = tmpe->object.vm_object;
565			if ((obj != NULL) && (obj->shadow_count <= 1) &&
566				((bigobj == NULL) ||
567				 (bigobj->resident_page_count < obj->resident_page_count))) {
568				bigobj = obj;
569			}
570		}
571		if (tmpe->wired_count > 0)
572			nothingwired = FALSE;
573		tmpe = tmpe->next;
574	}
575
576	if (bigobj)
577		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
578
579	/*
580	 * Next, hunt around for other pages to deactivate.  We actually
581	 * do this search sort of wrong -- .text first is not the best idea.
582	 */
583	tmpe = map->header.next;
584	while (tmpe != &map->header) {
585		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
586			break;
587		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
588			obj = tmpe->object.vm_object;
589			if (obj)
590				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
591		}
592		tmpe = tmpe->next;
593	};
594
595	/*
596	 * Remove all mappings if a process is swapped out, this will free page
597	 * table pages.
598	 */
599	if (desired == 0 && nothingwired)
600		pmap_remove(vm_map_pmap(map), vm_map_min(map),
601		    vm_map_max(map));
602	vm_map_unlock(map);
603	return;
604}
605#endif		/* !defined(NO_SWAPPING) */
606
607/*
608 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
609 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
610 * which we know can be trivially freed.
611 */
612void
613vm_pageout_page_free(vm_page_t m) {
614	vm_object_t object = m->object;
615	int type = object->type;
616
617	GIANT_REQUIRED;
618	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
619		vm_object_reference(object);
620	vm_page_busy(m);
621	vm_page_protect(m, VM_PROT_NONE);
622	vm_page_free(m);
623	cnt.v_dfree++;
624	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
625		vm_object_deallocate(object);
626}
627
628/*
629 *	vm_pageout_scan does the dirty work for the pageout daemon.
630 */
631static void
632vm_pageout_scan(int pass)
633{
634	vm_page_t m, next;
635	struct vm_page marker;
636	int save_page_shortage;
637	int save_inactive_count;
638	int page_shortage, maxscan, pcount;
639	int addl_page_shortage, addl_page_shortage_init;
640	struct proc *p, *bigproc;
641	vm_offset_t size, bigsize;
642	vm_object_t object;
643	int actcount;
644	int vnodes_skipped = 0;
645	int maxlaunder;
646	int s;
647	struct thread *td;
648
649	GIANT_REQUIRED;
650	/*
651	 * Do whatever cleanup that the pmap code can.
652	 */
653	pmap_collect();
654	uma_reclaim();
655
656	addl_page_shortage_init = vm_pageout_deficit;
657	vm_pageout_deficit = 0;
658
659	/*
660	 * Calculate the number of pages we want to either free or move
661	 * to the cache.
662	 */
663	page_shortage = vm_paging_target() + addl_page_shortage_init;
664	save_page_shortage = page_shortage;
665	save_inactive_count = cnt.v_inactive_count;
666
667	/*
668	 * Initialize our marker
669	 */
670	bzero(&marker, sizeof(marker));
671	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
672	marker.queue = PQ_INACTIVE;
673	marker.wire_count = 1;
674
675	/*
676	 * Start scanning the inactive queue for pages we can move to the
677	 * cache or free.  The scan will stop when the target is reached or
678	 * we have scanned the entire inactive queue.  Note that m->act_count
679	 * is not used to form decisions for the inactive queue, only for the
680	 * active queue.
681	 *
682	 * maxlaunder limits the number of dirty pages we flush per scan.
683	 * For most systems a smaller value (16 or 32) is more robust under
684	 * extreme memory and disk pressure because any unnecessary writes
685	 * to disk can result in extreme performance degredation.  However,
686	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
687	 * used) will die horribly with limited laundering.  If the pageout
688	 * daemon cannot clean enough pages in the first pass, we let it go
689	 * all out in succeeding passes.
690	 */
691	if ((maxlaunder = vm_max_launder) <= 1)
692		maxlaunder = 1;
693	if (pass)
694		maxlaunder = 10000;
695rescan0:
696	addl_page_shortage = addl_page_shortage_init;
697	maxscan = cnt.v_inactive_count;
698
699	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
700	     m != NULL && maxscan-- > 0 && page_shortage > 0;
701	     m = next) {
702
703		cnt.v_pdpages++;
704
705		if (m->queue != PQ_INACTIVE) {
706			goto rescan0;
707		}
708
709		next = TAILQ_NEXT(m, pageq);
710
711		/*
712		 * skip marker pages
713		 */
714		if (m->flags & PG_MARKER)
715			continue;
716
717		/*
718		 * A held page may be undergoing I/O, so skip it.
719		 */
720		if (m->hold_count) {
721			vm_pageq_requeue(m);
722			addl_page_shortage++;
723			continue;
724		}
725		/*
726		 * Don't mess with busy pages, keep in the front of the
727		 * queue, most likely are being paged out.
728		 */
729		if (m->busy || (m->flags & PG_BUSY)) {
730			addl_page_shortage++;
731			continue;
732		}
733
734		/*
735		 * If the object is not being used, we ignore previous
736		 * references.
737		 */
738		if (m->object->ref_count == 0) {
739			vm_page_flag_clear(m, PG_REFERENCED);
740			pmap_clear_reference(m);
741
742		/*
743		 * Otherwise, if the page has been referenced while in the
744		 * inactive queue, we bump the "activation count" upwards,
745		 * making it less likely that the page will be added back to
746		 * the inactive queue prematurely again.  Here we check the
747		 * page tables (or emulated bits, if any), given the upper
748		 * level VM system not knowing anything about existing
749		 * references.
750		 */
751		} else if (((m->flags & PG_REFERENCED) == 0) &&
752			(actcount = pmap_ts_referenced(m))) {
753			vm_page_lock_queues();
754			vm_page_activate(m);
755			vm_page_unlock_queues();
756			m->act_count += (actcount + ACT_ADVANCE);
757			continue;
758		}
759
760		/*
761		 * If the upper level VM system knows about any page
762		 * references, we activate the page.  We also set the
763		 * "activation count" higher than normal so that we will less
764		 * likely place pages back onto the inactive queue again.
765		 */
766		if ((m->flags & PG_REFERENCED) != 0) {
767			vm_page_flag_clear(m, PG_REFERENCED);
768			actcount = pmap_ts_referenced(m);
769			vm_page_lock_queues();
770			vm_page_activate(m);
771			vm_page_unlock_queues();
772			m->act_count += (actcount + ACT_ADVANCE + 1);
773			continue;
774		}
775
776		/*
777		 * If the upper level VM system doesn't know anything about
778		 * the page being dirty, we have to check for it again.  As
779		 * far as the VM code knows, any partially dirty pages are
780		 * fully dirty.
781		 */
782		if (m->dirty == 0) {
783			vm_page_test_dirty(m);
784		} else {
785			vm_page_dirty(m);
786		}
787
788		/*
789		 * Invalid pages can be easily freed
790		 */
791		if (m->valid == 0) {
792			vm_page_lock_queues();
793			vm_pageout_page_free(m);
794			vm_page_unlock_queues();
795			--page_shortage;
796
797		/*
798		 * Clean pages can be placed onto the cache queue.  This
799		 * effectively frees them.
800		 */
801		} else if (m->dirty == 0) {
802			vm_page_lock_queues();
803			vm_page_cache(m);
804			vm_page_unlock_queues();
805			--page_shortage;
806		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
807			/*
808			 * Dirty pages need to be paged out, but flushing
809			 * a page is extremely expensive verses freeing
810			 * a clean page.  Rather then artificially limiting
811			 * the number of pages we can flush, we instead give
812			 * dirty pages extra priority on the inactive queue
813			 * by forcing them to be cycled through the queue
814			 * twice before being flushed, after which the
815			 * (now clean) page will cycle through once more
816			 * before being freed.  This significantly extends
817			 * the thrash point for a heavily loaded machine.
818			 */
819			vm_page_flag_set(m, PG_WINATCFLS);
820			vm_pageq_requeue(m);
821		} else if (maxlaunder > 0) {
822			/*
823			 * We always want to try to flush some dirty pages if
824			 * we encounter them, to keep the system stable.
825			 * Normally this number is small, but under extreme
826			 * pressure where there are insufficient clean pages
827			 * on the inactive queue, we may have to go all out.
828			 */
829			int swap_pageouts_ok;
830			struct vnode *vp = NULL;
831			struct mount *mp;
832
833			object = m->object;
834
835			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
836				swap_pageouts_ok = 1;
837			} else {
838				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
839				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
840				vm_page_count_min());
841
842			}
843
844			/*
845			 * We don't bother paging objects that are "dead".
846			 * Those objects are in a "rundown" state.
847			 */
848			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
849				vm_pageq_requeue(m);
850				continue;
851			}
852
853			/*
854			 * The object is already known NOT to be dead.   It
855			 * is possible for the vget() to block the whole
856			 * pageout daemon, but the new low-memory handling
857			 * code should prevent it.
858			 *
859			 * The previous code skipped locked vnodes and, worse,
860			 * reordered pages in the queue.  This results in
861			 * completely non-deterministic operation and, on a
862			 * busy system, can lead to extremely non-optimal
863			 * pageouts.  For example, it can cause clean pages
864			 * to be freed and dirty pages to be moved to the end
865			 * of the queue.  Since dirty pages are also moved to
866			 * the end of the queue once-cleaned, this gives
867			 * way too large a weighting to defering the freeing
868			 * of dirty pages.
869			 *
870			 * We can't wait forever for the vnode lock, we might
871			 * deadlock due to a vn_read() getting stuck in
872			 * vm_wait while holding this vnode.  We skip the
873			 * vnode if we can't get it in a reasonable amount
874			 * of time.
875			 */
876			if (object->type == OBJT_VNODE) {
877				vp = object->handle;
878
879				mp = NULL;
880				if (vp->v_type == VREG)
881					vn_start_write(vp, &mp, V_NOWAIT);
882				if (vget(vp, LK_EXCLUSIVE|LK_TIMELOCK, curthread)) {
883					++pageout_lock_miss;
884					vn_finished_write(mp);
885					if (object->flags & OBJ_MIGHTBEDIRTY)
886						vnodes_skipped++;
887					continue;
888				}
889
890				/*
891				 * The page might have been moved to another
892				 * queue during potential blocking in vget()
893				 * above.  The page might have been freed and
894				 * reused for another vnode.  The object might
895				 * have been reused for another vnode.
896				 */
897				if (m->queue != PQ_INACTIVE ||
898				    m->object != object ||
899				    object->handle != vp) {
900					if (object->flags & OBJ_MIGHTBEDIRTY)
901						vnodes_skipped++;
902					vput(vp);
903					vn_finished_write(mp);
904					continue;
905				}
906
907				/*
908				 * The page may have been busied during the
909				 * blocking in vput();  We don't move the
910				 * page back onto the end of the queue so that
911				 * statistics are more correct if we don't.
912				 */
913				if (m->busy || (m->flags & PG_BUSY)) {
914					vput(vp);
915					vn_finished_write(mp);
916					continue;
917				}
918
919				/*
920				 * If the page has become held it might
921				 * be undergoing I/O, so skip it
922				 */
923				if (m->hold_count) {
924					vm_pageq_requeue(m);
925					if (object->flags & OBJ_MIGHTBEDIRTY)
926						vnodes_skipped++;
927					vput(vp);
928					vn_finished_write(mp);
929					continue;
930				}
931			}
932
933			/*
934			 * If a page is dirty, then it is either being washed
935			 * (but not yet cleaned) or it is still in the
936			 * laundry.  If it is still in the laundry, then we
937			 * start the cleaning operation.
938			 *
939			 * This operation may cluster, invalidating the 'next'
940			 * pointer.  To prevent an inordinate number of
941			 * restarts we use our marker to remember our place.
942			 *
943			 * decrement page_shortage on success to account for
944			 * the (future) cleaned page.  Otherwise we could wind
945			 * up laundering or cleaning too many pages.
946			 */
947			vm_page_lock_queues();
948			s = splvm();
949			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
950			splx(s);
951			if (vm_pageout_clean(m) != 0) {
952				--page_shortage;
953				--maxlaunder;
954			}
955			s = splvm();
956			next = TAILQ_NEXT(&marker, pageq);
957			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
958			splx(s);
959			vm_page_unlock_queues();
960			if (vp) {
961				vput(vp);
962				vn_finished_write(mp);
963			}
964		}
965	}
966
967	/*
968	 * Compute the number of pages we want to try to move from the
969	 * active queue to the inactive queue.
970	 */
971	page_shortage = vm_paging_target() +
972		cnt.v_inactive_target - cnt.v_inactive_count;
973	page_shortage += addl_page_shortage;
974
975	vm_page_lock_queues();
976	/*
977	 * Scan the active queue for things we can deactivate. We nominally
978	 * track the per-page activity counter and use it to locate
979	 * deactivation candidates.
980	 */
981	pcount = cnt.v_active_count;
982	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
983
984	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
985
986		/*
987		 * This is a consistency check, and should likely be a panic
988		 * or warning.
989		 */
990		if (m->queue != PQ_ACTIVE) {
991			break;
992		}
993
994		next = TAILQ_NEXT(m, pageq);
995		/*
996		 * Don't deactivate pages that are busy.
997		 */
998		if ((m->busy != 0) ||
999		    (m->flags & PG_BUSY) ||
1000		    (m->hold_count != 0)) {
1001			vm_pageq_requeue(m);
1002			m = next;
1003			continue;
1004		}
1005
1006		/*
1007		 * The count for pagedaemon pages is done after checking the
1008		 * page for eligibility...
1009		 */
1010		cnt.v_pdpages++;
1011
1012		/*
1013		 * Check to see "how much" the page has been used.
1014		 */
1015		actcount = 0;
1016		if (m->object->ref_count != 0) {
1017			if (m->flags & PG_REFERENCED) {
1018				actcount += 1;
1019			}
1020			actcount += pmap_ts_referenced(m);
1021			if (actcount) {
1022				m->act_count += ACT_ADVANCE + actcount;
1023				if (m->act_count > ACT_MAX)
1024					m->act_count = ACT_MAX;
1025			}
1026		}
1027
1028		/*
1029		 * Since we have "tested" this bit, we need to clear it now.
1030		 */
1031		vm_page_flag_clear(m, PG_REFERENCED);
1032
1033		/*
1034		 * Only if an object is currently being used, do we use the
1035		 * page activation count stats.
1036		 */
1037		if (actcount && (m->object->ref_count != 0)) {
1038			vm_pageq_requeue(m);
1039		} else {
1040			m->act_count -= min(m->act_count, ACT_DECLINE);
1041			if (vm_pageout_algorithm ||
1042			    m->object->ref_count == 0 ||
1043			    m->act_count == 0) {
1044				page_shortage--;
1045				if (m->object->ref_count == 0) {
1046					vm_page_protect(m, VM_PROT_NONE);
1047					if (m->dirty == 0)
1048						vm_page_cache(m);
1049					else
1050						vm_page_deactivate(m);
1051				} else {
1052					vm_page_deactivate(m);
1053				}
1054			} else {
1055				vm_pageq_requeue(m);
1056			}
1057		}
1058		m = next;
1059	}
1060	s = splvm();
1061
1062	/*
1063	 * We try to maintain some *really* free pages, this allows interrupt
1064	 * code to be guaranteed space.  Since both cache and free queues
1065	 * are considered basically 'free', moving pages from cache to free
1066	 * does not effect other calculations.
1067	 */
1068	while (cnt.v_free_count < cnt.v_free_reserved) {
1069		static int cache_rover = 0;
1070		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1071		if (!m)
1072			break;
1073		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1074		    m->busy ||
1075		    m->hold_count ||
1076		    m->wire_count) {
1077#ifdef INVARIANTS
1078			printf("Warning: busy page %p found in cache\n", m);
1079#endif
1080			vm_page_deactivate(m);
1081			continue;
1082		}
1083		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1084		vm_pageout_page_free(m);
1085	}
1086	splx(s);
1087	vm_page_unlock_queues();
1088#if !defined(NO_SWAPPING)
1089	/*
1090	 * Idle process swapout -- run once per second.
1091	 */
1092	if (vm_swap_idle_enabled) {
1093		static long lsec;
1094		if (time_second != lsec) {
1095			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1096			vm_req_vmdaemon();
1097			lsec = time_second;
1098		}
1099	}
1100#endif
1101
1102	/*
1103	 * If we didn't get enough free pages, and we have skipped a vnode
1104	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1105	 * if we did not get enough free pages.
1106	 */
1107	if (vm_paging_target() > 0) {
1108		if (vnodes_skipped && vm_page_count_min())
1109			(void) speedup_syncer();
1110#if !defined(NO_SWAPPING)
1111		if (vm_swap_enabled && vm_page_count_target()) {
1112			vm_req_vmdaemon();
1113			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1114		}
1115#endif
1116	}
1117
1118	/*
1119	 * If we are out of swap and were not able to reach our paging
1120	 * target, kill the largest process.
1121	 *
1122	 * We keep the process bigproc locked once we find it to keep anyone
1123	 * from messing with it; however, there is a possibility of
1124	 * deadlock if process B is bigproc and one of it's child processes
1125	 * attempts to propagate a signal to B while we are waiting for A's
1126	 * lock while walking this list.  To avoid this, we don't block on
1127	 * the process lock but just skip a process if it is already locked.
1128	 */
1129	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1130	    (swap_pager_full && vm_paging_target() > 0)) {
1131#if 0
1132	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1133#endif
1134		bigproc = NULL;
1135		bigsize = 0;
1136		sx_slock(&allproc_lock);
1137		FOREACH_PROC_IN_SYSTEM(p) {
1138			int breakout;
1139			/*
1140			 * If this process is already locked, skip it.
1141			 */
1142			if (PROC_TRYLOCK(p) == 0)
1143				continue;
1144			/*
1145			 * if this is a system process, skip it
1146			 */
1147			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1148			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1149				PROC_UNLOCK(p);
1150				continue;
1151			}
1152			/*
1153			 * if the process is in a non-running type state,
1154			 * don't touch it. Check all the threads individually.
1155			 */
1156			mtx_lock_spin(&sched_lock);
1157			breakout = 0;
1158			FOREACH_THREAD_IN_PROC(p, td) {
1159				if (!TD_ON_RUNQ(td) &&
1160				    !TD_IS_RUNNING(td) &&
1161				    !TD_IS_SLEEPING(td)) {
1162					breakout = 1;
1163					break;
1164				}
1165			}
1166			if (breakout) {
1167				mtx_unlock_spin(&sched_lock);
1168				PROC_UNLOCK(p);
1169				continue;
1170			}
1171			mtx_unlock_spin(&sched_lock);
1172			/*
1173			 * get the process size
1174			 */
1175			size = vmspace_resident_count(p->p_vmspace) +
1176				vmspace_swap_count(p->p_vmspace);
1177			/*
1178			 * if the this process is bigger than the biggest one
1179			 * remember it.
1180			 */
1181			if (size > bigsize) {
1182				if (bigproc != NULL)
1183					PROC_UNLOCK(bigproc);
1184				bigproc = p;
1185				bigsize = size;
1186			} else
1187				PROC_UNLOCK(p);
1188		}
1189		sx_sunlock(&allproc_lock);
1190		if (bigproc != NULL) {
1191			struct ksegrp *kg;
1192			killproc(bigproc, "out of swap space");
1193			mtx_lock_spin(&sched_lock);
1194			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1195				sched_nice(kg, PRIO_MIN); /* XXXKSE ??? */
1196			}
1197			mtx_unlock_spin(&sched_lock);
1198			PROC_UNLOCK(bigproc);
1199			wakeup(&cnt.v_free_count);
1200		}
1201	}
1202}
1203
1204/*
1205 * This routine tries to maintain the pseudo LRU active queue,
1206 * so that during long periods of time where there is no paging,
1207 * that some statistic accumulation still occurs.  This code
1208 * helps the situation where paging just starts to occur.
1209 */
1210static void
1211vm_pageout_page_stats()
1212{
1213	vm_page_t m,next;
1214	int pcount,tpcount;		/* Number of pages to check */
1215	static int fullintervalcount = 0;
1216	int page_shortage;
1217	int s0;
1218
1219	page_shortage =
1220	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1221	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1222
1223	if (page_shortage <= 0)
1224		return;
1225
1226	s0 = splvm();
1227	vm_page_lock_queues();
1228	pcount = cnt.v_active_count;
1229	fullintervalcount += vm_pageout_stats_interval;
1230	if (fullintervalcount < vm_pageout_full_stats_interval) {
1231		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1232		if (pcount > tpcount)
1233			pcount = tpcount;
1234	} else {
1235		fullintervalcount = 0;
1236	}
1237
1238	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1239	while ((m != NULL) && (pcount-- > 0)) {
1240		int actcount;
1241
1242		if (m->queue != PQ_ACTIVE) {
1243			break;
1244		}
1245
1246		next = TAILQ_NEXT(m, pageq);
1247		/*
1248		 * Don't deactivate pages that are busy.
1249		 */
1250		if ((m->busy != 0) ||
1251		    (m->flags & PG_BUSY) ||
1252		    (m->hold_count != 0)) {
1253			vm_pageq_requeue(m);
1254			m = next;
1255			continue;
1256		}
1257
1258		actcount = 0;
1259		if (m->flags & PG_REFERENCED) {
1260			vm_page_flag_clear(m, PG_REFERENCED);
1261			actcount += 1;
1262		}
1263
1264		actcount += pmap_ts_referenced(m);
1265		if (actcount) {
1266			m->act_count += ACT_ADVANCE + actcount;
1267			if (m->act_count > ACT_MAX)
1268				m->act_count = ACT_MAX;
1269			vm_pageq_requeue(m);
1270		} else {
1271			if (m->act_count == 0) {
1272				/*
1273				 * We turn off page access, so that we have
1274				 * more accurate RSS stats.  We don't do this
1275				 * in the normal page deactivation when the
1276				 * system is loaded VM wise, because the
1277				 * cost of the large number of page protect
1278				 * operations would be higher than the value
1279				 * of doing the operation.
1280				 */
1281				vm_page_protect(m, VM_PROT_NONE);
1282				vm_page_deactivate(m);
1283			} else {
1284				m->act_count -= min(m->act_count, ACT_DECLINE);
1285				vm_pageq_requeue(m);
1286			}
1287		}
1288
1289		m = next;
1290	}
1291	vm_page_unlock_queues();
1292	splx(s0);
1293}
1294
1295static int
1296vm_pageout_free_page_calc(count)
1297vm_size_t count;
1298{
1299	if (count < cnt.v_page_count)
1300		 return 0;
1301	/*
1302	 * free_reserved needs to include enough for the largest swap pager
1303	 * structures plus enough for any pv_entry structs when paging.
1304	 */
1305	if (cnt.v_page_count > 1024)
1306		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1307	else
1308		cnt.v_free_min = 4;
1309	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1310		cnt.v_interrupt_free_min;
1311	cnt.v_free_reserved = vm_pageout_page_count +
1312		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1313	cnt.v_free_severe = cnt.v_free_min / 2;
1314	cnt.v_free_min += cnt.v_free_reserved;
1315	cnt.v_free_severe += cnt.v_free_reserved;
1316	return 1;
1317}
1318
1319/*
1320 *	vm_pageout is the high level pageout daemon.
1321 */
1322static void
1323vm_pageout()
1324{
1325	int pass;
1326
1327	mtx_lock(&Giant);
1328
1329	/*
1330	 * Initialize some paging parameters.
1331	 */
1332	cnt.v_interrupt_free_min = 2;
1333	if (cnt.v_page_count < 2000)
1334		vm_pageout_page_count = 8;
1335
1336	vm_pageout_free_page_calc(cnt.v_page_count);
1337	/*
1338	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1339	 * that these are more a measure of the VM cache queue hysteresis
1340	 * then the VM free queue.  Specifically, v_free_target is the
1341	 * high water mark (free+cache pages).
1342	 *
1343	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1344	 * low water mark, while v_free_min is the stop.  v_cache_min must
1345	 * be big enough to handle memory needs while the pageout daemon
1346	 * is signalled and run to free more pages.
1347	 */
1348	if (cnt.v_free_count > 6144)
1349		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1350	else
1351		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1352
1353	if (cnt.v_free_count > 2048) {
1354		cnt.v_cache_min = cnt.v_free_target;
1355		cnt.v_cache_max = 2 * cnt.v_cache_min;
1356		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1357	} else {
1358		cnt.v_cache_min = 0;
1359		cnt.v_cache_max = 0;
1360		cnt.v_inactive_target = cnt.v_free_count / 4;
1361	}
1362	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1363		cnt.v_inactive_target = cnt.v_free_count / 3;
1364
1365	/* XXX does not really belong here */
1366	if (vm_page_max_wired == 0)
1367		vm_page_max_wired = cnt.v_free_count / 3;
1368
1369	if (vm_pageout_stats_max == 0)
1370		vm_pageout_stats_max = cnt.v_free_target;
1371
1372	/*
1373	 * Set interval in seconds for stats scan.
1374	 */
1375	if (vm_pageout_stats_interval == 0)
1376		vm_pageout_stats_interval = 5;
1377	if (vm_pageout_full_stats_interval == 0)
1378		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1379
1380	/*
1381	 * Set maximum free per pass
1382	 */
1383	if (vm_pageout_stats_free_max == 0)
1384		vm_pageout_stats_free_max = 5;
1385
1386	swap_pager_swap_init();
1387	pass = 0;
1388	/*
1389	 * The pageout daemon is never done, so loop forever.
1390	 */
1391	while (TRUE) {
1392		int error;
1393		int s = splvm();
1394
1395		/*
1396		 * If we have enough free memory, wakeup waiters.  Do
1397		 * not clear vm_pages_needed until we reach our target,
1398		 * otherwise we may be woken up over and over again and
1399		 * waste a lot of cpu.
1400		 */
1401		if (vm_pages_needed && !vm_page_count_min()) {
1402			if (vm_paging_needed() <= 0)
1403				vm_pages_needed = 0;
1404			wakeup(&cnt.v_free_count);
1405		}
1406		if (vm_pages_needed) {
1407			/*
1408			 * Still not done, take a second pass without waiting
1409			 * (unlimited dirty cleaning), otherwise sleep a bit
1410			 * and try again.
1411			 */
1412			++pass;
1413			if (pass > 1)
1414				tsleep(&vm_pages_needed, PVM,
1415				       "psleep", hz/2);
1416		} else {
1417			/*
1418			 * Good enough, sleep & handle stats.  Prime the pass
1419			 * for the next run.
1420			 */
1421			if (pass > 1)
1422				pass = 1;
1423			else
1424				pass = 0;
1425			error = tsleep(&vm_pages_needed, PVM,
1426				    "psleep", vm_pageout_stats_interval * hz);
1427			if (error && !vm_pages_needed) {
1428				splx(s);
1429				pass = 0;
1430				vm_pageout_page_stats();
1431				continue;
1432			}
1433		}
1434
1435		if (vm_pages_needed)
1436			cnt.v_pdwakeups++;
1437		splx(s);
1438		vm_pageout_scan(pass);
1439		vm_pageout_deficit = 0;
1440	}
1441}
1442
1443void
1444pagedaemon_wakeup()
1445{
1446	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1447		vm_pages_needed++;
1448		wakeup(&vm_pages_needed);
1449	}
1450}
1451
1452#if !defined(NO_SWAPPING)
1453static void
1454vm_req_vmdaemon()
1455{
1456	static int lastrun = 0;
1457
1458	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1459		wakeup(&vm_daemon_needed);
1460		lastrun = ticks;
1461	}
1462}
1463
1464static void
1465vm_daemon()
1466{
1467	struct proc *p;
1468	int breakout;
1469	struct thread *td;
1470
1471	mtx_lock(&Giant);
1472	while (TRUE) {
1473		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1474		if (vm_pageout_req_swapout) {
1475			swapout_procs(vm_pageout_req_swapout);
1476			vm_pageout_req_swapout = 0;
1477		}
1478		/*
1479		 * scan the processes for exceeding their rlimits or if
1480		 * process is swapped out -- deactivate pages
1481		 */
1482		sx_slock(&allproc_lock);
1483		LIST_FOREACH(p, &allproc, p_list) {
1484			vm_pindex_t limit, size;
1485
1486			/*
1487			 * if this is a system process or if we have already
1488			 * looked at this process, skip it.
1489			 */
1490			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1491				continue;
1492			}
1493			/*
1494			 * if the process is in a non-running type state,
1495			 * don't touch it.
1496			 */
1497			mtx_lock_spin(&sched_lock);
1498			breakout = 0;
1499			FOREACH_THREAD_IN_PROC(p, td) {
1500				if (!TD_ON_RUNQ(td) &&
1501				    !TD_IS_RUNNING(td) &&
1502				    !TD_IS_SLEEPING(td)) {
1503					breakout = 1;
1504					break;
1505				}
1506			}
1507			if (breakout) {
1508				mtx_unlock_spin(&sched_lock);
1509				continue;
1510			}
1511			/*
1512			 * get a limit
1513			 */
1514			limit = OFF_TO_IDX(
1515			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1516				p->p_rlimit[RLIMIT_RSS].rlim_max));
1517
1518			/*
1519			 * let processes that are swapped out really be
1520			 * swapped out set the limit to nothing (will force a
1521			 * swap-out.)
1522			 */
1523			if ((p->p_sflag & PS_INMEM) == 0)
1524				limit = 0;	/* XXX */
1525			mtx_unlock_spin(&sched_lock);
1526
1527			size = vmspace_resident_count(p->p_vmspace);
1528			if (limit >= 0 && size >= limit) {
1529				vm_pageout_map_deactivate_pages(
1530				    &p->p_vmspace->vm_map, limit);
1531			}
1532		}
1533		sx_sunlock(&allproc_lock);
1534	}
1535}
1536#endif			/* !defined(NO_SWAPPING) */
1537