vm_pageout.c revision 103925
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 103925 2002-09-25 01:24:58Z jeff $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mutex.h>
81#include <sys/proc.h>
82#include <sys/kthread.h>
83#include <sys/ktr.h>
84#include <sys/resourcevar.h>
85#include <sys/signalvar.h>
86#include <sys/vnode.h>
87#include <sys/vmmeter.h>
88#include <sys/sx.h>
89#include <sys/sysctl.h>
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_object.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/swap_pager.h>
99#include <vm/vm_extern.h>
100#include <vm/uma.h>
101
102#include <machine/mutex.h>
103
104/*
105 * System initialization
106 */
107
108/* the kernel process "vm_pageout"*/
109static void vm_pageout(void);
110static int vm_pageout_clean(vm_page_t);
111static void vm_pageout_scan(int pass);
112static int vm_pageout_free_page_calc(vm_size_t count);
113struct proc *pageproc;
114
115static struct kproc_desc page_kp = {
116	"pagedaemon",
117	vm_pageout,
118	&pageproc
119};
120SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
121
122#if !defined(NO_SWAPPING)
123/* the kernel process "vm_daemon"*/
124static void vm_daemon(void);
125static struct	proc *vmproc;
126
127static struct kproc_desc vm_kp = {
128	"vmdaemon",
129	vm_daemon,
130	&vmproc
131};
132SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
133#endif
134
135
136int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
137int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
138int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
139
140#if !defined(NO_SWAPPING)
141static int vm_pageout_req_swapout;	/* XXX */
142static int vm_daemon_needed;
143#endif
144extern int vm_swap_size;
145static int vm_max_launder = 32;
146static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
147static int vm_pageout_full_stats_interval = 0;
148static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
149static int defer_swap_pageouts=0;
150static int disable_swap_pageouts=0;
151
152#if defined(NO_SWAPPING)
153static int vm_swap_enabled=0;
154static int vm_swap_idle_enabled=0;
155#else
156static int vm_swap_enabled=1;
157static int vm_swap_idle_enabled=0;
158#endif
159
160SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
161	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
162
163SYSCTL_INT(_vm, OID_AUTO, max_launder,
164	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
165
166SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
167	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
170	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
173	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
176	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
177
178#if defined(NO_SWAPPING)
179SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180	CTLFLAG_RD, &vm_swap_enabled, 0, "");
181SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
183#else
184SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
186SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188#endif
189
190SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
191	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
192
193SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
194	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
195
196static int pageout_lock_miss;
197SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
198	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
199
200#define VM_PAGEOUT_PAGE_COUNT 16
201int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
202
203int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
204
205#if !defined(NO_SWAPPING)
206typedef void freeer_fcn_t(vm_map_t, vm_object_t, vm_pindex_t, int);
207static void vm_pageout_map_deactivate_pages(vm_map_t, vm_pindex_t);
208static freeer_fcn_t vm_pageout_object_deactivate_pages;
209static void vm_req_vmdaemon(void);
210#endif
211static void vm_pageout_page_stats(void);
212
213/*
214 * vm_pageout_clean:
215 *
216 * Clean the page and remove it from the laundry.
217 *
218 * We set the busy bit to cause potential page faults on this page to
219 * block.  Note the careful timing, however, the busy bit isn't set till
220 * late and we cannot do anything that will mess with the page.
221 */
222static int
223vm_pageout_clean(m)
224	vm_page_t m;
225{
226	vm_object_t object;
227	vm_page_t mc[2*vm_pageout_page_count];
228	int pageout_count;
229	int ib, is, page_base;
230	vm_pindex_t pindex = m->pindex;
231
232	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
233
234	object = m->object;
235
236	/*
237	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
238	 * with the new swapper, but we could have serious problems paging
239	 * out other object types if there is insufficient memory.
240	 *
241	 * Unfortunately, checking free memory here is far too late, so the
242	 * check has been moved up a procedural level.
243	 */
244
245	/*
246	 * Don't mess with the page if it's busy, held, or special
247	 */
248	if ((m->hold_count != 0) ||
249	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
250		return 0;
251	}
252
253	mc[vm_pageout_page_count] = m;
254	pageout_count = 1;
255	page_base = vm_pageout_page_count;
256	ib = 1;
257	is = 1;
258
259	/*
260	 * Scan object for clusterable pages.
261	 *
262	 * We can cluster ONLY if: ->> the page is NOT
263	 * clean, wired, busy, held, or mapped into a
264	 * buffer, and one of the following:
265	 * 1) The page is inactive, or a seldom used
266	 *    active page.
267	 * -or-
268	 * 2) we force the issue.
269	 *
270	 * During heavy mmap/modification loads the pageout
271	 * daemon can really fragment the underlying file
272	 * due to flushing pages out of order and not trying
273	 * align the clusters (which leave sporatic out-of-order
274	 * holes).  To solve this problem we do the reverse scan
275	 * first and attempt to align our cluster, then do a
276	 * forward scan if room remains.
277	 */
278more:
279	while (ib && pageout_count < vm_pageout_page_count) {
280		vm_page_t p;
281
282		if (ib > pindex) {
283			ib = 0;
284			break;
285		}
286
287		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
288			ib = 0;
289			break;
290		}
291		if (((p->queue - p->pc) == PQ_CACHE) ||
292		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
293			ib = 0;
294			break;
295		}
296		vm_page_test_dirty(p);
297		if ((p->dirty & p->valid) == 0 ||
298		    p->queue != PQ_INACTIVE ||
299		    p->wire_count != 0 ||	/* may be held by buf cache */
300		    p->hold_count != 0) {	/* may be undergoing I/O */
301			ib = 0;
302			break;
303		}
304		mc[--page_base] = p;
305		++pageout_count;
306		++ib;
307		/*
308		 * alignment boundry, stop here and switch directions.  Do
309		 * not clear ib.
310		 */
311		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
312			break;
313	}
314
315	while (pageout_count < vm_pageout_page_count &&
316	    pindex + is < object->size) {
317		vm_page_t p;
318
319		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
320			break;
321		if (((p->queue - p->pc) == PQ_CACHE) ||
322		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
323			break;
324		}
325		vm_page_test_dirty(p);
326		if ((p->dirty & p->valid) == 0 ||
327		    p->queue != PQ_INACTIVE ||
328		    p->wire_count != 0 ||	/* may be held by buf cache */
329		    p->hold_count != 0) {	/* may be undergoing I/O */
330			break;
331		}
332		mc[page_base + pageout_count] = p;
333		++pageout_count;
334		++is;
335	}
336
337	/*
338	 * If we exhausted our forward scan, continue with the reverse scan
339	 * when possible, even past a page boundry.  This catches boundry
340	 * conditions.
341	 */
342	if (ib && pageout_count < vm_pageout_page_count)
343		goto more;
344
345	/*
346	 * we allow reads during pageouts...
347	 */
348	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
349}
350
351/*
352 * vm_pageout_flush() - launder the given pages
353 *
354 *	The given pages are laundered.  Note that we setup for the start of
355 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
356 *	reference count all in here rather then in the parent.  If we want
357 *	the parent to do more sophisticated things we may have to change
358 *	the ordering.
359 */
360int
361vm_pageout_flush(mc, count, flags)
362	vm_page_t *mc;
363	int count;
364	int flags;
365{
366	vm_object_t object;
367	int pageout_status[count];
368	int numpagedout = 0;
369	int i;
370
371	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
372	/*
373	 * Initiate I/O.  Bump the vm_page_t->busy counter and
374	 * mark the pages read-only.
375	 *
376	 * We do not have to fixup the clean/dirty bits here... we can
377	 * allow the pager to do it after the I/O completes.
378	 *
379	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
380	 * edge case with file fragments.
381	 */
382	for (i = 0; i < count; i++) {
383		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
384		vm_page_io_start(mc[i]);
385		vm_page_protect(mc[i], VM_PROT_READ);
386	}
387	object = mc[0]->object;
388	vm_page_unlock_queues();
389	vm_object_pip_add(object, count);
390
391	vm_pager_put_pages(object, mc, count,
392	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
393	    pageout_status);
394
395	vm_page_lock_queues();
396	for (i = 0; i < count; i++) {
397		vm_page_t mt = mc[i];
398
399		switch (pageout_status[i]) {
400		case VM_PAGER_OK:
401			numpagedout++;
402			break;
403		case VM_PAGER_PEND:
404			numpagedout++;
405			break;
406		case VM_PAGER_BAD:
407			/*
408			 * Page outside of range of object. Right now we
409			 * essentially lose the changes by pretending it
410			 * worked.
411			 */
412			pmap_clear_modify(mt);
413			vm_page_undirty(mt);
414			break;
415		case VM_PAGER_ERROR:
416		case VM_PAGER_FAIL:
417			/*
418			 * If page couldn't be paged out, then reactivate the
419			 * page so it doesn't clog the inactive list.  (We
420			 * will try paging out it again later).
421			 */
422			vm_page_activate(mt);
423			break;
424		case VM_PAGER_AGAIN:
425			break;
426		}
427
428		/*
429		 * If the operation is still going, leave the page busy to
430		 * block all other accesses. Also, leave the paging in
431		 * progress indicator set so that we don't attempt an object
432		 * collapse.
433		 */
434		if (pageout_status[i] != VM_PAGER_PEND) {
435			vm_object_pip_wakeup(object);
436			vm_page_io_finish(mt);
437			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
438				vm_page_protect(mt, VM_PROT_READ);
439		}
440	}
441	return numpagedout;
442}
443
444#if !defined(NO_SWAPPING)
445/*
446 *	vm_pageout_object_deactivate_pages
447 *
448 *	deactivate enough pages to satisfy the inactive target
449 *	requirements or if vm_page_proc_limit is set, then
450 *	deactivate all of the pages in the object and its
451 *	backing_objects.
452 *
453 *	The object and map must be locked.
454 */
455static void
456vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
457	vm_map_t map;
458	vm_object_t object;
459	vm_pindex_t desired;
460	int map_remove_only;
461{
462	vm_page_t p, next;
463	int actcount, rcount, remove_mode;
464
465	GIANT_REQUIRED;
466	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
467		return;
468
469	while (object) {
470		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
471			return;
472		if (object->paging_in_progress)
473			return;
474
475		remove_mode = map_remove_only;
476		if (object->shadow_count > 1)
477			remove_mode = 1;
478		/*
479		 * scan the objects entire memory queue
480		 */
481		rcount = object->resident_page_count;
482		p = TAILQ_FIRST(&object->memq);
483		vm_page_lock_queues();
484		while (p && (rcount-- > 0)) {
485			if (pmap_resident_count(map->pmap) <= desired) {
486				vm_page_unlock_queues();
487				return;
488			}
489			next = TAILQ_NEXT(p, listq);
490			cnt.v_pdpages++;
491			if (p->wire_count != 0 ||
492			    p->hold_count != 0 ||
493			    p->busy != 0 ||
494			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
495			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
496				p = next;
497				continue;
498			}
499			actcount = pmap_ts_referenced(p);
500			if (actcount) {
501				vm_page_flag_set(p, PG_REFERENCED);
502			} else if (p->flags & PG_REFERENCED) {
503				actcount = 1;
504			}
505			if ((p->queue != PQ_ACTIVE) &&
506				(p->flags & PG_REFERENCED)) {
507				vm_page_activate(p);
508				p->act_count += actcount;
509				vm_page_flag_clear(p, PG_REFERENCED);
510			} else if (p->queue == PQ_ACTIVE) {
511				if ((p->flags & PG_REFERENCED) == 0) {
512					p->act_count -= min(p->act_count, ACT_DECLINE);
513					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
514						vm_page_protect(p, VM_PROT_NONE);
515						vm_page_deactivate(p);
516					} else {
517						vm_pageq_requeue(p);
518					}
519				} else {
520					vm_page_activate(p);
521					vm_page_flag_clear(p, PG_REFERENCED);
522					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
523						p->act_count += ACT_ADVANCE;
524					vm_pageq_requeue(p);
525				}
526			} else if (p->queue == PQ_INACTIVE) {
527				vm_page_protect(p, VM_PROT_NONE);
528			}
529			p = next;
530		}
531		vm_page_unlock_queues();
532		object = object->backing_object;
533	}
534}
535
536/*
537 * deactivate some number of pages in a map, try to do it fairly, but
538 * that is really hard to do.
539 */
540static void
541vm_pageout_map_deactivate_pages(map, desired)
542	vm_map_t map;
543	vm_pindex_t desired;
544{
545	vm_map_entry_t tmpe;
546	vm_object_t obj, bigobj;
547	int nothingwired;
548
549	GIANT_REQUIRED;
550	if (!vm_map_trylock(map))
551		return;
552
553	bigobj = NULL;
554	nothingwired = TRUE;
555
556	/*
557	 * first, search out the biggest object, and try to free pages from
558	 * that.
559	 */
560	tmpe = map->header.next;
561	while (tmpe != &map->header) {
562		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
563			obj = tmpe->object.vm_object;
564			if ((obj != NULL) && (obj->shadow_count <= 1) &&
565				((bigobj == NULL) ||
566				 (bigobj->resident_page_count < obj->resident_page_count))) {
567				bigobj = obj;
568			}
569		}
570		if (tmpe->wired_count > 0)
571			nothingwired = FALSE;
572		tmpe = tmpe->next;
573	}
574
575	if (bigobj)
576		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
577
578	/*
579	 * Next, hunt around for other pages to deactivate.  We actually
580	 * do this search sort of wrong -- .text first is not the best idea.
581	 */
582	tmpe = map->header.next;
583	while (tmpe != &map->header) {
584		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
585			break;
586		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
587			obj = tmpe->object.vm_object;
588			if (obj)
589				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
590		}
591		tmpe = tmpe->next;
592	};
593
594	/*
595	 * Remove all mappings if a process is swapped out, this will free page
596	 * table pages.
597	 */
598	if (desired == 0 && nothingwired)
599		pmap_remove(vm_map_pmap(map), vm_map_min(map),
600		    vm_map_max(map));
601	vm_map_unlock(map);
602	return;
603}
604#endif		/* !defined(NO_SWAPPING) */
605
606/*
607 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
608 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
609 * which we know can be trivially freed.
610 */
611void
612vm_pageout_page_free(vm_page_t m) {
613	vm_object_t object = m->object;
614	int type = object->type;
615
616	GIANT_REQUIRED;
617	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
618		vm_object_reference(object);
619	vm_page_busy(m);
620	vm_page_protect(m, VM_PROT_NONE);
621	vm_page_free(m);
622	cnt.v_dfree++;
623	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
624		vm_object_deallocate(object);
625}
626
627/*
628 *	vm_pageout_scan does the dirty work for the pageout daemon.
629 */
630static void
631vm_pageout_scan(int pass)
632{
633	vm_page_t m, next;
634	struct vm_page marker;
635	int save_page_shortage;
636	int save_inactive_count;
637	int page_shortage, maxscan, pcount;
638	int addl_page_shortage, addl_page_shortage_init;
639	struct proc *p, *bigproc;
640	vm_offset_t size, bigsize;
641	vm_object_t object;
642	int actcount;
643	int vnodes_skipped = 0;
644	int maxlaunder;
645	int s;
646	struct thread *td;
647
648	GIANT_REQUIRED;
649	/*
650	 * Do whatever cleanup that the pmap code can.
651	 */
652	pmap_collect();
653	uma_reclaim();
654
655	addl_page_shortage_init = vm_pageout_deficit;
656	vm_pageout_deficit = 0;
657
658	/*
659	 * Calculate the number of pages we want to either free or move
660	 * to the cache.
661	 */
662	page_shortage = vm_paging_target() + addl_page_shortage_init;
663	save_page_shortage = page_shortage;
664	save_inactive_count = cnt.v_inactive_count;
665
666	/*
667	 * Initialize our marker
668	 */
669	bzero(&marker, sizeof(marker));
670	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
671	marker.queue = PQ_INACTIVE;
672	marker.wire_count = 1;
673
674	/*
675	 * Start scanning the inactive queue for pages we can move to the
676	 * cache or free.  The scan will stop when the target is reached or
677	 * we have scanned the entire inactive queue.  Note that m->act_count
678	 * is not used to form decisions for the inactive queue, only for the
679	 * active queue.
680	 *
681	 * maxlaunder limits the number of dirty pages we flush per scan.
682	 * For most systems a smaller value (16 or 32) is more robust under
683	 * extreme memory and disk pressure because any unnecessary writes
684	 * to disk can result in extreme performance degredation.  However,
685	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
686	 * used) will die horribly with limited laundering.  If the pageout
687	 * daemon cannot clean enough pages in the first pass, we let it go
688	 * all out in succeeding passes.
689	 */
690	if ((maxlaunder = vm_max_launder) <= 1)
691		maxlaunder = 1;
692	if (pass)
693		maxlaunder = 10000;
694rescan0:
695	addl_page_shortage = addl_page_shortage_init;
696	maxscan = cnt.v_inactive_count;
697
698	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
699	     m != NULL && maxscan-- > 0 && page_shortage > 0;
700	     m = next) {
701
702		cnt.v_pdpages++;
703
704		if (m->queue != PQ_INACTIVE) {
705			goto rescan0;
706		}
707
708		next = TAILQ_NEXT(m, pageq);
709
710		/*
711		 * skip marker pages
712		 */
713		if (m->flags & PG_MARKER)
714			continue;
715
716		/*
717		 * A held page may be undergoing I/O, so skip it.
718		 */
719		if (m->hold_count) {
720			vm_pageq_requeue(m);
721			addl_page_shortage++;
722			continue;
723		}
724		/*
725		 * Don't mess with busy pages, keep in the front of the
726		 * queue, most likely are being paged out.
727		 */
728		if (m->busy || (m->flags & PG_BUSY)) {
729			addl_page_shortage++;
730			continue;
731		}
732
733		/*
734		 * If the object is not being used, we ignore previous
735		 * references.
736		 */
737		if (m->object->ref_count == 0) {
738			vm_page_flag_clear(m, PG_REFERENCED);
739			pmap_clear_reference(m);
740
741		/*
742		 * Otherwise, if the page has been referenced while in the
743		 * inactive queue, we bump the "activation count" upwards,
744		 * making it less likely that the page will be added back to
745		 * the inactive queue prematurely again.  Here we check the
746		 * page tables (or emulated bits, if any), given the upper
747		 * level VM system not knowing anything about existing
748		 * references.
749		 */
750		} else if (((m->flags & PG_REFERENCED) == 0) &&
751			(actcount = pmap_ts_referenced(m))) {
752			vm_page_lock_queues();
753			vm_page_activate(m);
754			vm_page_unlock_queues();
755			m->act_count += (actcount + ACT_ADVANCE);
756			continue;
757		}
758
759		/*
760		 * If the upper level VM system knows about any page
761		 * references, we activate the page.  We also set the
762		 * "activation count" higher than normal so that we will less
763		 * likely place pages back onto the inactive queue again.
764		 */
765		if ((m->flags & PG_REFERENCED) != 0) {
766			vm_page_flag_clear(m, PG_REFERENCED);
767			actcount = pmap_ts_referenced(m);
768			vm_page_lock_queues();
769			vm_page_activate(m);
770			vm_page_unlock_queues();
771			m->act_count += (actcount + ACT_ADVANCE + 1);
772			continue;
773		}
774
775		/*
776		 * If the upper level VM system doesn't know anything about
777		 * the page being dirty, we have to check for it again.  As
778		 * far as the VM code knows, any partially dirty pages are
779		 * fully dirty.
780		 */
781		if (m->dirty == 0) {
782			vm_page_test_dirty(m);
783		} else {
784			vm_page_dirty(m);
785		}
786
787		/*
788		 * Invalid pages can be easily freed
789		 */
790		if (m->valid == 0) {
791			vm_page_lock_queues();
792			vm_pageout_page_free(m);
793			vm_page_unlock_queues();
794			--page_shortage;
795
796		/*
797		 * Clean pages can be placed onto the cache queue.  This
798		 * effectively frees them.
799		 */
800		} else if (m->dirty == 0) {
801			vm_page_lock_queues();
802			vm_page_cache(m);
803			vm_page_unlock_queues();
804			--page_shortage;
805		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
806			/*
807			 * Dirty pages need to be paged out, but flushing
808			 * a page is extremely expensive verses freeing
809			 * a clean page.  Rather then artificially limiting
810			 * the number of pages we can flush, we instead give
811			 * dirty pages extra priority on the inactive queue
812			 * by forcing them to be cycled through the queue
813			 * twice before being flushed, after which the
814			 * (now clean) page will cycle through once more
815			 * before being freed.  This significantly extends
816			 * the thrash point for a heavily loaded machine.
817			 */
818			vm_page_flag_set(m, PG_WINATCFLS);
819			vm_pageq_requeue(m);
820		} else if (maxlaunder > 0) {
821			/*
822			 * We always want to try to flush some dirty pages if
823			 * we encounter them, to keep the system stable.
824			 * Normally this number is small, but under extreme
825			 * pressure where there are insufficient clean pages
826			 * on the inactive queue, we may have to go all out.
827			 */
828			int swap_pageouts_ok;
829			struct vnode *vp = NULL;
830			struct mount *mp;
831
832			object = m->object;
833
834			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
835				swap_pageouts_ok = 1;
836			} else {
837				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
838				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
839				vm_page_count_min());
840
841			}
842
843			/*
844			 * We don't bother paging objects that are "dead".
845			 * Those objects are in a "rundown" state.
846			 */
847			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
848				vm_pageq_requeue(m);
849				continue;
850			}
851
852			/*
853			 * The object is already known NOT to be dead.   It
854			 * is possible for the vget() to block the whole
855			 * pageout daemon, but the new low-memory handling
856			 * code should prevent it.
857			 *
858			 * The previous code skipped locked vnodes and, worse,
859			 * reordered pages in the queue.  This results in
860			 * completely non-deterministic operation and, on a
861			 * busy system, can lead to extremely non-optimal
862			 * pageouts.  For example, it can cause clean pages
863			 * to be freed and dirty pages to be moved to the end
864			 * of the queue.  Since dirty pages are also moved to
865			 * the end of the queue once-cleaned, this gives
866			 * way too large a weighting to defering the freeing
867			 * of dirty pages.
868			 *
869			 * We can't wait forever for the vnode lock, we might
870			 * deadlock due to a vn_read() getting stuck in
871			 * vm_wait while holding this vnode.  We skip the
872			 * vnode if we can't get it in a reasonable amount
873			 * of time.
874			 */
875			if (object->type == OBJT_VNODE) {
876				vp = object->handle;
877
878				mp = NULL;
879				if (vp->v_type == VREG)
880					vn_start_write(vp, &mp, V_NOWAIT);
881				if (vget(vp, LK_EXCLUSIVE|LK_TIMELOCK, curthread)) {
882					++pageout_lock_miss;
883					vn_finished_write(mp);
884					if (object->flags & OBJ_MIGHTBEDIRTY)
885						vnodes_skipped++;
886					continue;
887				}
888
889				/*
890				 * The page might have been moved to another
891				 * queue during potential blocking in vget()
892				 * above.  The page might have been freed and
893				 * reused for another vnode.  The object might
894				 * have been reused for another vnode.
895				 */
896				if (m->queue != PQ_INACTIVE ||
897				    m->object != object ||
898				    object->handle != vp) {
899					if (object->flags & OBJ_MIGHTBEDIRTY)
900						vnodes_skipped++;
901					vput(vp);
902					vn_finished_write(mp);
903					continue;
904				}
905
906				/*
907				 * The page may have been busied during the
908				 * blocking in vput();  We don't move the
909				 * page back onto the end of the queue so that
910				 * statistics are more correct if we don't.
911				 */
912				if (m->busy || (m->flags & PG_BUSY)) {
913					vput(vp);
914					vn_finished_write(mp);
915					continue;
916				}
917
918				/*
919				 * If the page has become held it might
920				 * be undergoing I/O, so skip it
921				 */
922				if (m->hold_count) {
923					vm_pageq_requeue(m);
924					if (object->flags & OBJ_MIGHTBEDIRTY)
925						vnodes_skipped++;
926					vput(vp);
927					vn_finished_write(mp);
928					continue;
929				}
930			}
931
932			/*
933			 * If a page is dirty, then it is either being washed
934			 * (but not yet cleaned) or it is still in the
935			 * laundry.  If it is still in the laundry, then we
936			 * start the cleaning operation.
937			 *
938			 * This operation may cluster, invalidating the 'next'
939			 * pointer.  To prevent an inordinate number of
940			 * restarts we use our marker to remember our place.
941			 *
942			 * decrement page_shortage on success to account for
943			 * the (future) cleaned page.  Otherwise we could wind
944			 * up laundering or cleaning too many pages.
945			 */
946			vm_page_lock_queues();
947			s = splvm();
948			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
949			splx(s);
950			if (vm_pageout_clean(m) != 0) {
951				--page_shortage;
952				--maxlaunder;
953			}
954			s = splvm();
955			next = TAILQ_NEXT(&marker, pageq);
956			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
957			splx(s);
958			vm_page_unlock_queues();
959			if (vp) {
960				vput(vp);
961				vn_finished_write(mp);
962			}
963		}
964	}
965
966	/*
967	 * Compute the number of pages we want to try to move from the
968	 * active queue to the inactive queue.
969	 */
970	page_shortage = vm_paging_target() +
971		cnt.v_inactive_target - cnt.v_inactive_count;
972	page_shortage += addl_page_shortage;
973
974	vm_page_lock_queues();
975	/*
976	 * Scan the active queue for things we can deactivate. We nominally
977	 * track the per-page activity counter and use it to locate
978	 * deactivation candidates.
979	 */
980	pcount = cnt.v_active_count;
981	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
982
983	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
984
985		/*
986		 * This is a consistency check, and should likely be a panic
987		 * or warning.
988		 */
989		if (m->queue != PQ_ACTIVE) {
990			break;
991		}
992
993		next = TAILQ_NEXT(m, pageq);
994		/*
995		 * Don't deactivate pages that are busy.
996		 */
997		if ((m->busy != 0) ||
998		    (m->flags & PG_BUSY) ||
999		    (m->hold_count != 0)) {
1000			vm_pageq_requeue(m);
1001			m = next;
1002			continue;
1003		}
1004
1005		/*
1006		 * The count for pagedaemon pages is done after checking the
1007		 * page for eligibility...
1008		 */
1009		cnt.v_pdpages++;
1010
1011		/*
1012		 * Check to see "how much" the page has been used.
1013		 */
1014		actcount = 0;
1015		if (m->object->ref_count != 0) {
1016			if (m->flags & PG_REFERENCED) {
1017				actcount += 1;
1018			}
1019			actcount += pmap_ts_referenced(m);
1020			if (actcount) {
1021				m->act_count += ACT_ADVANCE + actcount;
1022				if (m->act_count > ACT_MAX)
1023					m->act_count = ACT_MAX;
1024			}
1025		}
1026
1027		/*
1028		 * Since we have "tested" this bit, we need to clear it now.
1029		 */
1030		vm_page_flag_clear(m, PG_REFERENCED);
1031
1032		/*
1033		 * Only if an object is currently being used, do we use the
1034		 * page activation count stats.
1035		 */
1036		if (actcount && (m->object->ref_count != 0)) {
1037			vm_pageq_requeue(m);
1038		} else {
1039			m->act_count -= min(m->act_count, ACT_DECLINE);
1040			if (vm_pageout_algorithm ||
1041			    m->object->ref_count == 0 ||
1042			    m->act_count == 0) {
1043				page_shortage--;
1044				if (m->object->ref_count == 0) {
1045					vm_page_protect(m, VM_PROT_NONE);
1046					if (m->dirty == 0)
1047						vm_page_cache(m);
1048					else
1049						vm_page_deactivate(m);
1050				} else {
1051					vm_page_deactivate(m);
1052				}
1053			} else {
1054				vm_pageq_requeue(m);
1055			}
1056		}
1057		m = next;
1058	}
1059	s = splvm();
1060
1061	/*
1062	 * We try to maintain some *really* free pages, this allows interrupt
1063	 * code to be guaranteed space.  Since both cache and free queues
1064	 * are considered basically 'free', moving pages from cache to free
1065	 * does not effect other calculations.
1066	 */
1067	while (cnt.v_free_count < cnt.v_free_reserved) {
1068		static int cache_rover = 0;
1069		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1070		if (!m)
1071			break;
1072		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1073		    m->busy ||
1074		    m->hold_count ||
1075		    m->wire_count) {
1076#ifdef INVARIANTS
1077			printf("Warning: busy page %p found in cache\n", m);
1078#endif
1079			vm_page_deactivate(m);
1080			continue;
1081		}
1082		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1083		vm_pageout_page_free(m);
1084	}
1085	splx(s);
1086	vm_page_unlock_queues();
1087#if !defined(NO_SWAPPING)
1088	/*
1089	 * Idle process swapout -- run once per second.
1090	 */
1091	if (vm_swap_idle_enabled) {
1092		static long lsec;
1093		if (time_second != lsec) {
1094			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1095			vm_req_vmdaemon();
1096			lsec = time_second;
1097		}
1098	}
1099#endif
1100
1101	/*
1102	 * If we didn't get enough free pages, and we have skipped a vnode
1103	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1104	 * if we did not get enough free pages.
1105	 */
1106	if (vm_paging_target() > 0) {
1107		if (vnodes_skipped && vm_page_count_min())
1108			(void) speedup_syncer();
1109#if !defined(NO_SWAPPING)
1110		if (vm_swap_enabled && vm_page_count_target()) {
1111			vm_req_vmdaemon();
1112			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1113		}
1114#endif
1115	}
1116
1117	/*
1118	 * If we are out of swap and were not able to reach our paging
1119	 * target, kill the largest process.
1120	 *
1121	 * We keep the process bigproc locked once we find it to keep anyone
1122	 * from messing with it; however, there is a possibility of
1123	 * deadlock if process B is bigproc and one of it's child processes
1124	 * attempts to propagate a signal to B while we are waiting for A's
1125	 * lock while walking this list.  To avoid this, we don't block on
1126	 * the process lock but just skip a process if it is already locked.
1127	 */
1128	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1129	    (swap_pager_full && vm_paging_target() > 0)) {
1130#if 0
1131	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1132#endif
1133		bigproc = NULL;
1134		bigsize = 0;
1135		sx_slock(&allproc_lock);
1136		FOREACH_PROC_IN_SYSTEM(p) {
1137			int breakout;
1138			/*
1139			 * If this process is already locked, skip it.
1140			 */
1141			if (PROC_TRYLOCK(p) == 0)
1142				continue;
1143			/*
1144			 * if this is a system process, skip it
1145			 */
1146			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1147			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1148				PROC_UNLOCK(p);
1149				continue;
1150			}
1151			/*
1152			 * if the process is in a non-running type state,
1153			 * don't touch it. Check all the threads individually.
1154			 */
1155			mtx_lock_spin(&sched_lock);
1156			breakout = 0;
1157			FOREACH_THREAD_IN_PROC(p, td) {
1158				if (!TD_ON_RUNQ(td) &&
1159				    !TD_IS_RUNNING(td) &&
1160				    !TD_IS_SLEEPING(td)) {
1161					breakout = 1;
1162					break;
1163				}
1164			}
1165			if (breakout) {
1166				mtx_unlock_spin(&sched_lock);
1167				PROC_UNLOCK(p);
1168				continue;
1169			}
1170			mtx_unlock_spin(&sched_lock);
1171			/*
1172			 * get the process size
1173			 */
1174			size = vmspace_resident_count(p->p_vmspace) +
1175				vmspace_swap_count(p->p_vmspace);
1176			/*
1177			 * if the this process is bigger than the biggest one
1178			 * remember it.
1179			 */
1180			if (size > bigsize) {
1181				if (bigproc != NULL)
1182					PROC_UNLOCK(bigproc);
1183				bigproc = p;
1184				bigsize = size;
1185			} else
1186				PROC_UNLOCK(p);
1187		}
1188		sx_sunlock(&allproc_lock);
1189		if (bigproc != NULL) {
1190			struct ksegrp *kg;
1191			killproc(bigproc, "out of swap space");
1192			mtx_lock_spin(&sched_lock);
1193			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1194				kg->kg_estcpu = 0;
1195				kg->kg_nice = PRIO_MIN; /* XXXKSE ??? */
1196				resetpriority(kg);
1197			}
1198			mtx_unlock_spin(&sched_lock);
1199			PROC_UNLOCK(bigproc);
1200			wakeup(&cnt.v_free_count);
1201		}
1202	}
1203}
1204
1205/*
1206 * This routine tries to maintain the pseudo LRU active queue,
1207 * so that during long periods of time where there is no paging,
1208 * that some statistic accumulation still occurs.  This code
1209 * helps the situation where paging just starts to occur.
1210 */
1211static void
1212vm_pageout_page_stats()
1213{
1214	vm_page_t m,next;
1215	int pcount,tpcount;		/* Number of pages to check */
1216	static int fullintervalcount = 0;
1217	int page_shortage;
1218	int s0;
1219
1220	page_shortage =
1221	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1222	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1223
1224	if (page_shortage <= 0)
1225		return;
1226
1227	s0 = splvm();
1228	vm_page_lock_queues();
1229	pcount = cnt.v_active_count;
1230	fullintervalcount += vm_pageout_stats_interval;
1231	if (fullintervalcount < vm_pageout_full_stats_interval) {
1232		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1233		if (pcount > tpcount)
1234			pcount = tpcount;
1235	} else {
1236		fullintervalcount = 0;
1237	}
1238
1239	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1240	while ((m != NULL) && (pcount-- > 0)) {
1241		int actcount;
1242
1243		if (m->queue != PQ_ACTIVE) {
1244			break;
1245		}
1246
1247		next = TAILQ_NEXT(m, pageq);
1248		/*
1249		 * Don't deactivate pages that are busy.
1250		 */
1251		if ((m->busy != 0) ||
1252		    (m->flags & PG_BUSY) ||
1253		    (m->hold_count != 0)) {
1254			vm_pageq_requeue(m);
1255			m = next;
1256			continue;
1257		}
1258
1259		actcount = 0;
1260		if (m->flags & PG_REFERENCED) {
1261			vm_page_flag_clear(m, PG_REFERENCED);
1262			actcount += 1;
1263		}
1264
1265		actcount += pmap_ts_referenced(m);
1266		if (actcount) {
1267			m->act_count += ACT_ADVANCE + actcount;
1268			if (m->act_count > ACT_MAX)
1269				m->act_count = ACT_MAX;
1270			vm_pageq_requeue(m);
1271		} else {
1272			if (m->act_count == 0) {
1273				/*
1274				 * We turn off page access, so that we have
1275				 * more accurate RSS stats.  We don't do this
1276				 * in the normal page deactivation when the
1277				 * system is loaded VM wise, because the
1278				 * cost of the large number of page protect
1279				 * operations would be higher than the value
1280				 * of doing the operation.
1281				 */
1282				vm_page_protect(m, VM_PROT_NONE);
1283				vm_page_deactivate(m);
1284			} else {
1285				m->act_count -= min(m->act_count, ACT_DECLINE);
1286				vm_pageq_requeue(m);
1287			}
1288		}
1289
1290		m = next;
1291	}
1292	vm_page_unlock_queues();
1293	splx(s0);
1294}
1295
1296static int
1297vm_pageout_free_page_calc(count)
1298vm_size_t count;
1299{
1300	if (count < cnt.v_page_count)
1301		 return 0;
1302	/*
1303	 * free_reserved needs to include enough for the largest swap pager
1304	 * structures plus enough for any pv_entry structs when paging.
1305	 */
1306	if (cnt.v_page_count > 1024)
1307		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1308	else
1309		cnt.v_free_min = 4;
1310	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1311		cnt.v_interrupt_free_min;
1312	cnt.v_free_reserved = vm_pageout_page_count +
1313		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1314	cnt.v_free_severe = cnt.v_free_min / 2;
1315	cnt.v_free_min += cnt.v_free_reserved;
1316	cnt.v_free_severe += cnt.v_free_reserved;
1317	return 1;
1318}
1319
1320/*
1321 *	vm_pageout is the high level pageout daemon.
1322 */
1323static void
1324vm_pageout()
1325{
1326	int pass;
1327
1328	mtx_lock(&Giant);
1329
1330	/*
1331	 * Initialize some paging parameters.
1332	 */
1333	cnt.v_interrupt_free_min = 2;
1334	if (cnt.v_page_count < 2000)
1335		vm_pageout_page_count = 8;
1336
1337	vm_pageout_free_page_calc(cnt.v_page_count);
1338	/*
1339	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1340	 * that these are more a measure of the VM cache queue hysteresis
1341	 * then the VM free queue.  Specifically, v_free_target is the
1342	 * high water mark (free+cache pages).
1343	 *
1344	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1345	 * low water mark, while v_free_min is the stop.  v_cache_min must
1346	 * be big enough to handle memory needs while the pageout daemon
1347	 * is signalled and run to free more pages.
1348	 */
1349	if (cnt.v_free_count > 6144)
1350		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1351	else
1352		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1353
1354	if (cnt.v_free_count > 2048) {
1355		cnt.v_cache_min = cnt.v_free_target;
1356		cnt.v_cache_max = 2 * cnt.v_cache_min;
1357		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1358	} else {
1359		cnt.v_cache_min = 0;
1360		cnt.v_cache_max = 0;
1361		cnt.v_inactive_target = cnt.v_free_count / 4;
1362	}
1363	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1364		cnt.v_inactive_target = cnt.v_free_count / 3;
1365
1366	/* XXX does not really belong here */
1367	if (vm_page_max_wired == 0)
1368		vm_page_max_wired = cnt.v_free_count / 3;
1369
1370	if (vm_pageout_stats_max == 0)
1371		vm_pageout_stats_max = cnt.v_free_target;
1372
1373	/*
1374	 * Set interval in seconds for stats scan.
1375	 */
1376	if (vm_pageout_stats_interval == 0)
1377		vm_pageout_stats_interval = 5;
1378	if (vm_pageout_full_stats_interval == 0)
1379		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1380
1381	/*
1382	 * Set maximum free per pass
1383	 */
1384	if (vm_pageout_stats_free_max == 0)
1385		vm_pageout_stats_free_max = 5;
1386
1387	swap_pager_swap_init();
1388	pass = 0;
1389	/*
1390	 * The pageout daemon is never done, so loop forever.
1391	 */
1392	while (TRUE) {
1393		int error;
1394		int s = splvm();
1395
1396		/*
1397		 * If we have enough free memory, wakeup waiters.  Do
1398		 * not clear vm_pages_needed until we reach our target,
1399		 * otherwise we may be woken up over and over again and
1400		 * waste a lot of cpu.
1401		 */
1402		if (vm_pages_needed && !vm_page_count_min()) {
1403			if (vm_paging_needed() <= 0)
1404				vm_pages_needed = 0;
1405			wakeup(&cnt.v_free_count);
1406		}
1407		if (vm_pages_needed) {
1408			/*
1409			 * Still not done, take a second pass without waiting
1410			 * (unlimited dirty cleaning), otherwise sleep a bit
1411			 * and try again.
1412			 */
1413			++pass;
1414			if (pass > 1)
1415				tsleep(&vm_pages_needed, PVM,
1416				       "psleep", hz/2);
1417		} else {
1418			/*
1419			 * Good enough, sleep & handle stats.  Prime the pass
1420			 * for the next run.
1421			 */
1422			if (pass > 1)
1423				pass = 1;
1424			else
1425				pass = 0;
1426			error = tsleep(&vm_pages_needed, PVM,
1427				    "psleep", vm_pageout_stats_interval * hz);
1428			if (error && !vm_pages_needed) {
1429				splx(s);
1430				pass = 0;
1431				vm_pageout_page_stats();
1432				continue;
1433			}
1434		}
1435
1436		if (vm_pages_needed)
1437			cnt.v_pdwakeups++;
1438		splx(s);
1439		vm_pageout_scan(pass);
1440		vm_pageout_deficit = 0;
1441	}
1442}
1443
1444void
1445pagedaemon_wakeup()
1446{
1447	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1448		vm_pages_needed++;
1449		wakeup(&vm_pages_needed);
1450	}
1451}
1452
1453#if !defined(NO_SWAPPING)
1454static void
1455vm_req_vmdaemon()
1456{
1457	static int lastrun = 0;
1458
1459	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1460		wakeup(&vm_daemon_needed);
1461		lastrun = ticks;
1462	}
1463}
1464
1465static void
1466vm_daemon()
1467{
1468	struct proc *p;
1469	int breakout;
1470	struct thread *td;
1471
1472	mtx_lock(&Giant);
1473	while (TRUE) {
1474		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1475		if (vm_pageout_req_swapout) {
1476			swapout_procs(vm_pageout_req_swapout);
1477			vm_pageout_req_swapout = 0;
1478		}
1479		/*
1480		 * scan the processes for exceeding their rlimits or if
1481		 * process is swapped out -- deactivate pages
1482		 */
1483		sx_slock(&allproc_lock);
1484		LIST_FOREACH(p, &allproc, p_list) {
1485			vm_pindex_t limit, size;
1486
1487			/*
1488			 * if this is a system process or if we have already
1489			 * looked at this process, skip it.
1490			 */
1491			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1492				continue;
1493			}
1494			/*
1495			 * if the process is in a non-running type state,
1496			 * don't touch it.
1497			 */
1498			mtx_lock_spin(&sched_lock);
1499			breakout = 0;
1500			FOREACH_THREAD_IN_PROC(p, td) {
1501				if (!TD_ON_RUNQ(td) &&
1502				    !TD_IS_RUNNING(td) &&
1503				    !TD_IS_SLEEPING(td)) {
1504					breakout = 1;
1505					break;
1506				}
1507			}
1508			if (breakout) {
1509				mtx_unlock_spin(&sched_lock);
1510				continue;
1511			}
1512			/*
1513			 * get a limit
1514			 */
1515			limit = OFF_TO_IDX(
1516			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1517				p->p_rlimit[RLIMIT_RSS].rlim_max));
1518
1519			/*
1520			 * let processes that are swapped out really be
1521			 * swapped out set the limit to nothing (will force a
1522			 * swap-out.)
1523			 */
1524			if ((p->p_sflag & PS_INMEM) == 0)
1525				limit = 0;	/* XXX */
1526			mtx_unlock_spin(&sched_lock);
1527
1528			size = vmspace_resident_count(p->p_vmspace);
1529			if (limit >= 0 && size >= limit) {
1530				vm_pageout_map_deactivate_pages(
1531				    &p->p_vmspace->vm_map, limit);
1532			}
1533		}
1534		sx_sunlock(&allproc_lock);
1535	}
1536}
1537#endif			/* !defined(NO_SWAPPING) */
1538