vm_pageout.c revision 100740
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 100740 2002-07-27 06:41:03Z alc $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mutex.h>
81#include <sys/proc.h>
82#include <sys/kthread.h>
83#include <sys/ktr.h>
84#include <sys/resourcevar.h>
85#include <sys/signalvar.h>
86#include <sys/vnode.h>
87#include <sys/vmmeter.h>
88#include <sys/sx.h>
89#include <sys/sysctl.h>
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_object.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/swap_pager.h>
99#include <vm/vm_extern.h>
100#include <vm/uma.h>
101
102#include <machine/mutex.h>
103
104/*
105 * System initialization
106 */
107
108/* the kernel process "vm_pageout"*/
109static void vm_pageout(void);
110static int vm_pageout_clean(vm_page_t);
111static void vm_pageout_scan(int pass);
112static int vm_pageout_free_page_calc(vm_size_t count);
113struct proc *pageproc;
114
115static struct kproc_desc page_kp = {
116	"pagedaemon",
117	vm_pageout,
118	&pageproc
119};
120SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
121
122#if !defined(NO_SWAPPING)
123/* the kernel process "vm_daemon"*/
124static void vm_daemon(void);
125static struct	proc *vmproc;
126
127static struct kproc_desc vm_kp = {
128	"vmdaemon",
129	vm_daemon,
130	&vmproc
131};
132SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
133#endif
134
135
136int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
137int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
138int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
139
140#if !defined(NO_SWAPPING)
141static int vm_pageout_req_swapout;	/* XXX */
142static int vm_daemon_needed;
143#endif
144extern int vm_swap_size;
145static int vm_max_launder = 32;
146static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
147static int vm_pageout_full_stats_interval = 0;
148static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
149static int defer_swap_pageouts=0;
150static int disable_swap_pageouts=0;
151
152#if defined(NO_SWAPPING)
153static int vm_swap_enabled=0;
154static int vm_swap_idle_enabled=0;
155#else
156static int vm_swap_enabled=1;
157static int vm_swap_idle_enabled=0;
158#endif
159
160SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
161	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
162
163SYSCTL_INT(_vm, OID_AUTO, max_launder,
164	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
165
166SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
167	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
170	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
173	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
176	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
177
178#if defined(NO_SWAPPING)
179SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180	CTLFLAG_RD, &vm_swap_enabled, 0, "");
181SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
183#else
184SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
186SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188#endif
189
190SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
191	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
192
193SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
194	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
195
196static int pageout_lock_miss;
197SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
198	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
199
200#define VM_PAGEOUT_PAGE_COUNT 16
201int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
202
203int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
204
205#if !defined(NO_SWAPPING)
206typedef void freeer_fcn_t(vm_map_t, vm_object_t, vm_pindex_t, int);
207static void vm_pageout_map_deactivate_pages(vm_map_t, vm_pindex_t);
208static freeer_fcn_t vm_pageout_object_deactivate_pages;
209static void vm_req_vmdaemon(void);
210#endif
211static void vm_pageout_page_stats(void);
212
213/*
214 * vm_pageout_clean:
215 *
216 * Clean the page and remove it from the laundry.
217 *
218 * We set the busy bit to cause potential page faults on this page to
219 * block.  Note the careful timing, however, the busy bit isn't set till
220 * late and we cannot do anything that will mess with the page.
221 */
222static int
223vm_pageout_clean(m)
224	vm_page_t m;
225{
226	vm_object_t object;
227	vm_page_t mc[2*vm_pageout_page_count];
228	int pageout_count;
229	int ib, is, page_base;
230	vm_pindex_t pindex = m->pindex;
231
232	GIANT_REQUIRED;
233
234	object = m->object;
235
236	/*
237	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
238	 * with the new swapper, but we could have serious problems paging
239	 * out other object types if there is insufficient memory.
240	 *
241	 * Unfortunately, checking free memory here is far too late, so the
242	 * check has been moved up a procedural level.
243	 */
244
245	/*
246	 * Don't mess with the page if it's busy, held, or special
247	 */
248	if ((m->hold_count != 0) ||
249	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
250		return 0;
251	}
252
253	mc[vm_pageout_page_count] = m;
254	pageout_count = 1;
255	page_base = vm_pageout_page_count;
256	ib = 1;
257	is = 1;
258
259	/*
260	 * Scan object for clusterable pages.
261	 *
262	 * We can cluster ONLY if: ->> the page is NOT
263	 * clean, wired, busy, held, or mapped into a
264	 * buffer, and one of the following:
265	 * 1) The page is inactive, or a seldom used
266	 *    active page.
267	 * -or-
268	 * 2) we force the issue.
269	 *
270	 * During heavy mmap/modification loads the pageout
271	 * daemon can really fragment the underlying file
272	 * due to flushing pages out of order and not trying
273	 * align the clusters (which leave sporatic out-of-order
274	 * holes).  To solve this problem we do the reverse scan
275	 * first and attempt to align our cluster, then do a
276	 * forward scan if room remains.
277	 */
278more:
279	while (ib && pageout_count < vm_pageout_page_count) {
280		vm_page_t p;
281
282		if (ib > pindex) {
283			ib = 0;
284			break;
285		}
286
287		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
288			ib = 0;
289			break;
290		}
291		if (((p->queue - p->pc) == PQ_CACHE) ||
292		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
293			ib = 0;
294			break;
295		}
296		vm_page_test_dirty(p);
297		if ((p->dirty & p->valid) == 0 ||
298		    p->queue != PQ_INACTIVE ||
299		    p->wire_count != 0 ||	/* may be held by buf cache */
300		    p->hold_count != 0) {	/* may be undergoing I/O */
301			ib = 0;
302			break;
303		}
304		mc[--page_base] = p;
305		++pageout_count;
306		++ib;
307		/*
308		 * alignment boundry, stop here and switch directions.  Do
309		 * not clear ib.
310		 */
311		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
312			break;
313	}
314
315	while (pageout_count < vm_pageout_page_count &&
316	    pindex + is < object->size) {
317		vm_page_t p;
318
319		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
320			break;
321		if (((p->queue - p->pc) == PQ_CACHE) ||
322		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
323			break;
324		}
325		vm_page_test_dirty(p);
326		if ((p->dirty & p->valid) == 0 ||
327		    p->queue != PQ_INACTIVE ||
328		    p->wire_count != 0 ||	/* may be held by buf cache */
329		    p->hold_count != 0) {	/* may be undergoing I/O */
330			break;
331		}
332		mc[page_base + pageout_count] = p;
333		++pageout_count;
334		++is;
335	}
336
337	/*
338	 * If we exhausted our forward scan, continue with the reverse scan
339	 * when possible, even past a page boundry.  This catches boundry
340	 * conditions.
341	 */
342	if (ib && pageout_count < vm_pageout_page_count)
343		goto more;
344
345	/*
346	 * we allow reads during pageouts...
347	 */
348	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
349}
350
351/*
352 * vm_pageout_flush() - launder the given pages
353 *
354 *	The given pages are laundered.  Note that we setup for the start of
355 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
356 *	reference count all in here rather then in the parent.  If we want
357 *	the parent to do more sophisticated things we may have to change
358 *	the ordering.
359 */
360int
361vm_pageout_flush(mc, count, flags)
362	vm_page_t *mc;
363	int count;
364	int flags;
365{
366	vm_object_t object;
367	int pageout_status[count];
368	int numpagedout = 0;
369	int i;
370
371	GIANT_REQUIRED;
372	/*
373	 * Initiate I/O.  Bump the vm_page_t->busy counter and
374	 * mark the pages read-only.
375	 *
376	 * We do not have to fixup the clean/dirty bits here... we can
377	 * allow the pager to do it after the I/O completes.
378	 *
379	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
380	 * edge case with file fragments.
381	 */
382	for (i = 0; i < count; i++) {
383		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
384		vm_page_io_start(mc[i]);
385		vm_page_protect(mc[i], VM_PROT_READ);
386	}
387
388	object = mc[0]->object;
389	vm_object_pip_add(object, count);
390
391	vm_pager_put_pages(object, mc, count,
392	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
393	    pageout_status);
394
395	vm_page_lock_queues();
396	for (i = 0; i < count; i++) {
397		vm_page_t mt = mc[i];
398
399		switch (pageout_status[i]) {
400		case VM_PAGER_OK:
401			numpagedout++;
402			break;
403		case VM_PAGER_PEND:
404			numpagedout++;
405			break;
406		case VM_PAGER_BAD:
407			/*
408			 * Page outside of range of object. Right now we
409			 * essentially lose the changes by pretending it
410			 * worked.
411			 */
412			pmap_clear_modify(mt);
413			vm_page_undirty(mt);
414			break;
415		case VM_PAGER_ERROR:
416		case VM_PAGER_FAIL:
417			/*
418			 * If page couldn't be paged out, then reactivate the
419			 * page so it doesn't clog the inactive list.  (We
420			 * will try paging out it again later).
421			 */
422			vm_page_activate(mt);
423			break;
424		case VM_PAGER_AGAIN:
425			break;
426		}
427
428		/*
429		 * If the operation is still going, leave the page busy to
430		 * block all other accesses. Also, leave the paging in
431		 * progress indicator set so that we don't attempt an object
432		 * collapse.
433		 */
434		if (pageout_status[i] != VM_PAGER_PEND) {
435			vm_object_pip_wakeup(object);
436			vm_page_io_finish(mt);
437			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
438				vm_page_protect(mt, VM_PROT_READ);
439		}
440	}
441	vm_page_unlock_queues();
442	return numpagedout;
443}
444
445#if !defined(NO_SWAPPING)
446/*
447 *	vm_pageout_object_deactivate_pages
448 *
449 *	deactivate enough pages to satisfy the inactive target
450 *	requirements or if vm_page_proc_limit is set, then
451 *	deactivate all of the pages in the object and its
452 *	backing_objects.
453 *
454 *	The object and map must be locked.
455 */
456static void
457vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
458	vm_map_t map;
459	vm_object_t object;
460	vm_pindex_t desired;
461	int map_remove_only;
462{
463	vm_page_t p, next;
464	int actcount, rcount, remove_mode;
465
466	GIANT_REQUIRED;
467	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
468		return;
469
470	while (object) {
471		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
472			return;
473		if (object->paging_in_progress)
474			return;
475
476		remove_mode = map_remove_only;
477		if (object->shadow_count > 1)
478			remove_mode = 1;
479		/*
480		 * scan the objects entire memory queue
481		 */
482		rcount = object->resident_page_count;
483		p = TAILQ_FIRST(&object->memq);
484		vm_page_lock_queues();
485		while (p && (rcount-- > 0)) {
486			if (pmap_resident_count(map->pmap) <= desired) {
487				vm_page_unlock_queues();
488				return;
489			}
490			next = TAILQ_NEXT(p, listq);
491			cnt.v_pdpages++;
492			if (p->wire_count != 0 ||
493			    p->hold_count != 0 ||
494			    p->busy != 0 ||
495			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
496			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
497				p = next;
498				continue;
499			}
500			actcount = pmap_ts_referenced(p);
501			if (actcount) {
502				vm_page_flag_set(p, PG_REFERENCED);
503			} else if (p->flags & PG_REFERENCED) {
504				actcount = 1;
505			}
506			if ((p->queue != PQ_ACTIVE) &&
507				(p->flags & PG_REFERENCED)) {
508				vm_page_activate(p);
509				p->act_count += actcount;
510				vm_page_flag_clear(p, PG_REFERENCED);
511			} else if (p->queue == PQ_ACTIVE) {
512				if ((p->flags & PG_REFERENCED) == 0) {
513					p->act_count -= min(p->act_count, ACT_DECLINE);
514					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
515						vm_page_protect(p, VM_PROT_NONE);
516						vm_page_deactivate(p);
517					} else {
518						vm_pageq_requeue(p);
519					}
520				} else {
521					vm_page_activate(p);
522					vm_page_flag_clear(p, PG_REFERENCED);
523					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
524						p->act_count += ACT_ADVANCE;
525					vm_pageq_requeue(p);
526				}
527			} else if (p->queue == PQ_INACTIVE) {
528				vm_page_protect(p, VM_PROT_NONE);
529			}
530			p = next;
531		}
532		vm_page_unlock_queues();
533		object = object->backing_object;
534	}
535}
536
537/*
538 * deactivate some number of pages in a map, try to do it fairly, but
539 * that is really hard to do.
540 */
541static void
542vm_pageout_map_deactivate_pages(map, desired)
543	vm_map_t map;
544	vm_pindex_t desired;
545{
546	vm_map_entry_t tmpe;
547	vm_object_t obj, bigobj;
548	int nothingwired;
549
550	GIANT_REQUIRED;
551	if (!vm_map_trylock(map))
552		return;
553
554	bigobj = NULL;
555	nothingwired = TRUE;
556
557	/*
558	 * first, search out the biggest object, and try to free pages from
559	 * that.
560	 */
561	tmpe = map->header.next;
562	while (tmpe != &map->header) {
563		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
564			obj = tmpe->object.vm_object;
565			if ((obj != NULL) && (obj->shadow_count <= 1) &&
566				((bigobj == NULL) ||
567				 (bigobj->resident_page_count < obj->resident_page_count))) {
568				bigobj = obj;
569			}
570		}
571		if (tmpe->wired_count > 0)
572			nothingwired = FALSE;
573		tmpe = tmpe->next;
574	}
575
576	if (bigobj)
577		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
578
579	/*
580	 * Next, hunt around for other pages to deactivate.  We actually
581	 * do this search sort of wrong -- .text first is not the best idea.
582	 */
583	tmpe = map->header.next;
584	while (tmpe != &map->header) {
585		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
586			break;
587		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
588			obj = tmpe->object.vm_object;
589			if (obj)
590				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
591		}
592		tmpe = tmpe->next;
593	};
594
595	/*
596	 * Remove all mappings if a process is swapped out, this will free page
597	 * table pages.
598	 */
599	if (desired == 0 && nothingwired)
600		pmap_remove(vm_map_pmap(map),
601			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
602	vm_map_unlock(map);
603	return;
604}
605#endif		/* !defined(NO_SWAPPING) */
606
607/*
608 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
609 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
610 * which we know can be trivially freed.
611 */
612void
613vm_pageout_page_free(vm_page_t m) {
614	vm_object_t object = m->object;
615	int type = object->type;
616
617	GIANT_REQUIRED;
618	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
619		vm_object_reference(object);
620	vm_page_busy(m);
621	vm_page_protect(m, VM_PROT_NONE);
622	vm_page_free(m);
623	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
624		vm_object_deallocate(object);
625}
626
627/*
628 *	vm_pageout_scan does the dirty work for the pageout daemon.
629 */
630static void
631vm_pageout_scan(int pass)
632{
633	vm_page_t m, next;
634	struct vm_page marker;
635	int save_page_shortage;
636	int save_inactive_count;
637	int page_shortage, maxscan, pcount;
638	int addl_page_shortage, addl_page_shortage_init;
639	struct proc *p, *bigproc;
640	vm_offset_t size, bigsize;
641	vm_object_t object;
642	int actcount;
643	int vnodes_skipped = 0;
644	int maxlaunder;
645	int s;
646	struct thread *td;
647
648	GIANT_REQUIRED;
649	/*
650	 * Do whatever cleanup that the pmap code can.
651	 */
652	pmap_collect();
653	uma_reclaim();
654
655	addl_page_shortage_init = vm_pageout_deficit;
656	vm_pageout_deficit = 0;
657
658	/*
659	 * Calculate the number of pages we want to either free or move
660	 * to the cache.
661	 */
662	page_shortage = vm_paging_target() + addl_page_shortage_init;
663	save_page_shortage = page_shortage;
664	save_inactive_count = cnt.v_inactive_count;
665
666	/*
667	 * Initialize our marker
668	 */
669	bzero(&marker, sizeof(marker));
670	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
671	marker.queue = PQ_INACTIVE;
672	marker.wire_count = 1;
673
674	/*
675	 * Start scanning the inactive queue for pages we can move to the
676	 * cache or free.  The scan will stop when the target is reached or
677	 * we have scanned the entire inactive queue.  Note that m->act_count
678	 * is not used to form decisions for the inactive queue, only for the
679	 * active queue.
680	 *
681	 * maxlaunder limits the number of dirty pages we flush per scan.
682	 * For most systems a smaller value (16 or 32) is more robust under
683	 * extreme memory and disk pressure because any unnecessary writes
684	 * to disk can result in extreme performance degredation.  However,
685	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
686	 * used) will die horribly with limited laundering.  If the pageout
687	 * daemon cannot clean enough pages in the first pass, we let it go
688	 * all out in succeeding passes.
689	 */
690	if ((maxlaunder = vm_max_launder) <= 1)
691		maxlaunder = 1;
692	if (pass)
693		maxlaunder = 10000;
694rescan0:
695	addl_page_shortage = addl_page_shortage_init;
696	maxscan = cnt.v_inactive_count;
697
698	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
699	     m != NULL && maxscan-- > 0 && page_shortage > 0;
700	     m = next) {
701
702		cnt.v_pdpages++;
703
704		if (m->queue != PQ_INACTIVE) {
705			goto rescan0;
706		}
707
708		next = TAILQ_NEXT(m, pageq);
709
710		/*
711		 * skip marker pages
712		 */
713		if (m->flags & PG_MARKER)
714			continue;
715
716		/*
717		 * A held page may be undergoing I/O, so skip it.
718		 */
719		if (m->hold_count) {
720			vm_pageq_requeue(m);
721			addl_page_shortage++;
722			continue;
723		}
724		/*
725		 * Don't mess with busy pages, keep in the front of the
726		 * queue, most likely are being paged out.
727		 */
728		if (m->busy || (m->flags & PG_BUSY)) {
729			addl_page_shortage++;
730			continue;
731		}
732
733		/*
734		 * If the object is not being used, we ignore previous
735		 * references.
736		 */
737		if (m->object->ref_count == 0) {
738			vm_page_flag_clear(m, PG_REFERENCED);
739			pmap_clear_reference(m);
740
741		/*
742		 * Otherwise, if the page has been referenced while in the
743		 * inactive queue, we bump the "activation count" upwards,
744		 * making it less likely that the page will be added back to
745		 * the inactive queue prematurely again.  Here we check the
746		 * page tables (or emulated bits, if any), given the upper
747		 * level VM system not knowing anything about existing
748		 * references.
749		 */
750		} else if (((m->flags & PG_REFERENCED) == 0) &&
751			(actcount = pmap_ts_referenced(m))) {
752			vm_page_activate(m);
753			m->act_count += (actcount + ACT_ADVANCE);
754			continue;
755		}
756
757		/*
758		 * If the upper level VM system knows about any page
759		 * references, we activate the page.  We also set the
760		 * "activation count" higher than normal so that we will less
761		 * likely place pages back onto the inactive queue again.
762		 */
763		if ((m->flags & PG_REFERENCED) != 0) {
764			vm_page_flag_clear(m, PG_REFERENCED);
765			actcount = pmap_ts_referenced(m);
766			vm_page_activate(m);
767			m->act_count += (actcount + ACT_ADVANCE + 1);
768			continue;
769		}
770
771		/*
772		 * If the upper level VM system doesn't know anything about
773		 * the page being dirty, we have to check for it again.  As
774		 * far as the VM code knows, any partially dirty pages are
775		 * fully dirty.
776		 */
777		if (m->dirty == 0) {
778			vm_page_test_dirty(m);
779		} else {
780			vm_page_dirty(m);
781		}
782
783		/*
784		 * Invalid pages can be easily freed
785		 */
786		if (m->valid == 0) {
787			vm_pageout_page_free(m);
788			cnt.v_dfree++;
789			--page_shortage;
790
791		/*
792		 * Clean pages can be placed onto the cache queue.  This
793		 * effectively frees them.
794		 */
795		} else if (m->dirty == 0) {
796			vm_page_lock_queues();
797			vm_page_cache(m);
798			vm_page_unlock_queues();
799			--page_shortage;
800		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
801			/*
802			 * Dirty pages need to be paged out, but flushing
803			 * a page is extremely expensive verses freeing
804			 * a clean page.  Rather then artificially limiting
805			 * the number of pages we can flush, we instead give
806			 * dirty pages extra priority on the inactive queue
807			 * by forcing them to be cycled through the queue
808			 * twice before being flushed, after which the
809			 * (now clean) page will cycle through once more
810			 * before being freed.  This significantly extends
811			 * the thrash point for a heavily loaded machine.
812			 */
813			vm_page_flag_set(m, PG_WINATCFLS);
814			vm_pageq_requeue(m);
815		} else if (maxlaunder > 0) {
816			/*
817			 * We always want to try to flush some dirty pages if
818			 * we encounter them, to keep the system stable.
819			 * Normally this number is small, but under extreme
820			 * pressure where there are insufficient clean pages
821			 * on the inactive queue, we may have to go all out.
822			 */
823			int swap_pageouts_ok;
824			struct vnode *vp = NULL;
825			struct mount *mp;
826
827			object = m->object;
828
829			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
830				swap_pageouts_ok = 1;
831			} else {
832				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
833				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
834				vm_page_count_min());
835
836			}
837
838			/*
839			 * We don't bother paging objects that are "dead".
840			 * Those objects are in a "rundown" state.
841			 */
842			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
843				vm_pageq_requeue(m);
844				continue;
845			}
846
847			/*
848			 * The object is already known NOT to be dead.   It
849			 * is possible for the vget() to block the whole
850			 * pageout daemon, but the new low-memory handling
851			 * code should prevent it.
852			 *
853			 * The previous code skipped locked vnodes and, worse,
854			 * reordered pages in the queue.  This results in
855			 * completely non-deterministic operation and, on a
856			 * busy system, can lead to extremely non-optimal
857			 * pageouts.  For example, it can cause clean pages
858			 * to be freed and dirty pages to be moved to the end
859			 * of the queue.  Since dirty pages are also moved to
860			 * the end of the queue once-cleaned, this gives
861			 * way too large a weighting to defering the freeing
862			 * of dirty pages.
863			 *
864			 * We can't wait forever for the vnode lock, we might
865			 * deadlock due to a vn_read() getting stuck in
866			 * vm_wait while holding this vnode.  We skip the
867			 * vnode if we can't get it in a reasonable amount
868			 * of time.
869			 */
870			if (object->type == OBJT_VNODE) {
871				vp = object->handle;
872
873				mp = NULL;
874				if (vp->v_type == VREG)
875					vn_start_write(vp, &mp, V_NOWAIT);
876				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK, curthread)) {
877					++pageout_lock_miss;
878					vn_finished_write(mp);
879					if (object->flags & OBJ_MIGHTBEDIRTY)
880						vnodes_skipped++;
881					continue;
882				}
883
884				/*
885				 * The page might have been moved to another
886				 * queue during potential blocking in vget()
887				 * above.  The page might have been freed and
888				 * reused for another vnode.  The object might
889				 * have been reused for another vnode.
890				 */
891				if (m->queue != PQ_INACTIVE ||
892				    m->object != object ||
893				    object->handle != vp) {
894					if (object->flags & OBJ_MIGHTBEDIRTY)
895						vnodes_skipped++;
896					vput(vp);
897					vn_finished_write(mp);
898					continue;
899				}
900
901				/*
902				 * The page may have been busied during the
903				 * blocking in vput();  We don't move the
904				 * page back onto the end of the queue so that
905				 * statistics are more correct if we don't.
906				 */
907				if (m->busy || (m->flags & PG_BUSY)) {
908					vput(vp);
909					vn_finished_write(mp);
910					continue;
911				}
912
913				/*
914				 * If the page has become held it might
915				 * be undergoing I/O, so skip it
916				 */
917				if (m->hold_count) {
918					vm_pageq_requeue(m);
919					if (object->flags & OBJ_MIGHTBEDIRTY)
920						vnodes_skipped++;
921					vput(vp);
922					vn_finished_write(mp);
923					continue;
924				}
925			}
926
927			/*
928			 * If a page is dirty, then it is either being washed
929			 * (but not yet cleaned) or it is still in the
930			 * laundry.  If it is still in the laundry, then we
931			 * start the cleaning operation.
932			 *
933			 * This operation may cluster, invalidating the 'next'
934			 * pointer.  To prevent an inordinate number of
935			 * restarts we use our marker to remember our place.
936			 *
937			 * decrement page_shortage on success to account for
938			 * the (future) cleaned page.  Otherwise we could wind
939			 * up laundering or cleaning too many pages.
940			 */
941			s = splvm();
942			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
943			splx(s);
944			if (vm_pageout_clean(m) != 0) {
945				--page_shortage;
946				--maxlaunder;
947			}
948			s = splvm();
949			next = TAILQ_NEXT(&marker, pageq);
950			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
951			splx(s);
952			if (vp) {
953				vput(vp);
954				vn_finished_write(mp);
955			}
956		}
957	}
958
959	/*
960	 * Compute the number of pages we want to try to move from the
961	 * active queue to the inactive queue.
962	 */
963	page_shortage = vm_paging_target() +
964		cnt.v_inactive_target - cnt.v_inactive_count;
965	page_shortage += addl_page_shortage;
966
967	vm_page_lock_queues();
968	/*
969	 * Scan the active queue for things we can deactivate. We nominally
970	 * track the per-page activity counter and use it to locate
971	 * deactivation candidates.
972	 */
973	pcount = cnt.v_active_count;
974	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
975
976	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
977
978		/*
979		 * This is a consistency check, and should likely be a panic
980		 * or warning.
981		 */
982		if (m->queue != PQ_ACTIVE) {
983			break;
984		}
985
986		next = TAILQ_NEXT(m, pageq);
987		/*
988		 * Don't deactivate pages that are busy.
989		 */
990		if ((m->busy != 0) ||
991		    (m->flags & PG_BUSY) ||
992		    (m->hold_count != 0)) {
993			vm_pageq_requeue(m);
994			m = next;
995			continue;
996		}
997
998		/*
999		 * The count for pagedaemon pages is done after checking the
1000		 * page for eligibility...
1001		 */
1002		cnt.v_pdpages++;
1003
1004		/*
1005		 * Check to see "how much" the page has been used.
1006		 */
1007		actcount = 0;
1008		if (m->object->ref_count != 0) {
1009			if (m->flags & PG_REFERENCED) {
1010				actcount += 1;
1011			}
1012			actcount += pmap_ts_referenced(m);
1013			if (actcount) {
1014				m->act_count += ACT_ADVANCE + actcount;
1015				if (m->act_count > ACT_MAX)
1016					m->act_count = ACT_MAX;
1017			}
1018		}
1019
1020		/*
1021		 * Since we have "tested" this bit, we need to clear it now.
1022		 */
1023		vm_page_flag_clear(m, PG_REFERENCED);
1024
1025		/*
1026		 * Only if an object is currently being used, do we use the
1027		 * page activation count stats.
1028		 */
1029		if (actcount && (m->object->ref_count != 0)) {
1030			vm_pageq_requeue(m);
1031		} else {
1032			m->act_count -= min(m->act_count, ACT_DECLINE);
1033			if (vm_pageout_algorithm ||
1034			    m->object->ref_count == 0 ||
1035			    m->act_count == 0) {
1036				page_shortage--;
1037				if (m->object->ref_count == 0) {
1038					vm_page_protect(m, VM_PROT_NONE);
1039					if (m->dirty == 0)
1040						vm_page_cache(m);
1041					else
1042						vm_page_deactivate(m);
1043				} else {
1044					vm_page_deactivate(m);
1045				}
1046			} else {
1047				vm_pageq_requeue(m);
1048			}
1049		}
1050		m = next;
1051	}
1052	s = splvm();
1053
1054	/*
1055	 * We try to maintain some *really* free pages, this allows interrupt
1056	 * code to be guaranteed space.  Since both cache and free queues
1057	 * are considered basically 'free', moving pages from cache to free
1058	 * does not effect other calculations.
1059	 */
1060	while (cnt.v_free_count < cnt.v_free_reserved) {
1061		static int cache_rover = 0;
1062		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1063		if (!m)
1064			break;
1065		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1066		    m->busy ||
1067		    m->hold_count ||
1068		    m->wire_count) {
1069#ifdef INVARIANTS
1070			printf("Warning: busy page %p found in cache\n", m);
1071#endif
1072			vm_page_deactivate(m);
1073			continue;
1074		}
1075		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1076		vm_pageout_page_free(m);
1077		cnt.v_dfree++;
1078	}
1079	splx(s);
1080	vm_page_unlock_queues();
1081#if !defined(NO_SWAPPING)
1082	/*
1083	 * Idle process swapout -- run once per second.
1084	 */
1085	if (vm_swap_idle_enabled) {
1086		static long lsec;
1087		if (time_second != lsec) {
1088			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1089			vm_req_vmdaemon();
1090			lsec = time_second;
1091		}
1092	}
1093#endif
1094
1095	/*
1096	 * If we didn't get enough free pages, and we have skipped a vnode
1097	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1098	 * if we did not get enough free pages.
1099	 */
1100	if (vm_paging_target() > 0) {
1101		if (vnodes_skipped && vm_page_count_min())
1102			(void) speedup_syncer();
1103#if !defined(NO_SWAPPING)
1104		if (vm_swap_enabled && vm_page_count_target()) {
1105			vm_req_vmdaemon();
1106			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1107		}
1108#endif
1109	}
1110
1111	/*
1112	 * If we are out of swap and were not able to reach our paging
1113	 * target, kill the largest process.
1114	 *
1115	 * We keep the process bigproc locked once we find it to keep anyone
1116	 * from messing with it; however, there is a possibility of
1117	 * deadlock if process B is bigproc and one of it's child processes
1118	 * attempts to propagate a signal to B while we are waiting for A's
1119	 * lock while walking this list.  To avoid this, we don't block on
1120	 * the process lock but just skip a process if it is already locked.
1121	 */
1122	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1123	    (swap_pager_full && vm_paging_target() > 0)) {
1124#if 0
1125	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1126#endif
1127		bigproc = NULL;
1128		bigsize = 0;
1129		sx_slock(&allproc_lock);
1130		FOREACH_PROC_IN_SYSTEM(p) {
1131			int breakout;
1132			/*
1133			 * If this process is already locked, skip it.
1134			 */
1135			if (PROC_TRYLOCK(p) == 0)
1136				continue;
1137			/*
1138			 * if this is a system process, skip it
1139			 */
1140			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1141			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1142				PROC_UNLOCK(p);
1143				continue;
1144			}
1145			/*
1146			 * if the process is in a non-running type state,
1147			 * don't touch it. Check all the threads individually.
1148			 */
1149			mtx_lock_spin(&sched_lock);
1150			breakout = 0;
1151			FOREACH_THREAD_IN_PROC(p, td) {
1152				if (td->td_state != TDS_RUNQ &&
1153				    td->td_state != TDS_RUNNING &&
1154				    td->td_state != TDS_SLP) {
1155					breakout = 1;
1156					break;
1157				}
1158			}
1159			if (breakout) {
1160				mtx_unlock_spin(&sched_lock);
1161				PROC_UNLOCK(p);
1162				continue;
1163			}
1164			mtx_unlock_spin(&sched_lock);
1165			/*
1166			 * get the process size
1167			 */
1168			size = vmspace_resident_count(p->p_vmspace) +
1169				vmspace_swap_count(p->p_vmspace);
1170			/*
1171			 * if the this process is bigger than the biggest one
1172			 * remember it.
1173			 */
1174			if (size > bigsize) {
1175				if (bigproc != NULL)
1176					PROC_UNLOCK(bigproc);
1177				bigproc = p;
1178				bigsize = size;
1179			} else
1180				PROC_UNLOCK(p);
1181		}
1182		sx_sunlock(&allproc_lock);
1183		if (bigproc != NULL) {
1184			struct ksegrp *kg;
1185			killproc(bigproc, "out of swap space");
1186			mtx_lock_spin(&sched_lock);
1187			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1188				kg->kg_estcpu = 0;
1189				kg->kg_nice = PRIO_MIN; /* XXXKSE ??? */
1190				resetpriority(kg);
1191			}
1192			mtx_unlock_spin(&sched_lock);
1193			PROC_UNLOCK(bigproc);
1194			wakeup(&cnt.v_free_count);
1195		}
1196	}
1197}
1198
1199/*
1200 * This routine tries to maintain the pseudo LRU active queue,
1201 * so that during long periods of time where there is no paging,
1202 * that some statistic accumulation still occurs.  This code
1203 * helps the situation where paging just starts to occur.
1204 */
1205static void
1206vm_pageout_page_stats()
1207{
1208	vm_page_t m,next;
1209	int pcount,tpcount;		/* Number of pages to check */
1210	static int fullintervalcount = 0;
1211	int page_shortage;
1212	int s0;
1213
1214	page_shortage =
1215	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1216	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1217
1218	if (page_shortage <= 0)
1219		return;
1220
1221	s0 = splvm();
1222	vm_page_lock_queues();
1223	pcount = cnt.v_active_count;
1224	fullintervalcount += vm_pageout_stats_interval;
1225	if (fullintervalcount < vm_pageout_full_stats_interval) {
1226		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1227		if (pcount > tpcount)
1228			pcount = tpcount;
1229	} else {
1230		fullintervalcount = 0;
1231	}
1232
1233	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1234	while ((m != NULL) && (pcount-- > 0)) {
1235		int actcount;
1236
1237		if (m->queue != PQ_ACTIVE) {
1238			break;
1239		}
1240
1241		next = TAILQ_NEXT(m, pageq);
1242		/*
1243		 * Don't deactivate pages that are busy.
1244		 */
1245		if ((m->busy != 0) ||
1246		    (m->flags & PG_BUSY) ||
1247		    (m->hold_count != 0)) {
1248			vm_pageq_requeue(m);
1249			m = next;
1250			continue;
1251		}
1252
1253		actcount = 0;
1254		if (m->flags & PG_REFERENCED) {
1255			vm_page_flag_clear(m, PG_REFERENCED);
1256			actcount += 1;
1257		}
1258
1259		actcount += pmap_ts_referenced(m);
1260		if (actcount) {
1261			m->act_count += ACT_ADVANCE + actcount;
1262			if (m->act_count > ACT_MAX)
1263				m->act_count = ACT_MAX;
1264			vm_pageq_requeue(m);
1265		} else {
1266			if (m->act_count == 0) {
1267				/*
1268				 * We turn off page access, so that we have
1269				 * more accurate RSS stats.  We don't do this
1270				 * in the normal page deactivation when the
1271				 * system is loaded VM wise, because the
1272				 * cost of the large number of page protect
1273				 * operations would be higher than the value
1274				 * of doing the operation.
1275				 */
1276				vm_page_protect(m, VM_PROT_NONE);
1277				vm_page_deactivate(m);
1278			} else {
1279				m->act_count -= min(m->act_count, ACT_DECLINE);
1280				vm_pageq_requeue(m);
1281			}
1282		}
1283
1284		m = next;
1285	}
1286	vm_page_unlock_queues();
1287	splx(s0);
1288}
1289
1290static int
1291vm_pageout_free_page_calc(count)
1292vm_size_t count;
1293{
1294	if (count < cnt.v_page_count)
1295		 return 0;
1296	/*
1297	 * free_reserved needs to include enough for the largest swap pager
1298	 * structures plus enough for any pv_entry structs when paging.
1299	 */
1300	if (cnt.v_page_count > 1024)
1301		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1302	else
1303		cnt.v_free_min = 4;
1304	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1305		cnt.v_interrupt_free_min;
1306	cnt.v_free_reserved = vm_pageout_page_count +
1307		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1308	cnt.v_free_severe = cnt.v_free_min / 2;
1309	cnt.v_free_min += cnt.v_free_reserved;
1310	cnt.v_free_severe += cnt.v_free_reserved;
1311	return 1;
1312}
1313
1314/*
1315 *	vm_pageout is the high level pageout daemon.
1316 */
1317static void
1318vm_pageout()
1319{
1320	int pass;
1321
1322	mtx_lock(&Giant);
1323
1324	/*
1325	 * Initialize some paging parameters.
1326	 */
1327	cnt.v_interrupt_free_min = 2;
1328	if (cnt.v_page_count < 2000)
1329		vm_pageout_page_count = 8;
1330
1331	vm_pageout_free_page_calc(cnt.v_page_count);
1332	/*
1333	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1334	 * that these are more a measure of the VM cache queue hysteresis
1335	 * then the VM free queue.  Specifically, v_free_target is the
1336	 * high water mark (free+cache pages).
1337	 *
1338	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1339	 * low water mark, while v_free_min is the stop.  v_cache_min must
1340	 * be big enough to handle memory needs while the pageout daemon
1341	 * is signalled and run to free more pages.
1342	 */
1343	if (cnt.v_free_count > 6144)
1344		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1345	else
1346		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1347
1348	if (cnt.v_free_count > 2048) {
1349		cnt.v_cache_min = cnt.v_free_target;
1350		cnt.v_cache_max = 2 * cnt.v_cache_min;
1351		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1352	} else {
1353		cnt.v_cache_min = 0;
1354		cnt.v_cache_max = 0;
1355		cnt.v_inactive_target = cnt.v_free_count / 4;
1356	}
1357	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1358		cnt.v_inactive_target = cnt.v_free_count / 3;
1359
1360	/* XXX does not really belong here */
1361	if (vm_page_max_wired == 0)
1362		vm_page_max_wired = cnt.v_free_count / 3;
1363
1364	if (vm_pageout_stats_max == 0)
1365		vm_pageout_stats_max = cnt.v_free_target;
1366
1367	/*
1368	 * Set interval in seconds for stats scan.
1369	 */
1370	if (vm_pageout_stats_interval == 0)
1371		vm_pageout_stats_interval = 5;
1372	if (vm_pageout_full_stats_interval == 0)
1373		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1374
1375	/*
1376	 * Set maximum free per pass
1377	 */
1378	if (vm_pageout_stats_free_max == 0)
1379		vm_pageout_stats_free_max = 5;
1380
1381	swap_pager_swap_init();
1382	pass = 0;
1383	/*
1384	 * The pageout daemon is never done, so loop forever.
1385	 */
1386	while (TRUE) {
1387		int error;
1388		int s = splvm();
1389
1390		/*
1391		 * If we have enough free memory, wakeup waiters.  Do
1392		 * not clear vm_pages_needed until we reach our target,
1393		 * otherwise we may be woken up over and over again and
1394		 * waste a lot of cpu.
1395		 */
1396		if (vm_pages_needed && !vm_page_count_min()) {
1397			if (vm_paging_needed() <= 0)
1398				vm_pages_needed = 0;
1399			wakeup(&cnt.v_free_count);
1400		}
1401		if (vm_pages_needed) {
1402			/*
1403			 * Still not done, take a second pass without waiting
1404			 * (unlimited dirty cleaning), otherwise sleep a bit
1405			 * and try again.
1406			 */
1407			++pass;
1408			if (pass > 1)
1409				tsleep(&vm_pages_needed, PVM,
1410				       "psleep", hz/2);
1411		} else {
1412			/*
1413			 * Good enough, sleep & handle stats.  Prime the pass
1414			 * for the next run.
1415			 */
1416			if (pass > 1)
1417				pass = 1;
1418			else
1419				pass = 0;
1420			error = tsleep(&vm_pages_needed, PVM,
1421				    "psleep", vm_pageout_stats_interval * hz);
1422			if (error && !vm_pages_needed) {
1423				splx(s);
1424				pass = 0;
1425				vm_pageout_page_stats();
1426				continue;
1427			}
1428		}
1429
1430		if (vm_pages_needed)
1431			cnt.v_pdwakeups++;
1432		splx(s);
1433		vm_pageout_scan(pass);
1434		vm_pageout_deficit = 0;
1435	}
1436}
1437
1438void
1439pagedaemon_wakeup()
1440{
1441	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1442		vm_pages_needed++;
1443		wakeup(&vm_pages_needed);
1444	}
1445}
1446
1447#if !defined(NO_SWAPPING)
1448static void
1449vm_req_vmdaemon()
1450{
1451	static int lastrun = 0;
1452
1453	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1454		wakeup(&vm_daemon_needed);
1455		lastrun = ticks;
1456	}
1457}
1458
1459static void
1460vm_daemon()
1461{
1462	struct proc *p;
1463	int breakout;
1464	struct thread *td;
1465
1466	mtx_lock(&Giant);
1467	while (TRUE) {
1468		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1469		if (vm_pageout_req_swapout) {
1470			swapout_procs(vm_pageout_req_swapout);
1471			vm_pageout_req_swapout = 0;
1472		}
1473		/*
1474		 * scan the processes for exceeding their rlimits or if
1475		 * process is swapped out -- deactivate pages
1476		 */
1477		sx_slock(&allproc_lock);
1478		LIST_FOREACH(p, &allproc, p_list) {
1479			vm_pindex_t limit, size;
1480
1481			/*
1482			 * if this is a system process or if we have already
1483			 * looked at this process, skip it.
1484			 */
1485			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1486				continue;
1487			}
1488			/*
1489			 * if the process is in a non-running type state,
1490			 * don't touch it.
1491			 */
1492			mtx_lock_spin(&sched_lock);
1493			breakout = 0;
1494			FOREACH_THREAD_IN_PROC(p, td) {
1495				if (td->td_state != TDS_RUNQ &&
1496				    td->td_state != TDS_RUNNING &&
1497				    td->td_state != TDS_SLP) {
1498					breakout = 1;
1499					break;
1500				}
1501			}
1502			if (breakout) {
1503				mtx_unlock_spin(&sched_lock);
1504				continue;
1505			}
1506			/*
1507			 * get a limit
1508			 */
1509			limit = OFF_TO_IDX(
1510			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1511				p->p_rlimit[RLIMIT_RSS].rlim_max));
1512
1513			/*
1514			 * let processes that are swapped out really be
1515			 * swapped out set the limit to nothing (will force a
1516			 * swap-out.)
1517			 */
1518			if ((p->p_sflag & PS_INMEM) == 0)
1519				limit = 0;	/* XXX */
1520			mtx_unlock_spin(&sched_lock);
1521
1522			size = vmspace_resident_count(p->p_vmspace);
1523			if (limit >= 0 && size >= limit) {
1524				vm_pageout_map_deactivate_pages(
1525				    &p->p_vmspace->vm_map, limit);
1526			}
1527		}
1528		sx_sunlock(&allproc_lock);
1529	}
1530}
1531#endif			/* !defined(NO_SWAPPING) */
1532