vm_page.h revision 60938
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_page.h 60938 2000-05-26 02:09:24Z jake $
65 */
66
67/*
68 *	Resident memory system definitions.
69 */
70
71#ifndef	_VM_PAGE_
72#define	_VM_PAGE_
73
74#if !defined(KLD_MODULE)
75#include "opt_vmpage.h"
76#endif
77
78#include <vm/pmap.h>
79#include <machine/atomic.h>
80
81/*
82 *	Management of resident (logical) pages.
83 *
84 *	A small structure is kept for each resident
85 *	page, indexed by page number.  Each structure
86 *	is an element of several lists:
87 *
88 *		A hash table bucket used to quickly
89 *		perform object/offset lookups
90 *
91 *		A list of all pages for a given object,
92 *		so they can be quickly deactivated at
93 *		time of deallocation.
94 *
95 *		An ordered list of pages due for pageout.
96 *
97 *	In addition, the structure contains the object
98 *	and offset to which this page belongs (for pageout),
99 *	and sundry status bits.
100 *
101 *	Fields in this structure are locked either by the lock on the
102 *	object that the page belongs to (O) or by the lock on the page
103 *	queues (P).
104 *
105 *	The 'valid' and 'dirty' fields are distinct.  A page may have dirty
106 *	bits set without having associated valid bits set.  This is used by
107 *	NFS to implement piecemeal writes.
108 */
109
110TAILQ_HEAD(pglist, vm_page);
111
112struct vm_page {
113	TAILQ_ENTRY(vm_page) pageq;	/* queue info for FIFO queue or free list (P) */
114	struct vm_page	*hnext;		/* hash table link (O,P)	*/
115	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) 	*/
116
117	vm_object_t object;		/* which object am I in (O,P)*/
118	vm_pindex_t pindex;		/* offset into object (O,P) */
119	vm_offset_t phys_addr;		/* physical address of page */
120	struct md_page md;		/* machine dependant stuff */
121	u_short	queue;			/* page queue index */
122	u_short	flags,			/* see below */
123		pc;			/* page color */
124	u_short wire_count;		/* wired down maps refs (P) */
125	short hold_count;		/* page hold count */
126	u_char	act_count;		/* page usage count */
127	u_char	busy;			/* page busy count */
128	/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
129	/* so, on normal X86 kernels, they must be at least 8 bits wide */
130#if PAGE_SIZE == 4096
131	u_char	valid;			/* map of valid DEV_BSIZE chunks */
132	u_char	dirty;			/* map of dirty DEV_BSIZE chunks */
133#elif PAGE_SIZE == 8192
134	u_short	valid;			/* map of valid DEV_BSIZE chunks */
135	u_short	dirty;			/* map of dirty DEV_BSIZE chunks */
136#endif
137};
138
139/*
140 * note: currently use SWAPBLK_NONE as an absolute value rather then
141 * a flag bit.
142 */
143
144#define SWAPBLK_MASK	((daddr_t)((u_daddr_t)-1 >> 1))		/* mask */
145#define SWAPBLK_NONE	((daddr_t)((u_daddr_t)SWAPBLK_MASK + 1))/* flag */
146
147#if !defined(KLD_MODULE)
148
149/*
150 * Page coloring parameters
151 */
152/* Each of PQ_FREE, and PQ_CACHE have PQ_HASH_SIZE entries */
153
154/* Define one of the following */
155#if defined(PQ_HUGECACHE)
156#define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
157#define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
158#define PQ_L2_SIZE 256	/* A number of colors opt for 1M cache */
159#endif
160
161/* Define one of the following */
162#if defined(PQ_LARGECACHE)
163#define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
164#define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
165#define PQ_L2_SIZE 128	/* A number of colors opt for 512K cache */
166#endif
167
168
169/*
170 * Use 'options PQ_NOOPT' to disable page coloring
171 */
172#if defined(PQ_NOOPT)
173#define PQ_PRIME1 1
174#define PQ_PRIME2 1
175#define PQ_L2_SIZE 1
176#endif
177
178#if defined(PQ_NORMALCACHE)
179#define PQ_PRIME1 5	/* Prime number somewhat less than PQ_HASH_SIZE */
180#define PQ_PRIME2 3	/* Prime number somewhat less than PQ_HASH_SIZE */
181#define PQ_L2_SIZE 16	/* A reasonable number of colors (opt for 64K cache) */
182#endif
183
184#if defined(PQ_MEDIUMCACHE)
185#define PQ_PRIME1 13	/* Prime number somewhat less than PQ_HASH_SIZE */
186#define PQ_PRIME2 7	/* Prime number somewhat less than PQ_HASH_SIZE */
187#define PQ_L2_SIZE 64	/* A number of colors opt for 256K cache */
188#endif
189
190#if !defined(PQ_L2_SIZE)
191#define PQ_PRIME1 9	/* Produces a good PQ_L2_SIZE/3 + PQ_PRIME1 */
192#define PQ_PRIME2 5	/* Prime number somewhat less than PQ_HASH_SIZE */
193#define PQ_L2_SIZE 32	/* 512KB or smaller, 4-way set-associative cache */
194#endif
195
196#define PQ_L2_MASK (PQ_L2_SIZE - 1)
197
198#if 1
199#define PQ_NONE 0
200#define PQ_FREE	1
201#define PQ_INACTIVE (1 + 1*PQ_L2_SIZE)
202#define PQ_ACTIVE (2 + 1*PQ_L2_SIZE)
203#define PQ_CACHE (3 + 1*PQ_L2_SIZE)
204#define PQ_COUNT (3 + 2*PQ_L2_SIZE)
205#else
206#define PQ_NONE		PQ_COUNT
207#define PQ_FREE		0
208#define PQ_INACTIVE	PQ_L2_SIZE
209#define PQ_ACTIVE	(1 +   PQ_L2_SIZE)
210#define PQ_CACHE	(2 +   PQ_L2_SIZE)
211#define PQ_COUNT	(2 + 2*PQ_L2_SIZE)
212#endif
213
214struct vpgqueues {
215	struct pglist pl;
216	int	*cnt;
217	int	lcnt;
218};
219
220extern struct vpgqueues vm_page_queues[PQ_COUNT];
221
222#endif
223
224/*
225 * These are the flags defined for vm_page.
226 *
227 * Note: PG_FILLED and PG_DIRTY are added for the filesystems.
228 */
229#define	PG_BUSY		0x0001		/* page is in transit (O) */
230#define	PG_WANTED	0x0002		/* someone is waiting for page (O) */
231#define	PG_FICTITIOUS	0x0008		/* physical page doesn't exist (O) */
232#define	PG_WRITEABLE	0x0010		/* page is mapped writeable */
233#define PG_MAPPED	0x0020		/* page is mapped */
234#define	PG_ZERO		0x0040		/* page is zeroed */
235#define PG_REFERENCED	0x0080		/* page has been referenced */
236#define PG_CLEANCHK	0x0100		/* page will be checked for cleaning */
237#define PG_SWAPINPROG	0x0200		/* swap I/O in progress on page	     */
238#define PG_NOSYNC	0x0400		/* do not collect for syncer */
239
240/*
241 * Misc constants.
242 */
243
244#define ACT_DECLINE		1
245#define ACT_ADVANCE		3
246#define ACT_INIT		5
247#define ACT_MAX			64
248#define PFCLUSTER_BEHIND	3
249#define PFCLUSTER_AHEAD		3
250
251#ifdef _KERNEL
252/*
253 * Each pageable resident page falls into one of four lists:
254 *
255 *	free
256 *		Available for allocation now.
257 *
258 * The following are all LRU sorted:
259 *
260 *	cache
261 *		Almost available for allocation. Still in an
262 *		object, but clean and immediately freeable at
263 *		non-interrupt times.
264 *
265 *	inactive
266 *		Low activity, candidates for reclamation.
267 *		This is the list of pages that should be
268 *		paged out next.
269 *
270 *	active
271 *		Pages that are "active" i.e. they have been
272 *		recently referenced.
273 *
274 *	zero
275 *		Pages that are really free and have been pre-zeroed
276 *
277 */
278
279extern int vm_page_zero_count;
280
281extern vm_page_t vm_page_array;		/* First resident page in table */
282extern int vm_page_array_size;		/* number of vm_page_t's */
283extern long first_page;			/* first physical page number */
284
285#define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
286
287#define PHYS_TO_VM_PAGE(pa) \
288		(&vm_page_array[atop(pa) - first_page ])
289
290/*
291 *	Functions implemented as macros
292 */
293
294static __inline void
295vm_page_flag_set(vm_page_t m, unsigned int bits)
296{
297	atomic_set_short(&(m)->flags, bits);
298}
299
300static __inline void
301vm_page_flag_clear(vm_page_t m, unsigned int bits)
302{
303	atomic_clear_short(&(m)->flags, bits);
304}
305
306#if 0
307static __inline void
308vm_page_assert_wait(vm_page_t m, int interruptible)
309{
310	vm_page_flag_set(m, PG_WANTED);
311	assert_wait((int) m, interruptible);
312}
313#endif
314
315static __inline void
316vm_page_busy(vm_page_t m)
317{
318	KASSERT((m->flags & PG_BUSY) == 0, ("vm_page_busy: page already busy!!!"));
319	vm_page_flag_set(m, PG_BUSY);
320}
321
322/*
323 *	vm_page_flash:
324 *
325 *	wakeup anyone waiting for the page.
326 */
327
328static __inline void
329vm_page_flash(vm_page_t m)
330{
331	if (m->flags & PG_WANTED) {
332		vm_page_flag_clear(m, PG_WANTED);
333		wakeup(m);
334	}
335}
336
337/*
338 *	vm_page_wakeup:
339 *
340 *	clear the PG_BUSY flag and wakeup anyone waiting for the
341 *	page.
342 *
343 */
344
345static __inline void
346vm_page_wakeup(vm_page_t m)
347{
348	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
349	vm_page_flag_clear(m, PG_BUSY);
350	vm_page_flash(m);
351}
352
353/*
354 *
355 *
356 */
357
358static __inline void
359vm_page_io_start(vm_page_t m)
360{
361	atomic_add_char(&(m)->busy, 1);
362}
363
364static __inline void
365vm_page_io_finish(vm_page_t m)
366{
367	atomic_subtract_char(&m->busy, 1);
368	if (m->busy == 0)
369		vm_page_flash(m);
370}
371
372
373#if PAGE_SIZE == 4096
374#define VM_PAGE_BITS_ALL 0xff
375#endif
376
377#if PAGE_SIZE == 8192
378#define VM_PAGE_BITS_ALL 0xffff
379#endif
380
381#define VM_ALLOC_NORMAL		0
382#define VM_ALLOC_INTERRUPT	1
383#define VM_ALLOC_SYSTEM		2
384#define	VM_ALLOC_ZERO		3
385#define	VM_ALLOC_RETRY		0x80
386
387void vm_page_activate __P((vm_page_t));
388vm_page_t vm_page_alloc __P((vm_object_t, vm_pindex_t, int));
389vm_page_t vm_page_grab __P((vm_object_t, vm_pindex_t, int));
390void vm_page_cache __P((register vm_page_t));
391void vm_page_dontneed __P((register vm_page_t));
392static __inline void vm_page_copy __P((vm_page_t, vm_page_t));
393static __inline void vm_page_free __P((vm_page_t));
394static __inline void vm_page_free_zero __P((vm_page_t));
395void vm_page_deactivate __P((vm_page_t));
396void vm_page_insert __P((vm_page_t, vm_object_t, vm_pindex_t));
397vm_page_t vm_page_lookup __P((vm_object_t, vm_pindex_t));
398void vm_page_remove __P((vm_page_t));
399void vm_page_rename __P((vm_page_t, vm_object_t, vm_pindex_t));
400vm_offset_t vm_page_startup __P((vm_offset_t, vm_offset_t, vm_offset_t));
401vm_page_t vm_add_new_page __P((vm_offset_t pa));
402void vm_page_unwire __P((vm_page_t, int));
403void vm_page_wire __P((vm_page_t));
404void vm_page_unqueue __P((vm_page_t));
405void vm_page_unqueue_nowakeup __P((vm_page_t));
406void vm_page_set_validclean __P((vm_page_t, int, int));
407void vm_page_set_dirty __P((vm_page_t, int, int));
408void vm_page_clear_dirty __P((vm_page_t, int, int));
409void vm_page_set_invalid __P((vm_page_t, int, int));
410static __inline boolean_t vm_page_zero_fill __P((vm_page_t));
411int vm_page_is_valid __P((vm_page_t, int, int));
412void vm_page_test_dirty __P((vm_page_t));
413int vm_page_bits __P((int, int));
414vm_page_t _vm_page_list_find __P((int, int));
415#if 0
416int vm_page_sleep(vm_page_t m, char *msg, char *busy);
417int vm_page_asleep(vm_page_t m, char *msg, char *busy);
418#endif
419void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
420void vm_page_free_toq(vm_page_t m);
421
422/*
423 * Keep page from being freed by the page daemon
424 * much of the same effect as wiring, except much lower
425 * overhead and should be used only for *very* temporary
426 * holding ("wiring").
427 */
428static __inline void
429vm_page_hold(vm_page_t mem)
430{
431	mem->hold_count++;
432}
433
434static __inline void
435vm_page_unhold(vm_page_t mem)
436{
437	--mem->hold_count;
438	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
439}
440
441/*
442 * 	vm_page_protect:
443 *
444 *	Reduce the protection of a page.  This routine never raises the
445 *	protection and therefore can be safely called if the page is already
446 *	at VM_PROT_NONE (it will be a NOP effectively ).
447 */
448
449static __inline void
450vm_page_protect(vm_page_t mem, int prot)
451{
452	if (prot == VM_PROT_NONE) {
453		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
454			pmap_page_protect(mem, VM_PROT_NONE);
455			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
456		}
457	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
458		pmap_page_protect(mem, VM_PROT_READ);
459		vm_page_flag_clear(mem, PG_WRITEABLE);
460	}
461}
462
463/*
464 *	vm_page_zero_fill:
465 *
466 *	Zero-fill the specified page.
467 *	Written as a standard pagein routine, to
468 *	be used by the zero-fill object.
469 */
470static __inline boolean_t
471vm_page_zero_fill(m)
472	vm_page_t m;
473{
474	pmap_zero_page(VM_PAGE_TO_PHYS(m));
475	return (TRUE);
476}
477
478/*
479 *	vm_page_copy:
480 *
481 *	Copy one page to another
482 */
483static __inline void
484vm_page_copy(src_m, dest_m)
485	vm_page_t src_m;
486	vm_page_t dest_m;
487{
488	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
489	dest_m->valid = VM_PAGE_BITS_ALL;
490}
491
492/*
493 *	vm_page_free:
494 *
495 *	Free a page
496 *
497 *	The clearing of PG_ZERO is a temporary safety until the code can be
498 *	reviewed to determine that PG_ZERO is being properly cleared on
499 *	write faults or maps.  PG_ZERO was previously cleared in
500 *	vm_page_alloc().
501 */
502static __inline void
503vm_page_free(m)
504	vm_page_t m;
505{
506	vm_page_flag_clear(m, PG_ZERO);
507	vm_page_free_toq(m);
508}
509
510/*
511 *	vm_page_free_zero:
512 *
513 *	Free a page to the zerod-pages queue
514 */
515static __inline void
516vm_page_free_zero(m)
517	vm_page_t m;
518{
519	vm_page_flag_set(m, PG_ZERO);
520	vm_page_free_toq(m);
521}
522
523/*
524 *	vm_page_sleep_busy:
525 *
526 *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
527 *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
528 *	it almost had to sleep and made temporary spl*() mods), FALSE
529 *	otherwise.
530 *
531 *	This routine assumes that interrupts can only remove the busy
532 *	status from a page, not set the busy status or change it from
533 *	PG_BUSY to m->busy or vise versa (which would create a timing
534 *	window).
535 *
536 *	Note that being an inline, this code will be well optimized.
537 */
538
539static __inline int
540vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
541{
542	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
543		int s = splvm();
544		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
545			/*
546			 * Page is busy. Wait and retry.
547			 */
548			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
549			tsleep(m, PVM, msg, 0);
550		}
551		splx(s);
552		return(TRUE);
553		/* not reached */
554	}
555	return(FALSE);
556}
557
558/*
559 *	vm_page_dirty:
560 *
561 *	make page all dirty
562 */
563
564static __inline void
565vm_page_dirty(vm_page_t m)
566{
567#if !defined(KLD_MODULE)
568	KASSERT(m->queue - m->pc != PQ_CACHE, ("vm_page_dirty: page in cache!"));
569#endif
570	m->dirty = VM_PAGE_BITS_ALL;
571}
572
573/*
574 *	vm_page_undirty:
575 *
576 *	Set page to not be dirty.  Note: does not clear pmap modify bits
577 */
578
579static __inline void
580vm_page_undirty(vm_page_t m)
581{
582	m->dirty = 0;
583}
584
585#if !defined(KLD_MODULE)
586
587static __inline vm_page_t
588vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
589{
590	vm_page_t m;
591
592#if PQ_L2_SIZE > 1
593	if (prefer_zero) {
594		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
595	} else {
596		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
597	}
598	if (m == NULL)
599		m = _vm_page_list_find(basequeue, index);
600#else
601	if (prefer_zero) {
602		m = TAILQ_LAST(&vm_page_queues[basequeue].pl, pglist);
603	} else {
604		m = TAILQ_FIRST(&vm_page_queues[basequeue].pl);
605	}
606#endif
607	return(m);
608}
609
610#endif
611
612#endif				/* _KERNEL */
613#endif				/* !_VM_PAGE_ */
614