1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 *
60 * $FreeBSD$
61 */
62
63/*
64 *	Resident memory system definitions.
65 */
66
67#ifndef	_VM_PAGE_
68#define	_VM_PAGE_
69
70#include <vm/pmap.h>
71
72/*
73 *	Management of resident (logical) pages.
74 *
75 *	A small structure is kept for each resident
76 *	page, indexed by page number.  Each structure
77 *	is an element of several lists:
78 *
79 *		A hash table bucket used to quickly
80 *		perform object/offset lookups
81 *
82 *		A list of all pages for a given object,
83 *		so they can be quickly deactivated at
84 *		time of deallocation.
85 *
86 *		An ordered list of pages due for pageout.
87 *
88 *	In addition, the structure contains the object
89 *	and offset to which this page belongs (for pageout),
90 *	and sundry status bits.
91 *
92 *	In general, operations on this structure's mutable fields are
93 *	synchronized using either one of or a combination of the lock on the
94 *	object that the page belongs to (O), the pool lock for the page (P),
95 *	or the lock for either the free or paging queues (Q).  If a field is
96 *	annotated below with two of these locks, then holding either lock is
97 *	sufficient for read access, but both locks are required for write
98 *	access.
99 *
100 *	In contrast, the synchronization of accesses to the page's
101 *	dirty field is machine dependent (M).  In the
102 *	machine-independent layer, the lock on the object that the
103 *	page belongs to must be held in order to operate on the field.
104 *	However, the pmap layer is permitted to set all bits within
105 *	the field without holding that lock.  If the underlying
106 *	architecture does not support atomic read-modify-write
107 *	operations on the field's type, then the machine-independent
108 *	layer uses a 32-bit atomic on the aligned 32-bit word that
109 *	contains the dirty field.  In the machine-independent layer,
110 *	the implementation of read-modify-write operations on the
111 *	field is encapsulated in vm_page_clear_dirty_mask().
112 */
113
114TAILQ_HEAD(pglist, vm_page);
115
116#if PAGE_SIZE == 4096
117#define VM_PAGE_BITS_ALL 0xffu
118typedef uint8_t vm_page_bits_t;
119#elif PAGE_SIZE == 8192
120#define VM_PAGE_BITS_ALL 0xffffu
121typedef uint16_t vm_page_bits_t;
122#elif PAGE_SIZE == 16384
123#define VM_PAGE_BITS_ALL 0xffffffffu
124typedef uint32_t vm_page_bits_t;
125#elif PAGE_SIZE == 32768
126#define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
127typedef uint64_t vm_page_bits_t;
128#endif
129
130struct vm_page {
131	TAILQ_ENTRY(vm_page) pageq;	/* queue info for FIFO queue or free list (Q) */
132	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) 	*/
133	struct vm_page *left;		/* splay tree link (O)		*/
134	struct vm_page *right;		/* splay tree link (O)		*/
135
136	vm_object_t object;		/* which object am I in (O,P)*/
137	vm_pindex_t pindex;		/* offset into object (O,P) */
138	vm_paddr_t phys_addr;		/* physical address of page */
139	struct md_page md;		/* machine dependant stuff */
140	uint8_t	queue;			/* page queue index (P,Q) */
141	int8_t segind;
142	short hold_count;		/* page hold count (P) */
143	uint8_t	order;			/* index of the buddy queue */
144	uint8_t pool;
145	u_short cow;			/* page cow mapping count (P) */
146	u_int wire_count;		/* wired down maps refs (P) */
147	uint8_t aflags;			/* access is atomic */
148	uint8_t flags;			/* see below, often immutable after alloc */
149	u_short oflags;			/* page flags (O) */
150	u_char	act_count;		/* page usage count (O) */
151	u_char	busy;			/* page busy count (O) */
152	/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
153	/* so, on normal X86 kernels, they must be at least 8 bits wide */
154	vm_page_bits_t valid;		/* map of valid DEV_BSIZE chunks (O) */
155	vm_page_bits_t dirty;		/* map of dirty DEV_BSIZE chunks (M) */
156};
157
158/*
159 * Page flags stored in oflags:
160 *
161 * Access to these page flags is synchronized by the lock on the object
162 * containing the page (O).
163 *
164 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
165 * 	 indicates that the page is not under PV management but
166 * 	 otherwise should be treated as a normal page.  Pages not
167 * 	 under PV management cannot be paged out via the
168 * 	 object/vm_page_t because there is no knowledge of their pte
169 * 	 mappings, and such pages are also not on any PQ queue.
170 *
171 */
172#define	VPO_BUSY	0x0001	/* page is in transit */
173#define	VPO_WANTED	0x0002	/* someone is waiting for page */
174#define	VPO_UNMANAGED	0x0004		/* No PV management for page */
175#define	VPO_SWAPINPROG	0x0200	/* swap I/O in progress on page */
176#define	VPO_NOSYNC	0x0400	/* do not collect for syncer */
177
178#define	PQ_NONE		255
179#define	PQ_INACTIVE	0
180#define	PQ_ACTIVE	1
181#define	PQ_HOLD		2
182#define	PQ_COUNT	3
183
184struct vpgqueues {
185	struct pglist pl;
186	int	*cnt;
187};
188
189extern struct vpgqueues vm_page_queues[PQ_COUNT];
190
191struct vpglocks {
192	struct mtx	data;
193	char		pad[CACHE_LINE_SIZE - sizeof(struct mtx)];
194} __aligned(CACHE_LINE_SIZE);
195
196extern struct vpglocks vm_page_queue_free_lock;
197extern struct vpglocks pa_lock[];
198
199#if defined(__arm__)
200#define	PDRSHIFT	PDR_SHIFT
201#elif !defined(PDRSHIFT)
202#define PDRSHIFT	21
203#endif
204
205#define	pa_index(pa)	((pa) >> PDRSHIFT)
206#define	PA_LOCKPTR(pa)	&pa_lock[pa_index((pa)) % PA_LOCK_COUNT].data
207#define	PA_LOCKOBJPTR(pa)	((struct lock_object *)PA_LOCKPTR((pa)))
208#define	PA_LOCK(pa)	mtx_lock(PA_LOCKPTR(pa))
209#define	PA_TRYLOCK(pa)	mtx_trylock(PA_LOCKPTR(pa))
210#define	PA_UNLOCK(pa)	mtx_unlock(PA_LOCKPTR(pa))
211#define	PA_UNLOCK_COND(pa) 			\
212	do {		   			\
213		if ((pa) != 0) {		\
214			PA_UNLOCK((pa));	\
215			(pa) = 0;		\
216		}				\
217	} while (0)
218
219#define	PA_LOCK_ASSERT(pa, a)	mtx_assert(PA_LOCKPTR(pa), (a))
220
221#ifdef KLD_MODULE
222#define	vm_page_lock(m)		vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
223#define	vm_page_unlock(m)	vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
224#define	vm_page_trylock(m)	vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
225#if defined(INVARIANTS)
226#define	vm_page_lock_assert(m, a)		\
227    vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
228#else
229#define	vm_page_lock_assert(m, a)
230#endif
231#else	/* !KLD_MODULE */
232#define	vm_page_lockptr(m)	(PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
233#define	vm_page_lock(m)		mtx_lock(vm_page_lockptr((m)))
234#define	vm_page_unlock(m)	mtx_unlock(vm_page_lockptr((m)))
235#define	vm_page_trylock(m)	mtx_trylock(vm_page_lockptr((m)))
236#define	vm_page_lock_assert(m, a)	mtx_assert(vm_page_lockptr((m)), (a))
237#endif
238
239#define	vm_page_queue_free_mtx	vm_page_queue_free_lock.data
240
241/*
242 * These are the flags defined for vm_page.
243 *
244 * aflags are updated by atomic accesses.  Use the vm_page_aflag_set()
245 * and vm_page_aflag_clear() functions to set and clear the flags.
246 *
247 * PGA_REFERENCED may be cleared only if the object containing the page is
248 * locked.  It is set by both the MI and MD VM layers.
249 *
250 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().  When it
251 * does so, the page must be VPO_BUSY.  The MI VM layer must never access this
252 * flag directly.  Instead, it should call pmap_page_is_write_mapped().
253 *
254 * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
255 * at least one executable mapping.  It is not consumed by the MI VM layer.
256 */
257#define	PGA_WRITEABLE	0x01		/* page may be mapped writeable */
258#define	PGA_REFERENCED	0x02		/* page has been referenced */
259#define	PGA_EXECUTABLE	0x04		/* page may be mapped executable */
260
261/*
262 * Page flags.  If changed at any other time than page allocation or
263 * freeing, the modification must be protected by the vm_page lock.
264 */
265#define	PG_CACHED	0x01		/* page is cached */
266#define	PG_FREE		0x02		/* page is free */
267#define	PG_FICTITIOUS	0x04		/* physical page doesn't exist */
268#define	PG_ZERO		0x08		/* page is zeroed */
269#define	PG_MARKER	0x10		/* special queue marker page */
270#define	PG_SLAB		0x20		/* object pointer is actually a slab */
271#define	PG_WINATCFLS	0x40		/* flush dirty page on inactive q */
272#define	PG_NODUMP	0x80		/* don't include this page in a dump */
273
274/*
275 * Misc constants.
276 */
277#define ACT_DECLINE		1
278#define ACT_ADVANCE		3
279#define ACT_INIT		5
280#define ACT_MAX			64
281
282#ifdef _KERNEL
283
284/*
285 * Each pageable resident page falls into one of five lists:
286 *
287 *	free
288 *		Available for allocation now.
289 *
290 *	cache
291 *		Almost available for allocation. Still associated with
292 *		an object, but clean and immediately freeable.
293 *
294 *	hold
295 *		Will become free after a pending I/O operation
296 *		completes.
297 *
298 * The following lists are LRU sorted:
299 *
300 *	inactive
301 *		Low activity, candidates for reclamation.
302 *		This is the list of pages that should be
303 *		paged out next.
304 *
305 *	active
306 *		Pages that are "active" i.e. they have been
307 *		recently referenced.
308 *
309 */
310
311struct vnode;
312extern int vm_page_zero_count;
313
314extern vm_page_t vm_page_array;		/* First resident page in table */
315extern long vm_page_array_size;		/* number of vm_page_t's */
316extern long first_page;			/* first physical page number */
317
318#define	VM_PAGE_IS_FREE(m)	(((m)->flags & PG_FREE) != 0)
319
320#define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
321
322vm_page_t vm_phys_paddr_to_vm_page(vm_paddr_t pa);
323
324vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
325
326extern struct vpglocks vm_page_queue_lock;
327
328#define	vm_page_queue_mtx	vm_page_queue_lock.data
329#define vm_page_lock_queues()   mtx_lock(&vm_page_queue_mtx)
330#define vm_page_unlock_queues() mtx_unlock(&vm_page_queue_mtx)
331
332/* page allocation classes: */
333#define VM_ALLOC_NORMAL		0
334#define VM_ALLOC_INTERRUPT	1
335#define VM_ALLOC_SYSTEM		2
336#define	VM_ALLOC_CLASS_MASK	3
337/* page allocation flags: */
338#define	VM_ALLOC_WIRED		0x0020	/* non pageable */
339#define	VM_ALLOC_ZERO		0x0040	/* Try to obtain a zeroed page */
340#define	VM_ALLOC_RETRY		0x0080	/* Mandatory with vm_page_grab() */
341#define	VM_ALLOC_NOOBJ		0x0100	/* No associated object */
342#define	VM_ALLOC_NOBUSY		0x0200	/* Do not busy the page */
343#define	VM_ALLOC_IFCACHED	0x0400	/* Fail if the page is not cached */
344#define	VM_ALLOC_IFNOTCACHED	0x0800	/* Fail if the page is cached */
345#define	VM_ALLOC_IGN_SBUSY	0x1000	/* vm_page_grab() only */
346#define	VM_ALLOC_NODUMP		0x2000	/* don't include in dump */
347
348#define	VM_ALLOC_COUNT_SHIFT	16
349#define	VM_ALLOC_COUNT(count)	((count) << VM_ALLOC_COUNT_SHIFT)
350
351void vm_page_aflag_set(vm_page_t m, uint8_t bits);
352void vm_page_aflag_clear(vm_page_t m, uint8_t bits);
353void vm_page_busy(vm_page_t m);
354void vm_page_flash(vm_page_t m);
355void vm_page_io_start(vm_page_t m);
356void vm_page_io_finish(vm_page_t m);
357void vm_page_hold(vm_page_t mem);
358void vm_page_unhold(vm_page_t mem);
359void vm_page_free(vm_page_t m);
360void vm_page_free_zero(vm_page_t m);
361void vm_page_dirty(vm_page_t m);
362void vm_page_wakeup(vm_page_t m);
363
364void vm_pageq_remove(vm_page_t m);
365
366void vm_page_activate (vm_page_t);
367vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int);
368vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
369    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
370    u_long boundary, vm_memattr_t memattr);
371vm_page_t vm_page_alloc_freelist(int, int);
372vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
373void vm_page_cache(vm_page_t);
374void vm_page_cache_free(vm_object_t, vm_pindex_t, vm_pindex_t);
375void vm_page_cache_remove(vm_page_t);
376void vm_page_cache_transfer(vm_object_t, vm_pindex_t, vm_object_t);
377int vm_page_try_to_cache (vm_page_t);
378int vm_page_try_to_free (vm_page_t);
379void vm_page_dontneed(vm_page_t);
380void vm_page_deactivate (vm_page_t);
381vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
382vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
383void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
384void vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
385boolean_t vm_page_is_cached(vm_object_t object, vm_pindex_t pindex);
386vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
387vm_page_t vm_page_next(vm_page_t m);
388int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *);
389vm_page_t vm_page_prev(vm_page_t m);
390void vm_page_putfake(vm_page_t m);
391void vm_page_readahead_finish(vm_page_t m);
392void vm_page_reference(vm_page_t m);
393void vm_page_remove (vm_page_t);
394void vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
395void vm_page_requeue(vm_page_t m);
396void vm_page_set_valid(vm_page_t m, int base, int size);
397void vm_page_sleep(vm_page_t m, const char *msg);
398vm_page_t vm_page_splay(vm_pindex_t, vm_page_t);
399vm_offset_t vm_page_startup(vm_offset_t vaddr);
400void vm_page_unhold_pages(vm_page_t *ma, int count);
401void vm_page_unwire (vm_page_t, int);
402void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
403void vm_page_wire (vm_page_t);
404void vm_page_set_validclean (vm_page_t, int, int);
405void vm_page_clear_dirty (vm_page_t, int, int);
406void vm_page_set_invalid (vm_page_t, int, int);
407int vm_page_is_valid (vm_page_t, int, int);
408void vm_page_test_dirty (vm_page_t);
409vm_page_bits_t vm_page_bits(int base, int size);
410void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
411void vm_page_free_toq(vm_page_t m);
412void vm_page_zero_idle_wakeup(void);
413void vm_page_cowfault (vm_page_t);
414int vm_page_cowsetup(vm_page_t);
415void vm_page_cowclear (vm_page_t);
416
417void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
418void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
419int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
420#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
421void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
422#endif
423
424#ifdef INVARIANTS
425void vm_page_object_lock_assert(vm_page_t m);
426#define	VM_PAGE_OBJECT_LOCK_ASSERT(m)	vm_page_object_lock_assert(m)
427#else
428#define	VM_PAGE_OBJECT_LOCK_ASSERT(m)	(void)0
429#endif
430
431/*
432 *	vm_page_sleep_if_busy:
433 *
434 *	Sleep and release the page queues lock if VPO_BUSY is set or,
435 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
436 *	thread slept and the page queues lock was released.
437 *	Otherwise, retains the page queues lock and returns FALSE.
438 *
439 *	The object containing the given page must be locked.
440 */
441static __inline int
442vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
443{
444
445	if ((m->oflags & VPO_BUSY) || (also_m_busy && m->busy)) {
446		vm_page_sleep(m, msg);
447		return (TRUE);
448	}
449	return (FALSE);
450}
451
452/*
453 *	vm_page_undirty:
454 *
455 *	Set page to not be dirty.  Note: does not clear pmap modify bits
456 */
457static __inline void
458vm_page_undirty(vm_page_t m)
459{
460
461	VM_PAGE_OBJECT_LOCK_ASSERT(m);
462	m->dirty = 0;
463}
464
465#endif				/* _KERNEL */
466#endif				/* !_VM_PAGE_ */
467