vm_page.h revision 43752
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_page.h,v 1.54 1999/02/07 20:45:15 dillon Exp $
65 */
66
67/*
68 *	Resident memory system definitions.
69 */
70
71#ifndef	_VM_PAGE_
72#define	_VM_PAGE_
73
74#include "opt_vmpage.h"
75
76#include <vm/pmap.h>
77#include <machine/atomic.h>
78
79/*
80 *	Management of resident (logical) pages.
81 *
82 *	A small structure is kept for each resident
83 *	page, indexed by page number.  Each structure
84 *	is an element of several lists:
85 *
86 *		A hash table bucket used to quickly
87 *		perform object/offset lookups
88 *
89 *		A list of all pages for a given object,
90 *		so they can be quickly deactivated at
91 *		time of deallocation.
92 *
93 *		An ordered list of pages due for pageout.
94 *
95 *	In addition, the structure contains the object
96 *	and offset to which this page belongs (for pageout),
97 *	and sundry status bits.
98 *
99 *	Fields in this structure are locked either by the lock on the
100 *	object that the page belongs to (O) or by the lock on the page
101 *	queues (P).
102 */
103
104TAILQ_HEAD(pglist, vm_page);
105
106struct vm_page {
107	TAILQ_ENTRY(vm_page) pageq;	/* queue info for FIFO queue or free list (P) */
108	struct vm_page	*hnext;		/* hash table link (O,P)	*/
109	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) 	*/
110
111	vm_object_t object;		/* which object am I in (O,P)*/
112	vm_pindex_t pindex;		/* offset into object (O,P) */
113	vm_offset_t phys_addr;		/* physical address of page */
114	u_short	queue;			/* page queue index */
115	u_short	flags,			/* see below */
116		pc;			/* page color */
117	u_short wire_count;		/* wired down maps refs (P) */
118	short hold_count;		/* page hold count */
119	u_char	act_count;		/* page usage count */
120	u_char	busy;			/* page busy count */
121	/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
122	/* so, on normal X86 kernels, they must be at least 8 bits wide */
123#if PAGE_SIZE == 4096
124	u_char	valid;			/* map of valid DEV_BSIZE chunks */
125	u_char	dirty;			/* map of dirty DEV_BSIZE chunks */
126#elif PAGE_SIZE == 8192
127	u_short	valid;			/* map of valid DEV_BSIZE chunks */
128	u_short	dirty;			/* map of dirty DEV_BSIZE chunks */
129#endif
130};
131
132/*
133 * note SWAPBLK_NONE is a flag, basically the high bit.
134 */
135
136#define SWAPBLK_MASK	((daddr_t)((u_daddr_t)-1 >> 1))		/* mask */
137#define SWAPBLK_NONE	((daddr_t)((u_daddr_t)SWAPBLK_MASK + 1))/* flag */
138
139/*
140 * Page coloring parameters
141 */
142/* Each of PQ_FREE, and PQ_CACHE have PQ_HASH_SIZE entries */
143
144/* Define one of the following */
145#if defined(PQ_HUGECACHE)
146#define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
147#define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
148#define PQ_PRIME3 17	/* Prime number somewhat less than PQ_HASH_SIZE */
149#define PQ_L2_SIZE 256	/* A number of colors opt for 1M cache */
150#endif
151
152/* Define one of the following */
153#if defined(PQ_LARGECACHE)
154#define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
155#define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
156#define PQ_PRIME3 17	/* Prime number somewhat less than PQ_HASH_SIZE */
157#define PQ_L2_SIZE 128	/* A number of colors opt for 512K cache */
158#endif
159
160
161/*
162 * Use 'options PQ_NOOPT' to disable page coloring
163 */
164#if defined(PQ_NOOPT)
165#define PQ_PRIME1 1
166#define PQ_PRIME2 1
167#define PQ_PRIME3 1
168#define PQ_L2_SIZE 1
169#endif
170
171#if defined(PQ_NORMALCACHE)
172#define PQ_PRIME1 5	/* Prime number somewhat less than PQ_HASH_SIZE */
173#define PQ_PRIME2 3	/* Prime number somewhat less than PQ_HASH_SIZE */
174#define PQ_PRIME3 11	/* Prime number somewhat less than PQ_HASH_SIZE */
175#define PQ_L2_SIZE 16	/* A reasonable number of colors (opt for 64K cache) */
176#endif
177
178#if defined(PQ_MEDIUMCACHE) || !defined(PQ_L2_SIZE)
179#define PQ_PRIME1 13	/* Prime number somewhat less than PQ_HASH_SIZE */
180#define PQ_PRIME2 7	/* Prime number somewhat less than PQ_HASH_SIZE */
181#define PQ_PRIME3 5	/* Prime number somewhat less than PQ_HASH_SIZE */
182#define PQ_L2_SIZE 64	/* A number of colors opt for 256K cache */
183#endif
184
185#define PQ_L2_MASK (PQ_L2_SIZE - 1)
186
187#define PQ_NONE 0
188#define PQ_FREE	1
189/* #define PQ_ZERO (1 + PQ_L2_SIZE) */
190#define PQ_INACTIVE (1 + 1*PQ_L2_SIZE)
191#define PQ_ACTIVE (2 + 1*PQ_L2_SIZE)
192#define PQ_CACHE (3 + 1*PQ_L2_SIZE)
193#define PQ_COUNT (3 + 2*PQ_L2_SIZE)
194
195extern struct vpgqueues {
196	struct pglist *pl;
197	int	*cnt;
198	int	*lcnt;
199} vm_page_queues[PQ_COUNT];
200
201/*
202 * These are the flags defined for vm_page.
203 *
204 * Note: PG_FILLED and PG_DIRTY are added for the filesystems.
205 */
206#define	PG_BUSY		0x0001		/* page is in transit (O) */
207#define	PG_WANTED	0x0002		/* someone is waiting for page (O) */
208#define	PG_FICTITIOUS	0x0008		/* physical page doesn't exist (O) */
209#define	PG_WRITEABLE	0x0010		/* page is mapped writeable */
210#define PG_MAPPED	0x0020		/* page is mapped */
211#define	PG_ZERO		0x0040		/* page is zeroed */
212#define PG_REFERENCED	0x0080		/* page has been referenced */
213#define PG_CLEANCHK	0x0100		/* page will be checked for cleaning */
214#define PG_SWAPINPROG	0x0200		/* swap I/O in progress on page	     */
215
216/*
217 * Misc constants.
218 */
219
220#define ACT_DECLINE		1
221#define ACT_ADVANCE		3
222#define ACT_INIT		5
223#define ACT_MAX			64
224#define PFCLUSTER_BEHIND	3
225#define PFCLUSTER_AHEAD		3
226
227#ifdef KERNEL
228/*
229 * Each pageable resident page falls into one of four lists:
230 *
231 *	free
232 *		Available for allocation now.
233 *
234 * The following are all LRU sorted:
235 *
236 *	cache
237 *		Almost available for allocation. Still in an
238 *		object, but clean and immediately freeable at
239 *		non-interrupt times.
240 *
241 *	inactive
242 *		Low activity, candidates for reclamation.
243 *		This is the list of pages that should be
244 *		paged out next.
245 *
246 *	active
247 *		Pages that are "active" i.e. they have been
248 *		recently referenced.
249 *
250 *	zero
251 *		Pages that are really free and have been pre-zeroed
252 *
253 */
254
255extern struct pglist vm_page_queue_free[PQ_L2_SIZE];/* memory free queue */
256extern struct pglist vm_page_queue_active;	/* active memory queue */
257extern struct pglist vm_page_queue_inactive;	/* inactive memory queue */
258extern struct pglist vm_page_queue_cache[PQ_L2_SIZE];/* cache memory queue */
259
260extern int vm_page_zero_count;
261
262extern vm_page_t vm_page_array;		/* First resident page in table */
263extern long first_page;			/* first physical page number */
264
265 /* ... represented in vm_page_array */
266extern long last_page;			/* last physical page number */
267
268 /* ... represented in vm_page_array */
269 /* [INCLUSIVE] */
270extern vm_offset_t first_phys_addr;	/* physical address for first_page */
271extern vm_offset_t last_phys_addr;	/* physical address for last_page */
272
273#define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
274
275#define IS_VM_PHYSADDR(pa) \
276		((pa) >= first_phys_addr && (pa) <= last_phys_addr)
277
278#define PHYS_TO_VM_PAGE(pa) \
279		(&vm_page_array[atop(pa) - first_page ])
280
281/*
282 *	Functions implemented as macros
283 */
284
285static __inline void
286vm_page_flag_set(vm_page_t m, unsigned int bits)
287{
288	atomic_set_short(&(m)->flags, bits);
289}
290
291static __inline void
292vm_page_flag_clear(vm_page_t m, unsigned int bits)
293{
294	atomic_clear_short(&(m)->flags, bits);
295}
296
297#if 0
298static __inline void
299vm_page_assert_wait(vm_page_t m, int interruptible)
300{
301	vm_page_flag_set(m, PG_WANTED);
302	assert_wait((int) m, interruptible);
303}
304#endif
305
306static __inline void
307vm_page_busy(vm_page_t m)
308{
309	KASSERT((m->flags & PG_BUSY) == 0, ("vm_page_busy: page already busy!!!"));
310	vm_page_flag_set(m, PG_BUSY);
311}
312
313/*
314 *	vm_page_flash:
315 *
316 *	wakeup anyone waiting for the page.
317 */
318
319static __inline void
320vm_page_flash(vm_page_t m)
321{
322	if (m->flags & PG_WANTED) {
323		vm_page_flag_clear(m, PG_WANTED);
324		wakeup(m);
325	}
326}
327
328/*
329 *	vm_page_wakeup:
330 *
331 *	clear the PG_BUSY flag and wakeup anyone waiting for the
332 *	page.
333 *
334 */
335
336static __inline void
337vm_page_wakeup(vm_page_t m)
338{
339	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
340	vm_page_flag_clear(m, PG_BUSY);
341	vm_page_flash(m);
342}
343
344/*
345 *
346 *
347 */
348
349static __inline void
350vm_page_io_start(vm_page_t m)
351{
352	atomic_add_char(&(m)->busy, 1);
353}
354
355static __inline void
356vm_page_io_finish(vm_page_t m)
357{
358	atomic_subtract_char(&m->busy, 1);
359	if (m->busy == 0)
360		vm_page_flash(m);
361}
362
363
364#if PAGE_SIZE == 4096
365#define VM_PAGE_BITS_ALL 0xff
366#endif
367
368#if PAGE_SIZE == 8192
369#define VM_PAGE_BITS_ALL 0xffff
370#endif
371
372#define VM_ALLOC_NORMAL		0
373#define VM_ALLOC_INTERRUPT	1
374#define VM_ALLOC_SYSTEM		2
375#define	VM_ALLOC_ZERO		3
376#define	VM_ALLOC_RETRY		0x80
377
378void vm_page_activate __P((vm_page_t));
379vm_page_t vm_page_alloc __P((vm_object_t, vm_pindex_t, int));
380vm_page_t vm_page_grab __P((vm_object_t, vm_pindex_t, int));
381void vm_page_cache __P((register vm_page_t));
382static __inline void vm_page_copy __P((vm_page_t, vm_page_t));
383static __inline void vm_page_free __P((vm_page_t));
384static __inline void vm_page_free_zero __P((vm_page_t));
385void vm_page_destroy __P((vm_page_t));
386void vm_page_deactivate __P((vm_page_t));
387void vm_page_insert __P((vm_page_t, vm_object_t, vm_pindex_t));
388vm_page_t vm_page_lookup __P((vm_object_t, vm_pindex_t));
389vm_object_t vm_page_remove __P((vm_page_t));
390void vm_page_rename __P((vm_page_t, vm_object_t, vm_pindex_t));
391vm_offset_t vm_page_startup __P((vm_offset_t, vm_offset_t, vm_offset_t));
392void vm_page_unwire __P((vm_page_t, int));
393void vm_page_wire __P((vm_page_t));
394void vm_page_unqueue __P((vm_page_t));
395void vm_page_unqueue_nowakeup __P((vm_page_t));
396void vm_page_set_validclean __P((vm_page_t, int, int));
397void vm_page_set_invalid __P((vm_page_t, int, int));
398static __inline boolean_t vm_page_zero_fill __P((vm_page_t));
399int vm_page_is_valid __P((vm_page_t, int, int));
400void vm_page_test_dirty __P((vm_page_t));
401int vm_page_bits __P((int, int));
402vm_page_t _vm_page_list_find __P((int, int));
403int vm_page_queue_index __P((vm_offset_t, int));
404#if 0
405int vm_page_sleep(vm_page_t m, char *msg, char *busy);
406int vm_page_asleep(vm_page_t m, char *msg, char *busy);
407#endif
408void vm_page_free_toq(vm_page_t m);
409
410/*
411 * Keep page from being freed by the page daemon
412 * much of the same effect as wiring, except much lower
413 * overhead and should be used only for *very* temporary
414 * holding ("wiring").
415 */
416static __inline void
417vm_page_hold(vm_page_t mem)
418{
419	mem->hold_count++;
420}
421
422static __inline void
423vm_page_unhold(vm_page_t mem)
424{
425	--mem->hold_count;
426	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
427}
428
429/*
430 * 	vm_page_protect:
431 *
432 *	Reduce the protection of a page.  This routine never
433 *	raises the protection and therefore can be safely
434 *	called if the page is already at VM_PROT_NONE ( it
435 *	will be a NOP effectively ).
436 */
437
438static __inline void
439vm_page_protect(vm_page_t mem, int prot)
440{
441	if (prot == VM_PROT_NONE) {
442		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
443			pmap_page_protect(VM_PAGE_TO_PHYS(mem), VM_PROT_NONE);
444			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
445		}
446	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
447		pmap_page_protect(VM_PAGE_TO_PHYS(mem), VM_PROT_READ);
448		vm_page_flag_clear(mem, PG_WRITEABLE);
449	}
450}
451
452/*
453 *	vm_page_zero_fill:
454 *
455 *	Zero-fill the specified page.
456 *	Written as a standard pagein routine, to
457 *	be used by the zero-fill object.
458 */
459static __inline boolean_t
460vm_page_zero_fill(m)
461	vm_page_t m;
462{
463	pmap_zero_page(VM_PAGE_TO_PHYS(m));
464	return (TRUE);
465}
466
467/*
468 *	vm_page_copy:
469 *
470 *	Copy one page to another
471 */
472static __inline void
473vm_page_copy(src_m, dest_m)
474	vm_page_t src_m;
475	vm_page_t dest_m;
476{
477	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
478	dest_m->valid = VM_PAGE_BITS_ALL;
479}
480
481/*
482 *	vm_page_free:
483 *
484 *	Free a page
485 *
486 *	The clearing of PG_ZERO is a temporary safety until the code can be
487 *	reviewed to determine that PG_ZERO is being properly cleared on
488 *	write faults or maps.  PG_ZERO was previously cleared in
489 *	vm_page_alloc().
490 */
491static __inline void
492vm_page_free(m)
493	vm_page_t m;
494{
495	vm_page_flag_clear(m, PG_ZERO);
496	vm_page_free_toq(m);
497}
498
499/*
500 *	vm_page_free_zero:
501 *
502 *	Free a page to the zerod-pages queue
503 */
504static __inline void
505vm_page_free_zero(m)
506	vm_page_t m;
507{
508	vm_page_flag_set(m, PG_ZERO);
509	vm_page_free_toq(m);
510}
511
512/*
513 *	vm_page_sleep_busy:
514 *
515 *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
516 *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
517 *	it almost had to sleep and made temporary spl*() mods), FALSE
518 *	otherwise.
519 *
520 *	This routine assumes that interrupts can only remove the busy
521 *	status from a page, not set the busy status or change it from
522 *	PG_BUSY to m->busy or vise versa (which would create a timing
523 *	window).
524 *
525 *	Note that being an inline, this code will be well optimized.
526 */
527
528static __inline int
529vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
530{
531	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
532		int s = splvm();
533		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
534			/*
535			 * Page is busy. Wait and retry.
536			 */
537			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
538			tsleep(m, PVM, msg, 0);
539		}
540		splx(s);
541		return(TRUE);
542		/* not reached */
543	}
544	return(FALSE);
545}
546
547/*
548 *	vm_page_dirty:
549 *
550 *	make page all dirty
551 */
552
553static __inline void
554vm_page_dirty(vm_page_t m)
555{
556	KASSERT(m->queue - m->pc != PQ_CACHE, ("vm_page_dirty: page in cache!"));
557	m->dirty = VM_PAGE_BITS_ALL;
558}
559
560static __inline vm_page_t
561vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
562{
563	vm_page_t m;
564
565#if PQ_L2_SIZE > 1
566	if (prefer_zero) {
567		m = TAILQ_LAST(vm_page_queues[basequeue+index].pl, pglist);
568	} else {
569		m = TAILQ_FIRST(vm_page_queues[basequeue+index].pl);
570	}
571	if (m == NULL)
572		m = _vm_page_list_find(basequeue, index);
573#else
574	if (prefer_zero) {
575		m = TAILQ_LAST(vm_page_queues[basequeue].pl, pglist);
576	} else {
577		m = TAILQ_FIRST(vm_page_queues[basequeue].pl);
578	}
579#endif
580	return(m);
581}
582
583#endif				/* KERNEL */
584#endif				/* !_VM_PAGE_ */
585