vm_page.h revision 42975
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_page.h,v 1.50 1999/01/21 08:29:12 dillon Exp $
65 */
66
67/*
68 *	Resident memory system definitions.
69 */
70
71#ifndef	_VM_PAGE_
72#define	_VM_PAGE_
73
74#include "opt_vmpage.h"
75
76#include <vm/pmap.h>
77#include <machine/atomic.h>
78
79/*
80 *	Management of resident (logical) pages.
81 *
82 *	A small structure is kept for each resident
83 *	page, indexed by page number.  Each structure
84 *	is an element of several lists:
85 *
86 *		A hash table bucket used to quickly
87 *		perform object/offset lookups
88 *
89 *		A list of all pages for a given object,
90 *		so they can be quickly deactivated at
91 *		time of deallocation.
92 *
93 *		An ordered list of pages due for pageout.
94 *
95 *	In addition, the structure contains the object
96 *	and offset to which this page belongs (for pageout),
97 *	and sundry status bits.
98 *
99 *	Fields in this structure are locked either by the lock on the
100 *	object that the page belongs to (O) or by the lock on the page
101 *	queues (P).
102 */
103
104TAILQ_HEAD(pglist, vm_page);
105
106struct vm_page {
107	TAILQ_ENTRY(vm_page) pageq;	/* queue info for FIFO queue or free list (P) */
108	struct vm_page	*hnext;		/* hash table link (O,P)	*/
109	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) 	*/
110
111	vm_object_t object;		/* which object am I in (O,P)*/
112	vm_pindex_t pindex;		/* offset into object (O,P) */
113	vm_offset_t phys_addr;		/* physical address of page */
114	u_short	queue;			/* page queue index */
115	u_short	flags,			/* see below */
116		pc;			/* page color */
117	u_short wire_count;		/* wired down maps refs (P) */
118	short hold_count;		/* page hold count */
119	u_char	act_count;		/* page usage count */
120	u_char	busy;			/* page busy count */
121	/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
122	/* so, on normal X86 kernels, they must be at least 8 bits wide */
123#if PAGE_SIZE == 4096
124	u_char	valid;			/* map of valid DEV_BSIZE chunks */
125	u_char	dirty;			/* map of dirty DEV_BSIZE chunks */
126#elif PAGE_SIZE == 8192
127	u_short	valid;			/* map of valid DEV_BSIZE chunks */
128	u_short	dirty;			/* map of dirty DEV_BSIZE chunks */
129#endif
130};
131
132/*
133 * note SWAPBLK_NONE is a flag, basically the high bit.
134 */
135
136#define SWAPBLK_MASK	((daddr_t)((u_daddr_t)-1 >> 1))		/* mask */
137#define SWAPBLK_NONE	((daddr_t)((u_daddr_t)SWAPBLK_MASK + 1))/* flag */
138
139/*
140 * Page coloring parameters
141 */
142/* Each of PQ_FREE, PQ_ZERO and PQ_CACHE have PQ_HASH_SIZE entries */
143
144/* Define one of the following */
145#if defined(PQ_HUGECACHE)
146#define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
147#define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
148#define PQ_PRIME3 17	/* Prime number somewhat less than PQ_HASH_SIZE */
149#define PQ_L2_SIZE 256	/* A number of colors opt for 1M cache */
150#define PQ_L1_SIZE 4	/* Four page L1 cache */
151#endif
152
153/* Define one of the following */
154#if defined(PQ_LARGECACHE)
155#define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
156#define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
157#define PQ_PRIME3 17	/* Prime number somewhat less than PQ_HASH_SIZE */
158#define PQ_L2_SIZE 128	/* A number of colors opt for 512K cache */
159#define PQ_L1_SIZE 4	/* Four page L1 cache (for PII) */
160#endif
161
162
163/*
164 * Use 'options PQ_NOOPT' to disable page coloring
165 */
166#if defined(PQ_NOOPT)
167#define PQ_PRIME1 1
168#define PQ_PRIME2 1
169#define PQ_PRIME3 1
170#define PQ_L2_SIZE 1
171#define PQ_L1_SIZE 1
172#endif
173
174#if defined(PQ_NORMALCACHE)
175#define PQ_PRIME1 5	/* Prime number somewhat less than PQ_HASH_SIZE */
176#define PQ_PRIME2 3	/* Prime number somewhat less than PQ_HASH_SIZE */
177#define PQ_PRIME3 11	/* Prime number somewhat less than PQ_HASH_SIZE */
178#define PQ_L2_SIZE 16	/* A reasonable number of colors (opt for 64K cache) */
179#define PQ_L1_SIZE 2	/* Two page L1 cache */
180#endif
181
182#if defined(PQ_MEDIUMCACHE) || !defined(PQ_L2_SIZE)
183#define PQ_PRIME1 13	/* Prime number somewhat less than PQ_HASH_SIZE */
184#define PQ_PRIME2 7	/* Prime number somewhat less than PQ_HASH_SIZE */
185#define PQ_PRIME3 5	/* Prime number somewhat less than PQ_HASH_SIZE */
186#define PQ_L2_SIZE 64	/* A number of colors opt for 256K cache */
187#define PQ_L1_SIZE 2	/* Two page L1 cache */
188#endif
189
190#define PQ_L2_MASK (PQ_L2_SIZE - 1)
191
192#define PQ_NONE 0
193#define PQ_FREE	1
194#define PQ_ZERO (1 + PQ_L2_SIZE)
195#define PQ_INACTIVE (1 + 2*PQ_L2_SIZE)
196#define PQ_ACTIVE (2 + 2*PQ_L2_SIZE)
197#define PQ_CACHE (3 + 2*PQ_L2_SIZE)
198#define PQ_COUNT (3 + 3*PQ_L2_SIZE)
199
200extern struct vpgqueues {
201	struct pglist *pl;
202	int	*cnt;
203	int	*lcnt;
204} vm_page_queues[PQ_COUNT];
205
206/*
207 * These are the flags defined for vm_page.
208 *
209 * Note: PG_FILLED and PG_DIRTY are added for the filesystems.
210 */
211#define	PG_BUSY		0x0001		/* page is in transit (O) */
212#define	PG_WANTED	0x0002		/* someone is waiting for page (O) */
213#define	PG_FICTITIOUS	0x0008		/* physical page doesn't exist (O) */
214#define	PG_WRITEABLE	0x0010		/* page is mapped writeable */
215#define PG_MAPPED	0x0020		/* page is mapped */
216#define	PG_ZERO		0x0040		/* page is zeroed */
217#define PG_REFERENCED	0x0080		/* page has been referenced */
218#define PG_CLEANCHK	0x0100		/* page will be checked for cleaning */
219#define PG_SWAPINPROG	0x0200		/* swap I/O in progress on page	     */
220
221/*
222 * Misc constants.
223 */
224
225#define ACT_DECLINE		1
226#define ACT_ADVANCE		3
227#define ACT_INIT		5
228#define ACT_MAX			64
229#define PFCLUSTER_BEHIND	3
230#define PFCLUSTER_AHEAD		3
231
232#ifdef KERNEL
233/*
234 * Each pageable resident page falls into one of four lists:
235 *
236 *	free
237 *		Available for allocation now.
238 *
239 * The following are all LRU sorted:
240 *
241 *	cache
242 *		Almost available for allocation. Still in an
243 *		object, but clean and immediately freeable at
244 *		non-interrupt times.
245 *
246 *	inactive
247 *		Low activity, candidates for reclamation.
248 *		This is the list of pages that should be
249 *		paged out next.
250 *
251 *	active
252 *		Pages that are "active" i.e. they have been
253 *		recently referenced.
254 *
255 *	zero
256 *		Pages that are really free and have been pre-zeroed
257 *
258 */
259
260extern struct pglist vm_page_queue_free[PQ_L2_SIZE];/* memory free queue */
261extern struct pglist vm_page_queue_zero[PQ_L2_SIZE];/* zeroed memory free queue */
262extern struct pglist vm_page_queue_active;	/* active memory queue */
263extern struct pglist vm_page_queue_inactive;	/* inactive memory queue */
264extern struct pglist vm_page_queue_cache[PQ_L2_SIZE];/* cache memory queue */
265
266extern int vm_page_zero_count;
267
268extern vm_page_t vm_page_array;		/* First resident page in table */
269extern long first_page;			/* first physical page number */
270
271 /* ... represented in vm_page_array */
272extern long last_page;			/* last physical page number */
273
274 /* ... represented in vm_page_array */
275 /* [INCLUSIVE] */
276extern vm_offset_t first_phys_addr;	/* physical address for first_page */
277extern vm_offset_t last_phys_addr;	/* physical address for last_page */
278
279#define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
280
281#define IS_VM_PHYSADDR(pa) \
282		((pa) >= first_phys_addr && (pa) <= last_phys_addr)
283
284#define PHYS_TO_VM_PAGE(pa) \
285		(&vm_page_array[atop(pa) - first_page ])
286
287/*
288 *	Functions implemented as macros
289 */
290
291static __inline void
292vm_page_flag_set(vm_page_t m, unsigned int bits)
293{
294	atomic_set_short(&(m)->flags, bits);
295}
296
297static __inline void
298vm_page_flag_clear(vm_page_t m, unsigned int bits)
299{
300	atomic_clear_short(&(m)->flags, bits);
301}
302
303#if 0
304static __inline void
305vm_page_assert_wait(vm_page_t m, int interruptible)
306{
307	vm_page_flag_set(m, PG_WANTED);
308	assert_wait((int) m, interruptible);
309}
310#endif
311
312static __inline void
313vm_page_busy(vm_page_t m)
314{
315	vm_page_flag_set(m, PG_BUSY);
316}
317
318/*
319 *	vm_page_flash:
320 *
321 *	wakeup anyone waiting for the page.
322 */
323
324static __inline void
325vm_page_flash(vm_page_t m)
326{
327	if (m->flags & PG_WANTED) {
328		vm_page_flag_clear(m, PG_WANTED);
329		wakeup(m);
330	}
331}
332
333/*
334 *	vm_page_wakeup:
335 *
336 *	clear the PG_BUSY flag and wakeup anyone waiting for the
337 *	page.
338 *
339 */
340
341static __inline void
342vm_page_wakeup(vm_page_t m)
343{
344	vm_page_flag_clear(m, PG_BUSY);
345	vm_page_flash(m);
346}
347
348static __inline void
349vm_page_io_start(vm_page_t m)
350{
351	atomic_add_char(&(m)->busy, 1);
352}
353
354static __inline void
355vm_page_io_finish(vm_page_t m)
356{
357	atomic_subtract_char(&m->busy, 1);
358	if (m->busy == 0)
359		vm_page_flash(m);
360}
361
362
363#if PAGE_SIZE == 4096
364#define VM_PAGE_BITS_ALL 0xff
365#endif
366
367#if PAGE_SIZE == 8192
368#define VM_PAGE_BITS_ALL 0xffff
369#endif
370
371#define VM_ALLOC_NORMAL		0
372#define VM_ALLOC_INTERRUPT	1
373#define VM_ALLOC_SYSTEM		2
374#define	VM_ALLOC_ZERO		3
375#define	VM_ALLOC_RETRY		0x80
376
377void vm_page_activate __P((vm_page_t));
378vm_page_t vm_page_alloc __P((vm_object_t, vm_pindex_t, int));
379vm_page_t vm_page_grab __P((vm_object_t, vm_pindex_t, int));
380void vm_page_cache __P((register vm_page_t));
381static __inline void vm_page_copy __P((vm_page_t, vm_page_t));
382static __inline void vm_page_free __P((vm_page_t));
383static __inline void vm_page_free_zero __P((vm_page_t));
384void vm_page_destroy __P((vm_page_t));
385void vm_page_deactivate __P((vm_page_t));
386void vm_page_insert __P((vm_page_t, vm_object_t, vm_pindex_t));
387vm_page_t vm_page_lookup __P((vm_object_t, vm_pindex_t));
388vm_object_t vm_page_remove __P((vm_page_t));
389void vm_page_rename __P((vm_page_t, vm_object_t, vm_pindex_t));
390vm_offset_t vm_page_startup __P((vm_offset_t, vm_offset_t, vm_offset_t));
391void vm_page_unwire __P((vm_page_t, int));
392void vm_page_wire __P((vm_page_t));
393void vm_page_unqueue __P((vm_page_t));
394void vm_page_unqueue_nowakeup __P((vm_page_t));
395void vm_page_set_validclean __P((vm_page_t, int, int));
396void vm_page_set_invalid __P((vm_page_t, int, int));
397static __inline boolean_t vm_page_zero_fill __P((vm_page_t));
398int vm_page_is_valid __P((vm_page_t, int, int));
399void vm_page_test_dirty __P((vm_page_t));
400int vm_page_bits __P((int, int));
401vm_page_t vm_page_list_find __P((int, int));
402int vm_page_queue_index __P((vm_offset_t, int));
403vm_page_t vm_page_select __P((vm_object_t, vm_pindex_t, int));
404#if 0
405int vm_page_sleep(vm_page_t m, char *msg, char *busy);
406int vm_page_asleep(vm_page_t m, char *msg, char *busy);
407#endif
408void vm_page_free_toq(vm_page_t m, int queue);
409
410/*
411 * Keep page from being freed by the page daemon
412 * much of the same effect as wiring, except much lower
413 * overhead and should be used only for *very* temporary
414 * holding ("wiring").
415 */
416static __inline void
417vm_page_hold(vm_page_t mem)
418{
419	mem->hold_count++;
420}
421
422static __inline void
423vm_page_unhold(vm_page_t mem)
424{
425	--mem->hold_count;
426	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
427}
428
429static __inline void
430vm_page_protect(vm_page_t mem, int prot)
431{
432	if (prot == VM_PROT_NONE) {
433		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
434			pmap_page_protect(VM_PAGE_TO_PHYS(mem), VM_PROT_NONE);
435			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
436		}
437	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
438		pmap_page_protect(VM_PAGE_TO_PHYS(mem), VM_PROT_READ);
439		vm_page_flag_clear(mem, PG_WRITEABLE);
440	}
441}
442
443/*
444 *	vm_page_zero_fill:
445 *
446 *	Zero-fill the specified page.
447 *	Written as a standard pagein routine, to
448 *	be used by the zero-fill object.
449 */
450static __inline boolean_t
451vm_page_zero_fill(m)
452	vm_page_t m;
453{
454	pmap_zero_page(VM_PAGE_TO_PHYS(m));
455	return (TRUE);
456}
457
458/*
459 *	vm_page_copy:
460 *
461 *	Copy one page to another
462 */
463static __inline void
464vm_page_copy(src_m, dest_m)
465	vm_page_t src_m;
466	vm_page_t dest_m;
467{
468	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
469	dest_m->valid = VM_PAGE_BITS_ALL;
470}
471
472/*
473 *	vm_page_free:
474 *
475 *	Free a page
476 */
477static __inline void
478vm_page_free(m)
479	vm_page_t m;
480{
481	vm_page_free_toq(m, PQ_FREE);
482}
483
484/*
485 *	vm_page_free_zero:
486 *
487 *	Free a page to the zerod-pages queue
488 */
489static __inline void
490vm_page_free_zero(m)
491	vm_page_t m;
492{
493	vm_page_free_toq(m, PQ_ZERO);
494}
495
496/*
497 *	vm_page_sleep_busy:
498 *
499 *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
500 *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
501 *	it almost had to sleep and made temporary spl*() mods), FALSE
502 *	otherwise.
503 *
504 *	This routine assumes that interrupts can only remove the busy
505 *	status from a page, not set the busy status or change it from
506 *	PG_BUSY to m->busy or vise versa (which would create a timing
507 *	window).
508 *
509 *	Note that being an inline, this code will be well optimized.
510 */
511
512static __inline int
513vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
514{
515	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
516		int s = splvm();
517		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
518			/*
519			 * Page is busy. Wait and retry.
520			 */
521			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
522			tsleep(m, PVM, msg, 0);
523		}
524		splx(s);
525		return(TRUE);
526		/* not reached */
527	}
528	return(FALSE);
529}
530
531#endif				/* KERNEL */
532#endif				/* !_VM_PAGE_ */
533