vm_page.h revision 42408
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_page.h,v 1.48 1998/10/28 13:37:02 dg Exp $
65 */
66
67/*
68 *	Resident memory system definitions.
69 */
70
71#ifndef	_VM_PAGE_
72#define	_VM_PAGE_
73
74#include "opt_vmpage.h"
75
76#include <vm/pmap.h>
77#include <machine/atomic.h>
78
79/*
80 *	Management of resident (logical) pages.
81 *
82 *	A small structure is kept for each resident
83 *	page, indexed by page number.  Each structure
84 *	is an element of several lists:
85 *
86 *		A hash table bucket used to quickly
87 *		perform object/offset lookups
88 *
89 *		A list of all pages for a given object,
90 *		so they can be quickly deactivated at
91 *		time of deallocation.
92 *
93 *		An ordered list of pages due for pageout.
94 *
95 *	In addition, the structure contains the object
96 *	and offset to which this page belongs (for pageout),
97 *	and sundry status bits.
98 *
99 *	Fields in this structure are locked either by the lock on the
100 *	object that the page belongs to (O) or by the lock on the page
101 *	queues (P).
102 */
103
104TAILQ_HEAD(pglist, vm_page);
105
106struct vm_page {
107	TAILQ_ENTRY(vm_page) pageq;	/* queue info for FIFO queue or free list (P) */
108	TAILQ_ENTRY(vm_page) hashq;	/* hash table links (O) */
109	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) */
110
111	vm_object_t object;		/* which object am I in (O,P) */
112	vm_pindex_t pindex;		/* offset into object (O,P) */
113	vm_offset_t phys_addr;		/* physical address of page */
114	u_short	queue;			/* page queue index */
115	u_short	flags,			/* see below */
116		pc;			/* page color */
117	u_short wire_count;		/* wired down maps refs (P) */
118	short hold_count;		/* page hold count */
119	u_char	act_count;		/* page usage count */
120	u_char	busy;			/* page busy count */
121	/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
122	/* so, on normal X86 kernels, they must be at least 8 bits wide */
123#if PAGE_SIZE == 4096
124	u_char	valid;			/* map of valid DEV_BSIZE chunks */
125	u_char	dirty;			/* map of dirty DEV_BSIZE chunks */
126#elif PAGE_SIZE == 8192
127	u_short	valid;			/* map of valid DEV_BSIZE chunks */
128	u_short	dirty;			/* map of dirty DEV_BSIZE chunks */
129#endif
130};
131
132/*
133 * Page coloring parameters
134 */
135/* Each of PQ_FREE, PQ_ZERO and PQ_CACHE have PQ_HASH_SIZE entries */
136
137/* Define one of the following */
138#if defined(PQ_HUGECACHE)
139#define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
140#define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
141#define PQ_PRIME3 17	/* Prime number somewhat less than PQ_HASH_SIZE */
142#define PQ_L2_SIZE 256	/* A number of colors opt for 1M cache */
143#define PQ_L1_SIZE 4	/* Four page L1 cache */
144#endif
145
146/* Define one of the following */
147#if defined(PQ_LARGECACHE)
148#define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
149#define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
150#define PQ_PRIME3 17	/* Prime number somewhat less than PQ_HASH_SIZE */
151#define PQ_L2_SIZE 128	/* A number of colors opt for 512K cache */
152#define PQ_L1_SIZE 4	/* Four page L1 cache (for PII) */
153#endif
154
155
156/*
157 * Use 'options PQ_NOOPT' to disable page coloring
158 */
159#if defined(PQ_NOOPT)
160#define PQ_PRIME1 1
161#define PQ_PRIME2 1
162#define PQ_PRIME3 1
163#define PQ_L2_SIZE 1
164#define PQ_L1_SIZE 1
165#endif
166
167#if defined(PQ_NORMALCACHE)
168#define PQ_PRIME1 5	/* Prime number somewhat less than PQ_HASH_SIZE */
169#define PQ_PRIME2 3	/* Prime number somewhat less than PQ_HASH_SIZE */
170#define PQ_PRIME3 11	/* Prime number somewhat less than PQ_HASH_SIZE */
171#define PQ_L2_SIZE 16	/* A reasonable number of colors (opt for 64K cache) */
172#define PQ_L1_SIZE 2	/* Two page L1 cache */
173#endif
174
175#if defined(PQ_MEDIUMCACHE) || !defined(PQ_L2_SIZE)
176#define PQ_PRIME1 13	/* Prime number somewhat less than PQ_HASH_SIZE */
177#define PQ_PRIME2 7	/* Prime number somewhat less than PQ_HASH_SIZE */
178#define PQ_PRIME3 5	/* Prime number somewhat less than PQ_HASH_SIZE */
179#define PQ_L2_SIZE 64	/* A number of colors opt for 256K cache */
180#define PQ_L1_SIZE 2	/* Two page L1 cache */
181#endif
182
183#define PQ_L2_MASK (PQ_L2_SIZE - 1)
184
185#define PQ_NONE 0
186#define PQ_FREE	1
187#define PQ_ZERO (1 + PQ_L2_SIZE)
188#define PQ_INACTIVE (1 + 2*PQ_L2_SIZE)
189#define PQ_ACTIVE (2 + 2*PQ_L2_SIZE)
190#define PQ_CACHE (3 + 2*PQ_L2_SIZE)
191#define PQ_COUNT (3 + 3*PQ_L2_SIZE)
192
193extern struct vpgqueues {
194	struct pglist *pl;
195	int	*cnt;
196	int	*lcnt;
197} vm_page_queues[PQ_COUNT];
198
199/*
200 * These are the flags defined for vm_page.
201 *
202 * Note: PG_FILLED and PG_DIRTY are added for the filesystems.
203 */
204#define	PG_BUSY		0x01		/* page is in transit (O) */
205#define	PG_WANTED	0x02		/* someone is waiting for page (O) */
206#define	PG_FICTITIOUS	0x08		/* physical page doesn't exist (O) */
207#define	PG_WRITEABLE	0x10		/* page is mapped writeable */
208#define PG_MAPPED	0x20		/* page is mapped */
209#define	PG_ZERO		0x40		/* page is zeroed */
210#define PG_REFERENCED	0x80		/* page has been referenced */
211#define PG_CLEANCHK	0x100		/* page will be checked for cleaning */
212
213/*
214 * Misc constants.
215 */
216
217#define ACT_DECLINE		1
218#define ACT_ADVANCE		3
219#define ACT_INIT		5
220#define ACT_MAX			64
221#define PFCLUSTER_BEHIND	3
222#define PFCLUSTER_AHEAD		3
223
224#ifdef KERNEL
225/*
226 * Each pageable resident page falls into one of four lists:
227 *
228 *	free
229 *		Available for allocation now.
230 *
231 * The following are all LRU sorted:
232 *
233 *	cache
234 *		Almost available for allocation. Still in an
235 *		object, but clean and immediately freeable at
236 *		non-interrupt times.
237 *
238 *	inactive
239 *		Low activity, candidates for reclamation.
240 *		This is the list of pages that should be
241 *		paged out next.
242 *
243 *	active
244 *		Pages that are "active" i.e. they have been
245 *		recently referenced.
246 *
247 *	zero
248 *		Pages that are really free and have been pre-zeroed
249 *
250 */
251
252extern struct pglist vm_page_queue_free[PQ_L2_SIZE];/* memory free queue */
253extern struct pglist vm_page_queue_zero[PQ_L2_SIZE];/* zeroed memory free queue */
254extern struct pglist vm_page_queue_active;	/* active memory queue */
255extern struct pglist vm_page_queue_inactive;	/* inactive memory queue */
256extern struct pglist vm_page_queue_cache[PQ_L2_SIZE];/* cache memory queue */
257
258extern int vm_page_zero_count;
259
260extern vm_page_t vm_page_array;		/* First resident page in table */
261extern long first_page;			/* first physical page number */
262
263 /* ... represented in vm_page_array */
264extern long last_page;			/* last physical page number */
265
266 /* ... represented in vm_page_array */
267 /* [INCLUSIVE] */
268extern vm_offset_t first_phys_addr;	/* physical address for first_page */
269extern vm_offset_t last_phys_addr;	/* physical address for last_page */
270
271#define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
272
273#define IS_VM_PHYSADDR(pa) \
274		((pa) >= first_phys_addr && (pa) <= last_phys_addr)
275
276#define PHYS_TO_VM_PAGE(pa) \
277		(&vm_page_array[atop(pa) - first_page ])
278
279/*
280 *	Functions implemented as macros
281 */
282
283static __inline void
284vm_page_flag_set(vm_page_t m, unsigned int bits)
285{
286	atomic_set_short(&(m)->flags, bits);
287}
288
289static __inline void
290vm_page_flag_clear(vm_page_t m, unsigned int bits)
291{
292	atomic_clear_short(&(m)->flags, bits);
293}
294
295#if 0
296static __inline void
297vm_page_assert_wait(vm_page_t m, int interruptible)
298{
299	vm_page_flag_set(m, PG_WANTED);
300	assert_wait((int) m, interruptible);
301}
302#endif
303
304static __inline void
305vm_page_busy(vm_page_t m)
306{
307	vm_page_flag_set(m, PG_BUSY);
308}
309
310static __inline void
311vm_page_wakeup(vm_page_t m)
312{
313	vm_page_flag_clear(m, PG_BUSY);
314	if (m->flags & PG_WANTED) {
315		vm_page_flag_clear(m, PG_WANTED);
316		wakeup(m);
317	}
318}
319
320static __inline void
321vm_page_io_start(vm_page_t m)
322{
323	atomic_add_char(&(m)->busy, 1);
324}
325
326static __inline void
327vm_page_io_finish(vm_page_t m)
328{
329	atomic_subtract_char(&m->busy, 1);
330	if ((m->flags & PG_WANTED) && m->busy == 0) {
331		vm_page_flag_clear(m, PG_WANTED);
332		wakeup(m);
333	}
334}
335
336
337#if PAGE_SIZE == 4096
338#define VM_PAGE_BITS_ALL 0xff
339#endif
340
341#if PAGE_SIZE == 8192
342#define VM_PAGE_BITS_ALL 0xffff
343#endif
344
345#define VM_ALLOC_NORMAL		0
346#define VM_ALLOC_INTERRUPT	1
347#define VM_ALLOC_SYSTEM		2
348#define	VM_ALLOC_ZERO		3
349#define	VM_ALLOC_RETRY		0x80
350
351void vm_page_activate __P((vm_page_t));
352vm_page_t vm_page_alloc __P((vm_object_t, vm_pindex_t, int));
353vm_page_t vm_page_grab __P((vm_object_t, vm_pindex_t, int));
354void vm_page_cache __P((register vm_page_t));
355static __inline void vm_page_copy __P((vm_page_t, vm_page_t));
356void vm_page_deactivate __P((vm_page_t));
357void vm_page_free __P((vm_page_t));
358void vm_page_free_zero __P((vm_page_t));
359void vm_page_insert __P((vm_page_t, vm_object_t, vm_pindex_t));
360vm_page_t vm_page_lookup __P((vm_object_t, vm_pindex_t));
361void vm_page_remove __P((vm_page_t));
362void vm_page_rename __P((vm_page_t, vm_object_t, vm_pindex_t));
363vm_offset_t vm_page_startup __P((vm_offset_t, vm_offset_t, vm_offset_t));
364void vm_page_unwire __P((vm_page_t, int));
365void vm_page_wire __P((vm_page_t));
366void vm_page_unqueue __P((vm_page_t));
367void vm_page_unqueue_nowakeup __P((vm_page_t));
368void vm_page_set_validclean __P((vm_page_t, int, int));
369void vm_page_set_invalid __P((vm_page_t, int, int));
370static __inline boolean_t vm_page_zero_fill __P((vm_page_t));
371int vm_page_is_valid __P((vm_page_t, int, int));
372void vm_page_test_dirty __P((vm_page_t));
373int vm_page_bits __P((int, int));
374vm_page_t vm_page_list_find __P((int, int));
375int vm_page_queue_index __P((vm_offset_t, int));
376vm_page_t vm_page_select __P((vm_object_t, vm_pindex_t, int));
377int vm_page_sleep(vm_page_t m, char *msg, char *busy);
378
379/*
380 * Keep page from being freed by the page daemon
381 * much of the same effect as wiring, except much lower
382 * overhead and should be used only for *very* temporary
383 * holding ("wiring").
384 */
385static __inline void
386vm_page_hold(vm_page_t mem)
387{
388	mem->hold_count++;
389}
390
391static __inline void
392vm_page_unhold(vm_page_t mem)
393{
394	--mem->hold_count;
395	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
396}
397
398static __inline void
399vm_page_protect(vm_page_t mem, int prot)
400{
401	if (prot == VM_PROT_NONE) {
402		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
403			pmap_page_protect(VM_PAGE_TO_PHYS(mem), VM_PROT_NONE);
404			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
405		}
406	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
407		pmap_page_protect(VM_PAGE_TO_PHYS(mem), VM_PROT_READ);
408		vm_page_flag_clear(mem, PG_WRITEABLE);
409	}
410}
411
412/*
413 *	vm_page_zero_fill:
414 *
415 *	Zero-fill the specified page.
416 *	Written as a standard pagein routine, to
417 *	be used by the zero-fill object.
418 */
419static __inline boolean_t
420vm_page_zero_fill(m)
421	vm_page_t m;
422{
423	pmap_zero_page(VM_PAGE_TO_PHYS(m));
424	return (TRUE);
425}
426
427/*
428 *	vm_page_copy:
429 *
430 *	Copy one page to another
431 */
432static __inline void
433vm_page_copy(src_m, dest_m)
434	vm_page_t src_m;
435	vm_page_t dest_m;
436{
437	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
438	dest_m->valid = VM_PAGE_BITS_ALL;
439}
440
441#endif				/* KERNEL */
442#endif				/* !_VM_PAGE_ */
443