vm_page.h revision 33936
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_page.h,v 1.36 1998/02/05 03:32:47 dyson Exp $
65 */
66
67/*
68 *	Resident memory system definitions.
69 */
70
71#ifndef	_VM_PAGE_
72#define	_VM_PAGE_
73
74#include <vm/pmap.h>
75/*
76 *	Management of resident (logical) pages.
77 *
78 *	A small structure is kept for each resident
79 *	page, indexed by page number.  Each structure
80 *	is an element of several lists:
81 *
82 *		A hash table bucket used to quickly
83 *		perform object/offset lookups
84 *
85 *		A list of all pages for a given object,
86 *		so they can be quickly deactivated at
87 *		time of deallocation.
88 *
89 *		An ordered list of pages due for pageout.
90 *
91 *	In addition, the structure contains the object
92 *	and offset to which this page belongs (for pageout),
93 *	and sundry status bits.
94 *
95 *	Fields in this structure are locked either by the lock on the
96 *	object that the page belongs to (O) or by the lock on the page
97 *	queues (P).
98 */
99
100TAILQ_HEAD(pglist, vm_page);
101
102struct vm_page {
103	TAILQ_ENTRY(vm_page) pageq;	/* queue info for FIFO queue or free list (P) */
104	TAILQ_ENTRY(vm_page) hashq;	/* hash table links (O) */
105	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) */
106
107	vm_object_t object;		/* which object am I in (O,P) */
108	vm_pindex_t pindex;		/* offset into object (O,P) */
109	vm_offset_t phys_addr;		/* physical address of page */
110	u_short	queue;			/* page queue index */
111	u_short	flags,			/* see below */
112		pc;			/* page color */
113	u_short wire_count;		/* wired down maps refs (P) */
114	short hold_count;		/* page hold count */
115	u_char	act_count;		/* page usage count */
116	u_char	busy;			/* page busy count */
117	/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
118	/* so, on normal X86 kernels, they must be at least 8 bits wide */
119	u_char	valid;			/* map of valid DEV_BSIZE chunks */
120	u_char	dirty;			/* map of dirty DEV_BSIZE chunks */
121};
122
123/*
124 * Page coloring parameters
125 */
126/* Each of PQ_FREE, PQ_ZERO and PQ_CACHE have PQ_HASH_SIZE entries */
127
128/* Define one of the following */
129#if defined(PQ_LARGECACHE)
130#define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
131#define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
132#define PQ_PRIME3 17	/* Prime number somewhat less than PQ_HASH_SIZE */
133#define PQ_L2_SIZE 128	/* A number of colors opt for 512K cache */
134#define PQ_L1_SIZE 2	/* Two page L1 cache */
135#endif
136
137
138/*
139 * Use 'options PQ_NOOPT' to disable page coloring
140 */
141#if defined(PQ_NOOPT)
142#define PQ_PRIME1 1
143#define PQ_PRIME2 1
144#define PQ_PRIME3 1
145#define PQ_L2_SIZE 1
146#define PQ_L1_SIZE 1
147#endif
148
149#if defined(PQ_NORMALCACHE)
150#define PQ_PRIME1 5	/* Prime number somewhat less than PQ_HASH_SIZE */
151#define PQ_PRIME2 3	/* Prime number somewhat less than PQ_HASH_SIZE */
152#define PQ_PRIME3 11	/* Prime number somewhat less than PQ_HASH_SIZE */
153#define PQ_L2_SIZE 16	/* A reasonable number of colors (opt for 64K cache) */
154#define PQ_L1_SIZE 2	/* Two page L1 cache */
155#endif
156
157#if defined(PQ_MEDIUMCACHE) || !defined(PQ_L2_SIZE)
158#define PQ_PRIME1 13	/* Prime number somewhat less than PQ_HASH_SIZE */
159#define PQ_PRIME2 7	/* Prime number somewhat less than PQ_HASH_SIZE */
160#define PQ_PRIME3 5	/* Prime number somewhat less than PQ_HASH_SIZE */
161#define PQ_L2_SIZE 64	/* A number of colors opt for 256K cache */
162#define PQ_L1_SIZE 2	/* Two page L1 cache */
163#endif
164
165#define PQ_L2_MASK (PQ_L2_SIZE - 1)
166
167#define PQ_NONE 0
168#define PQ_FREE	1
169#define PQ_ZERO (1 + PQ_L2_SIZE)
170#define PQ_INACTIVE (1 + 2*PQ_L2_SIZE)
171#define PQ_ACTIVE (2 + 2*PQ_L2_SIZE)
172#define PQ_CACHE (3 + 2*PQ_L2_SIZE)
173#define PQ_COUNT (3 + 3*PQ_L2_SIZE)
174
175extern struct vpgqueues {
176	struct pglist *pl;
177	int	*cnt;
178	int	*lcnt;
179} vm_page_queues[PQ_COUNT];
180
181/*
182 * These are the flags defined for vm_page.
183 *
184 * Note: PG_FILLED and PG_DIRTY are added for the filesystems.
185 */
186#define	PG_BUSY		0x01		/* page is in transit (O) */
187#define	PG_WANTED	0x02		/* someone is waiting for page (O) */
188#define	PG_TABLED	0x04		/* page is in VP table (O) */
189#define	PG_FICTITIOUS	0x08		/* physical page doesn't exist (O) */
190#define	PG_WRITEABLE	0x10		/* page is mapped writeable */
191#define PG_MAPPED	0x20		/* page is mapped */
192#define	PG_ZERO		0x40		/* page is zeroed */
193#define PG_REFERENCED	0x80		/* page has been referenced */
194#define PG_CLEANCHK	0x100		/* page has been checked for cleaning */
195
196/*
197 * Misc constants.
198 */
199
200#define ACT_DECLINE		1
201#define ACT_ADVANCE		3
202#define ACT_INIT		5
203#define ACT_MAX			64
204#define PFCLUSTER_BEHIND	3
205#define PFCLUSTER_AHEAD		3
206
207#ifdef KERNEL
208/*
209 * Each pageable resident page falls into one of four lists:
210 *
211 *	free
212 *		Available for allocation now.
213 *
214 * The following are all LRU sorted:
215 *
216 *	cache
217 *		Almost available for allocation. Still in an
218 *		object, but clean and immediately freeable at
219 *		non-interrupt times.
220 *
221 *	inactive
222 *		Low activity, candidates for reclamation.
223 *		This is the list of pages that should be
224 *		paged out next.
225 *
226 *	active
227 *		Pages that are "active" i.e. they have been
228 *		recently referenced.
229 *
230 *	zero
231 *		Pages that are really free and have been pre-zeroed
232 *
233 */
234
235extern struct pglist vm_page_queue_free[PQ_L2_SIZE];/* memory free queue */
236extern struct pglist vm_page_queue_zero[PQ_L2_SIZE];/* zeroed memory free queue */
237extern struct pglist vm_page_queue_active;	/* active memory queue */
238extern struct pglist vm_page_queue_inactive;	/* inactive memory queue */
239extern struct pglist vm_page_queue_cache[PQ_L2_SIZE];/* cache memory queue */
240
241extern int vm_page_zero_count;
242
243extern vm_page_t vm_page_array;		/* First resident page in table */
244extern long first_page;			/* first physical page number */
245
246 /* ... represented in vm_page_array */
247extern long last_page;			/* last physical page number */
248
249 /* ... represented in vm_page_array */
250 /* [INCLUSIVE] */
251extern vm_offset_t first_phys_addr;	/* physical address for first_page */
252extern vm_offset_t last_phys_addr;	/* physical address for last_page */
253
254#define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
255
256#define IS_VM_PHYSADDR(pa) \
257		((pa) >= first_phys_addr && (pa) <= last_phys_addr)
258
259#define PHYS_TO_VM_PAGE(pa) \
260		(&vm_page_array[atop(pa) - first_page ])
261
262/*
263 *	Functions implemented as macros
264 */
265
266#define PAGE_ASSERT_WAIT(m, interruptible)	{ \
267	(m)->flags |= PG_WANTED; \
268	assert_wait((int) (m), (interruptible)); \
269}
270
271#define PAGE_WAKEUP(m)	{ \
272	(m)->flags &= ~PG_BUSY; \
273	if (((m)->flags & PG_WANTED) && ((m)->busy == 0)) { \
274		(m)->flags &= ~PG_WANTED; \
275		wakeup((m)); \
276	} \
277}
278
279#if PAGE_SIZE == 4096
280#define VM_PAGE_BITS_ALL 0xff
281#endif
282
283#if PAGE_SIZE == 8192
284#define VM_PAGE_BITS_ALL 0xffff
285#endif
286
287#define VM_ALLOC_NORMAL		0
288#define VM_ALLOC_INTERRUPT	1
289#define VM_ALLOC_SYSTEM		2
290#define	VM_ALLOC_ZERO		3
291#define	VM_ALLOC_RETRY		0x80
292
293void vm_page_activate __P((vm_page_t));
294vm_page_t vm_page_alloc __P((vm_object_t, vm_pindex_t, int));
295vm_page_t vm_page_grab __P((vm_object_t, vm_pindex_t, int));
296void vm_page_cache __P((register vm_page_t));
297static __inline void vm_page_copy __P((vm_page_t, vm_page_t));
298void vm_page_deactivate __P((vm_page_t));
299void vm_page_free __P((vm_page_t));
300void vm_page_free_zero __P((vm_page_t));
301void vm_page_insert __P((vm_page_t, vm_object_t, vm_pindex_t));
302vm_page_t vm_page_lookup __P((vm_object_t, vm_pindex_t));
303void vm_page_remove __P((vm_page_t));
304void vm_page_rename __P((vm_page_t, vm_object_t, vm_pindex_t));
305vm_offset_t vm_page_startup __P((vm_offset_t, vm_offset_t, vm_offset_t));
306void vm_page_unwire __P((vm_page_t));
307void vm_page_wire __P((vm_page_t));
308void vm_page_unqueue __P((vm_page_t));
309void vm_page_unqueue_nowakeup __P((vm_page_t));
310void vm_page_set_validclean __P((vm_page_t, int, int));
311void vm_page_set_invalid __P((vm_page_t, int, int));
312static __inline boolean_t vm_page_zero_fill __P((vm_page_t));
313int vm_page_is_valid __P((vm_page_t, int, int));
314void vm_page_test_dirty __P((vm_page_t));
315int vm_page_bits __P((int, int));
316vm_page_t vm_page_list_find __P((int, int));
317int vm_page_queue_index __P((vm_offset_t, int));
318vm_page_t vm_page_select __P((vm_object_t, vm_pindex_t, int));
319int vm_page_sleep(vm_page_t m, char *msg, char *busy);
320
321/*
322 * Keep page from being freed by the page daemon
323 * much of the same effect as wiring, except much lower
324 * overhead and should be used only for *very* temporary
325 * holding ("wiring").
326 */
327static __inline void
328vm_page_hold(vm_page_t mem)
329{
330	mem->hold_count++;
331}
332
333#ifdef DIAGNOSTIC
334#include <sys/systm.h>		/* make GCC shut up */
335#endif
336
337static __inline void
338vm_page_unhold(vm_page_t mem)
339{
340#ifdef DIAGNOSTIC
341	if (--mem->hold_count < 0)
342		panic("vm_page_unhold: hold count < 0!!!");
343#else
344	--mem->hold_count;
345#endif
346}
347
348static __inline void
349vm_page_protect(vm_page_t mem, int prot)
350{
351	if (prot == VM_PROT_NONE) {
352		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
353			pmap_page_protect(VM_PAGE_TO_PHYS(mem), prot);
354			mem->flags &= ~(PG_WRITEABLE|PG_MAPPED);
355		}
356	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
357		pmap_page_protect(VM_PAGE_TO_PHYS(mem), prot);
358		mem->flags &= ~PG_WRITEABLE;
359	}
360}
361
362/*
363 *	vm_page_zero_fill:
364 *
365 *	Zero-fill the specified page.
366 *	Written as a standard pagein routine, to
367 *	be used by the zero-fill object.
368 */
369static __inline boolean_t
370vm_page_zero_fill(m)
371	vm_page_t m;
372{
373	pmap_zero_page(VM_PAGE_TO_PHYS(m));
374	return (TRUE);
375}
376
377/*
378 *	vm_page_copy:
379 *
380 *	Copy one page to another
381 */
382static __inline void
383vm_page_copy(src_m, dest_m)
384	vm_page_t src_m;
385	vm_page_t dest_m;
386{
387	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
388	dest_m->valid = VM_PAGE_BITS_ALL;
389}
390
391#endif				/* KERNEL */
392#endif				/* !_VM_PAGE_ */
393