vm_page.h revision 225736
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 *
60 * $FreeBSD: stable/9/sys/vm/vm_page.h 225418 2011-09-06 10:30:11Z kib $
61 */
62
63/*
64 *	Resident memory system definitions.
65 */
66
67#ifndef	_VM_PAGE_
68#define	_VM_PAGE_
69
70#include <vm/pmap.h>
71
72/*
73 *	Management of resident (logical) pages.
74 *
75 *	A small structure is kept for each resident
76 *	page, indexed by page number.  Each structure
77 *	is an element of several lists:
78 *
79 *		A hash table bucket used to quickly
80 *		perform object/offset lookups
81 *
82 *		A list of all pages for a given object,
83 *		so they can be quickly deactivated at
84 *		time of deallocation.
85 *
86 *		An ordered list of pages due for pageout.
87 *
88 *	In addition, the structure contains the object
89 *	and offset to which this page belongs (for pageout),
90 *	and sundry status bits.
91 *
92 *	In general, operations on this structure's mutable fields are
93 *	synchronized using either one of or a combination of the lock on the
94 *	object that the page belongs to (O), the pool lock for the page (P),
95 *	or the lock for either the free or paging queues (Q).  If a field is
96 *	annotated below with two of these locks, then holding either lock is
97 *	sufficient for read access, but both locks are required for write
98 *	access.
99 *
100 *	In contrast, the synchronization of accesses to the page's dirty field
101 *	is machine dependent (M).  In the machine-independent layer, the lock
102 *	on the object that the page belongs to must be held in order to
103 *	operate on the field.  However, the pmap layer is permitted to set
104 *	all bits within the field without holding that lock.  Therefore, if
105 *	the underlying architecture does not support atomic read-modify-write
106 *	operations on the field's type, then the machine-independent layer
107 *	must also hold the page queues lock when performing read-modify-write
108 *	operations and the pmap layer must hold the page queues lock when
109 *	setting the field.  In the machine-independent layer, the
110 *	implementation of read-modify-write operations on the field is
111 *	encapsulated in vm_page_clear_dirty_mask().
112 */
113
114TAILQ_HEAD(pglist, vm_page);
115
116struct vm_page {
117	TAILQ_ENTRY(vm_page) pageq;	/* queue info for FIFO queue or free list (Q) */
118	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) 	*/
119	struct vm_page *left;		/* splay tree link (O)		*/
120	struct vm_page *right;		/* splay tree link (O)		*/
121
122	vm_object_t object;		/* which object am I in (O,P)*/
123	vm_pindex_t pindex;		/* offset into object (O,P) */
124	vm_paddr_t phys_addr;		/* physical address of page */
125	struct md_page md;		/* machine dependant stuff */
126	uint8_t	queue;			/* page queue index (P,Q) */
127	int8_t segind;
128	short hold_count;		/* page hold count (P) */
129	uint8_t	order;			/* index of the buddy queue */
130	uint8_t pool;
131	u_short cow;			/* page cow mapping count (P) */
132	u_int wire_count;		/* wired down maps refs (P) */
133	uint8_t aflags;			/* access is atomic */
134	uint8_t flags;			/* see below, often immutable after alloc */
135	u_short oflags;			/* page flags (O) */
136	u_char	act_count;		/* page usage count (O) */
137	u_char	busy;			/* page busy count (O) */
138	/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
139	/* so, on normal X86 kernels, they must be at least 8 bits wide */
140	/* In reality, support for 32KB pages is not fully implemented. */
141#if PAGE_SIZE == 4096
142	u_char	valid;			/* map of valid DEV_BSIZE chunks (O) */
143	u_char	dirty;			/* map of dirty DEV_BSIZE chunks (M) */
144#elif PAGE_SIZE == 8192
145	u_short	valid;			/* map of valid DEV_BSIZE chunks (O) */
146	u_short	dirty;			/* map of dirty DEV_BSIZE chunks (M) */
147#elif PAGE_SIZE == 16384
148	u_int valid;			/* map of valid DEV_BSIZE chunks (O) */
149	u_int dirty;			/* map of dirty DEV_BSIZE chunks (M) */
150#elif PAGE_SIZE == 32768
151	u_long valid;			/* map of valid DEV_BSIZE chunks (O) */
152	u_long dirty;			/* map of dirty DEV_BSIZE chunks (M) */
153#endif
154};
155
156/*
157 * Page flags stored in oflags:
158 *
159 * Access to these page flags is synchronized by the lock on the object
160 * containing the page (O).
161 *
162 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
163 * 	 indicates that the page is not under PV management but
164 * 	 otherwise should be treated as a normal page.  Pages not
165 * 	 under PV management cannot be paged out via the
166 * 	 object/vm_page_t because there is no knowledge of their pte
167 * 	 mappings, and such pages are also not on any PQ queue.
168 *
169 */
170#define	VPO_BUSY	0x0001	/* page is in transit */
171#define	VPO_WANTED	0x0002	/* someone is waiting for page */
172#define	VPO_UNMANAGED	0x0004		/* No PV management for page */
173#define	VPO_SWAPINPROG	0x0200	/* swap I/O in progress on page */
174#define	VPO_NOSYNC	0x0400	/* do not collect for syncer */
175
176#define	PQ_NONE		255
177#define	PQ_INACTIVE	0
178#define	PQ_ACTIVE	1
179#define	PQ_HOLD		2
180#define	PQ_COUNT	3
181
182struct vpgqueues {
183	struct pglist pl;
184	int	*cnt;
185};
186
187extern struct vpgqueues vm_page_queues[PQ_COUNT];
188
189struct vpglocks {
190	struct mtx	data;
191	char		pad[CACHE_LINE_SIZE - sizeof(struct mtx)];
192} __aligned(CACHE_LINE_SIZE);
193
194extern struct vpglocks vm_page_queue_free_lock;
195extern struct vpglocks pa_lock[];
196
197#if defined(__arm__)
198#define	PDRSHIFT	PDR_SHIFT
199#elif !defined(PDRSHIFT)
200#define PDRSHIFT	21
201#endif
202
203#define	pa_index(pa)	((pa) >> PDRSHIFT)
204#define	PA_LOCKPTR(pa)	&pa_lock[pa_index((pa)) % PA_LOCK_COUNT].data
205#define	PA_LOCKOBJPTR(pa)	((struct lock_object *)PA_LOCKPTR((pa)))
206#define	PA_LOCK(pa)	mtx_lock(PA_LOCKPTR(pa))
207#define	PA_TRYLOCK(pa)	mtx_trylock(PA_LOCKPTR(pa))
208#define	PA_UNLOCK(pa)	mtx_unlock(PA_LOCKPTR(pa))
209#define	PA_UNLOCK_COND(pa) 			\
210	do {		   			\
211		if ((pa) != 0) {		\
212			PA_UNLOCK((pa));	\
213			(pa) = 0;		\
214		}				\
215	} while (0)
216
217#define	PA_LOCK_ASSERT(pa, a)	mtx_assert(PA_LOCKPTR(pa), (a))
218
219#define	vm_page_lockptr(m)	(PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
220#define	vm_page_lock(m)		mtx_lock(vm_page_lockptr((m)))
221#define	vm_page_unlock(m)	mtx_unlock(vm_page_lockptr((m)))
222#define	vm_page_trylock(m)	mtx_trylock(vm_page_lockptr((m)))
223#define	vm_page_lock_assert(m, a)	mtx_assert(vm_page_lockptr((m)), (a))
224
225#define	vm_page_queue_free_mtx	vm_page_queue_free_lock.data
226/*
227 * These are the flags defined for vm_page.
228 *
229 * aflags are updated by atomic accesses. Use the vm_page_aflag_set()
230 * and vm_page_aflag_clear() functions to set and clear the flags.
231 *
232 * PGA_REFERENCED may be cleared only if the object containing the page is
233 * locked.
234 *
235 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().  When it
236 * does so, the page must be VPO_BUSY.
237 */
238#define	PGA_WRITEABLE	0x01		/* page may be mapped writeable */
239#define	PGA_REFERENCED	0x02		/* page has been referenced */
240
241/*
242 * Page flags.  If changed at any other time than page allocation or
243 * freeing, the modification must be protected by the vm_page lock.
244 */
245#define	PG_CACHED	0x01		/* page is cached */
246#define	PG_FREE		0x02		/* page is free */
247#define	PG_FICTITIOUS	0x04		/* physical page doesn't exist (O) */
248#define	PG_ZERO		0x08		/* page is zeroed */
249#define	PG_MARKER	0x10		/* special queue marker page */
250#define	PG_SLAB		0x20		/* object pointer is actually a slab */
251#define	PG_WINATCFLS	0x40		/* flush dirty page on inactive q */
252
253/*
254 * Misc constants.
255 */
256#define ACT_DECLINE		1
257#define ACT_ADVANCE		3
258#define ACT_INIT		5
259#define ACT_MAX			64
260
261#ifdef _KERNEL
262
263#include <vm/vm_param.h>
264
265/*
266 * Each pageable resident page falls into one of five lists:
267 *
268 *	free
269 *		Available for allocation now.
270 *
271 *	cache
272 *		Almost available for allocation. Still associated with
273 *		an object, but clean and immediately freeable.
274 *
275 *	hold
276 *		Will become free after a pending I/O operation
277 *		completes.
278 *
279 * The following lists are LRU sorted:
280 *
281 *	inactive
282 *		Low activity, candidates for reclamation.
283 *		This is the list of pages that should be
284 *		paged out next.
285 *
286 *	active
287 *		Pages that are "active" i.e. they have been
288 *		recently referenced.
289 *
290 */
291
292struct vnode;
293extern int vm_page_zero_count;
294
295extern vm_page_t vm_page_array;		/* First resident page in table */
296extern int vm_page_array_size;		/* number of vm_page_t's */
297extern long first_page;			/* first physical page number */
298
299#define	VM_PAGE_IS_FREE(m)	(((m)->flags & PG_FREE) != 0)
300
301#define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
302
303vm_page_t vm_phys_paddr_to_vm_page(vm_paddr_t pa);
304
305static __inline vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
306
307static __inline vm_page_t
308PHYS_TO_VM_PAGE(vm_paddr_t pa)
309{
310#ifdef VM_PHYSSEG_SPARSE
311	return (vm_phys_paddr_to_vm_page(pa));
312#elif defined(VM_PHYSSEG_DENSE)
313	return (&vm_page_array[atop(pa) - first_page]);
314#else
315#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
316#endif
317}
318
319extern struct vpglocks vm_page_queue_lock;
320
321#define	vm_page_queue_mtx	vm_page_queue_lock.data
322#define vm_page_lock_queues()   mtx_lock(&vm_page_queue_mtx)
323#define vm_page_unlock_queues() mtx_unlock(&vm_page_queue_mtx)
324
325#if PAGE_SIZE == 4096
326#define VM_PAGE_BITS_ALL 0xffu
327#elif PAGE_SIZE == 8192
328#define VM_PAGE_BITS_ALL 0xffffu
329#elif PAGE_SIZE == 16384
330#define VM_PAGE_BITS_ALL 0xffffffffu
331#elif PAGE_SIZE == 32768
332#define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
333#endif
334
335/* page allocation classes: */
336#define VM_ALLOC_NORMAL		0
337#define VM_ALLOC_INTERRUPT	1
338#define VM_ALLOC_SYSTEM		2
339#define	VM_ALLOC_CLASS_MASK	3
340/* page allocation flags: */
341#define	VM_ALLOC_WIRED		0x0020	/* non pageable */
342#define	VM_ALLOC_ZERO		0x0040	/* Try to obtain a zeroed page */
343#define	VM_ALLOC_RETRY		0x0080	/* Mandatory with vm_page_grab() */
344#define	VM_ALLOC_NOOBJ		0x0100	/* No associated object */
345#define	VM_ALLOC_NOBUSY		0x0200	/* Do not busy the page */
346#define	VM_ALLOC_IFCACHED	0x0400	/* Fail if the page is not cached */
347#define	VM_ALLOC_IFNOTCACHED	0x0800	/* Fail if the page is cached */
348#define	VM_ALLOC_IGN_SBUSY	0x1000	/* vm_page_grab() only */
349
350#define	VM_ALLOC_COUNT_SHIFT	16
351#define	VM_ALLOC_COUNT(count)	((count) << VM_ALLOC_COUNT_SHIFT)
352
353void vm_page_aflag_set(vm_page_t m, uint8_t bits);
354void vm_page_aflag_clear(vm_page_t m, uint8_t bits);
355void vm_page_busy(vm_page_t m);
356void vm_page_flash(vm_page_t m);
357void vm_page_io_start(vm_page_t m);
358void vm_page_io_finish(vm_page_t m);
359void vm_page_hold(vm_page_t mem);
360void vm_page_unhold(vm_page_t mem);
361void vm_page_free(vm_page_t m);
362void vm_page_free_zero(vm_page_t m);
363void vm_page_dirty(vm_page_t m);
364void vm_page_wakeup(vm_page_t m);
365
366void vm_pageq_remove(vm_page_t m);
367
368void vm_page_activate (vm_page_t);
369vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int);
370vm_page_t vm_page_alloc_freelist(int, int);
371struct vnode *vm_page_alloc_init(vm_page_t);
372vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
373void vm_page_cache(vm_page_t);
374void vm_page_cache_free(vm_object_t, vm_pindex_t, vm_pindex_t);
375void vm_page_cache_remove(vm_page_t);
376void vm_page_cache_transfer(vm_object_t, vm_pindex_t, vm_object_t);
377int vm_page_try_to_cache (vm_page_t);
378int vm_page_try_to_free (vm_page_t);
379void vm_page_dontneed(vm_page_t);
380void vm_page_deactivate (vm_page_t);
381vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
382vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
383void vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
384vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
385vm_page_t vm_page_next(vm_page_t m);
386int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *);
387vm_page_t vm_page_prev(vm_page_t m);
388void vm_page_putfake(vm_page_t m);
389void vm_page_reference(vm_page_t m);
390void vm_page_remove (vm_page_t);
391void vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
392void vm_page_requeue(vm_page_t m);
393void vm_page_set_valid(vm_page_t m, int base, int size);
394void vm_page_sleep(vm_page_t m, const char *msg);
395vm_page_t vm_page_splay(vm_pindex_t, vm_page_t);
396vm_offset_t vm_page_startup(vm_offset_t vaddr);
397void vm_page_unhold_pages(vm_page_t *ma, int count);
398void vm_page_unwire (vm_page_t, int);
399void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
400void vm_page_wire (vm_page_t);
401void vm_page_set_validclean (vm_page_t, int, int);
402void vm_page_clear_dirty (vm_page_t, int, int);
403void vm_page_set_invalid (vm_page_t, int, int);
404int vm_page_is_valid (vm_page_t, int, int);
405void vm_page_test_dirty (vm_page_t);
406int vm_page_bits (int, int);
407void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
408void vm_page_free_toq(vm_page_t m);
409void vm_page_zero_idle_wakeup(void);
410void vm_page_cowfault (vm_page_t);
411int vm_page_cowsetup(vm_page_t);
412void vm_page_cowclear (vm_page_t);
413
414#ifdef INVARIANTS
415void vm_page_object_lock_assert(vm_page_t m);
416#define	VM_PAGE_OBJECT_LOCK_ASSERT(m)	vm_page_object_lock_assert(m)
417#else
418#define	VM_PAGE_OBJECT_LOCK_ASSERT(m)	(void)0
419#endif
420
421/*
422 *	vm_page_sleep_if_busy:
423 *
424 *	Sleep and release the page queues lock if VPO_BUSY is set or,
425 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
426 *	thread slept and the page queues lock was released.
427 *	Otherwise, retains the page queues lock and returns FALSE.
428 *
429 *	The object containing the given page must be locked.
430 */
431static __inline int
432vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
433{
434
435	if ((m->oflags & VPO_BUSY) || (also_m_busy && m->busy)) {
436		vm_page_sleep(m, msg);
437		return (TRUE);
438	}
439	return (FALSE);
440}
441
442/*
443 *	vm_page_undirty:
444 *
445 *	Set page to not be dirty.  Note: does not clear pmap modify bits
446 */
447static __inline void
448vm_page_undirty(vm_page_t m)
449{
450
451	VM_PAGE_OBJECT_LOCK_ASSERT(m);
452	m->dirty = 0;
453}
454
455#endif				/* _KERNEL */
456#endif				/* !_VM_PAGE_ */
457