vm_page.h revision 17294
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_page.h,v 1.29 1996/06/26 05:39:25 dyson Exp $
65 */
66
67/*
68 *	Resident memory system definitions.
69 */
70
71#ifndef	_VM_PAGE_
72#define	_VM_PAGE_
73
74#include <vm/pmap.h>
75/*
76 *	Management of resident (logical) pages.
77 *
78 *	A small structure is kept for each resident
79 *	page, indexed by page number.  Each structure
80 *	is an element of several lists:
81 *
82 *		A hash table bucket used to quickly
83 *		perform object/offset lookups
84 *
85 *		A list of all pages for a given object,
86 *		so they can be quickly deactivated at
87 *		time of deallocation.
88 *
89 *		An ordered list of pages due for pageout.
90 *
91 *	In addition, the structure contains the object
92 *	and offset to which this page belongs (for pageout),
93 *	and sundry status bits.
94 *
95 *	Fields in this structure are locked either by the lock on the
96 *	object that the page belongs to (O) or by the lock on the page
97 *	queues (P).
98 */
99
100TAILQ_HEAD(pglist, vm_page);
101
102struct vm_page {
103	TAILQ_ENTRY(vm_page) pageq;	/* queue info for FIFO queue or free list (P) */
104	TAILQ_ENTRY(vm_page) hashq;	/* hash table links (O) */
105	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) */
106
107	vm_object_t object;		/* which object am I in (O,P) */
108	vm_pindex_t pindex;		/* offset into object (O,P) */
109	vm_offset_t phys_addr;		/* physical address of page */
110	u_short	queue:4,		/* page queue index */
111		flags:12;		/* see below */
112	u_short wire_count;		/* wired down maps refs (P) */
113	short hold_count;		/* page hold count */
114	u_char	act_count;		/* page usage count */
115	u_char	busy;			/* page busy count */
116	/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
117	/* so, on normal X86 kernels, they must be at least 8 bits wide */
118	u_char	valid;			/* map of valid DEV_BSIZE chunks */
119	u_char	dirty;			/* map of dirty DEV_BSIZE chunks */
120};
121
122#define PQ_NONE 0
123#define PQ_FREE	1
124#define PQ_ZERO 2
125#define PQ_INACTIVE 3
126#define PQ_ACTIVE 4
127#define PQ_CACHE 5
128
129/*
130 * These are the flags defined for vm_page.
131 *
132 * Note: PG_FILLED and PG_DIRTY are added for the filesystems.
133 */
134#define	PG_BUSY		0x01		/* page is in transit (O) */
135#define	PG_WANTED	0x02		/* someone is waiting for page (O) */
136#define	PG_TABLED	0x04		/* page is in VP table (O) */
137#define	PG_FICTITIOUS	0x08		/* physical page doesn't exist (O) */
138#define	PG_WRITEABLE	0x10		/* page is mapped writeable */
139#define PG_MAPPED	0x20		/* page is mapped */
140#define	PG_ZERO		0x40		/* page is zeroed */
141#define PG_REFERENCED	0x80		/* page has been referenced */
142#define PG_CLEANCHK	0x100		/* page has been checked for cleaning */
143
144/*
145 * Misc constants.
146 */
147
148#define ACT_DECLINE		1
149#define ACT_ADVANCE		3
150#define ACT_INIT		5
151#define ACT_MAX			32
152#define PFCLUSTER_BEHIND	3
153#define PFCLUSTER_AHEAD		3
154
155#ifdef KERNEL
156/*
157 * Each pageable resident page falls into one of four lists:
158 *
159 *	free
160 *		Available for allocation now.
161 *
162 * The following are all LRU sorted:
163 *
164 *	cache
165 *		Almost available for allocation. Still in an
166 *		object, but clean and immediately freeable at
167 *		non-interrupt times.
168 *
169 *	inactive
170 *		Low activity, candidates for reclamation.
171 *		This is the list of pages that should be
172 *		paged out next.
173 *
174 *	active
175 *		Pages that are "active" i.e. they have been
176 *		recently referenced.
177 *
178 *	zero
179 *		Pages that are really free and have been pre-zeroed
180 *
181 */
182
183extern struct pglist vm_page_queue_free;	/* memory free queue */
184extern struct pglist vm_page_queue_zero;	/* zeroed memory free queue */
185extern struct pglist vm_page_queue_active;	/* active memory queue */
186extern struct pglist vm_page_queue_inactive;	/* inactive memory queue */
187extern struct pglist vm_page_queue_cache;	/* cache memory queue */
188
189extern int vm_page_zero_count;
190
191extern vm_page_t vm_page_array;		/* First resident page in table */
192extern long first_page;			/* first physical page number */
193
194 /* ... represented in vm_page_array */
195extern long last_page;			/* last physical page number */
196
197 /* ... represented in vm_page_array */
198 /* [INCLUSIVE] */
199extern vm_offset_t first_phys_addr;	/* physical address for first_page */
200extern vm_offset_t last_phys_addr;	/* physical address for last_page */
201
202#define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
203
204#define IS_VM_PHYSADDR(pa) \
205		((pa) >= first_phys_addr && (pa) <= last_phys_addr)
206
207#define PHYS_TO_VM_PAGE(pa) \
208		(&vm_page_array[atop(pa) - first_page ])
209
210/*
211 *	Functions implemented as macros
212 */
213
214#define PAGE_ASSERT_WAIT(m, interruptible)	{ \
215				(m)->flags |= PG_WANTED; \
216				assert_wait((int) (m), (interruptible)); \
217			}
218
219#define PAGE_WAKEUP(m)	{ \
220				(m)->flags &= ~PG_BUSY; \
221				if ((m)->flags & PG_WANTED) { \
222					(m)->flags &= ~PG_WANTED; \
223					(m)->flags |= PG_REFERENCED; \
224					wakeup((caddr_t) (m)); \
225				} \
226			}
227
228#if PAGE_SIZE == 4096
229#define VM_PAGE_BITS_ALL 0xff
230#endif
231
232#if PAGE_SIZE == 8192
233#define VM_PAGE_BITS_ALL 0xffff
234#endif
235
236#define VM_ALLOC_NORMAL 0
237#define VM_ALLOC_INTERRUPT 1
238#define VM_ALLOC_SYSTEM 2
239#define	VM_ALLOC_ZERO	3
240
241void vm_page_activate __P((vm_page_t));
242vm_page_t vm_page_alloc __P((vm_object_t, vm_pindex_t, int));
243void vm_page_cache __P((register vm_page_t));
244static __inline void vm_page_copy __P((vm_page_t, vm_page_t));
245void vm_page_deactivate __P((vm_page_t));
246void vm_page_free __P((vm_page_t));
247void vm_page_free_zero __P((vm_page_t));
248void vm_page_insert __P((vm_page_t, vm_object_t, vm_pindex_t));
249vm_page_t vm_page_lookup __P((vm_object_t, vm_pindex_t));
250void vm_page_remove __P((vm_page_t));
251void vm_page_rename __P((vm_page_t, vm_object_t, vm_pindex_t));
252vm_offset_t vm_page_startup __P((vm_offset_t, vm_offset_t, vm_offset_t));
253void vm_page_unwire __P((vm_page_t));
254void vm_page_wire __P((vm_page_t));
255void vm_page_unqueue __P((vm_page_t, int));
256void vm_page_set_validclean __P((vm_page_t, int, int));
257void vm_page_set_invalid __P((vm_page_t, int, int));
258static __inline boolean_t vm_page_zero_fill __P((vm_page_t));
259int vm_page_is_valid __P((vm_page_t, int, int));
260void vm_page_test_dirty __P((vm_page_t));
261int vm_page_bits __P((int, int));
262
263/*
264 * Keep page from being freed by the page daemon
265 * much of the same effect as wiring, except much lower
266 * overhead and should be used only for *very* temporary
267 * holding ("wiring").
268 */
269static __inline void
270vm_page_hold(vm_page_t mem)
271{
272	mem->hold_count++;
273}
274
275#ifdef DIAGNOSTIC
276#include <sys/systm.h>		/* make GCC shut up */
277#endif
278
279static __inline void
280vm_page_unhold(vm_page_t mem)
281{
282#ifdef DIAGNOSTIC
283	if (--mem->hold_count < 0)
284		panic("vm_page_unhold: hold count < 0!!!");
285#else
286	--mem->hold_count;
287#endif
288}
289
290static __inline void
291vm_page_protect(vm_page_t mem, int prot)
292{
293	if (prot == VM_PROT_NONE) {
294		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
295			pmap_page_protect(mem, prot);
296			mem->flags &= ~(PG_WRITEABLE|PG_MAPPED);
297		}
298	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
299		pmap_page_protect(mem, prot);
300		mem->flags &= ~PG_WRITEABLE;
301	}
302}
303
304/*
305 *	vm_page_zero_fill:
306 *
307 *	Zero-fill the specified page.
308 *	Written as a standard pagein routine, to
309 *	be used by the zero-fill object.
310 */
311static __inline boolean_t
312vm_page_zero_fill(m)
313	vm_page_t m;
314{
315	pmap_zero_page(VM_PAGE_TO_PHYS(m));
316	return (TRUE);
317}
318
319/*
320 *	vm_page_copy:
321 *
322 *	Copy one page to another
323 */
324static __inline void
325vm_page_copy(src_m, dest_m)
326	vm_page_t src_m;
327	vm_page_t dest_m;
328{
329	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
330	dest_m->valid = VM_PAGE_BITS_ALL;
331}
332
333#endif				/* KERNEL */
334#endif				/* !_VM_PAGE_ */
335