vm_page.h revision 49720
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_page.h,v 1.65 1999/08/12 21:16:53 alc Exp $
65 */
66
67/*
68 *	Resident memory system definitions.
69 */
70
71#ifndef	_VM_PAGE_
72#define	_VM_PAGE_
73
74#if !defined(KLD_MODULE)
75#include "opt_vmpage.h"
76#endif
77
78#include <vm/pmap.h>
79#include <machine/atomic.h>
80
81/*
82 *	Management of resident (logical) pages.
83 *
84 *	A small structure is kept for each resident
85 *	page, indexed by page number.  Each structure
86 *	is an element of several lists:
87 *
88 *		A hash table bucket used to quickly
89 *		perform object/offset lookups
90 *
91 *		A list of all pages for a given object,
92 *		so they can be quickly deactivated at
93 *		time of deallocation.
94 *
95 *		An ordered list of pages due for pageout.
96 *
97 *	In addition, the structure contains the object
98 *	and offset to which this page belongs (for pageout),
99 *	and sundry status bits.
100 *
101 *	Fields in this structure are locked either by the lock on the
102 *	object that the page belongs to (O) or by the lock on the page
103 *	queues (P).
104 *
105 *	The 'valid' and 'dirty' fields are distinct.  A page may have dirty
106 *	bits set without having associated valid bits set.  This is used by
107 *	NFS to implement piecemeal writes.
108 */
109
110TAILQ_HEAD(pglist, vm_page);
111
112struct vm_page {
113	TAILQ_ENTRY(vm_page) pageq;	/* queue info for FIFO queue or free list (P) */
114	struct vm_page	*hnext;		/* hash table link (O,P)	*/
115	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) 	*/
116
117	vm_object_t object;		/* which object am I in (O,P)*/
118	vm_pindex_t pindex;		/* offset into object (O,P) */
119	vm_offset_t phys_addr;		/* physical address of page */
120	u_short	queue;			/* page queue index */
121	u_short	flags,			/* see below */
122		pc;			/* page color */
123	u_short wire_count;		/* wired down maps refs (P) */
124	short hold_count;		/* page hold count */
125	u_char	act_count;		/* page usage count */
126	u_char	busy;			/* page busy count */
127	/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
128	/* so, on normal X86 kernels, they must be at least 8 bits wide */
129#if PAGE_SIZE == 4096
130	u_char	valid;			/* map of valid DEV_BSIZE chunks */
131	u_char	dirty;			/* map of dirty DEV_BSIZE chunks */
132#elif PAGE_SIZE == 8192
133	u_short	valid;			/* map of valid DEV_BSIZE chunks */
134	u_short	dirty;			/* map of dirty DEV_BSIZE chunks */
135#endif
136};
137
138/*
139 * note SWAPBLK_NONE is a flag, basically the high bit.
140 */
141
142#define SWAPBLK_MASK	((daddr_t)((u_daddr_t)-1 >> 1))		/* mask */
143#define SWAPBLK_NONE	((daddr_t)((u_daddr_t)SWAPBLK_MASK + 1))/* flag */
144
145#if !defined(KLD_MODULE)
146
147/*
148 * Page coloring parameters
149 */
150/* Each of PQ_FREE, and PQ_CACHE have PQ_HASH_SIZE entries */
151
152/* Define one of the following */
153#if defined(PQ_HUGECACHE)
154#define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
155#define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
156#define PQ_L2_SIZE 256	/* A number of colors opt for 1M cache */
157#endif
158
159/* Define one of the following */
160#if defined(PQ_LARGECACHE)
161#define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
162#define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
163#define PQ_L2_SIZE 128	/* A number of colors opt for 512K cache */
164#endif
165
166
167/*
168 * Use 'options PQ_NOOPT' to disable page coloring
169 */
170#if defined(PQ_NOOPT)
171#define PQ_PRIME1 1
172#define PQ_PRIME2 1
173#define PQ_L2_SIZE 1
174#endif
175
176#if defined(PQ_NORMALCACHE)
177#define PQ_PRIME1 5	/* Prime number somewhat less than PQ_HASH_SIZE */
178#define PQ_PRIME2 3	/* Prime number somewhat less than PQ_HASH_SIZE */
179#define PQ_L2_SIZE 16	/* A reasonable number of colors (opt for 64K cache) */
180#endif
181
182#if defined(PQ_MEDIUMCACHE)
183#define PQ_PRIME1 13	/* Prime number somewhat less than PQ_HASH_SIZE */
184#define PQ_PRIME2 7	/* Prime number somewhat less than PQ_HASH_SIZE */
185#define PQ_L2_SIZE 64	/* A number of colors opt for 256K cache */
186#endif
187
188#if !defined(PQ_L2_SIZE)
189#define PQ_PRIME1 9	/* Produces a good PQ_L2_SIZE/3 + PQ_PRIME1 */
190#define PQ_PRIME2 5	/* Prime number somewhat less than PQ_HASH_SIZE */
191#define PQ_L2_SIZE 32	/* 512KB or smaller, 4-way set-associative cache */
192#endif
193
194#define PQ_L2_MASK (PQ_L2_SIZE - 1)
195
196#define PQ_NONE		PQ_COUNT
197#define PQ_FREE		0
198#define PQ_INACTIVE	PQ_L2_SIZE
199#define PQ_ACTIVE	(1 +   PQ_L2_SIZE)
200#define PQ_CACHE	(2 +   PQ_L2_SIZE)
201#define PQ_COUNT	(2 + 2*PQ_L2_SIZE)
202
203extern struct vpgqueues {
204	struct pglist *pl;
205	int	*cnt;
206	int	lcnt;
207} vm_page_queues[PQ_COUNT];
208
209#endif
210
211/*
212 * These are the flags defined for vm_page.
213 *
214 * Note: PG_FILLED and PG_DIRTY are added for the filesystems.
215 */
216#define	PG_BUSY		0x0001		/* page is in transit (O) */
217#define	PG_WANTED	0x0002		/* someone is waiting for page (O) */
218#define	PG_FICTITIOUS	0x0008		/* physical page doesn't exist (O) */
219#define	PG_WRITEABLE	0x0010		/* page is mapped writeable */
220#define PG_MAPPED	0x0020		/* page is mapped */
221#define	PG_ZERO		0x0040		/* page is zeroed */
222#define PG_REFERENCED	0x0080		/* page has been referenced */
223#define PG_CLEANCHK	0x0100		/* page will be checked for cleaning */
224#define PG_SWAPINPROG	0x0200		/* swap I/O in progress on page	     */
225
226/*
227 * Misc constants.
228 */
229
230#define ACT_DECLINE		1
231#define ACT_ADVANCE		3
232#define ACT_INIT		5
233#define ACT_MAX			64
234#define PFCLUSTER_BEHIND	3
235#define PFCLUSTER_AHEAD		3
236
237#ifdef KERNEL
238/*
239 * Each pageable resident page falls into one of four lists:
240 *
241 *	free
242 *		Available for allocation now.
243 *
244 * The following are all LRU sorted:
245 *
246 *	cache
247 *		Almost available for allocation. Still in an
248 *		object, but clean and immediately freeable at
249 *		non-interrupt times.
250 *
251 *	inactive
252 *		Low activity, candidates for reclamation.
253 *		This is the list of pages that should be
254 *		paged out next.
255 *
256 *	active
257 *		Pages that are "active" i.e. they have been
258 *		recently referenced.
259 *
260 *	zero
261 *		Pages that are really free and have been pre-zeroed
262 *
263 */
264
265#if !defined(KLD_MODULE)
266
267extern struct pglist vm_page_queue_free[PQ_L2_SIZE];/* memory free queue */
268extern struct pglist vm_page_queue_active;	/* active memory queue */
269extern struct pglist vm_page_queue_inactive;	/* inactive memory queue */
270extern struct pglist vm_page_queue_cache[PQ_L2_SIZE];/* cache memory queue */
271
272#endif
273
274extern int vm_page_zero_count;
275
276extern vm_page_t vm_page_array;		/* First resident page in table */
277extern long first_page;			/* first physical page number */
278
279#define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
280
281#define PHYS_TO_VM_PAGE(pa) \
282		(&vm_page_array[atop(pa) - first_page ])
283
284/*
285 *	Functions implemented as macros
286 */
287
288static __inline void
289vm_page_flag_set(vm_page_t m, unsigned int bits)
290{
291	atomic_set_short(&(m)->flags, bits);
292}
293
294static __inline void
295vm_page_flag_clear(vm_page_t m, unsigned int bits)
296{
297	atomic_clear_short(&(m)->flags, bits);
298}
299
300#if 0
301static __inline void
302vm_page_assert_wait(vm_page_t m, int interruptible)
303{
304	vm_page_flag_set(m, PG_WANTED);
305	assert_wait((int) m, interruptible);
306}
307#endif
308
309static __inline void
310vm_page_busy(vm_page_t m)
311{
312	KASSERT((m->flags & PG_BUSY) == 0, ("vm_page_busy: page already busy!!!"));
313	vm_page_flag_set(m, PG_BUSY);
314}
315
316/*
317 *	vm_page_flash:
318 *
319 *	wakeup anyone waiting for the page.
320 */
321
322static __inline void
323vm_page_flash(vm_page_t m)
324{
325	if (m->flags & PG_WANTED) {
326		vm_page_flag_clear(m, PG_WANTED);
327		wakeup(m);
328	}
329}
330
331/*
332 *	vm_page_wakeup:
333 *
334 *	clear the PG_BUSY flag and wakeup anyone waiting for the
335 *	page.
336 *
337 */
338
339static __inline void
340vm_page_wakeup(vm_page_t m)
341{
342	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
343	vm_page_flag_clear(m, PG_BUSY);
344	vm_page_flash(m);
345}
346
347/*
348 *
349 *
350 */
351
352static __inline void
353vm_page_io_start(vm_page_t m)
354{
355	atomic_add_char(&(m)->busy, 1);
356}
357
358static __inline void
359vm_page_io_finish(vm_page_t m)
360{
361	atomic_subtract_char(&m->busy, 1);
362	if (m->busy == 0)
363		vm_page_flash(m);
364}
365
366
367#if PAGE_SIZE == 4096
368#define VM_PAGE_BITS_ALL 0xff
369#endif
370
371#if PAGE_SIZE == 8192
372#define VM_PAGE_BITS_ALL 0xffff
373#endif
374
375#define VM_ALLOC_NORMAL		0
376#define VM_ALLOC_INTERRUPT	1
377#define VM_ALLOC_SYSTEM		2
378#define	VM_ALLOC_ZERO		3
379#define	VM_ALLOC_RETRY		0x80
380
381void vm_page_activate __P((vm_page_t));
382vm_page_t vm_page_alloc __P((vm_object_t, vm_pindex_t, int));
383vm_page_t vm_page_grab __P((vm_object_t, vm_pindex_t, int));
384void vm_page_cache __P((register vm_page_t));
385static __inline void vm_page_copy __P((vm_page_t, vm_page_t));
386static __inline void vm_page_free __P((vm_page_t));
387static __inline void vm_page_free_zero __P((vm_page_t));
388void vm_page_deactivate __P((vm_page_t));
389void vm_page_insert __P((vm_page_t, vm_object_t, vm_pindex_t));
390vm_page_t vm_page_lookup __P((vm_object_t, vm_pindex_t));
391void vm_page_remove __P((vm_page_t));
392void vm_page_rename __P((vm_page_t, vm_object_t, vm_pindex_t));
393vm_offset_t vm_page_startup __P((vm_offset_t, vm_offset_t, vm_offset_t));
394void vm_page_unwire __P((vm_page_t, int));
395void vm_page_wire __P((vm_page_t));
396void vm_page_unqueue __P((vm_page_t));
397void vm_page_unqueue_nowakeup __P((vm_page_t));
398void vm_page_set_validclean __P((vm_page_t, int, int));
399void vm_page_set_dirty __P((vm_page_t, int, int));
400void vm_page_clear_dirty __P((vm_page_t, int, int));
401void vm_page_set_invalid __P((vm_page_t, int, int));
402static __inline boolean_t vm_page_zero_fill __P((vm_page_t));
403int vm_page_is_valid __P((vm_page_t, int, int));
404void vm_page_test_dirty __P((vm_page_t));
405int vm_page_bits __P((int, int));
406vm_page_t _vm_page_list_find __P((int, int));
407#if 0
408int vm_page_sleep(vm_page_t m, char *msg, char *busy);
409int vm_page_asleep(vm_page_t m, char *msg, char *busy);
410#endif
411void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
412void vm_page_free_toq(vm_page_t m);
413
414/*
415 * Keep page from being freed by the page daemon
416 * much of the same effect as wiring, except much lower
417 * overhead and should be used only for *very* temporary
418 * holding ("wiring").
419 */
420static __inline void
421vm_page_hold(vm_page_t mem)
422{
423	mem->hold_count++;
424}
425
426static __inline void
427vm_page_unhold(vm_page_t mem)
428{
429	--mem->hold_count;
430	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
431}
432
433/*
434 * 	vm_page_protect:
435 *
436 *	Reduce the protection of a page.  This routine never
437 *	raises the protection and therefore can be safely
438 *	called if the page is already at VM_PROT_NONE ( it
439 *	will be a NOP effectively ).
440 */
441
442static __inline void
443vm_page_protect(vm_page_t mem, int prot)
444{
445	if (prot == VM_PROT_NONE) {
446		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
447			pmap_page_protect(VM_PAGE_TO_PHYS(mem), VM_PROT_NONE);
448			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
449		}
450	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
451		pmap_page_protect(VM_PAGE_TO_PHYS(mem), VM_PROT_READ);
452		vm_page_flag_clear(mem, PG_WRITEABLE);
453	}
454}
455
456/*
457 *	vm_page_zero_fill:
458 *
459 *	Zero-fill the specified page.
460 *	Written as a standard pagein routine, to
461 *	be used by the zero-fill object.
462 */
463static __inline boolean_t
464vm_page_zero_fill(m)
465	vm_page_t m;
466{
467	pmap_zero_page(VM_PAGE_TO_PHYS(m));
468	return (TRUE);
469}
470
471/*
472 *	vm_page_copy:
473 *
474 *	Copy one page to another
475 */
476static __inline void
477vm_page_copy(src_m, dest_m)
478	vm_page_t src_m;
479	vm_page_t dest_m;
480{
481	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
482	dest_m->valid = VM_PAGE_BITS_ALL;
483}
484
485/*
486 *	vm_page_free:
487 *
488 *	Free a page
489 *
490 *	The clearing of PG_ZERO is a temporary safety until the code can be
491 *	reviewed to determine that PG_ZERO is being properly cleared on
492 *	write faults or maps.  PG_ZERO was previously cleared in
493 *	vm_page_alloc().
494 */
495static __inline void
496vm_page_free(m)
497	vm_page_t m;
498{
499	vm_page_flag_clear(m, PG_ZERO);
500	vm_page_free_toq(m);
501}
502
503/*
504 *	vm_page_free_zero:
505 *
506 *	Free a page to the zerod-pages queue
507 */
508static __inline void
509vm_page_free_zero(m)
510	vm_page_t m;
511{
512	vm_page_flag_set(m, PG_ZERO);
513	vm_page_free_toq(m);
514}
515
516/*
517 *	vm_page_sleep_busy:
518 *
519 *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
520 *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
521 *	it almost had to sleep and made temporary spl*() mods), FALSE
522 *	otherwise.
523 *
524 *	This routine assumes that interrupts can only remove the busy
525 *	status from a page, not set the busy status or change it from
526 *	PG_BUSY to m->busy or vise versa (which would create a timing
527 *	window).
528 *
529 *	Note that being an inline, this code will be well optimized.
530 */
531
532static __inline int
533vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
534{
535	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
536		int s = splvm();
537		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
538			/*
539			 * Page is busy. Wait and retry.
540			 */
541			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
542			tsleep(m, PVM, msg, 0);
543		}
544		splx(s);
545		return(TRUE);
546		/* not reached */
547	}
548	return(FALSE);
549}
550
551#if !defined(KLD_MODULE)
552
553/*
554 *	vm_page_dirty:
555 *
556 *	make page all dirty
557 */
558
559static __inline void
560vm_page_dirty(vm_page_t m)
561{
562	KASSERT(m->queue - m->pc != PQ_CACHE, ("vm_page_dirty: page in cache!"));
563	m->dirty = VM_PAGE_BITS_ALL;
564}
565
566static __inline vm_page_t
567vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
568{
569	vm_page_t m;
570
571#if PQ_L2_SIZE > 1
572	if (prefer_zero) {
573		m = TAILQ_LAST(vm_page_queues[basequeue+index].pl, pglist);
574	} else {
575		m = TAILQ_FIRST(vm_page_queues[basequeue+index].pl);
576	}
577	if (m == NULL)
578		m = _vm_page_list_find(basequeue, index);
579#else
580	if (prefer_zero) {
581		m = TAILQ_LAST(vm_page_queues[basequeue].pl, pglist);
582	} else {
583		m = TAILQ_FIRST(vm_page_queues[basequeue].pl);
584	}
585#endif
586	return(m);
587}
588
589#endif
590
591#endif				/* KERNEL */
592#endif				/* !_VM_PAGE_ */
593