vm_page.c revision 40700
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 *	$Id: vm_page.c,v 1.110 1998/10/25 17:44:59 phk Exp $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *	Resident memory management module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/malloc.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/vnode.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <vm/vm_prot.h>
81#include <sys/lock.h>
82#include <vm/vm_kern.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_extern.h>
87
88static void	vm_page_queue_init __P((void));
89static vm_page_t vm_page_select_free __P((vm_object_t object,
90			vm_pindex_t pindex, int prefqueue));
91static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
92
93/*
94 *	Associated with page of user-allocatable memory is a
95 *	page structure.
96 */
97
98static struct pglist *vm_page_buckets;	/* Array of buckets */
99static int vm_page_bucket_count;	/* How big is array? */
100static int vm_page_hash_mask;		/* Mask for hash function */
101static volatile int vm_page_bucket_generation;
102
103struct pglist vm_page_queue_free[PQ_L2_SIZE] = {0};
104struct pglist vm_page_queue_zero[PQ_L2_SIZE] = {0};
105struct pglist vm_page_queue_active = {0};
106struct pglist vm_page_queue_inactive = {0};
107struct pglist vm_page_queue_cache[PQ_L2_SIZE] = {0};
108
109static int no_queue=0;
110
111struct vpgqueues vm_page_queues[PQ_COUNT] = {0};
112static int pqcnt[PQ_COUNT] = {0};
113
114static void
115vm_page_queue_init(void) {
116	int i;
117
118	vm_page_queues[PQ_NONE].pl = NULL;
119	vm_page_queues[PQ_NONE].cnt = &no_queue;
120	for(i=0;i<PQ_L2_SIZE;i++) {
121		vm_page_queues[PQ_FREE+i].pl = &vm_page_queue_free[i];
122		vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
123	}
124	for(i=0;i<PQ_L2_SIZE;i++) {
125		vm_page_queues[PQ_ZERO+i].pl = &vm_page_queue_zero[i];
126		vm_page_queues[PQ_ZERO+i].cnt = &cnt.v_free_count;
127	}
128	vm_page_queues[PQ_INACTIVE].pl = &vm_page_queue_inactive;
129	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
130
131	vm_page_queues[PQ_ACTIVE].pl = &vm_page_queue_active;
132	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
133	for(i=0;i<PQ_L2_SIZE;i++) {
134		vm_page_queues[PQ_CACHE+i].pl = &vm_page_queue_cache[i];
135		vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
136	}
137	for(i=0;i<PQ_COUNT;i++) {
138		if (vm_page_queues[i].pl) {
139			TAILQ_INIT(vm_page_queues[i].pl);
140		} else if (i != 0) {
141			panic("vm_page_queue_init: queue %d is null", i);
142		}
143		vm_page_queues[i].lcnt = &pqcnt[i];
144	}
145}
146
147vm_page_t vm_page_array = 0;
148static int vm_page_array_size = 0;
149long first_page = 0;
150static long last_page;
151static vm_size_t page_mask;
152static int page_shift;
153int vm_page_zero_count = 0;
154
155/*
156 * map of contiguous valid DEV_BSIZE chunks in a page
157 * (this list is valid for page sizes upto 16*DEV_BSIZE)
158 */
159static u_short vm_page_dev_bsize_chunks[] = {
160	0x0, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff,
161	0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff
162};
163
164static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
165static int vm_page_freechk_and_unqueue __P((vm_page_t m));
166static void vm_page_free_wakeup __P((void));
167
168/*
169 *	vm_set_page_size:
170 *
171 *	Sets the page size, perhaps based upon the memory
172 *	size.  Must be called before any use of page-size
173 *	dependent functions.
174 *
175 *	Sets page_shift and page_mask from cnt.v_page_size.
176 */
177void
178vm_set_page_size()
179{
180
181	if (cnt.v_page_size == 0)
182		cnt.v_page_size = DEFAULT_PAGE_SIZE;
183	page_mask = cnt.v_page_size - 1;
184	if ((page_mask & cnt.v_page_size) != 0)
185		panic("vm_set_page_size: page size not a power of two");
186	for (page_shift = 0;; page_shift++)
187		if ((1 << page_shift) == cnt.v_page_size)
188			break;
189}
190
191/*
192 *	vm_page_startup:
193 *
194 *	Initializes the resident memory module.
195 *
196 *	Allocates memory for the page cells, and
197 *	for the object/offset-to-page hash table headers.
198 *	Each page cell is initialized and placed on the free list.
199 */
200
201vm_offset_t
202vm_page_startup(starta, enda, vaddr)
203	register vm_offset_t starta;
204	vm_offset_t enda;
205	register vm_offset_t vaddr;
206{
207	register vm_offset_t mapped;
208	register vm_page_t m;
209	register struct pglist *bucket;
210	vm_size_t npages, page_range;
211	register vm_offset_t new_start;
212	int i;
213	vm_offset_t pa;
214	int nblocks;
215	vm_offset_t first_managed_page;
216
217	/* the biggest memory array is the second group of pages */
218	vm_offset_t start;
219	vm_offset_t biggestone, biggestsize;
220
221	vm_offset_t total;
222
223	total = 0;
224	biggestsize = 0;
225	biggestone = 0;
226	nblocks = 0;
227	vaddr = round_page(vaddr);
228
229	for (i = 0; phys_avail[i + 1]; i += 2) {
230		phys_avail[i] = round_page(phys_avail[i]);
231		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
232	}
233
234	for (i = 0; phys_avail[i + 1]; i += 2) {
235		int size = phys_avail[i + 1] - phys_avail[i];
236
237		if (size > biggestsize) {
238			biggestone = i;
239			biggestsize = size;
240		}
241		++nblocks;
242		total += size;
243	}
244
245	start = phys_avail[biggestone];
246
247	/*
248	 * Initialize the queue headers for the free queue, the active queue
249	 * and the inactive queue.
250	 */
251
252	vm_page_queue_init();
253
254	/*
255	 * Allocate (and initialize) the hash table buckets.
256	 *
257	 * The number of buckets MUST BE a power of 2, and the actual value is
258	 * the next power of 2 greater than the number of physical pages in
259	 * the system.
260	 *
261	 * Note: This computation can be tweaked if desired.
262	 */
263	vm_page_buckets = (struct pglist *) vaddr;
264	bucket = vm_page_buckets;
265	if (vm_page_bucket_count == 0) {
266		vm_page_bucket_count = 1;
267		while (vm_page_bucket_count < atop(total))
268			vm_page_bucket_count <<= 1;
269	}
270	vm_page_hash_mask = vm_page_bucket_count - 1;
271
272	/*
273	 * Validate these addresses.
274	 */
275
276	new_start = start + vm_page_bucket_count * sizeof(struct pglist);
277	new_start = round_page(new_start);
278	mapped = round_page(vaddr);
279	vaddr = pmap_map(mapped, start, new_start,
280	    VM_PROT_READ | VM_PROT_WRITE);
281	start = new_start;
282	vaddr = round_page(vaddr);
283	bzero((caddr_t) mapped, vaddr - mapped);
284
285	for (i = 0; i < vm_page_bucket_count; i++) {
286		TAILQ_INIT(bucket);
287		bucket++;
288	}
289
290	/*
291	 * Compute the number of pages of memory that will be available for
292	 * use (taking into account the overhead of a page structure per
293	 * page).
294	 */
295
296	first_page = phys_avail[0] / PAGE_SIZE;
297	last_page = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
298
299	page_range = last_page - (phys_avail[0] / PAGE_SIZE);
300	npages = (total - (page_range * sizeof(struct vm_page)) -
301	    (start - phys_avail[biggestone])) / PAGE_SIZE;
302
303	/*
304	 * Initialize the mem entry structures now, and put them in the free
305	 * queue.
306	 */
307	vm_page_array = (vm_page_t) vaddr;
308	mapped = vaddr;
309
310	/*
311	 * Validate these addresses.
312	 */
313	new_start = round_page(start + page_range * sizeof(struct vm_page));
314	mapped = pmap_map(mapped, start, new_start,
315	    VM_PROT_READ | VM_PROT_WRITE);
316	start = new_start;
317
318	first_managed_page = start / PAGE_SIZE;
319
320	/*
321	 * Clear all of the page structures
322	 */
323	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
324	vm_page_array_size = page_range;
325
326	cnt.v_page_count = 0;
327	cnt.v_free_count = 0;
328	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
329		if (i == biggestone)
330			pa = ptoa(first_managed_page);
331		else
332			pa = phys_avail[i];
333		while (pa < phys_avail[i + 1] && npages-- > 0) {
334			++cnt.v_page_count;
335			++cnt.v_free_count;
336			m = PHYS_TO_VM_PAGE(pa);
337			m->phys_addr = pa;
338			m->flags = 0;
339			m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
340			m->queue = m->pc + PQ_FREE;
341			TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq);
342			++(*vm_page_queues[m->queue].lcnt);
343			pa += PAGE_SIZE;
344		}
345	}
346	return (mapped);
347}
348
349/*
350 *	vm_page_hash:
351 *
352 *	Distributes the object/offset key pair among hash buckets.
353 *
354 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
355 */
356static __inline int
357vm_page_hash(object, pindex)
358	vm_object_t object;
359	vm_pindex_t pindex;
360{
361	return ((((uintptr_t) object) >> 5) + (pindex >> 1)) & vm_page_hash_mask;
362}
363
364/*
365 *	vm_page_insert:		[ internal use only ]
366 *
367 *	Inserts the given mem entry into the object/object-page
368 *	table and object list.
369 *
370 *	The object and page must be locked, and must be splhigh.
371 */
372
373void
374vm_page_insert(m, object, pindex)
375	register vm_page_t m;
376	register vm_object_t object;
377	register vm_pindex_t pindex;
378{
379	register struct pglist *bucket;
380
381	if (m->object != NULL)
382		panic("vm_page_insert: already inserted");
383
384	/*
385	 * Record the object/offset pair in this page
386	 */
387
388	m->object = object;
389	m->pindex = pindex;
390
391	/*
392	 * Insert it into the object_object/offset hash table
393	 */
394
395	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
396	TAILQ_INSERT_TAIL(bucket, m, hashq);
397	vm_page_bucket_generation++;
398
399	/*
400	 * Now link into the object's list of backed pages.
401	 */
402
403	TAILQ_INSERT_TAIL(&object->memq, m, listq);
404	m->object->page_hint = m;
405	m->object->generation++;
406
407	if (m->wire_count)
408		object->wire_count++;
409
410	if ((m->queue - m->pc) == PQ_CACHE)
411		object->cache_count++;
412
413	/*
414	 * And show that the object has one more resident page.
415	 */
416
417	object->resident_page_count++;
418}
419
420/*
421 *	vm_page_remove:		[ internal use only ]
422 *				NOTE: used by device pager as well -wfj
423 *
424 *	Removes the given mem entry from the object/offset-page
425 *	table and the object page list.
426 *
427 *	The object and page must be locked, and at splhigh.
428 */
429
430void
431vm_page_remove(m)
432	register vm_page_t m;
433{
434	register struct pglist *bucket;
435	vm_object_t object;
436
437	if (m->object == NULL)
438		return;
439
440#if !defined(MAX_PERF)
441	if ((m->flags & PG_BUSY) == 0) {
442		panic("vm_page_remove: page not busy");
443	}
444#endif
445
446	vm_page_flag_clear(m, PG_BUSY);
447	if (m->flags & PG_WANTED) {
448		vm_page_flag_clear(m, PG_WANTED);
449		wakeup(m);
450	}
451
452	object = m->object;
453	if (object->page_hint == m)
454		object->page_hint = NULL;
455
456	if (m->wire_count)
457		object->wire_count--;
458
459	if ((m->queue - m->pc) == PQ_CACHE)
460		object->cache_count--;
461
462	/*
463	 * Remove from the object_object/offset hash table
464	 */
465
466	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
467	TAILQ_REMOVE(bucket, m, hashq);
468	vm_page_bucket_generation++;
469
470	/*
471	 * Now remove from the object's list of backed pages.
472	 */
473
474	TAILQ_REMOVE(&object->memq, m, listq);
475
476	/*
477	 * And show that the object has one fewer resident page.
478	 */
479
480	object->resident_page_count--;
481	object->generation++;
482
483	m->object = NULL;
484}
485
486/*
487 *	vm_page_lookup:
488 *
489 *	Returns the page associated with the object/offset
490 *	pair specified; if none is found, NULL is returned.
491 *
492 *	The object must be locked.  No side effects.
493 */
494
495vm_page_t
496vm_page_lookup(object, pindex)
497	register vm_object_t object;
498	register vm_pindex_t pindex;
499{
500	register vm_page_t m;
501	register struct pglist *bucket;
502	int generation;
503
504	/*
505	 * Search the hash table for this object/offset pair
506	 */
507
508	if (object->page_hint && (object->page_hint->pindex == pindex) &&
509		(object->page_hint->object == object))
510		return object->page_hint;
511
512retry:
513	generation = vm_page_bucket_generation;
514	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
515	for (m = TAILQ_FIRST(bucket); m != NULL; m = TAILQ_NEXT(m,hashq)) {
516		if ((m->object == object) && (m->pindex == pindex)) {
517			if (vm_page_bucket_generation != generation)
518				goto retry;
519			m->object->page_hint = m;
520			return (m);
521		}
522	}
523	if (vm_page_bucket_generation != generation)
524		goto retry;
525	return (NULL);
526}
527
528/*
529 *	vm_page_rename:
530 *
531 *	Move the given memory entry from its
532 *	current object to the specified target object/offset.
533 *
534 *	The object must be locked.
535 */
536void
537vm_page_rename(m, new_object, new_pindex)
538	register vm_page_t m;
539	register vm_object_t new_object;
540	vm_pindex_t new_pindex;
541{
542	int s;
543
544	s = splvm();
545	vm_page_remove(m);
546	vm_page_insert(m, new_object, new_pindex);
547	splx(s);
548}
549
550/*
551 * vm_page_unqueue without any wakeup
552 */
553void
554vm_page_unqueue_nowakeup(m)
555	vm_page_t m;
556{
557	int queue = m->queue;
558	struct vpgqueues *pq;
559	if (queue != PQ_NONE) {
560		pq = &vm_page_queues[queue];
561		m->queue = PQ_NONE;
562		TAILQ_REMOVE(pq->pl, m, pageq);
563		(*pq->cnt)--;
564		(*pq->lcnt)--;
565		if ((queue - m->pc) == PQ_CACHE) {
566			if (m->object)
567				m->object->cache_count--;
568		}
569	}
570}
571
572/*
573 * vm_page_unqueue must be called at splhigh();
574 */
575void
576vm_page_unqueue(m)
577	vm_page_t m;
578{
579	int queue = m->queue;
580	struct vpgqueues *pq;
581	if (queue != PQ_NONE) {
582		m->queue = PQ_NONE;
583		pq = &vm_page_queues[queue];
584		TAILQ_REMOVE(pq->pl, m, pageq);
585		(*pq->cnt)--;
586		(*pq->lcnt)--;
587		if ((queue - m->pc) == PQ_CACHE) {
588			if ((cnt.v_cache_count + cnt.v_free_count) <
589				(cnt.v_free_reserved + cnt.v_cache_min))
590				pagedaemon_wakeup();
591			if (m->object)
592				m->object->cache_count--;
593		}
594	}
595}
596
597/*
598 * Find a page on the specified queue with color optimization.
599 */
600vm_page_t
601vm_page_list_find(basequeue, index)
602	int basequeue, index;
603{
604#if PQ_L2_SIZE > 1
605
606	int i,j;
607	vm_page_t m;
608	int hindex;
609	struct vpgqueues *pq;
610
611	pq = &vm_page_queues[basequeue];
612
613	m = TAILQ_FIRST(pq[index].pl);
614	if (m)
615		return m;
616
617	for(j = 0; j < PQ_L1_SIZE; j++) {
618		int ij;
619		for(i = (PQ_L2_SIZE / 2) - PQ_L1_SIZE;
620			(ij = i + j) > 0;
621			i -= PQ_L1_SIZE) {
622
623			hindex = index + ij;
624			if (hindex >= PQ_L2_SIZE)
625				hindex -= PQ_L2_SIZE;
626			if (m = TAILQ_FIRST(pq[hindex].pl))
627				return m;
628
629			hindex = index - ij;
630			if (hindex < 0)
631				hindex += PQ_L2_SIZE;
632			if (m = TAILQ_FIRST(pq[hindex].pl))
633				return m;
634		}
635	}
636
637	hindex = index + PQ_L2_SIZE / 2;
638	if (hindex >= PQ_L2_SIZE)
639		hindex -= PQ_L2_SIZE;
640	m = TAILQ_FIRST(pq[hindex].pl);
641	if (m)
642		return m;
643
644	return NULL;
645#else
646	return TAILQ_FIRST(vm_page_queues[basequeue].pl);
647#endif
648
649}
650
651/*
652 * Find a page on the specified queue with color optimization.
653 */
654vm_page_t
655vm_page_select(object, pindex, basequeue)
656	vm_object_t object;
657	vm_pindex_t pindex;
658	int basequeue;
659{
660
661#if PQ_L2_SIZE > 1
662	int index;
663	index = (pindex + object->pg_color) & PQ_L2_MASK;
664	return vm_page_list_find(basequeue, index);
665
666#else
667	return TAILQ_FIRST(vm_page_queues[basequeue].pl);
668#endif
669
670}
671
672/*
673 * Find a page on the cache queue with color optimization.  As pages
674 * might be found, but not applicable, they are deactivated.  This
675 * keeps us from using potentially busy cached pages.
676 */
677vm_page_t
678vm_page_select_cache(object, pindex)
679	vm_object_t object;
680	vm_pindex_t pindex;
681{
682	vm_page_t m;
683
684	while (TRUE) {
685#if PQ_L2_SIZE > 1
686		int index;
687		index = (pindex + object->pg_color) & PQ_L2_MASK;
688		m = vm_page_list_find(PQ_CACHE, index);
689
690#else
691		m = TAILQ_FIRST(vm_page_queues[PQ_CACHE].pl);
692#endif
693		if (m && ((m->flags & PG_BUSY) || m->busy ||
694			       m->hold_count || m->wire_count)) {
695			vm_page_deactivate(m);
696			continue;
697		}
698		return m;
699	}
700}
701
702/*
703 * Find a free or zero page, with specified preference.
704 */
705static vm_page_t
706vm_page_select_free(object, pindex, prefqueue)
707	vm_object_t object;
708	vm_pindex_t pindex;
709	int prefqueue;
710{
711#if PQ_L2_SIZE > 1
712	int i,j;
713	int index, hindex;
714#endif
715	vm_page_t m, mh;
716	int oqueuediff;
717	struct vpgqueues *pq;
718
719	if (prefqueue == PQ_ZERO)
720		oqueuediff = PQ_FREE - PQ_ZERO;
721	else
722		oqueuediff = PQ_ZERO - PQ_FREE;
723
724	if (mh = object->page_hint) {
725		 if (mh->pindex == (pindex - 1)) {
726			if ((mh->flags & PG_FICTITIOUS) == 0) {
727				if ((mh < &vm_page_array[cnt.v_page_count-1]) &&
728					(mh >= &vm_page_array[0])) {
729					int queue;
730					m = mh + 1;
731					if (VM_PAGE_TO_PHYS(m) == (VM_PAGE_TO_PHYS(mh) + PAGE_SIZE)) {
732						queue = m->queue - m->pc;
733						if (queue == PQ_FREE || queue == PQ_ZERO) {
734							return m;
735						}
736					}
737				}
738			}
739		}
740	}
741
742	pq = &vm_page_queues[prefqueue];
743
744#if PQ_L2_SIZE > 1
745
746	index = (pindex + object->pg_color) & PQ_L2_MASK;
747
748	if (m = TAILQ_FIRST(pq[index].pl))
749		return m;
750	if (m = TAILQ_FIRST(pq[index + oqueuediff].pl))
751		return m;
752
753	for(j = 0; j < PQ_L1_SIZE; j++) {
754		int ij;
755		for(i = (PQ_L2_SIZE / 2) - PQ_L1_SIZE;
756			(ij = i + j) >= 0;
757			i -= PQ_L1_SIZE) {
758
759			hindex = index + ij;
760			if (hindex >= PQ_L2_SIZE)
761				hindex -= PQ_L2_SIZE;
762			if (m = TAILQ_FIRST(pq[hindex].pl))
763				return m;
764			if (m = TAILQ_FIRST(pq[hindex + oqueuediff].pl))
765				return m;
766
767			hindex = index - ij;
768			if (hindex < 0)
769				hindex += PQ_L2_SIZE;
770			if (m = TAILQ_FIRST(pq[hindex].pl))
771				return m;
772			if (m = TAILQ_FIRST(pq[hindex + oqueuediff].pl))
773				return m;
774		}
775	}
776
777	hindex = index + PQ_L2_SIZE / 2;
778	if (hindex >= PQ_L2_SIZE)
779		hindex -= PQ_L2_SIZE;
780	if (m = TAILQ_FIRST(pq[hindex].pl))
781		return m;
782	if (m = TAILQ_FIRST(pq[hindex+oqueuediff].pl))
783		return m;
784
785#else
786	if (m = TAILQ_FIRST(pq[0].pl))
787		return m;
788	else
789		return TAILQ_FIRST(pq[oqueuediff].pl);
790#endif
791
792	return NULL;
793}
794
795/*
796 *	vm_page_alloc:
797 *
798 *	Allocate and return a memory cell associated
799 *	with this VM object/offset pair.
800 *
801 *	page_req classes:
802 *	VM_ALLOC_NORMAL		normal process request
803 *	VM_ALLOC_SYSTEM		system *really* needs a page
804 *	VM_ALLOC_INTERRUPT	interrupt time request
805 *	VM_ALLOC_ZERO		zero page
806 *
807 *	Object must be locked.
808 */
809vm_page_t
810vm_page_alloc(object, pindex, page_req)
811	vm_object_t object;
812	vm_pindex_t pindex;
813	int page_req;
814{
815	register vm_page_t m;
816	struct vpgqueues *pq;
817	vm_object_t oldobject;
818	int queue, qtype;
819	int s;
820
821#ifdef DIAGNOSTIC
822	m = vm_page_lookup(object, pindex);
823	if (m)
824		panic("vm_page_alloc: page already allocated");
825#endif
826
827	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
828		page_req = VM_ALLOC_SYSTEM;
829	};
830
831	s = splvm();
832
833	switch (page_req) {
834
835	case VM_ALLOC_NORMAL:
836		if (cnt.v_free_count >= cnt.v_free_reserved) {
837			m = vm_page_select_free(object, pindex, PQ_FREE);
838#if defined(DIAGNOSTIC)
839			if (m == NULL)
840				panic("vm_page_alloc(NORMAL): missing page on free queue\n");
841#endif
842		} else {
843			m = vm_page_select_cache(object, pindex);
844			if (m == NULL) {
845				splx(s);
846#if defined(DIAGNOSTIC)
847				if (cnt.v_cache_count > 0)
848					printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
849#endif
850				vm_pageout_deficit++;
851				pagedaemon_wakeup();
852				return (NULL);
853			}
854		}
855		break;
856
857	case VM_ALLOC_ZERO:
858		if (cnt.v_free_count >= cnt.v_free_reserved) {
859			m = vm_page_select_free(object, pindex, PQ_ZERO);
860#if defined(DIAGNOSTIC)
861			if (m == NULL)
862				panic("vm_page_alloc(ZERO): missing page on free queue\n");
863#endif
864		} else {
865			m = vm_page_select_cache(object, pindex);
866			if (m == NULL) {
867				splx(s);
868#if defined(DIAGNOSTIC)
869				if (cnt.v_cache_count > 0)
870					printf("vm_page_alloc(ZERO): missing pages on cache queue: %d\n", cnt.v_cache_count);
871#endif
872				vm_pageout_deficit++;
873				pagedaemon_wakeup();
874				return (NULL);
875			}
876		}
877		break;
878
879	case VM_ALLOC_SYSTEM:
880		if ((cnt.v_free_count >= cnt.v_free_reserved) ||
881		    ((cnt.v_cache_count == 0) &&
882		    (cnt.v_free_count >= cnt.v_interrupt_free_min))) {
883			m = vm_page_select_free(object, pindex, PQ_FREE);
884#if defined(DIAGNOSTIC)
885			if (m == NULL)
886				panic("vm_page_alloc(SYSTEM): missing page on free queue\n");
887#endif
888		} else {
889			m = vm_page_select_cache(object, pindex);
890			if (m == NULL) {
891				splx(s);
892#if defined(DIAGNOSTIC)
893				if (cnt.v_cache_count > 0)
894					printf("vm_page_alloc(SYSTEM): missing pages on cache queue: %d\n", cnt.v_cache_count);
895#endif
896				vm_pageout_deficit++;
897				pagedaemon_wakeup();
898				return (NULL);
899			}
900		}
901		break;
902
903	case VM_ALLOC_INTERRUPT:
904		if (cnt.v_free_count > 0) {
905			m = vm_page_select_free(object, pindex, PQ_FREE);
906#if defined(DIAGNOSTIC)
907			if (m == NULL)
908				panic("vm_page_alloc(INTERRUPT): missing page on free queue\n");
909#endif
910		} else {
911			splx(s);
912			vm_pageout_deficit++;
913			pagedaemon_wakeup();
914			return (NULL);
915		}
916		break;
917
918	default:
919		m = NULL;
920#if !defined(MAX_PERF)
921		panic("vm_page_alloc: invalid allocation class");
922#endif
923	}
924
925	queue = m->queue;
926	qtype = queue - m->pc;
927	if (qtype == PQ_ZERO)
928		vm_page_zero_count--;
929	pq = &vm_page_queues[queue];
930	TAILQ_REMOVE(pq->pl, m, pageq);
931	(*pq->cnt)--;
932	(*pq->lcnt)--;
933	oldobject = NULL;
934	if (qtype == PQ_ZERO) {
935		m->flags = PG_ZERO | PG_BUSY;
936	} else if (qtype == PQ_CACHE) {
937		oldobject = m->object;
938		vm_page_busy(m);
939		vm_page_remove(m);
940		m->flags = PG_BUSY;
941	} else {
942		m->flags = PG_BUSY;
943	}
944	m->wire_count = 0;
945	m->hold_count = 0;
946	m->act_count = 0;
947	m->busy = 0;
948	m->valid = 0;
949	m->dirty = 0;
950	m->queue = PQ_NONE;
951
952	/* XXX before splx until vm_page_insert is safe */
953	vm_page_insert(m, object, pindex);
954
955	/*
956	 * Don't wakeup too often - wakeup the pageout daemon when
957	 * we would be nearly out of memory.
958	 */
959	if (((cnt.v_free_count + cnt.v_cache_count) <
960		(cnt.v_free_reserved + cnt.v_cache_min)) ||
961			(cnt.v_free_count < cnt.v_pageout_free_min))
962		pagedaemon_wakeup();
963
964	if ((qtype == PQ_CACHE) &&
965		((page_req == VM_ALLOC_NORMAL) || (page_req == VM_ALLOC_ZERO)) &&
966		oldobject && (oldobject->type == OBJT_VNODE) &&
967		((oldobject->flags & OBJ_DEAD) == 0)) {
968		struct vnode *vp;
969		vp = (struct vnode *) oldobject->handle;
970		if (vp && VSHOULDFREE(vp)) {
971			if ((vp->v_flag & (VFREE|VTBFREE|VDOOMED)) == 0) {
972				TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
973				vp->v_flag |= VTBFREE;
974			}
975		}
976	}
977	splx(s);
978
979	return (m);
980}
981
982void
983vm_wait()
984{
985	int s;
986
987	s = splvm();
988	if (curproc == pageproc) {
989		vm_pageout_pages_needed = 1;
990		tsleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
991	} else {
992		if (!vm_pages_needed) {
993			vm_pages_needed++;
994			wakeup(&vm_pages_needed);
995		}
996		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
997	}
998	splx(s);
999}
1000
1001int
1002vm_page_sleep(vm_page_t m, char *msg, char *busy) {
1003	int slept = 0;
1004	if ((busy && *busy) || (m->flags & PG_BUSY)) {
1005		int s;
1006		s = splvm();
1007		if ((busy && *busy) || (m->flags & PG_BUSY)) {
1008			vm_page_flag_set(m, PG_WANTED);
1009			tsleep(m, PVM, msg, 0);
1010			slept = 1;
1011		}
1012		splx(s);
1013	}
1014	return slept;
1015}
1016
1017/*
1018 *	vm_page_activate:
1019 *
1020 *	Put the specified page on the active list (if appropriate).
1021 *
1022 *	The page queues must be locked.
1023 */
1024void
1025vm_page_activate(m)
1026	register vm_page_t m;
1027{
1028	int s;
1029
1030	s = splvm();
1031	if (m->queue != PQ_ACTIVE) {
1032		if ((m->queue - m->pc) == PQ_CACHE)
1033			cnt.v_reactivated++;
1034
1035		vm_page_unqueue(m);
1036
1037		if (m->wire_count == 0) {
1038			m->queue = PQ_ACTIVE;
1039			++(*vm_page_queues[PQ_ACTIVE].lcnt);
1040			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1041			if (m->act_count < ACT_INIT)
1042				m->act_count = ACT_INIT;
1043			cnt.v_active_count++;
1044		}
1045	} else {
1046		if (m->act_count < ACT_INIT)
1047			m->act_count = ACT_INIT;
1048	}
1049
1050	splx(s);
1051}
1052
1053/*
1054 * helper routine for vm_page_free and vm_page_free_zero
1055 */
1056static int
1057vm_page_freechk_and_unqueue(m)
1058	vm_page_t m;
1059{
1060	vm_object_t oldobject;
1061
1062	oldobject = m->object;
1063
1064#if !defined(MAX_PERF)
1065	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1066		(m->hold_count != 0)) {
1067		printf(
1068		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1069		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1070		    m->hold_count);
1071		if ((m->queue - m->pc) == PQ_FREE)
1072			panic("vm_page_free: freeing free page");
1073		else
1074			panic("vm_page_free: freeing busy page");
1075	}
1076#endif
1077
1078	vm_page_unqueue_nowakeup(m);
1079	vm_page_remove(m);
1080
1081	if ((m->flags & PG_FICTITIOUS) != 0) {
1082		return 0;
1083	}
1084
1085	m->valid = 0;
1086
1087	if (m->wire_count != 0) {
1088#if !defined(MAX_PERF)
1089		if (m->wire_count > 1) {
1090			panic("vm_page_free: invalid wire count (%d), pindex: 0x%x",
1091				m->wire_count, m->pindex);
1092		}
1093#endif
1094		printf("vm_page_free: freeing wired page\n");
1095		m->wire_count = 0;
1096		if (m->object)
1097			m->object->wire_count--;
1098		cnt.v_wire_count--;
1099	}
1100
1101	if (oldobject && (oldobject->type == OBJT_VNODE) &&
1102		((oldobject->flags & OBJ_DEAD) == 0)) {
1103		struct vnode *vp;
1104		vp = (struct vnode *) oldobject->handle;
1105		if (vp && VSHOULDFREE(vp)) {
1106			if ((vp->v_flag & (VTBFREE|VDOOMED|VFREE)) == 0) {
1107				TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
1108				vp->v_flag |= VTBFREE;
1109			}
1110		}
1111	}
1112
1113#ifdef __alpha__
1114	pmap_page_is_free(m);
1115#endif
1116
1117	return 1;
1118}
1119
1120/*
1121 * helper routine for vm_page_free and vm_page_free_zero
1122 */
1123static __inline void
1124vm_page_free_wakeup()
1125{
1126
1127/*
1128 * if pageout daemon needs pages, then tell it that there are
1129 * some free.
1130 */
1131	if (vm_pageout_pages_needed) {
1132		wakeup(&vm_pageout_pages_needed);
1133		vm_pageout_pages_needed = 0;
1134	}
1135	/*
1136	 * wakeup processes that are waiting on memory if we hit a
1137	 * high water mark. And wakeup scheduler process if we have
1138	 * lots of memory. this process will swapin processes.
1139	 */
1140	if (vm_pages_needed &&
1141		((cnt.v_free_count + cnt.v_cache_count) >= cnt.v_free_min)) {
1142		wakeup(&cnt.v_free_count);
1143		vm_pages_needed = 0;
1144	}
1145}
1146
1147/*
1148 *	vm_page_free:
1149 *
1150 *	Returns the given page to the free list,
1151 *	disassociating it with any VM object.
1152 *
1153 *	Object and page must be locked prior to entry.
1154 */
1155void
1156vm_page_free(m)
1157	register vm_page_t m;
1158{
1159	int s;
1160	struct vpgqueues *pq;
1161
1162	s = splvm();
1163
1164	cnt.v_tfree++;
1165
1166	if (!vm_page_freechk_and_unqueue(m)) {
1167		splx(s);
1168		return;
1169	}
1170
1171	m->queue = PQ_FREE + m->pc;
1172	pq = &vm_page_queues[m->queue];
1173	++(*pq->lcnt);
1174	++(*pq->cnt);
1175	/*
1176	 * If the pageout process is grabbing the page, it is likely
1177	 * that the page is NOT in the cache.  It is more likely that
1178	 * the page will be partially in the cache if it is being
1179	 * explicitly freed.
1180	 */
1181	if (curproc == pageproc) {
1182		TAILQ_INSERT_TAIL(pq->pl, m, pageq);
1183	} else {
1184		TAILQ_INSERT_HEAD(pq->pl, m, pageq);
1185	}
1186
1187	vm_page_free_wakeup();
1188	splx(s);
1189}
1190
1191void
1192vm_page_free_zero(m)
1193	register vm_page_t m;
1194{
1195	int s;
1196	struct vpgqueues *pq;
1197
1198	s = splvm();
1199
1200	cnt.v_tfree++;
1201
1202	if (!vm_page_freechk_and_unqueue(m)) {
1203		splx(s);
1204		return;
1205	}
1206
1207	m->queue = PQ_ZERO + m->pc;
1208	pq = &vm_page_queues[m->queue];
1209	++(*pq->lcnt);
1210	++(*pq->cnt);
1211
1212	TAILQ_INSERT_HEAD(pq->pl, m, pageq);
1213	++vm_page_zero_count;
1214	vm_page_free_wakeup();
1215	splx(s);
1216}
1217
1218/*
1219 *	vm_page_wire:
1220 *
1221 *	Mark this page as wired down by yet
1222 *	another map, removing it from paging queues
1223 *	as necessary.
1224 *
1225 *	The page queues must be locked.
1226 */
1227void
1228vm_page_wire(m)
1229	register vm_page_t m;
1230{
1231	int s;
1232
1233	if (m->wire_count == 0) {
1234		s = splvm();
1235		vm_page_unqueue(m);
1236		splx(s);
1237		cnt.v_wire_count++;
1238		if (m->object)
1239			m->object->wire_count++;
1240	}
1241	(*vm_page_queues[PQ_NONE].lcnt)++;
1242	m->wire_count++;
1243	vm_page_flag_set(m, PG_MAPPED);
1244}
1245
1246/*
1247 *	vm_page_unwire:
1248 *
1249 *	Release one wiring of this page, potentially
1250 *	enabling it to be paged again.
1251 *
1252 *	The page queues must be locked.
1253 */
1254void
1255vm_page_unwire(m, activate)
1256	register vm_page_t m;
1257	int activate;
1258{
1259	int s;
1260
1261	s = splvm();
1262
1263	if (m->wire_count > 0) {
1264		m->wire_count--;
1265		if (m->wire_count == 0) {
1266			if (m->object)
1267				m->object->wire_count--;
1268			cnt.v_wire_count--;
1269			if (activate) {
1270				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1271				m->queue = PQ_ACTIVE;
1272				(*vm_page_queues[PQ_ACTIVE].lcnt)++;
1273				cnt.v_active_count++;
1274			} else {
1275				TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
1276				m->queue = PQ_INACTIVE;
1277				(*vm_page_queues[PQ_INACTIVE].lcnt)++;
1278				cnt.v_inactive_count++;
1279			}
1280		}
1281	} else {
1282#if !defined(MAX_PERF)
1283		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1284#endif
1285	}
1286	splx(s);
1287}
1288
1289
1290/*
1291 *	vm_page_deactivate:
1292 *
1293 *	Returns the given page to the inactive list,
1294 *	indicating that no physical maps have access
1295 *	to this page.  [Used by the physical mapping system.]
1296 *
1297 *	The page queues must be locked.
1298 */
1299void
1300vm_page_deactivate(m)
1301	register vm_page_t m;
1302{
1303	int s;
1304
1305	/*
1306	 * Only move active pages -- ignore locked or already inactive ones.
1307	 *
1308	 * XXX: sometimes we get pages which aren't wired down or on any queue -
1309	 * we need to put them on the inactive queue also, otherwise we lose
1310	 * track of them. Paul Mackerras (paulus@cs.anu.edu.au) 9-Jan-93.
1311	 */
1312	if (m->queue == PQ_INACTIVE)
1313		return;
1314
1315	s = splvm();
1316	if (m->wire_count == 0) {
1317		if ((m->queue - m->pc) == PQ_CACHE)
1318			cnt.v_reactivated++;
1319		vm_page_unqueue(m);
1320		TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
1321		m->queue = PQ_INACTIVE;
1322		++(*vm_page_queues[PQ_INACTIVE].lcnt);
1323		cnt.v_inactive_count++;
1324	}
1325	splx(s);
1326}
1327
1328/*
1329 * vm_page_cache
1330 *
1331 * Put the specified page onto the page cache queue (if appropriate).
1332 */
1333void
1334vm_page_cache(m)
1335	register vm_page_t m;
1336{
1337	int s;
1338
1339#if !defined(MAX_PERF)
1340	if ((m->flags & PG_BUSY) || m->busy || m->wire_count) {
1341		printf("vm_page_cache: attempting to cache busy page\n");
1342		return;
1343	}
1344#endif
1345	if ((m->queue - m->pc) == PQ_CACHE)
1346		return;
1347
1348	vm_page_protect(m, VM_PROT_NONE);
1349#if !defined(MAX_PERF)
1350	if (m->dirty != 0) {
1351		panic("vm_page_cache: caching a dirty page, pindex: %d", m->pindex);
1352	}
1353#endif
1354	s = splvm();
1355	vm_page_unqueue_nowakeup(m);
1356	m->queue = PQ_CACHE + m->pc;
1357	(*vm_page_queues[m->queue].lcnt)++;
1358	TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq);
1359	cnt.v_cache_count++;
1360	m->object->cache_count++;
1361	vm_page_free_wakeup();
1362	splx(s);
1363}
1364
1365/*
1366 * Grab a page, waiting until we are waken up due to the page
1367 * changing state.  We keep on waiting, if the page continues
1368 * to be in the object.  If the page doesn't exist, allocate it.
1369 */
1370vm_page_t
1371vm_page_grab(object, pindex, allocflags)
1372	vm_object_t object;
1373	vm_pindex_t pindex;
1374	int allocflags;
1375{
1376
1377	vm_page_t m;
1378	int s, generation;
1379
1380retrylookup:
1381	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1382		if (m->busy || (m->flags & PG_BUSY)) {
1383			generation = object->generation;
1384
1385			s = splvm();
1386			while ((object->generation == generation) &&
1387					(m->busy || (m->flags & PG_BUSY))) {
1388				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1389				tsleep(m, PVM, "pgrbwt", 0);
1390				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1391					splx(s);
1392					return NULL;
1393				}
1394			}
1395			splx(s);
1396			goto retrylookup;
1397		} else {
1398			vm_page_busy(m);
1399			return m;
1400		}
1401	}
1402
1403	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1404	if (m == NULL) {
1405		VM_WAIT;
1406		if ((allocflags & VM_ALLOC_RETRY) == 0)
1407			return NULL;
1408		goto retrylookup;
1409	}
1410
1411	return m;
1412}
1413
1414/*
1415 * mapping function for valid bits or for dirty bits in
1416 * a page
1417 */
1418__inline int
1419vm_page_bits(int base, int size)
1420{
1421	u_short chunk;
1422
1423	if ((base == 0) && (size >= PAGE_SIZE))
1424		return VM_PAGE_BITS_ALL;
1425
1426	size = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1427	base &= PAGE_MASK;
1428	if (size > PAGE_SIZE - base) {
1429		size = PAGE_SIZE - base;
1430	}
1431
1432	base = base / DEV_BSIZE;
1433	chunk = vm_page_dev_bsize_chunks[size / DEV_BSIZE];
1434	return (chunk << base) & VM_PAGE_BITS_ALL;
1435}
1436
1437/*
1438 * set a page valid and clean
1439 */
1440void
1441vm_page_set_validclean(m, base, size)
1442	vm_page_t m;
1443	int base;
1444	int size;
1445{
1446	int pagebits = vm_page_bits(base, size);
1447	m->valid |= pagebits;
1448	m->dirty &= ~pagebits;
1449	if( base == 0 && size == PAGE_SIZE)
1450		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1451}
1452
1453/*
1454 * set a page (partially) invalid
1455 */
1456void
1457vm_page_set_invalid(m, base, size)
1458	vm_page_t m;
1459	int base;
1460	int size;
1461{
1462	int bits;
1463
1464	m->valid &= ~(bits = vm_page_bits(base, size));
1465	if (m->valid == 0)
1466		m->dirty &= ~bits;
1467	m->object->generation++;
1468}
1469
1470/*
1471 * is (partial) page valid?
1472 */
1473int
1474vm_page_is_valid(m, base, size)
1475	vm_page_t m;
1476	int base;
1477	int size;
1478{
1479	int bits = vm_page_bits(base, size);
1480
1481	if (m->valid && ((m->valid & bits) == bits))
1482		return 1;
1483	else
1484		return 0;
1485}
1486
1487void
1488vm_page_test_dirty(m)
1489	vm_page_t m;
1490{
1491	if ((m->dirty != VM_PAGE_BITS_ALL) &&
1492	    pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
1493		m->dirty = VM_PAGE_BITS_ALL;
1494	}
1495}
1496
1497/*
1498 * This interface is for merging with malloc() someday.
1499 * Even if we never implement compaction so that contiguous allocation
1500 * works after initialization time, malloc()'s data structures are good
1501 * for statistics and for allocations of less than a page.
1502 */
1503void *
1504contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
1505	unsigned long size;	/* should be size_t here and for malloc() */
1506	struct malloc_type *type;
1507	int flags;
1508	unsigned long low;
1509	unsigned long high;
1510	unsigned long alignment;
1511	unsigned long boundary;
1512	vm_map_t map;
1513{
1514	int i, s, start;
1515	vm_offset_t addr, phys, tmp_addr;
1516	int pass;
1517	vm_page_t pga = vm_page_array;
1518
1519	size = round_page(size);
1520#if !defined(MAX_PERF)
1521	if (size == 0)
1522		panic("contigmalloc1: size must not be 0");
1523	if ((alignment & (alignment - 1)) != 0)
1524		panic("contigmalloc1: alignment must be a power of 2");
1525	if ((boundary & (boundary - 1)) != 0)
1526		panic("contigmalloc1: boundary must be a power of 2");
1527#endif
1528
1529	start = 0;
1530	for (pass = 0; pass <= 1; pass++) {
1531		s = splvm();
1532again:
1533		/*
1534		 * Find first page in array that is free, within range, aligned, and
1535		 * such that the boundary won't be crossed.
1536		 */
1537		for (i = start; i < cnt.v_page_count; i++) {
1538			int pqtype;
1539			phys = VM_PAGE_TO_PHYS(&pga[i]);
1540			pqtype = pga[i].queue - pga[i].pc;
1541			if (((pqtype == PQ_ZERO) || (pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1542			    (phys >= low) && (phys < high) &&
1543			    ((phys & (alignment - 1)) == 0) &&
1544			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1545				break;
1546		}
1547
1548		/*
1549		 * If the above failed or we will exceed the upper bound, fail.
1550		 */
1551		if ((i == cnt.v_page_count) ||
1552			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1553			vm_page_t m, next;
1554
1555again1:
1556			for (m = TAILQ_FIRST(&vm_page_queue_inactive);
1557				m != NULL;
1558				m = next) {
1559
1560				if (m->queue != PQ_INACTIVE) {
1561					break;
1562				}
1563
1564				next = TAILQ_NEXT(m, pageq);
1565				if (vm_page_sleep(m, "vpctw0", &m->busy))
1566					goto again1;
1567				vm_page_test_dirty(m);
1568				if (m->dirty) {
1569					if (m->object->type == OBJT_VNODE) {
1570						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1571						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1572						VOP_UNLOCK(m->object->handle, 0, curproc);
1573						goto again1;
1574					} else if (m->object->type == OBJT_SWAP ||
1575								m->object->type == OBJT_DEFAULT) {
1576						vm_pageout_flush(&m, 1, 0);
1577						goto again1;
1578					}
1579				}
1580				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1581					vm_page_cache(m);
1582			}
1583
1584			for (m = TAILQ_FIRST(&vm_page_queue_active);
1585				m != NULL;
1586				m = next) {
1587
1588				if (m->queue != PQ_ACTIVE) {
1589					break;
1590				}
1591
1592				next = TAILQ_NEXT(m, pageq);
1593				if (vm_page_sleep(m, "vpctw1", &m->busy))
1594					goto again1;
1595				vm_page_test_dirty(m);
1596				if (m->dirty) {
1597					if (m->object->type == OBJT_VNODE) {
1598						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1599						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1600						VOP_UNLOCK(m->object->handle, 0, curproc);
1601						goto again1;
1602					} else if (m->object->type == OBJT_SWAP ||
1603								m->object->type == OBJT_DEFAULT) {
1604						vm_pageout_flush(&m, 1, 0);
1605						goto again1;
1606					}
1607				}
1608				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1609					vm_page_cache(m);
1610			}
1611
1612			splx(s);
1613			continue;
1614		}
1615		start = i;
1616
1617		/*
1618		 * Check successive pages for contiguous and free.
1619		 */
1620		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1621			int pqtype;
1622			pqtype = pga[i].queue - pga[i].pc;
1623			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1624			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1625			    ((pqtype != PQ_ZERO) && (pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1626				start++;
1627				goto again;
1628			}
1629		}
1630
1631		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1632			int pqtype;
1633			vm_page_t m = &pga[i];
1634
1635			pqtype = m->queue - m->pc;
1636			if (pqtype == PQ_CACHE) {
1637				vm_page_busy(m);
1638				vm_page_free(m);
1639			}
1640
1641			TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
1642			(*vm_page_queues[m->queue].lcnt)--;
1643			cnt.v_free_count--;
1644			m->valid = VM_PAGE_BITS_ALL;
1645			m->flags = 0;
1646			m->dirty = 0;
1647			m->wire_count = 0;
1648			m->busy = 0;
1649			m->queue = PQ_NONE;
1650			m->object = NULL;
1651			vm_page_wire(m);
1652		}
1653
1654		/*
1655		 * We've found a contiguous chunk that meets are requirements.
1656		 * Allocate kernel VM, unfree and assign the physical pages to it and
1657		 * return kernel VM pointer.
1658		 */
1659		tmp_addr = addr = kmem_alloc_pageable(map, size);
1660		if (addr == 0) {
1661			/*
1662			 * XXX We almost never run out of kernel virtual
1663			 * space, so we don't make the allocated memory
1664			 * above available.
1665			 */
1666			splx(s);
1667			return (NULL);
1668		}
1669
1670		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1671			vm_page_t m = &pga[i];
1672			vm_page_insert(m, kernel_object,
1673				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1674			pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
1675			tmp_addr += PAGE_SIZE;
1676		}
1677
1678		splx(s);
1679		return ((void *)addr);
1680	}
1681	return NULL;
1682}
1683
1684void *
1685contigmalloc(size, type, flags, low, high, alignment, boundary)
1686	unsigned long size;	/* should be size_t here and for malloc() */
1687	struct malloc_type *type;
1688	int flags;
1689	unsigned long low;
1690	unsigned long high;
1691	unsigned long alignment;
1692	unsigned long boundary;
1693{
1694	return contigmalloc1(size, type, flags, low, high, alignment, boundary,
1695			     kernel_map);
1696}
1697
1698vm_offset_t
1699vm_page_alloc_contig(size, low, high, alignment)
1700	vm_offset_t size;
1701	vm_offset_t low;
1702	vm_offset_t high;
1703	vm_offset_t alignment;
1704{
1705	return ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
1706					  alignment, 0ul, kernel_map));
1707}
1708
1709#include "opt_ddb.h"
1710#ifdef DDB
1711#include <sys/kernel.h>
1712
1713#include <ddb/ddb.h>
1714
1715DB_SHOW_COMMAND(page, vm_page_print_page_info)
1716{
1717	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1718	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1719	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1720	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1721	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1722	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1723	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1724	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1725	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1726	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1727}
1728
1729DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1730{
1731	int i;
1732	db_printf("PQ_FREE:");
1733	for(i=0;i<PQ_L2_SIZE;i++) {
1734		db_printf(" %d", *vm_page_queues[PQ_FREE + i].lcnt);
1735	}
1736	db_printf("\n");
1737
1738	db_printf("PQ_CACHE:");
1739	for(i=0;i<PQ_L2_SIZE;i++) {
1740		db_printf(" %d", *vm_page_queues[PQ_CACHE + i].lcnt);
1741	}
1742	db_printf("\n");
1743
1744	db_printf("PQ_ZERO:");
1745	for(i=0;i<PQ_L2_SIZE;i++) {
1746		db_printf(" %d", *vm_page_queues[PQ_ZERO + i].lcnt);
1747	}
1748	db_printf("\n");
1749
1750	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1751		*vm_page_queues[PQ_ACTIVE].lcnt,
1752		*vm_page_queues[PQ_INACTIVE].lcnt);
1753}
1754#endif /* DDB */
1755