1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- The object mutex is held when inserting or removing
71 *	  pages from an object (vm_page_insert() or vm_page_remove()).
72 *
73 */
74
75/*
76 *	Resident memory management module.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD$");
81
82#include "opt_vm.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/lock.h>
87#include <sys/kernel.h>
88#include <sys/limits.h>
89#include <sys/malloc.h>
90#include <sys/msgbuf.h>
91#include <sys/mutex.h>
92#include <sys/proc.h>
93#include <sys/sysctl.h>
94#include <sys/vmmeter.h>
95#include <sys/vnode.h>
96
97#include <vm/vm.h>
98#include <vm/pmap.h>
99#include <vm/vm_param.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_object.h>
102#include <vm/vm_page.h>
103#include <vm/vm_pageout.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_phys.h>
106#include <vm/vm_reserv.h>
107#include <vm/vm_extern.h>
108#include <vm/uma.h>
109#include <vm/uma_int.h>
110
111#include <machine/md_var.h>
112
113/*
114 *	Associated with page of user-allocatable memory is a
115 *	page structure.
116 */
117
118struct vpgqueues vm_page_queues[PQ_COUNT];
119struct vpglocks vm_page_queue_lock;
120struct vpglocks vm_page_queue_free_lock;
121
122struct vpglocks	pa_lock[PA_LOCK_COUNT];
123
124vm_page_t vm_page_array;
125long vm_page_array_size;
126long first_page;
127int vm_page_zero_count;
128
129static int boot_pages = UMA_BOOT_PAGES;
130TUNABLE_INT("vm.boot_pages", &boot_pages);
131SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
132	"number of pages allocated for bootstrapping the VM system");
133
134int pa_tryrelock_restart;
135SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
136    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
137
138static uma_zone_t fakepg_zone;
139
140static struct vnode *vm_page_alloc_init(vm_page_t m);
141static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
142static void vm_page_queue_remove(int queue, vm_page_t m);
143static void vm_page_enqueue(int queue, vm_page_t m);
144static void vm_page_init_fakepg(void *dummy);
145
146SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
147
148static void
149vm_page_init_fakepg(void *dummy)
150{
151
152	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
153	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
154}
155
156/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
157#if PAGE_SIZE == 32768
158#ifdef CTASSERT
159CTASSERT(sizeof(u_long) >= 8);
160#endif
161#endif
162
163/*
164 * Try to acquire a physical address lock while a pmap is locked.  If we
165 * fail to trylock we unlock and lock the pmap directly and cache the
166 * locked pa in *locked.  The caller should then restart their loop in case
167 * the virtual to physical mapping has changed.
168 */
169int
170vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
171{
172	vm_paddr_t lockpa;
173
174	lockpa = *locked;
175	*locked = pa;
176	if (lockpa) {
177		PA_LOCK_ASSERT(lockpa, MA_OWNED);
178		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
179			return (0);
180		PA_UNLOCK(lockpa);
181	}
182	if (PA_TRYLOCK(pa))
183		return (0);
184	PMAP_UNLOCK(pmap);
185	atomic_add_int(&pa_tryrelock_restart, 1);
186	PA_LOCK(pa);
187	PMAP_LOCK(pmap);
188	return (EAGAIN);
189}
190
191/*
192 *	vm_set_page_size:
193 *
194 *	Sets the page size, perhaps based upon the memory
195 *	size.  Must be called before any use of page-size
196 *	dependent functions.
197 */
198void
199vm_set_page_size(void)
200{
201	if (cnt.v_page_size == 0)
202		cnt.v_page_size = PAGE_SIZE;
203	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
204		panic("vm_set_page_size: page size not a power of two");
205}
206
207/*
208 *	vm_page_blacklist_lookup:
209 *
210 *	See if a physical address in this page has been listed
211 *	in the blacklist tunable.  Entries in the tunable are
212 *	separated by spaces or commas.  If an invalid integer is
213 *	encountered then the rest of the string is skipped.
214 */
215static int
216vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
217{
218	vm_paddr_t bad;
219	char *cp, *pos;
220
221	for (pos = list; *pos != '\0'; pos = cp) {
222		bad = strtoq(pos, &cp, 0);
223		if (*cp != '\0') {
224			if (*cp == ' ' || *cp == ',') {
225				cp++;
226				if (cp == pos)
227					continue;
228			} else
229				break;
230		}
231		if (pa == trunc_page(bad))
232			return (1);
233	}
234	return (0);
235}
236
237/*
238 *	vm_page_startup:
239 *
240 *	Initializes the resident memory module.
241 *
242 *	Allocates memory for the page cells, and
243 *	for the object/offset-to-page hash table headers.
244 *	Each page cell is initialized and placed on the free list.
245 */
246vm_offset_t
247vm_page_startup(vm_offset_t vaddr)
248{
249	vm_offset_t mapped;
250	vm_paddr_t page_range;
251	vm_paddr_t new_end;
252	int i;
253	vm_paddr_t pa;
254	vm_paddr_t last_pa;
255	char *list;
256
257	/* the biggest memory array is the second group of pages */
258	vm_paddr_t end;
259	vm_paddr_t biggestsize;
260	vm_paddr_t low_water, high_water;
261	int biggestone;
262
263	biggestsize = 0;
264	biggestone = 0;
265	vaddr = round_page(vaddr);
266
267	for (i = 0; phys_avail[i + 1]; i += 2) {
268		phys_avail[i] = round_page(phys_avail[i]);
269		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
270	}
271
272	low_water = phys_avail[0];
273	high_water = phys_avail[1];
274
275	for (i = 0; phys_avail[i + 1]; i += 2) {
276		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
277
278		if (size > biggestsize) {
279			biggestone = i;
280			biggestsize = size;
281		}
282		if (phys_avail[i] < low_water)
283			low_water = phys_avail[i];
284		if (phys_avail[i + 1] > high_water)
285			high_water = phys_avail[i + 1];
286	}
287
288#ifdef XEN
289	low_water = 0;
290#endif
291
292	end = phys_avail[biggestone+1];
293
294	/*
295	 * Initialize the page and queue locks.
296	 */
297	mtx_init(&vm_page_queue_mtx, "vm page queue", NULL, MTX_DEF |
298	    MTX_RECURSE);
299	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
300	for (i = 0; i < PA_LOCK_COUNT; i++)
301		mtx_init(&pa_lock[i].data, "vm page", NULL, MTX_DEF);
302
303	/*
304	 * Initialize the queue headers for the hold queue, the active queue,
305	 * and the inactive queue.
306	 */
307	for (i = 0; i < PQ_COUNT; i++)
308		TAILQ_INIT(&vm_page_queues[i].pl);
309	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
310	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
311	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
312
313	/*
314	 * Allocate memory for use when boot strapping the kernel memory
315	 * allocator.
316	 */
317	new_end = end - (boot_pages * UMA_SLAB_SIZE);
318	new_end = trunc_page(new_end);
319	mapped = pmap_map(&vaddr, new_end, end,
320	    VM_PROT_READ | VM_PROT_WRITE);
321	bzero((void *)mapped, end - new_end);
322	uma_startup((void *)mapped, boot_pages);
323
324#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
325    defined(__mips__)
326	/*
327	 * Allocate a bitmap to indicate that a random physical page
328	 * needs to be included in a minidump.
329	 *
330	 * The amd64 port needs this to indicate which direct map pages
331	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
332	 *
333	 * However, i386 still needs this workspace internally within the
334	 * minidump code.  In theory, they are not needed on i386, but are
335	 * included should the sf_buf code decide to use them.
336	 */
337	last_pa = 0;
338	for (i = 0; dump_avail[i + 1] != 0; i += 2)
339		if (dump_avail[i + 1] > last_pa)
340			last_pa = dump_avail[i + 1];
341	page_range = last_pa / PAGE_SIZE;
342	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
343	new_end -= vm_page_dump_size;
344	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
345	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
346	bzero((void *)vm_page_dump, vm_page_dump_size);
347#endif
348#ifdef __amd64__
349	/*
350	 * Request that the physical pages underlying the message buffer be
351	 * included in a crash dump.  Since the message buffer is accessed
352	 * through the direct map, they are not automatically included.
353	 */
354	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
355	last_pa = pa + round_page(msgbufsize);
356	while (pa < last_pa) {
357		dump_add_page(pa);
358		pa += PAGE_SIZE;
359	}
360#endif
361	/*
362	 * Compute the number of pages of memory that will be available for
363	 * use (taking into account the overhead of a page structure per
364	 * page).
365	 */
366	first_page = low_water / PAGE_SIZE;
367#ifdef VM_PHYSSEG_SPARSE
368	page_range = 0;
369	for (i = 0; phys_avail[i + 1] != 0; i += 2)
370		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
371#elif defined(VM_PHYSSEG_DENSE)
372	page_range = high_water / PAGE_SIZE - first_page;
373#else
374#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
375#endif
376	end = new_end;
377
378	/*
379	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
380	 */
381	vaddr += PAGE_SIZE;
382
383	/*
384	 * Initialize the mem entry structures now, and put them in the free
385	 * queue.
386	 */
387	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
388	mapped = pmap_map(&vaddr, new_end, end,
389	    VM_PROT_READ | VM_PROT_WRITE);
390	vm_page_array = (vm_page_t) mapped;
391#if VM_NRESERVLEVEL > 0
392	/*
393	 * Allocate memory for the reservation management system's data
394	 * structures.
395	 */
396	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
397#endif
398#if defined(__amd64__) || defined(__mips__)
399	/*
400	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
401	 * like i386, so the pages must be tracked for a crashdump to include
402	 * this data.  This includes the vm_page_array and the early UMA
403	 * bootstrap pages.
404	 */
405	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
406		dump_add_page(pa);
407#endif
408	phys_avail[biggestone + 1] = new_end;
409
410	/*
411	 * Clear all of the page structures
412	 */
413	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
414	for (i = 0; i < page_range; i++)
415		vm_page_array[i].order = VM_NFREEORDER;
416	vm_page_array_size = page_range;
417
418	/*
419	 * Initialize the physical memory allocator.
420	 */
421	vm_phys_init();
422
423	/*
424	 * Add every available physical page that is not blacklisted to
425	 * the free lists.
426	 */
427	cnt.v_page_count = 0;
428	cnt.v_free_count = 0;
429	list = getenv("vm.blacklist");
430	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
431		pa = phys_avail[i];
432		last_pa = phys_avail[i + 1];
433		while (pa < last_pa) {
434			if (list != NULL &&
435			    vm_page_blacklist_lookup(list, pa))
436				printf("Skipping page with pa 0x%jx\n",
437				    (uintmax_t)pa);
438			else
439				vm_phys_add_page(pa);
440			pa += PAGE_SIZE;
441		}
442	}
443	freeenv(list);
444#if VM_NRESERVLEVEL > 0
445	/*
446	 * Initialize the reservation management system.
447	 */
448	vm_reserv_init();
449#endif
450	return (vaddr);
451}
452
453
454CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0);
455
456void
457vm_page_aflag_set(vm_page_t m, uint8_t bits)
458{
459	uint32_t *addr, val;
460
461	/*
462	 * The PGA_WRITEABLE flag can only be set if the page is managed and
463	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
464	 */
465	KASSERT((bits & PGA_WRITEABLE) == 0 ||
466	    (m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == VPO_BUSY,
467	    ("PGA_WRITEABLE and !VPO_BUSY"));
468
469	/*
470	 * We want to use atomic updates for m->aflags, which is a
471	 * byte wide.  Not all architectures provide atomic operations
472	 * on the single-byte destination.  Punt and access the whole
473	 * 4-byte word with an atomic update.  Parallel non-atomic
474	 * updates to the fields included in the update by proximity
475	 * are handled properly by atomics.
476	 */
477	addr = (void *)&m->aflags;
478	MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
479	val = bits;
480#if BYTE_ORDER == BIG_ENDIAN
481	val <<= 24;
482#endif
483	atomic_set_32(addr, val);
484}
485
486void
487vm_page_aflag_clear(vm_page_t m, uint8_t bits)
488{
489	uint32_t *addr, val;
490
491	/*
492	 * The PGA_REFERENCED flag can only be cleared if the object
493	 * containing the page is locked.
494	 */
495	KASSERT((bits & PGA_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
496	    ("PGA_REFERENCED and !VM_OBJECT_LOCKED"));
497
498	/*
499	 * See the comment in vm_page_aflag_set().
500	 */
501	addr = (void *)&m->aflags;
502	MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
503	val = bits;
504#if BYTE_ORDER == BIG_ENDIAN
505	val <<= 24;
506#endif
507	atomic_clear_32(addr, val);
508}
509
510void
511vm_page_reference(vm_page_t m)
512{
513
514	vm_page_aflag_set(m, PGA_REFERENCED);
515}
516
517void
518vm_page_busy(vm_page_t m)
519{
520
521	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
522	KASSERT((m->oflags & VPO_BUSY) == 0,
523	    ("vm_page_busy: page already busy!!!"));
524	m->oflags |= VPO_BUSY;
525}
526
527/*
528 *      vm_page_flash:
529 *
530 *      wakeup anyone waiting for the page.
531 */
532void
533vm_page_flash(vm_page_t m)
534{
535
536	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
537	if (m->oflags & VPO_WANTED) {
538		m->oflags &= ~VPO_WANTED;
539		wakeup(m);
540	}
541}
542
543/*
544 *      vm_page_wakeup:
545 *
546 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
547 *      page.
548 *
549 */
550void
551vm_page_wakeup(vm_page_t m)
552{
553
554	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
555	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
556	m->oflags &= ~VPO_BUSY;
557	vm_page_flash(m);
558}
559
560void
561vm_page_io_start(vm_page_t m)
562{
563
564	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
565	m->busy++;
566}
567
568void
569vm_page_io_finish(vm_page_t m)
570{
571
572	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
573	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
574	m->busy--;
575	if (m->busy == 0)
576		vm_page_flash(m);
577}
578
579/*
580 * Keep page from being freed by the page daemon
581 * much of the same effect as wiring, except much lower
582 * overhead and should be used only for *very* temporary
583 * holding ("wiring").
584 */
585void
586vm_page_hold(vm_page_t mem)
587{
588
589	vm_page_lock_assert(mem, MA_OWNED);
590        mem->hold_count++;
591}
592
593void
594vm_page_unhold(vm_page_t mem)
595{
596
597	vm_page_lock_assert(mem, MA_OWNED);
598	--mem->hold_count;
599	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
600	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
601		vm_page_free_toq(mem);
602}
603
604/*
605 *	vm_page_unhold_pages:
606 *
607 *	Unhold each of the pages that is referenced by the given array.
608 */
609void
610vm_page_unhold_pages(vm_page_t *ma, int count)
611{
612	struct mtx *mtx, *new_mtx;
613
614	mtx = NULL;
615	for (; count != 0; count--) {
616		/*
617		 * Avoid releasing and reacquiring the same page lock.
618		 */
619		new_mtx = vm_page_lockptr(*ma);
620		if (mtx != new_mtx) {
621			if (mtx != NULL)
622				mtx_unlock(mtx);
623			mtx = new_mtx;
624			mtx_lock(mtx);
625		}
626		vm_page_unhold(*ma);
627		ma++;
628	}
629	if (mtx != NULL)
630		mtx_unlock(mtx);
631}
632
633vm_page_t
634PHYS_TO_VM_PAGE(vm_paddr_t pa)
635{
636	vm_page_t m;
637
638#ifdef VM_PHYSSEG_SPARSE
639	m = vm_phys_paddr_to_vm_page(pa);
640	if (m == NULL)
641		m = vm_phys_fictitious_to_vm_page(pa);
642	return (m);
643#elif defined(VM_PHYSSEG_DENSE)
644	long pi;
645
646	pi = atop(pa);
647	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
648		m = &vm_page_array[pi - first_page];
649		return (m);
650	}
651	return (vm_phys_fictitious_to_vm_page(pa));
652#else
653#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
654#endif
655}
656
657/*
658 *	vm_page_getfake:
659 *
660 *	Create a fictitious page with the specified physical address and
661 *	memory attribute.  The memory attribute is the only the machine-
662 *	dependent aspect of a fictitious page that must be initialized.
663 */
664vm_page_t
665vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
666{
667	vm_page_t m;
668
669	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
670	vm_page_initfake(m, paddr, memattr);
671	return (m);
672}
673
674void
675vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
676{
677
678	if ((m->flags & PG_FICTITIOUS) != 0) {
679		/*
680		 * The page's memattr might have changed since the
681		 * previous initialization.  Update the pmap to the
682		 * new memattr.
683		 */
684		goto memattr;
685	}
686	m->phys_addr = paddr;
687	m->queue = PQ_NONE;
688	/* Fictitious pages don't use "segind". */
689	m->flags = PG_FICTITIOUS;
690	/* Fictitious pages don't use "order" or "pool". */
691	m->oflags = VPO_BUSY | VPO_UNMANAGED;
692	m->wire_count = 1;
693memattr:
694	pmap_page_set_memattr(m, memattr);
695}
696
697/*
698 *	vm_page_putfake:
699 *
700 *	Release a fictitious page.
701 */
702void
703vm_page_putfake(vm_page_t m)
704{
705
706	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
707	KASSERT((m->flags & PG_FICTITIOUS) != 0,
708	    ("vm_page_putfake: bad page %p", m));
709	uma_zfree(fakepg_zone, m);
710}
711
712/*
713 *	vm_page_updatefake:
714 *
715 *	Update the given fictitious page to the specified physical address and
716 *	memory attribute.
717 */
718void
719vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
720{
721
722	KASSERT((m->flags & PG_FICTITIOUS) != 0,
723	    ("vm_page_updatefake: bad page %p", m));
724	m->phys_addr = paddr;
725	pmap_page_set_memattr(m, memattr);
726}
727
728/*
729 *	vm_page_free:
730 *
731 *	Free a page.
732 */
733void
734vm_page_free(vm_page_t m)
735{
736
737	m->flags &= ~PG_ZERO;
738	vm_page_free_toq(m);
739}
740
741/*
742 *	vm_page_free_zero:
743 *
744 *	Free a page to the zerod-pages queue
745 */
746void
747vm_page_free_zero(vm_page_t m)
748{
749
750	m->flags |= PG_ZERO;
751	vm_page_free_toq(m);
752}
753
754/*
755 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
756 * array which is not the request page.
757 */
758void
759vm_page_readahead_finish(vm_page_t m)
760{
761
762	if (m->valid != 0) {
763		/*
764		 * Since the page is not the requested page, whether
765		 * it should be activated or deactivated is not
766		 * obvious.  Empirical results have shown that
767		 * deactivating the page is usually the best choice,
768		 * unless the page is wanted by another thread.
769		 */
770		if (m->oflags & VPO_WANTED) {
771			vm_page_lock(m);
772			vm_page_activate(m);
773			vm_page_unlock(m);
774		} else {
775			vm_page_lock(m);
776			vm_page_deactivate(m);
777			vm_page_unlock(m);
778		}
779		vm_page_wakeup(m);
780	} else {
781		/*
782		 * Free the completely invalid page.  Such page state
783		 * occurs due to the short read operation which did
784		 * not covered our page at all, or in case when a read
785		 * error happens.
786		 */
787		vm_page_lock(m);
788		vm_page_free(m);
789		vm_page_unlock(m);
790	}
791}
792
793/*
794 *	vm_page_sleep:
795 *
796 *	Sleep and release the page and page queues locks.
797 *
798 *	The object containing the given page must be locked.
799 */
800void
801vm_page_sleep(vm_page_t m, const char *msg)
802{
803
804	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
805	if (mtx_owned(&vm_page_queue_mtx))
806		vm_page_unlock_queues();
807	if (mtx_owned(vm_page_lockptr(m)))
808		vm_page_unlock(m);
809
810	/*
811	 * It's possible that while we sleep, the page will get
812	 * unbusied and freed.  If we are holding the object
813	 * lock, we will assume we hold a reference to the object
814	 * such that even if m->object changes, we can re-lock
815	 * it.
816	 */
817	m->oflags |= VPO_WANTED;
818	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
819}
820
821/*
822 *	vm_page_dirty:
823 *
824 *	Set all bits in the page's dirty field.
825 *
826 *	The object containing the specified page must be locked if the
827 *	call is made from the machine-independent layer.
828 *
829 *	See vm_page_clear_dirty_mask().
830 */
831void
832vm_page_dirty(vm_page_t m)
833{
834
835	KASSERT((m->flags & PG_CACHED) == 0,
836	    ("vm_page_dirty: page in cache!"));
837	KASSERT(!VM_PAGE_IS_FREE(m),
838	    ("vm_page_dirty: page is free!"));
839	KASSERT(m->valid == VM_PAGE_BITS_ALL,
840	    ("vm_page_dirty: page is invalid!"));
841	m->dirty = VM_PAGE_BITS_ALL;
842}
843
844/*
845 *	vm_page_splay:
846 *
847 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
848 *	the vm_page containing the given pindex.  If, however, that
849 *	pindex is not found in the vm_object, returns a vm_page that is
850 *	adjacent to the pindex, coming before or after it.
851 */
852vm_page_t
853vm_page_splay(vm_pindex_t pindex, vm_page_t root)
854{
855	struct vm_page dummy;
856	vm_page_t lefttreemax, righttreemin, y;
857
858	if (root == NULL)
859		return (root);
860	lefttreemax = righttreemin = &dummy;
861	for (;; root = y) {
862		if (pindex < root->pindex) {
863			if ((y = root->left) == NULL)
864				break;
865			if (pindex < y->pindex) {
866				/* Rotate right. */
867				root->left = y->right;
868				y->right = root;
869				root = y;
870				if ((y = root->left) == NULL)
871					break;
872			}
873			/* Link into the new root's right tree. */
874			righttreemin->left = root;
875			righttreemin = root;
876		} else if (pindex > root->pindex) {
877			if ((y = root->right) == NULL)
878				break;
879			if (pindex > y->pindex) {
880				/* Rotate left. */
881				root->right = y->left;
882				y->left = root;
883				root = y;
884				if ((y = root->right) == NULL)
885					break;
886			}
887			/* Link into the new root's left tree. */
888			lefttreemax->right = root;
889			lefttreemax = root;
890		} else
891			break;
892	}
893	/* Assemble the new root. */
894	lefttreemax->right = root->left;
895	righttreemin->left = root->right;
896	root->left = dummy.right;
897	root->right = dummy.left;
898	return (root);
899}
900
901/*
902 *	vm_page_insert:		[ internal use only ]
903 *
904 *	Inserts the given mem entry into the object and object list.
905 *
906 *	The object must be locked.
907 */
908void
909vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
910{
911	vm_page_t root;
912
913	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
914	if (m->object != NULL)
915		panic("vm_page_insert: page already inserted");
916
917	/*
918	 * Record the object/offset pair in this page
919	 */
920	m->object = object;
921	m->pindex = pindex;
922
923	/*
924	 * Now link into the object's ordered list of backed pages.
925	 */
926	root = object->root;
927	if (root == NULL) {
928		m->left = NULL;
929		m->right = NULL;
930		TAILQ_INSERT_TAIL(&object->memq, m, listq);
931	} else {
932		root = vm_page_splay(pindex, root);
933		if (pindex < root->pindex) {
934			m->left = root->left;
935			m->right = root;
936			root->left = NULL;
937			TAILQ_INSERT_BEFORE(root, m, listq);
938		} else if (pindex == root->pindex)
939			panic("vm_page_insert: offset already allocated");
940		else {
941			m->right = root->right;
942			m->left = root;
943			root->right = NULL;
944			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
945		}
946	}
947	object->root = m;
948
949	/*
950	 * Show that the object has one more resident page.
951	 */
952	object->resident_page_count++;
953
954	/*
955	 * Hold the vnode until the last page is released.
956	 */
957	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
958		vhold(object->handle);
959
960	/*
961	 * Since we are inserting a new and possibly dirty page,
962	 * update the object's OBJ_MIGHTBEDIRTY flag.
963	 */
964	if (pmap_page_is_write_mapped(m))
965		vm_object_set_writeable_dirty(object);
966}
967
968/*
969 *	vm_page_remove:
970 *
971 *	Removes the given mem entry from the object/offset-page
972 *	table and the object page list, but do not invalidate/terminate
973 *	the backing store.
974 *
975 *	The object must be locked.  The page must be locked if it is managed.
976 */
977void
978vm_page_remove(vm_page_t m)
979{
980	vm_object_t object;
981	vm_page_t next, prev, root;
982
983	if ((m->oflags & VPO_UNMANAGED) == 0)
984		vm_page_lock_assert(m, MA_OWNED);
985	if ((object = m->object) == NULL)
986		return;
987	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
988	if (m->oflags & VPO_BUSY) {
989		m->oflags &= ~VPO_BUSY;
990		vm_page_flash(m);
991	}
992
993	/*
994	 * Now remove from the object's list of backed pages.
995	 */
996	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
997		/*
998		 * Since the page's successor in the list is also its parent
999		 * in the tree, its right subtree must be empty.
1000		 */
1001		next->left = m->left;
1002		KASSERT(m->right == NULL,
1003		    ("vm_page_remove: page %p has right child", m));
1004	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1005	    prev->right == m) {
1006		/*
1007		 * Since the page's predecessor in the list is also its parent
1008		 * in the tree, its left subtree must be empty.
1009		 */
1010		KASSERT(m->left == NULL,
1011		    ("vm_page_remove: page %p has left child", m));
1012		prev->right = m->right;
1013	} else {
1014		if (m != object->root)
1015			vm_page_splay(m->pindex, object->root);
1016		if (m->left == NULL)
1017			root = m->right;
1018		else if (m->right == NULL)
1019			root = m->left;
1020		else {
1021			/*
1022			 * Move the page's successor to the root, because
1023			 * pages are usually removed in ascending order.
1024			 */
1025			if (m->right != next)
1026				vm_page_splay(m->pindex, m->right);
1027			next->left = m->left;
1028			root = next;
1029		}
1030		object->root = root;
1031	}
1032	TAILQ_REMOVE(&object->memq, m, listq);
1033
1034	/*
1035	 * And show that the object has one fewer resident page.
1036	 */
1037	object->resident_page_count--;
1038
1039	/*
1040	 * The vnode may now be recycled.
1041	 */
1042	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1043		vdrop(object->handle);
1044
1045	m->object = NULL;
1046}
1047
1048/*
1049 *	vm_page_lookup:
1050 *
1051 *	Returns the page associated with the object/offset
1052 *	pair specified; if none is found, NULL is returned.
1053 *
1054 *	The object must be locked.
1055 */
1056vm_page_t
1057vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1058{
1059	vm_page_t m;
1060
1061	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1062	if ((m = object->root) != NULL && m->pindex != pindex) {
1063		m = vm_page_splay(pindex, m);
1064		if ((object->root = m)->pindex != pindex)
1065			m = NULL;
1066	}
1067	return (m);
1068}
1069
1070/*
1071 *	vm_page_find_least:
1072 *
1073 *	Returns the page associated with the object with least pindex
1074 *	greater than or equal to the parameter pindex, or NULL.
1075 *
1076 *	The object must be locked.
1077 */
1078vm_page_t
1079vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1080{
1081	vm_page_t m;
1082
1083	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1084	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
1085		if (m->pindex < pindex) {
1086			m = vm_page_splay(pindex, object->root);
1087			if ((object->root = m)->pindex < pindex)
1088				m = TAILQ_NEXT(m, listq);
1089		}
1090	}
1091	return (m);
1092}
1093
1094/*
1095 * Returns the given page's successor (by pindex) within the object if it is
1096 * resident; if none is found, NULL is returned.
1097 *
1098 * The object must be locked.
1099 */
1100vm_page_t
1101vm_page_next(vm_page_t m)
1102{
1103	vm_page_t next;
1104
1105	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1106	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1107	    next->pindex != m->pindex + 1)
1108		next = NULL;
1109	return (next);
1110}
1111
1112/*
1113 * Returns the given page's predecessor (by pindex) within the object if it is
1114 * resident; if none is found, NULL is returned.
1115 *
1116 * The object must be locked.
1117 */
1118vm_page_t
1119vm_page_prev(vm_page_t m)
1120{
1121	vm_page_t prev;
1122
1123	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1124	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1125	    prev->pindex != m->pindex - 1)
1126		prev = NULL;
1127	return (prev);
1128}
1129
1130/*
1131 *	vm_page_rename:
1132 *
1133 *	Move the given memory entry from its
1134 *	current object to the specified target object/offset.
1135 *
1136 *	Note: swap associated with the page must be invalidated by the move.  We
1137 *	      have to do this for several reasons:  (1) we aren't freeing the
1138 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1139 *	      moving the page from object A to B, and will then later move
1140 *	      the backing store from A to B and we can't have a conflict.
1141 *
1142 *	Note: we *always* dirty the page.  It is necessary both for the
1143 *	      fact that we moved it, and because we may be invalidating
1144 *	      swap.  If the page is on the cache, we have to deactivate it
1145 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1146 *	      on the cache.
1147 *
1148 *	The objects must be locked.  The page must be locked if it is managed.
1149 */
1150void
1151vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1152{
1153
1154	vm_page_remove(m);
1155	vm_page_insert(m, new_object, new_pindex);
1156	vm_page_dirty(m);
1157}
1158
1159/*
1160 *	Convert all of the given object's cached pages that have a
1161 *	pindex within the given range into free pages.  If the value
1162 *	zero is given for "end", then the range's upper bound is
1163 *	infinity.  If the given object is backed by a vnode and it
1164 *	transitions from having one or more cached pages to none, the
1165 *	vnode's hold count is reduced.
1166 */
1167void
1168vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1169{
1170	vm_page_t m, m_next;
1171	boolean_t empty;
1172
1173	mtx_lock(&vm_page_queue_free_mtx);
1174	if (__predict_false(object->cache == NULL)) {
1175		mtx_unlock(&vm_page_queue_free_mtx);
1176		return;
1177	}
1178	m = object->cache = vm_page_splay(start, object->cache);
1179	if (m->pindex < start) {
1180		if (m->right == NULL)
1181			m = NULL;
1182		else {
1183			m_next = vm_page_splay(start, m->right);
1184			m_next->left = m;
1185			m->right = NULL;
1186			m = object->cache = m_next;
1187		}
1188	}
1189
1190	/*
1191	 * At this point, "m" is either (1) a reference to the page
1192	 * with the least pindex that is greater than or equal to
1193	 * "start" or (2) NULL.
1194	 */
1195	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1196		/*
1197		 * Find "m"'s successor and remove "m" from the
1198		 * object's cache.
1199		 */
1200		if (m->right == NULL) {
1201			object->cache = m->left;
1202			m_next = NULL;
1203		} else {
1204			m_next = vm_page_splay(start, m->right);
1205			m_next->left = m->left;
1206			object->cache = m_next;
1207		}
1208		/* Convert "m" to a free page. */
1209		m->object = NULL;
1210		m->valid = 0;
1211		/* Clear PG_CACHED and set PG_FREE. */
1212		m->flags ^= PG_CACHED | PG_FREE;
1213		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1214		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1215		cnt.v_cache_count--;
1216		cnt.v_free_count++;
1217	}
1218	empty = object->cache == NULL;
1219	mtx_unlock(&vm_page_queue_free_mtx);
1220	if (object->type == OBJT_VNODE && empty)
1221		vdrop(object->handle);
1222}
1223
1224/*
1225 *	Returns the cached page that is associated with the given
1226 *	object and offset.  If, however, none exists, returns NULL.
1227 *
1228 *	The free page queue must be locked.
1229 */
1230static inline vm_page_t
1231vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1232{
1233	vm_page_t m;
1234
1235	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1236	if ((m = object->cache) != NULL && m->pindex != pindex) {
1237		m = vm_page_splay(pindex, m);
1238		if ((object->cache = m)->pindex != pindex)
1239			m = NULL;
1240	}
1241	return (m);
1242}
1243
1244/*
1245 *	Remove the given cached page from its containing object's
1246 *	collection of cached pages.
1247 *
1248 *	The free page queue must be locked.
1249 */
1250void
1251vm_page_cache_remove(vm_page_t m)
1252{
1253	vm_object_t object;
1254	vm_page_t root;
1255
1256	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1257	KASSERT((m->flags & PG_CACHED) != 0,
1258	    ("vm_page_cache_remove: page %p is not cached", m));
1259	object = m->object;
1260	if (m != object->cache) {
1261		root = vm_page_splay(m->pindex, object->cache);
1262		KASSERT(root == m,
1263		    ("vm_page_cache_remove: page %p is not cached in object %p",
1264		    m, object));
1265	}
1266	if (m->left == NULL)
1267		root = m->right;
1268	else if (m->right == NULL)
1269		root = m->left;
1270	else {
1271		root = vm_page_splay(m->pindex, m->left);
1272		root->right = m->right;
1273	}
1274	object->cache = root;
1275	m->object = NULL;
1276	cnt.v_cache_count--;
1277}
1278
1279/*
1280 *	Transfer all of the cached pages with offset greater than or
1281 *	equal to 'offidxstart' from the original object's cache to the
1282 *	new object's cache.  However, any cached pages with offset
1283 *	greater than or equal to the new object's size are kept in the
1284 *	original object.  Initially, the new object's cache must be
1285 *	empty.  Offset 'offidxstart' in the original object must
1286 *	correspond to offset zero in the new object.
1287 *
1288 *	The new object must be locked.
1289 */
1290void
1291vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1292    vm_object_t new_object)
1293{
1294	vm_page_t m, m_next;
1295
1296	/*
1297	 * Insertion into an object's collection of cached pages
1298	 * requires the object to be locked.  In contrast, removal does
1299	 * not.
1300	 */
1301	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1302	KASSERT(new_object->cache == NULL,
1303	    ("vm_page_cache_transfer: object %p has cached pages",
1304	    new_object));
1305	mtx_lock(&vm_page_queue_free_mtx);
1306	if ((m = orig_object->cache) != NULL) {
1307		/*
1308		 * Transfer all of the pages with offset greater than or
1309		 * equal to 'offidxstart' from the original object's
1310		 * cache to the new object's cache.
1311		 */
1312		m = vm_page_splay(offidxstart, m);
1313		if (m->pindex < offidxstart) {
1314			orig_object->cache = m;
1315			new_object->cache = m->right;
1316			m->right = NULL;
1317		} else {
1318			orig_object->cache = m->left;
1319			new_object->cache = m;
1320			m->left = NULL;
1321		}
1322		while ((m = new_object->cache) != NULL) {
1323			if ((m->pindex - offidxstart) >= new_object->size) {
1324				/*
1325				 * Return all of the cached pages with
1326				 * offset greater than or equal to the
1327				 * new object's size to the original
1328				 * object's cache.
1329				 */
1330				new_object->cache = m->left;
1331				m->left = orig_object->cache;
1332				orig_object->cache = m;
1333				break;
1334			}
1335			m_next = vm_page_splay(m->pindex, m->right);
1336			/* Update the page's object and offset. */
1337			m->object = new_object;
1338			m->pindex -= offidxstart;
1339			if (m_next == NULL)
1340				break;
1341			m->right = NULL;
1342			m_next->left = m;
1343			new_object->cache = m_next;
1344		}
1345		KASSERT(new_object->cache == NULL ||
1346		    new_object->type == OBJT_SWAP,
1347		    ("vm_page_cache_transfer: object %p's type is incompatible"
1348		    " with cached pages", new_object));
1349	}
1350	mtx_unlock(&vm_page_queue_free_mtx);
1351}
1352
1353/*
1354 *	Returns TRUE if a cached page is associated with the given object and
1355 *	offset, and FALSE otherwise.
1356 *
1357 *	The object must be locked.
1358 */
1359boolean_t
1360vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1361{
1362	vm_page_t m;
1363
1364	/*
1365	 * Insertion into an object's collection of cached pages requires the
1366	 * object to be locked.  Therefore, if the object is locked and the
1367	 * object's collection is empty, there is no need to acquire the free
1368	 * page queues lock in order to prove that the specified page doesn't
1369	 * exist.
1370	 */
1371	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1372	if (object->cache == NULL)
1373		return (FALSE);
1374	mtx_lock(&vm_page_queue_free_mtx);
1375	m = vm_page_cache_lookup(object, pindex);
1376	mtx_unlock(&vm_page_queue_free_mtx);
1377	return (m != NULL);
1378}
1379
1380/*
1381 *	vm_page_alloc:
1382 *
1383 *	Allocate and return a page that is associated with the specified
1384 *	object and offset pair.  By default, this page has the flag VPO_BUSY
1385 *	set.
1386 *
1387 *	The caller must always specify an allocation class.
1388 *
1389 *	allocation classes:
1390 *	VM_ALLOC_NORMAL		normal process request
1391 *	VM_ALLOC_SYSTEM		system *really* needs a page
1392 *	VM_ALLOC_INTERRUPT	interrupt time request
1393 *
1394 *	optional allocation flags:
1395 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1396 *				intends to allocate
1397 *	VM_ALLOC_IFCACHED	return page only if it is cached
1398 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1399 *				is cached
1400 *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1401 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1402 *				should not have the flag VPO_BUSY set
1403 *	VM_ALLOC_WIRED		wire the allocated page
1404 *	VM_ALLOC_ZERO		prefer a zeroed page
1405 *
1406 *	This routine may not sleep.
1407 */
1408vm_page_t
1409vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1410{
1411	struct vnode *vp = NULL;
1412	vm_object_t m_object;
1413	vm_page_t m;
1414	int flags, req_class;
1415
1416	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1417	    ("vm_page_alloc: inconsistent object/req"));
1418	if (object != NULL)
1419		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1420
1421	req_class = req & VM_ALLOC_CLASS_MASK;
1422
1423	/*
1424	 * The page daemon is allowed to dig deeper into the free page list.
1425	 */
1426	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1427		req_class = VM_ALLOC_SYSTEM;
1428
1429	mtx_lock(&vm_page_queue_free_mtx);
1430	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1431	    (req_class == VM_ALLOC_SYSTEM &&
1432	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1433	    (req_class == VM_ALLOC_INTERRUPT &&
1434	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1435		/*
1436		 * Allocate from the free queue if the number of free pages
1437		 * exceeds the minimum for the request class.
1438		 */
1439		if (object != NULL &&
1440		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1441			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1442				mtx_unlock(&vm_page_queue_free_mtx);
1443				return (NULL);
1444			}
1445			if (vm_phys_unfree_page(m))
1446				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1447#if VM_NRESERVLEVEL > 0
1448			else if (!vm_reserv_reactivate_page(m))
1449#else
1450			else
1451#endif
1452				panic("vm_page_alloc: cache page %p is missing"
1453				    " from the free queue", m);
1454		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1455			mtx_unlock(&vm_page_queue_free_mtx);
1456			return (NULL);
1457#if VM_NRESERVLEVEL > 0
1458		} else if (object == NULL || object->type == OBJT_DEVICE ||
1459		    object->type == OBJT_SG ||
1460		    (object->flags & OBJ_COLORED) == 0 ||
1461		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1462#else
1463		} else {
1464#endif
1465			m = vm_phys_alloc_pages(object != NULL ?
1466			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1467#if VM_NRESERVLEVEL > 0
1468			if (m == NULL && vm_reserv_reclaim_inactive()) {
1469				m = vm_phys_alloc_pages(object != NULL ?
1470				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1471				    0);
1472			}
1473#endif
1474		}
1475	} else {
1476		/*
1477		 * Not allocatable, give up.
1478		 */
1479		mtx_unlock(&vm_page_queue_free_mtx);
1480		atomic_add_int(&vm_pageout_deficit,
1481		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1482		pagedaemon_wakeup();
1483		return (NULL);
1484	}
1485
1486	/*
1487	 *  At this point we had better have found a good page.
1488	 */
1489	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1490	KASSERT(m->queue == PQ_NONE,
1491	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1492	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1493	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1494	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1495	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1496	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1497	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1498	    pmap_page_get_memattr(m)));
1499	if ((m->flags & PG_CACHED) != 0) {
1500		KASSERT((m->flags & PG_ZERO) == 0,
1501		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1502		KASSERT(m->valid != 0,
1503		    ("vm_page_alloc: cached page %p is invalid", m));
1504		if (m->object == object && m->pindex == pindex)
1505	  		cnt.v_reactivated++;
1506		else
1507			m->valid = 0;
1508		m_object = m->object;
1509		vm_page_cache_remove(m);
1510		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1511			vp = m_object->handle;
1512	} else {
1513		KASSERT(VM_PAGE_IS_FREE(m),
1514		    ("vm_page_alloc: page %p is not free", m));
1515		KASSERT(m->valid == 0,
1516		    ("vm_page_alloc: free page %p is valid", m));
1517		cnt.v_free_count--;
1518	}
1519
1520	/*
1521	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1522	 * must be cleared before the free page queues lock is released.
1523	 */
1524	flags = 0;
1525	if (req & VM_ALLOC_NODUMP)
1526		flags |= PG_NODUMP;
1527	if (m->flags & PG_ZERO) {
1528		vm_page_zero_count--;
1529		if (req & VM_ALLOC_ZERO)
1530			flags = PG_ZERO;
1531	}
1532	m->flags = flags;
1533	mtx_unlock(&vm_page_queue_free_mtx);
1534	m->aflags = 0;
1535	if (object == NULL || object->type == OBJT_PHYS)
1536		m->oflags = VPO_UNMANAGED;
1537	else
1538		m->oflags = 0;
1539	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
1540		m->oflags |= VPO_BUSY;
1541	if (req & VM_ALLOC_WIRED) {
1542		/*
1543		 * The page lock is not required for wiring a page until that
1544		 * page is inserted into the object.
1545		 */
1546		atomic_add_int(&cnt.v_wire_count, 1);
1547		m->wire_count = 1;
1548	}
1549	m->act_count = 0;
1550
1551	if (object != NULL) {
1552		/* Ignore device objects; the pager sets "memattr" for them. */
1553		if (object->memattr != VM_MEMATTR_DEFAULT &&
1554		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1555			pmap_page_set_memattr(m, object->memattr);
1556		vm_page_insert(m, object, pindex);
1557	} else
1558		m->pindex = pindex;
1559
1560	/*
1561	 * The following call to vdrop() must come after the above call
1562	 * to vm_page_insert() in case both affect the same object and
1563	 * vnode.  Otherwise, the affected vnode's hold count could
1564	 * temporarily become zero.
1565	 */
1566	if (vp != NULL)
1567		vdrop(vp);
1568
1569	/*
1570	 * Don't wakeup too often - wakeup the pageout daemon when
1571	 * we would be nearly out of memory.
1572	 */
1573	if (vm_paging_needed())
1574		pagedaemon_wakeup();
1575
1576	return (m);
1577}
1578
1579/*
1580 *	vm_page_alloc_contig:
1581 *
1582 *	Allocate a contiguous set of physical pages of the given size "npages"
1583 *	from the free lists.  All of the physical pages must be at or above
1584 *	the given physical address "low" and below the given physical address
1585 *	"high".  The given value "alignment" determines the alignment of the
1586 *	first physical page in the set.  If the given value "boundary" is
1587 *	non-zero, then the set of physical pages cannot cross any physical
1588 *	address boundary that is a multiple of that value.  Both "alignment"
1589 *	and "boundary" must be a power of two.
1590 *
1591 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1592 *	then the memory attribute setting for the physical pages is configured
1593 *	to the object's memory attribute setting.  Otherwise, the memory
1594 *	attribute setting for the physical pages is configured to "memattr",
1595 *	overriding the object's memory attribute setting.  However, if the
1596 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1597 *	memory attribute setting for the physical pages cannot be configured
1598 *	to VM_MEMATTR_DEFAULT.
1599 *
1600 *	The caller must always specify an allocation class.
1601 *
1602 *	allocation classes:
1603 *	VM_ALLOC_NORMAL		normal process request
1604 *	VM_ALLOC_SYSTEM		system *really* needs a page
1605 *	VM_ALLOC_INTERRUPT	interrupt time request
1606 *
1607 *	optional allocation flags:
1608 *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1609 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1610 *				should not have the flag VPO_BUSY set
1611 *	VM_ALLOC_WIRED		wire the allocated page
1612 *	VM_ALLOC_ZERO		prefer a zeroed page
1613 *
1614 *	This routine may not sleep.
1615 */
1616vm_page_t
1617vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1618    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1619    u_long boundary, vm_memattr_t memattr)
1620{
1621	struct vnode *drop;
1622	vm_page_t deferred_vdrop_list, m, m_ret;
1623	u_int flags, oflags;
1624	int req_class;
1625
1626	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1627	    ("vm_page_alloc_contig: inconsistent object/req"));
1628	if (object != NULL) {
1629		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1630		KASSERT(object->type == OBJT_PHYS,
1631		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1632		    object));
1633	}
1634	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1635	req_class = req & VM_ALLOC_CLASS_MASK;
1636
1637	/*
1638	 * The page daemon is allowed to dig deeper into the free page list.
1639	 */
1640	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1641		req_class = VM_ALLOC_SYSTEM;
1642
1643	deferred_vdrop_list = NULL;
1644	mtx_lock(&vm_page_queue_free_mtx);
1645	if (cnt.v_free_count + cnt.v_cache_count >= npages +
1646	    cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1647	    cnt.v_free_count + cnt.v_cache_count >= npages +
1648	    cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1649	    cnt.v_free_count + cnt.v_cache_count >= npages)) {
1650#if VM_NRESERVLEVEL > 0
1651retry:
1652#endif
1653		m_ret = vm_phys_alloc_contig(npages, low, high, alignment,
1654		    boundary);
1655	} else {
1656		mtx_unlock(&vm_page_queue_free_mtx);
1657		atomic_add_int(&vm_pageout_deficit, npages);
1658		pagedaemon_wakeup();
1659		return (NULL);
1660	}
1661	if (m_ret != NULL)
1662		for (m = m_ret; m < &m_ret[npages]; m++) {
1663			drop = vm_page_alloc_init(m);
1664			if (drop != NULL) {
1665				/*
1666				 * Enqueue the vnode for deferred vdrop().
1667				 *
1668				 * Once the pages are removed from the free
1669				 * page list, "pageq" can be safely abused to
1670				 * construct a short-lived list of vnodes.
1671				 */
1672				m->pageq.tqe_prev = (void *)drop;
1673				m->pageq.tqe_next = deferred_vdrop_list;
1674				deferred_vdrop_list = m;
1675			}
1676		}
1677	else {
1678#if VM_NRESERVLEVEL > 0
1679		if (vm_reserv_reclaim_contig(npages << PAGE_SHIFT, low, high,
1680		    alignment, boundary))
1681			goto retry;
1682#endif
1683	}
1684	mtx_unlock(&vm_page_queue_free_mtx);
1685	if (m_ret == NULL)
1686		return (NULL);
1687
1688	/*
1689	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1690	 */
1691	flags = 0;
1692	if ((req & VM_ALLOC_ZERO) != 0)
1693		flags = PG_ZERO;
1694	if ((req & VM_ALLOC_WIRED) != 0)
1695		atomic_add_int(&cnt.v_wire_count, npages);
1696	oflags = VPO_UNMANAGED;
1697	if (object != NULL) {
1698		if ((req & VM_ALLOC_NOBUSY) == 0)
1699			oflags |= VPO_BUSY;
1700		if (object->memattr != VM_MEMATTR_DEFAULT &&
1701		    memattr == VM_MEMATTR_DEFAULT)
1702			memattr = object->memattr;
1703	}
1704	for (m = m_ret; m < &m_ret[npages]; m++) {
1705		m->aflags = 0;
1706		m->flags &= flags;
1707		if ((req & VM_ALLOC_WIRED) != 0)
1708			m->wire_count = 1;
1709		/* Unmanaged pages don't use "act_count". */
1710		m->oflags = oflags;
1711		if (memattr != VM_MEMATTR_DEFAULT)
1712			pmap_page_set_memattr(m, memattr);
1713		if (object != NULL)
1714			vm_page_insert(m, object, pindex);
1715		else
1716			m->pindex = pindex;
1717		pindex++;
1718	}
1719	while (deferred_vdrop_list != NULL) {
1720		vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
1721		deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
1722	}
1723	if (vm_paging_needed())
1724		pagedaemon_wakeup();
1725	return (m_ret);
1726}
1727
1728/*
1729 * Initialize a page that has been freshly dequeued from a freelist.
1730 * The caller has to drop the vnode returned, if it is not NULL.
1731 *
1732 * This function may only be used to initialize unmanaged pages.
1733 *
1734 * To be called with vm_page_queue_free_mtx held.
1735 */
1736static struct vnode *
1737vm_page_alloc_init(vm_page_t m)
1738{
1739	struct vnode *drop;
1740	vm_object_t m_object;
1741
1742	KASSERT(m->queue == PQ_NONE,
1743	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1744	    m, m->queue));
1745	KASSERT(m->wire_count == 0,
1746	    ("vm_page_alloc_init: page %p is wired", m));
1747	KASSERT(m->hold_count == 0,
1748	    ("vm_page_alloc_init: page %p is held", m));
1749	KASSERT(m->busy == 0,
1750	    ("vm_page_alloc_init: page %p is busy", m));
1751	KASSERT(m->dirty == 0,
1752	    ("vm_page_alloc_init: page %p is dirty", m));
1753	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1754	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1755	    m, pmap_page_get_memattr(m)));
1756	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1757	drop = NULL;
1758	if ((m->flags & PG_CACHED) != 0) {
1759		KASSERT((m->flags & PG_ZERO) == 0,
1760		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1761		m->valid = 0;
1762		m_object = m->object;
1763		vm_page_cache_remove(m);
1764		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1765			drop = m_object->handle;
1766	} else {
1767		KASSERT(VM_PAGE_IS_FREE(m),
1768		    ("vm_page_alloc_init: page %p is not free", m));
1769		KASSERT(m->valid == 0,
1770		    ("vm_page_alloc_init: free page %p is valid", m));
1771		cnt.v_free_count--;
1772		if ((m->flags & PG_ZERO) != 0)
1773			vm_page_zero_count--;
1774	}
1775	/* Don't clear the PG_ZERO flag; we'll need it later. */
1776	m->flags &= PG_ZERO;
1777	return (drop);
1778}
1779
1780/*
1781 * 	vm_page_alloc_freelist:
1782 *
1783 *	Allocate a physical page from the specified free page list.
1784 *
1785 *	The caller must always specify an allocation class.
1786 *
1787 *	allocation classes:
1788 *	VM_ALLOC_NORMAL		normal process request
1789 *	VM_ALLOC_SYSTEM		system *really* needs a page
1790 *	VM_ALLOC_INTERRUPT	interrupt time request
1791 *
1792 *	optional allocation flags:
1793 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1794 *				intends to allocate
1795 *	VM_ALLOC_WIRED		wire the allocated page
1796 *	VM_ALLOC_ZERO		prefer a zeroed page
1797 *
1798 *	This routine may not sleep.
1799 */
1800vm_page_t
1801vm_page_alloc_freelist(int flind, int req)
1802{
1803	struct vnode *drop;
1804	vm_page_t m;
1805	u_int flags;
1806	int req_class;
1807
1808	req_class = req & VM_ALLOC_CLASS_MASK;
1809
1810	/*
1811	 * The page daemon is allowed to dig deeper into the free page list.
1812	 */
1813	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1814		req_class = VM_ALLOC_SYSTEM;
1815
1816	/*
1817	 * Do not allocate reserved pages unless the req has asked for it.
1818	 */
1819	mtx_lock(&vm_page_queue_free_mtx);
1820	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1821	    (req_class == VM_ALLOC_SYSTEM &&
1822	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1823	    (req_class == VM_ALLOC_INTERRUPT &&
1824	    cnt.v_free_count + cnt.v_cache_count > 0))
1825		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1826	else {
1827		mtx_unlock(&vm_page_queue_free_mtx);
1828		atomic_add_int(&vm_pageout_deficit,
1829		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1830		pagedaemon_wakeup();
1831		return (NULL);
1832	}
1833	if (m == NULL) {
1834		mtx_unlock(&vm_page_queue_free_mtx);
1835		return (NULL);
1836	}
1837	drop = vm_page_alloc_init(m);
1838	mtx_unlock(&vm_page_queue_free_mtx);
1839
1840	/*
1841	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1842	 */
1843	m->aflags = 0;
1844	flags = 0;
1845	if ((req & VM_ALLOC_ZERO) != 0)
1846		flags = PG_ZERO;
1847	m->flags &= flags;
1848	if ((req & VM_ALLOC_WIRED) != 0) {
1849		/*
1850		 * The page lock is not required for wiring a page that does
1851		 * not belong to an object.
1852		 */
1853		atomic_add_int(&cnt.v_wire_count, 1);
1854		m->wire_count = 1;
1855	}
1856	/* Unmanaged pages don't use "act_count". */
1857	m->oflags = VPO_UNMANAGED;
1858	if (drop != NULL)
1859		vdrop(drop);
1860	if (vm_paging_needed())
1861		pagedaemon_wakeup();
1862	return (m);
1863}
1864
1865/*
1866 *	vm_wait:	(also see VM_WAIT macro)
1867 *
1868 *	Sleep until free pages are available for allocation.
1869 *	- Called in various places before memory allocations.
1870 */
1871void
1872vm_wait(void)
1873{
1874
1875	mtx_lock(&vm_page_queue_free_mtx);
1876	if (curproc == pageproc) {
1877		vm_pageout_pages_needed = 1;
1878		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1879		    PDROP | PSWP, "VMWait", 0);
1880	} else {
1881		if (!vm_pages_needed) {
1882			vm_pages_needed = 1;
1883			wakeup(&vm_pages_needed);
1884		}
1885		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1886		    "vmwait", 0);
1887	}
1888}
1889
1890/*
1891 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1892 *
1893 *	Sleep until free pages are available for allocation.
1894 *	- Called only in vm_fault so that processes page faulting
1895 *	  can be easily tracked.
1896 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1897 *	  processes will be able to grab memory first.  Do not change
1898 *	  this balance without careful testing first.
1899 */
1900void
1901vm_waitpfault(void)
1902{
1903
1904	mtx_lock(&vm_page_queue_free_mtx);
1905	if (!vm_pages_needed) {
1906		vm_pages_needed = 1;
1907		wakeup(&vm_pages_needed);
1908	}
1909	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1910	    "pfault", 0);
1911}
1912
1913/*
1914 *	vm_page_requeue:
1915 *
1916 *	Move the given page to the tail of its present page queue.
1917 *
1918 *	The page queues must be locked.
1919 */
1920void
1921vm_page_requeue(vm_page_t m)
1922{
1923	struct vpgqueues *vpq;
1924	int queue;
1925
1926	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1927	queue = m->queue;
1928	KASSERT(queue != PQ_NONE,
1929	    ("vm_page_requeue: page %p is not queued", m));
1930	vpq = &vm_page_queues[queue];
1931	TAILQ_REMOVE(&vpq->pl, m, pageq);
1932	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1933}
1934
1935/*
1936 *	vm_page_queue_remove:
1937 *
1938 *	Remove the given page from the specified queue.
1939 *
1940 *	The page and page queues must be locked.
1941 */
1942static __inline void
1943vm_page_queue_remove(int queue, vm_page_t m)
1944{
1945	struct vpgqueues *pq;
1946
1947	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1948	vm_page_lock_assert(m, MA_OWNED);
1949	pq = &vm_page_queues[queue];
1950	TAILQ_REMOVE(&pq->pl, m, pageq);
1951	(*pq->cnt)--;
1952}
1953
1954/*
1955 *	vm_pageq_remove:
1956 *
1957 *	Remove a page from its queue.
1958 *
1959 *	The given page must be locked.
1960 */
1961void
1962vm_pageq_remove(vm_page_t m)
1963{
1964	int queue;
1965
1966	vm_page_lock_assert(m, MA_OWNED);
1967	if ((queue = m->queue) != PQ_NONE) {
1968		vm_page_lock_queues();
1969		m->queue = PQ_NONE;
1970		vm_page_queue_remove(queue, m);
1971		vm_page_unlock_queues();
1972	}
1973}
1974
1975/*
1976 *	vm_page_enqueue:
1977 *
1978 *	Add the given page to the specified queue.
1979 *
1980 *	The page queues must be locked.
1981 */
1982static void
1983vm_page_enqueue(int queue, vm_page_t m)
1984{
1985	struct vpgqueues *vpq;
1986
1987	vpq = &vm_page_queues[queue];
1988	m->queue = queue;
1989	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1990	++*vpq->cnt;
1991}
1992
1993/*
1994 *	vm_page_activate:
1995 *
1996 *	Put the specified page on the active list (if appropriate).
1997 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1998 *	mess with it.
1999 *
2000 *	The page must be locked.
2001 */
2002void
2003vm_page_activate(vm_page_t m)
2004{
2005	int queue;
2006
2007	vm_page_lock_assert(m, MA_OWNED);
2008	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2009	if ((queue = m->queue) != PQ_ACTIVE) {
2010		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2011			if (m->act_count < ACT_INIT)
2012				m->act_count = ACT_INIT;
2013			vm_page_lock_queues();
2014			if (queue != PQ_NONE)
2015				vm_page_queue_remove(queue, m);
2016			vm_page_enqueue(PQ_ACTIVE, m);
2017			vm_page_unlock_queues();
2018		} else
2019			KASSERT(queue == PQ_NONE,
2020			    ("vm_page_activate: wired page %p is queued", m));
2021	} else {
2022		if (m->act_count < ACT_INIT)
2023			m->act_count = ACT_INIT;
2024	}
2025}
2026
2027/*
2028 *	vm_page_free_wakeup:
2029 *
2030 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2031 *	routine is called when a page has been added to the cache or free
2032 *	queues.
2033 *
2034 *	The page queues must be locked.
2035 */
2036static inline void
2037vm_page_free_wakeup(void)
2038{
2039
2040	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2041	/*
2042	 * if pageout daemon needs pages, then tell it that there are
2043	 * some free.
2044	 */
2045	if (vm_pageout_pages_needed &&
2046	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
2047		wakeup(&vm_pageout_pages_needed);
2048		vm_pageout_pages_needed = 0;
2049	}
2050	/*
2051	 * wakeup processes that are waiting on memory if we hit a
2052	 * high water mark. And wakeup scheduler process if we have
2053	 * lots of memory. this process will swapin processes.
2054	 */
2055	if (vm_pages_needed && !vm_page_count_min()) {
2056		vm_pages_needed = 0;
2057		wakeup(&cnt.v_free_count);
2058	}
2059}
2060
2061/*
2062 *	vm_page_free_toq:
2063 *
2064 *	Returns the given page to the free list,
2065 *	disassociating it with any VM object.
2066 *
2067 *	The object must be locked.  The page must be locked if it is managed.
2068 */
2069void
2070vm_page_free_toq(vm_page_t m)
2071{
2072
2073	if ((m->oflags & VPO_UNMANAGED) == 0) {
2074		vm_page_lock_assert(m, MA_OWNED);
2075		KASSERT(!pmap_page_is_mapped(m),
2076		    ("vm_page_free_toq: freeing mapped page %p", m));
2077	}
2078	PCPU_INC(cnt.v_tfree);
2079
2080	if (VM_PAGE_IS_FREE(m))
2081		panic("vm_page_free: freeing free page %p", m);
2082	else if (m->busy != 0)
2083		panic("vm_page_free: freeing busy page %p", m);
2084
2085	/*
2086	 * Unqueue, then remove page.  Note that we cannot destroy
2087	 * the page here because we do not want to call the pager's
2088	 * callback routine until after we've put the page on the
2089	 * appropriate free queue.
2090	 */
2091	if ((m->oflags & VPO_UNMANAGED) == 0)
2092		vm_pageq_remove(m);
2093	vm_page_remove(m);
2094
2095	/*
2096	 * If fictitious remove object association and
2097	 * return, otherwise delay object association removal.
2098	 */
2099	if ((m->flags & PG_FICTITIOUS) != 0) {
2100		return;
2101	}
2102
2103	m->valid = 0;
2104	vm_page_undirty(m);
2105
2106	if (m->wire_count != 0)
2107		panic("vm_page_free: freeing wired page %p", m);
2108	if (m->hold_count != 0) {
2109		m->flags &= ~PG_ZERO;
2110		vm_page_lock_queues();
2111		vm_page_enqueue(PQ_HOLD, m);
2112		vm_page_unlock_queues();
2113	} else {
2114		/*
2115		 * Restore the default memory attribute to the page.
2116		 */
2117		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2118			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2119
2120		/*
2121		 * Insert the page into the physical memory allocator's
2122		 * cache/free page queues.
2123		 */
2124		mtx_lock(&vm_page_queue_free_mtx);
2125		m->flags |= PG_FREE;
2126		cnt.v_free_count++;
2127#if VM_NRESERVLEVEL > 0
2128		if (!vm_reserv_free_page(m))
2129#else
2130		if (TRUE)
2131#endif
2132			vm_phys_free_pages(m, 0);
2133		if ((m->flags & PG_ZERO) != 0)
2134			++vm_page_zero_count;
2135		else
2136			vm_page_zero_idle_wakeup();
2137		vm_page_free_wakeup();
2138		mtx_unlock(&vm_page_queue_free_mtx);
2139	}
2140}
2141
2142/*
2143 *	vm_page_wire:
2144 *
2145 *	Mark this page as wired down by yet
2146 *	another map, removing it from paging queues
2147 *	as necessary.
2148 *
2149 *	If the page is fictitious, then its wire count must remain one.
2150 *
2151 *	The page must be locked.
2152 */
2153void
2154vm_page_wire(vm_page_t m)
2155{
2156
2157	/*
2158	 * Only bump the wire statistics if the page is not already wired,
2159	 * and only unqueue the page if it is on some queue (if it is unmanaged
2160	 * it is already off the queues).
2161	 */
2162	vm_page_lock_assert(m, MA_OWNED);
2163	if ((m->flags & PG_FICTITIOUS) != 0) {
2164		KASSERT(m->wire_count == 1,
2165		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2166		    m));
2167		return;
2168	}
2169	if (m->wire_count == 0) {
2170		if ((m->oflags & VPO_UNMANAGED) == 0)
2171			vm_pageq_remove(m);
2172		atomic_add_int(&cnt.v_wire_count, 1);
2173	}
2174	m->wire_count++;
2175	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2176}
2177
2178/*
2179 * vm_page_unwire:
2180 *
2181 * Release one wiring of the specified page, potentially enabling it to be
2182 * paged again.  If paging is enabled, then the value of the parameter
2183 * "activate" determines to which queue the page is added.  If "activate" is
2184 * non-zero, then the page is added to the active queue.  Otherwise, it is
2185 * added to the inactive queue.
2186 *
2187 * However, unless the page belongs to an object, it is not enqueued because
2188 * it cannot be paged out.
2189 *
2190 * If a page is fictitious, then its wire count must alway be one.
2191 *
2192 * A managed page must be locked.
2193 */
2194void
2195vm_page_unwire(vm_page_t m, int activate)
2196{
2197
2198	if ((m->oflags & VPO_UNMANAGED) == 0)
2199		vm_page_lock_assert(m, MA_OWNED);
2200	if ((m->flags & PG_FICTITIOUS) != 0) {
2201		KASSERT(m->wire_count == 1,
2202	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2203		return;
2204	}
2205	if (m->wire_count > 0) {
2206		m->wire_count--;
2207		if (m->wire_count == 0) {
2208			atomic_subtract_int(&cnt.v_wire_count, 1);
2209			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2210			    m->object == NULL)
2211				return;
2212			if (!activate)
2213				m->flags &= ~PG_WINATCFLS;
2214			vm_page_lock_queues();
2215			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2216			vm_page_unlock_queues();
2217		}
2218	} else
2219		panic("vm_page_unwire: page %p's wire count is zero", m);
2220}
2221
2222/*
2223 * Move the specified page to the inactive queue.
2224 *
2225 * Many pages placed on the inactive queue should actually go
2226 * into the cache, but it is difficult to figure out which.  What
2227 * we do instead, if the inactive target is well met, is to put
2228 * clean pages at the head of the inactive queue instead of the tail.
2229 * This will cause them to be moved to the cache more quickly and
2230 * if not actively re-referenced, reclaimed more quickly.  If we just
2231 * stick these pages at the end of the inactive queue, heavy filesystem
2232 * meta-data accesses can cause an unnecessary paging load on memory bound
2233 * processes.  This optimization causes one-time-use metadata to be
2234 * reused more quickly.
2235 *
2236 * Normally athead is 0 resulting in LRU operation.  athead is set
2237 * to 1 if we want this page to be 'as if it were placed in the cache',
2238 * except without unmapping it from the process address space.
2239 *
2240 * The page must be locked.
2241 */
2242static inline void
2243_vm_page_deactivate(vm_page_t m, int athead)
2244{
2245	int queue;
2246
2247	vm_page_lock_assert(m, MA_OWNED);
2248
2249	/*
2250	 * Ignore if already inactive.
2251	 */
2252	if ((queue = m->queue) == PQ_INACTIVE)
2253		return;
2254	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2255		m->flags &= ~PG_WINATCFLS;
2256		vm_page_lock_queues();
2257		if (queue != PQ_NONE)
2258			vm_page_queue_remove(queue, m);
2259		if (athead)
2260			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
2261			    pageq);
2262		else
2263			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
2264			    pageq);
2265		m->queue = PQ_INACTIVE;
2266		cnt.v_inactive_count++;
2267		vm_page_unlock_queues();
2268	}
2269}
2270
2271/*
2272 * Move the specified page to the inactive queue.
2273 *
2274 * The page must be locked.
2275 */
2276void
2277vm_page_deactivate(vm_page_t m)
2278{
2279
2280	_vm_page_deactivate(m, 0);
2281}
2282
2283/*
2284 * vm_page_try_to_cache:
2285 *
2286 * Returns 0 on failure, 1 on success
2287 */
2288int
2289vm_page_try_to_cache(vm_page_t m)
2290{
2291
2292	vm_page_lock_assert(m, MA_OWNED);
2293	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2294	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2295	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2296		return (0);
2297	pmap_remove_all(m);
2298	if (m->dirty)
2299		return (0);
2300	vm_page_cache(m);
2301	return (1);
2302}
2303
2304/*
2305 * vm_page_try_to_free()
2306 *
2307 *	Attempt to free the page.  If we cannot free it, we do nothing.
2308 *	1 is returned on success, 0 on failure.
2309 */
2310int
2311vm_page_try_to_free(vm_page_t m)
2312{
2313
2314	vm_page_lock_assert(m, MA_OWNED);
2315	if (m->object != NULL)
2316		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2317	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2318	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2319		return (0);
2320	pmap_remove_all(m);
2321	if (m->dirty)
2322		return (0);
2323	vm_page_free(m);
2324	return (1);
2325}
2326
2327/*
2328 * vm_page_cache
2329 *
2330 * Put the specified page onto the page cache queue (if appropriate).
2331 *
2332 * The object and page must be locked.
2333 */
2334void
2335vm_page_cache(vm_page_t m)
2336{
2337	vm_object_t object;
2338	vm_page_t next, prev, root;
2339
2340	vm_page_lock_assert(m, MA_OWNED);
2341	object = m->object;
2342	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2343	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
2344	    m->hold_count || m->wire_count)
2345		panic("vm_page_cache: attempting to cache busy page");
2346	pmap_remove_all(m);
2347	if (m->dirty != 0)
2348		panic("vm_page_cache: page %p is dirty", m);
2349	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2350	    (object->type == OBJT_SWAP &&
2351	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2352		/*
2353		 * Hypothesis: A cache-elgible page belonging to a
2354		 * default object or swap object but without a backing
2355		 * store must be zero filled.
2356		 */
2357		vm_page_free(m);
2358		return;
2359	}
2360	KASSERT((m->flags & PG_CACHED) == 0,
2361	    ("vm_page_cache: page %p is already cached", m));
2362	PCPU_INC(cnt.v_tcached);
2363
2364	/*
2365	 * Remove the page from the paging queues.
2366	 */
2367	vm_pageq_remove(m);
2368
2369	/*
2370	 * Remove the page from the object's collection of resident
2371	 * pages.
2372	 */
2373	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
2374		/*
2375		 * Since the page's successor in the list is also its parent
2376		 * in the tree, its right subtree must be empty.
2377		 */
2378		next->left = m->left;
2379		KASSERT(m->right == NULL,
2380		    ("vm_page_cache: page %p has right child", m));
2381	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
2382	    prev->right == m) {
2383		/*
2384		 * Since the page's predecessor in the list is also its parent
2385		 * in the tree, its left subtree must be empty.
2386		 */
2387		KASSERT(m->left == NULL,
2388		    ("vm_page_cache: page %p has left child", m));
2389		prev->right = m->right;
2390	} else {
2391		if (m != object->root)
2392			vm_page_splay(m->pindex, object->root);
2393		if (m->left == NULL)
2394			root = m->right;
2395		else if (m->right == NULL)
2396			root = m->left;
2397		else {
2398			/*
2399			 * Move the page's successor to the root, because
2400			 * pages are usually removed in ascending order.
2401			 */
2402			if (m->right != next)
2403				vm_page_splay(m->pindex, m->right);
2404			next->left = m->left;
2405			root = next;
2406		}
2407		object->root = root;
2408	}
2409	TAILQ_REMOVE(&object->memq, m, listq);
2410	object->resident_page_count--;
2411
2412	/*
2413	 * Restore the default memory attribute to the page.
2414	 */
2415	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2416		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2417
2418	/*
2419	 * Insert the page into the object's collection of cached pages
2420	 * and the physical memory allocator's cache/free page queues.
2421	 */
2422	m->flags &= ~PG_ZERO;
2423	mtx_lock(&vm_page_queue_free_mtx);
2424	m->flags |= PG_CACHED;
2425	cnt.v_cache_count++;
2426	root = object->cache;
2427	if (root == NULL) {
2428		m->left = NULL;
2429		m->right = NULL;
2430	} else {
2431		root = vm_page_splay(m->pindex, root);
2432		if (m->pindex < root->pindex) {
2433			m->left = root->left;
2434			m->right = root;
2435			root->left = NULL;
2436		} else if (__predict_false(m->pindex == root->pindex))
2437			panic("vm_page_cache: offset already cached");
2438		else {
2439			m->right = root->right;
2440			m->left = root;
2441			root->right = NULL;
2442		}
2443	}
2444	object->cache = m;
2445#if VM_NRESERVLEVEL > 0
2446	if (!vm_reserv_free_page(m)) {
2447#else
2448	if (TRUE) {
2449#endif
2450		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2451		vm_phys_free_pages(m, 0);
2452	}
2453	vm_page_free_wakeup();
2454	mtx_unlock(&vm_page_queue_free_mtx);
2455
2456	/*
2457	 * Increment the vnode's hold count if this is the object's only
2458	 * cached page.  Decrement the vnode's hold count if this was
2459	 * the object's only resident page.
2460	 */
2461	if (object->type == OBJT_VNODE) {
2462		if (root == NULL && object->resident_page_count != 0)
2463			vhold(object->handle);
2464		else if (root != NULL && object->resident_page_count == 0)
2465			vdrop(object->handle);
2466	}
2467}
2468
2469/*
2470 * vm_page_dontneed
2471 *
2472 *	Cache, deactivate, or do nothing as appropriate.  This routine
2473 *	is typically used by madvise() MADV_DONTNEED.
2474 *
2475 *	Generally speaking we want to move the page into the cache so
2476 *	it gets reused quickly.  However, this can result in a silly syndrome
2477 *	due to the page recycling too quickly.  Small objects will not be
2478 *	fully cached.  On the otherhand, if we move the page to the inactive
2479 *	queue we wind up with a problem whereby very large objects
2480 *	unnecessarily blow away our inactive and cache queues.
2481 *
2482 *	The solution is to move the pages based on a fixed weighting.  We
2483 *	either leave them alone, deactivate them, or move them to the cache,
2484 *	where moving them to the cache has the highest weighting.
2485 *	By forcing some pages into other queues we eventually force the
2486 *	system to balance the queues, potentially recovering other unrelated
2487 *	space from active.  The idea is to not force this to happen too
2488 *	often.
2489 *
2490 *	The object and page must be locked.
2491 */
2492void
2493vm_page_dontneed(vm_page_t m)
2494{
2495	int dnw;
2496	int head;
2497
2498	vm_page_lock_assert(m, MA_OWNED);
2499	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2500	dnw = PCPU_GET(dnweight);
2501	PCPU_INC(dnweight);
2502
2503	/*
2504	 * Occasionally leave the page alone.
2505	 */
2506	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2507		if (m->act_count >= ACT_INIT)
2508			--m->act_count;
2509		return;
2510	}
2511
2512	/*
2513	 * Clear any references to the page.  Otherwise, the page daemon will
2514	 * immediately reactivate the page.
2515	 *
2516	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2517	 * pmap operation, such as pmap_remove(), could clear a reference in
2518	 * the pmap and set PGA_REFERENCED on the page before the
2519	 * pmap_clear_reference() had completed.  Consequently, the page would
2520	 * appear referenced based upon an old reference that occurred before
2521	 * this function ran.
2522	 */
2523	pmap_clear_reference(m);
2524	vm_page_aflag_clear(m, PGA_REFERENCED);
2525
2526	if (m->dirty == 0 && pmap_is_modified(m))
2527		vm_page_dirty(m);
2528
2529	if (m->dirty || (dnw & 0x0070) == 0) {
2530		/*
2531		 * Deactivate the page 3 times out of 32.
2532		 */
2533		head = 0;
2534	} else {
2535		/*
2536		 * Cache the page 28 times out of every 32.  Note that
2537		 * the page is deactivated instead of cached, but placed
2538		 * at the head of the queue instead of the tail.
2539		 */
2540		head = 1;
2541	}
2542	_vm_page_deactivate(m, head);
2543}
2544
2545/*
2546 * Grab a page, waiting until we are waken up due to the page
2547 * changing state.  We keep on waiting, if the page continues
2548 * to be in the object.  If the page doesn't exist, first allocate it
2549 * and then conditionally zero it.
2550 *
2551 * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2552 * to facilitate its eventual removal.
2553 *
2554 * This routine may sleep.
2555 *
2556 * The object must be locked on entry.  The lock will, however, be released
2557 * and reacquired if the routine sleeps.
2558 */
2559vm_page_t
2560vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2561{
2562	vm_page_t m;
2563
2564	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2565	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2566	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2567retrylookup:
2568	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2569		if ((m->oflags & VPO_BUSY) != 0 ||
2570		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2571			/*
2572			 * Reference the page before unlocking and
2573			 * sleeping so that the page daemon is less
2574			 * likely to reclaim it.
2575			 */
2576			vm_page_aflag_set(m, PGA_REFERENCED);
2577			vm_page_sleep(m, "pgrbwt");
2578			goto retrylookup;
2579		} else {
2580			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2581				vm_page_lock(m);
2582				vm_page_wire(m);
2583				vm_page_unlock(m);
2584			}
2585			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2586				vm_page_busy(m);
2587			return (m);
2588		}
2589	}
2590	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2591	    VM_ALLOC_IGN_SBUSY));
2592	if (m == NULL) {
2593		VM_OBJECT_UNLOCK(object);
2594		VM_WAIT;
2595		VM_OBJECT_LOCK(object);
2596		goto retrylookup;
2597	} else if (m->valid != 0)
2598		return (m);
2599	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2600		pmap_zero_page(m);
2601	return (m);
2602}
2603
2604/*
2605 * Mapping function for valid or dirty bits in a page.
2606 *
2607 * Inputs are required to range within a page.
2608 */
2609vm_page_bits_t
2610vm_page_bits(int base, int size)
2611{
2612	int first_bit;
2613	int last_bit;
2614
2615	KASSERT(
2616	    base + size <= PAGE_SIZE,
2617	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2618	);
2619
2620	if (size == 0)		/* handle degenerate case */
2621		return (0);
2622
2623	first_bit = base >> DEV_BSHIFT;
2624	last_bit = (base + size - 1) >> DEV_BSHIFT;
2625
2626	return (((vm_page_bits_t)2 << last_bit) -
2627	    ((vm_page_bits_t)1 << first_bit));
2628}
2629
2630/*
2631 *	vm_page_set_valid:
2632 *
2633 *	Sets portions of a page valid.  The arguments are expected
2634 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2635 *	of any partial chunks touched by the range.  The invalid portion of
2636 *	such chunks will be zeroed.
2637 *
2638 *	(base + size) must be less then or equal to PAGE_SIZE.
2639 */
2640void
2641vm_page_set_valid(vm_page_t m, int base, int size)
2642{
2643	int endoff, frag;
2644
2645	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2646	if (size == 0)	/* handle degenerate case */
2647		return;
2648
2649	/*
2650	 * If the base is not DEV_BSIZE aligned and the valid
2651	 * bit is clear, we have to zero out a portion of the
2652	 * first block.
2653	 */
2654	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2655	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2656		pmap_zero_page_area(m, frag, base - frag);
2657
2658	/*
2659	 * If the ending offset is not DEV_BSIZE aligned and the
2660	 * valid bit is clear, we have to zero out a portion of
2661	 * the last block.
2662	 */
2663	endoff = base + size;
2664	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2665	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2666		pmap_zero_page_area(m, endoff,
2667		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2668
2669	/*
2670	 * Assert that no previously invalid block that is now being validated
2671	 * is already dirty.
2672	 */
2673	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2674	    ("vm_page_set_valid: page %p is dirty", m));
2675
2676	/*
2677	 * Set valid bits inclusive of any overlap.
2678	 */
2679	m->valid |= vm_page_bits(base, size);
2680}
2681
2682/*
2683 * Clear the given bits from the specified page's dirty field.
2684 */
2685static __inline void
2686vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2687{
2688	uintptr_t addr;
2689#if PAGE_SIZE < 16384
2690	int shift;
2691#endif
2692
2693	/*
2694	 * If the object is locked and the page is neither VPO_BUSY nor
2695	 * write mapped, then the page's dirty field cannot possibly be
2696	 * set by a concurrent pmap operation.
2697	 */
2698	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2699	if ((m->oflags & VPO_BUSY) == 0 && !pmap_page_is_write_mapped(m))
2700		m->dirty &= ~pagebits;
2701	else {
2702		/*
2703		 * The pmap layer can call vm_page_dirty() without
2704		 * holding a distinguished lock.  The combination of
2705		 * the object's lock and an atomic operation suffice
2706		 * to guarantee consistency of the page dirty field.
2707		 *
2708		 * For PAGE_SIZE == 32768 case, compiler already
2709		 * properly aligns the dirty field, so no forcible
2710		 * alignment is needed. Only require existence of
2711		 * atomic_clear_64 when page size is 32768.
2712		 */
2713		addr = (uintptr_t)&m->dirty;
2714#if PAGE_SIZE == 32768
2715		atomic_clear_64((uint64_t *)addr, pagebits);
2716#elif PAGE_SIZE == 16384
2717		atomic_clear_32((uint32_t *)addr, pagebits);
2718#else		/* PAGE_SIZE <= 8192 */
2719		/*
2720		 * Use a trick to perform a 32-bit atomic on the
2721		 * containing aligned word, to not depend on the existence
2722		 * of atomic_clear_{8, 16}.
2723		 */
2724		shift = addr & (sizeof(uint32_t) - 1);
2725#if BYTE_ORDER == BIG_ENDIAN
2726		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2727#else
2728		shift *= NBBY;
2729#endif
2730		addr &= ~(sizeof(uint32_t) - 1);
2731		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2732#endif		/* PAGE_SIZE */
2733	}
2734}
2735
2736/*
2737 *	vm_page_set_validclean:
2738 *
2739 *	Sets portions of a page valid and clean.  The arguments are expected
2740 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2741 *	of any partial chunks touched by the range.  The invalid portion of
2742 *	such chunks will be zero'd.
2743 *
2744 *	(base + size) must be less then or equal to PAGE_SIZE.
2745 */
2746void
2747vm_page_set_validclean(vm_page_t m, int base, int size)
2748{
2749	vm_page_bits_t oldvalid, pagebits;
2750	int endoff, frag;
2751
2752	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2753	if (size == 0)	/* handle degenerate case */
2754		return;
2755
2756	/*
2757	 * If the base is not DEV_BSIZE aligned and the valid
2758	 * bit is clear, we have to zero out a portion of the
2759	 * first block.
2760	 */
2761	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2762	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2763		pmap_zero_page_area(m, frag, base - frag);
2764
2765	/*
2766	 * If the ending offset is not DEV_BSIZE aligned and the
2767	 * valid bit is clear, we have to zero out a portion of
2768	 * the last block.
2769	 */
2770	endoff = base + size;
2771	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2772	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2773		pmap_zero_page_area(m, endoff,
2774		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2775
2776	/*
2777	 * Set valid, clear dirty bits.  If validating the entire
2778	 * page we can safely clear the pmap modify bit.  We also
2779	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2780	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2781	 * be set again.
2782	 *
2783	 * We set valid bits inclusive of any overlap, but we can only
2784	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2785	 * the range.
2786	 */
2787	oldvalid = m->valid;
2788	pagebits = vm_page_bits(base, size);
2789	m->valid |= pagebits;
2790#if 0	/* NOT YET */
2791	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2792		frag = DEV_BSIZE - frag;
2793		base += frag;
2794		size -= frag;
2795		if (size < 0)
2796			size = 0;
2797	}
2798	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2799#endif
2800	if (base == 0 && size == PAGE_SIZE) {
2801		/*
2802		 * The page can only be modified within the pmap if it is
2803		 * mapped, and it can only be mapped if it was previously
2804		 * fully valid.
2805		 */
2806		if (oldvalid == VM_PAGE_BITS_ALL)
2807			/*
2808			 * Perform the pmap_clear_modify() first.  Otherwise,
2809			 * a concurrent pmap operation, such as
2810			 * pmap_protect(), could clear a modification in the
2811			 * pmap and set the dirty field on the page before
2812			 * pmap_clear_modify() had begun and after the dirty
2813			 * field was cleared here.
2814			 */
2815			pmap_clear_modify(m);
2816		m->dirty = 0;
2817		m->oflags &= ~VPO_NOSYNC;
2818	} else if (oldvalid != VM_PAGE_BITS_ALL)
2819		m->dirty &= ~pagebits;
2820	else
2821		vm_page_clear_dirty_mask(m, pagebits);
2822}
2823
2824void
2825vm_page_clear_dirty(vm_page_t m, int base, int size)
2826{
2827
2828	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2829}
2830
2831/*
2832 *	vm_page_set_invalid:
2833 *
2834 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2835 *	valid and dirty bits for the effected areas are cleared.
2836 */
2837void
2838vm_page_set_invalid(vm_page_t m, int base, int size)
2839{
2840	vm_page_bits_t bits;
2841	vm_object_t object;
2842
2843	object = m->object;
2844	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2845	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
2846	    size >= object->un_pager.vnp.vnp_size)
2847		bits = VM_PAGE_BITS_ALL;
2848	else
2849		bits = vm_page_bits(base, size);
2850	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2851		pmap_remove_all(m);
2852	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
2853	    !pmap_page_is_mapped(m),
2854	    ("vm_page_set_invalid: page %p is mapped", m));
2855	m->valid &= ~bits;
2856	m->dirty &= ~bits;
2857}
2858
2859/*
2860 * vm_page_zero_invalid()
2861 *
2862 *	The kernel assumes that the invalid portions of a page contain
2863 *	garbage, but such pages can be mapped into memory by user code.
2864 *	When this occurs, we must zero out the non-valid portions of the
2865 *	page so user code sees what it expects.
2866 *
2867 *	Pages are most often semi-valid when the end of a file is mapped
2868 *	into memory and the file's size is not page aligned.
2869 */
2870void
2871vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2872{
2873	int b;
2874	int i;
2875
2876	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2877	/*
2878	 * Scan the valid bits looking for invalid sections that
2879	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2880	 * valid bit may be set ) have already been zerod by
2881	 * vm_page_set_validclean().
2882	 */
2883	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2884		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2885		    (m->valid & ((vm_page_bits_t)1 << i))) {
2886			if (i > b) {
2887				pmap_zero_page_area(m,
2888				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2889			}
2890			b = i + 1;
2891		}
2892	}
2893
2894	/*
2895	 * setvalid is TRUE when we can safely set the zero'd areas
2896	 * as being valid.  We can do this if there are no cache consistancy
2897	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2898	 */
2899	if (setvalid)
2900		m->valid = VM_PAGE_BITS_ALL;
2901}
2902
2903/*
2904 *	vm_page_is_valid:
2905 *
2906 *	Is (partial) page valid?  Note that the case where size == 0
2907 *	will return FALSE in the degenerate case where the page is
2908 *	entirely invalid, and TRUE otherwise.
2909 */
2910int
2911vm_page_is_valid(vm_page_t m, int base, int size)
2912{
2913	vm_page_bits_t bits;
2914
2915	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2916	bits = vm_page_bits(base, size);
2917	if (m->valid && ((m->valid & bits) == bits))
2918		return 1;
2919	else
2920		return 0;
2921}
2922
2923/*
2924 * Set the page's dirty bits if the page is modified.
2925 */
2926void
2927vm_page_test_dirty(vm_page_t m)
2928{
2929
2930	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2931	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2932		vm_page_dirty(m);
2933}
2934
2935void
2936vm_page_lock_KBI(vm_page_t m, const char *file, int line)
2937{
2938
2939	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
2940}
2941
2942void
2943vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
2944{
2945
2946	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
2947}
2948
2949int
2950vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
2951{
2952
2953	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
2954}
2955
2956#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
2957void
2958vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
2959{
2960
2961	mtx_assert_(vm_page_lockptr(m), a, file, line);
2962}
2963#endif
2964
2965int so_zerocp_fullpage = 0;
2966
2967/*
2968 *	Replace the given page with a copy.  The copied page assumes
2969 *	the portion of the given page's "wire_count" that is not the
2970 *	responsibility of this copy-on-write mechanism.
2971 *
2972 *	The object containing the given page must have a non-zero
2973 *	paging-in-progress count and be locked.
2974 */
2975void
2976vm_page_cowfault(vm_page_t m)
2977{
2978	vm_page_t mnew;
2979	vm_object_t object;
2980	vm_pindex_t pindex;
2981
2982	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2983	vm_page_lock_assert(m, MA_OWNED);
2984	object = m->object;
2985	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2986	KASSERT(object->paging_in_progress != 0,
2987	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2988	    object));
2989	pindex = m->pindex;
2990
2991 retry_alloc:
2992	pmap_remove_all(m);
2993	vm_page_remove(m);
2994	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2995	if (mnew == NULL) {
2996		vm_page_insert(m, object, pindex);
2997		vm_page_unlock(m);
2998		VM_OBJECT_UNLOCK(object);
2999		VM_WAIT;
3000		VM_OBJECT_LOCK(object);
3001		if (m == vm_page_lookup(object, pindex)) {
3002			vm_page_lock(m);
3003			goto retry_alloc;
3004		} else {
3005			/*
3006			 * Page disappeared during the wait.
3007			 */
3008			return;
3009		}
3010	}
3011
3012	if (m->cow == 0) {
3013		/*
3014		 * check to see if we raced with an xmit complete when
3015		 * waiting to allocate a page.  If so, put things back
3016		 * the way they were
3017		 */
3018		vm_page_unlock(m);
3019		vm_page_lock(mnew);
3020		vm_page_free(mnew);
3021		vm_page_unlock(mnew);
3022		vm_page_insert(m, object, pindex);
3023	} else { /* clear COW & copy page */
3024		if (!so_zerocp_fullpage)
3025			pmap_copy_page(m, mnew);
3026		mnew->valid = VM_PAGE_BITS_ALL;
3027		vm_page_dirty(mnew);
3028		mnew->wire_count = m->wire_count - m->cow;
3029		m->wire_count = m->cow;
3030		vm_page_unlock(m);
3031	}
3032}
3033
3034void
3035vm_page_cowclear(vm_page_t m)
3036{
3037
3038	vm_page_lock_assert(m, MA_OWNED);
3039	if (m->cow) {
3040		m->cow--;
3041		/*
3042		 * let vm_fault add back write permission  lazily
3043		 */
3044	}
3045	/*
3046	 *  sf_buf_free() will free the page, so we needn't do it here
3047	 */
3048}
3049
3050int
3051vm_page_cowsetup(vm_page_t m)
3052{
3053
3054	vm_page_lock_assert(m, MA_OWNED);
3055	if ((m->flags & PG_FICTITIOUS) != 0 ||
3056	    (m->oflags & VPO_UNMANAGED) != 0 ||
3057	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
3058		return (EBUSY);
3059	m->cow++;
3060	pmap_remove_write(m);
3061	VM_OBJECT_UNLOCK(m->object);
3062	return (0);
3063}
3064
3065#ifdef INVARIANTS
3066void
3067vm_page_object_lock_assert(vm_page_t m)
3068{
3069
3070	/*
3071	 * Certain of the page's fields may only be modified by the
3072	 * holder of the containing object's lock or the setter of the
3073	 * page's VPO_BUSY flag.  Unfortunately, the setter of the
3074	 * VPO_BUSY flag is not recorded, and thus cannot be checked
3075	 * here.
3076	 */
3077	if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
3078		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3079}
3080#endif
3081
3082#include "opt_ddb.h"
3083#ifdef DDB
3084#include <sys/kernel.h>
3085
3086#include <ddb/ddb.h>
3087
3088DB_SHOW_COMMAND(page, vm_page_print_page_info)
3089{
3090	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
3091	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
3092	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
3093	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
3094	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
3095	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
3096	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
3097	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
3098	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
3099	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
3100}
3101
3102DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3103{
3104
3105	db_printf("PQ_FREE:");
3106	db_printf(" %d", cnt.v_free_count);
3107	db_printf("\n");
3108
3109	db_printf("PQ_CACHE:");
3110	db_printf(" %d", cnt.v_cache_count);
3111	db_printf("\n");
3112
3113	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
3114		*vm_page_queues[PQ_ACTIVE].cnt,
3115		*vm_page_queues[PQ_INACTIVE].cnt);
3116}
3117
3118DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3119{
3120	vm_page_t m;
3121	boolean_t phys;
3122
3123	if (!have_addr) {
3124		db_printf("show pginfo addr\n");
3125		return;
3126	}
3127
3128	phys = strchr(modif, 'p') != NULL;
3129	if (phys)
3130		m = PHYS_TO_VM_PAGE(addr);
3131	else
3132		m = (vm_page_t)addr;
3133	db_printf(
3134    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3135    "  af 0x%x of 0x%x f 0x%x act %d busy %d valid 0x%x dirty 0x%x\n",
3136	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3137	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3138	    m->flags, m->act_count, m->busy, m->valid, m->dirty);
3139}
3140#endif /* DDB */
3141