vm_page.c revision 254087
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- The object mutex is held when inserting or removing
71 *	  pages from an object (vm_page_insert() or vm_page_remove()).
72 *
73 */
74
75/*
76 *	Resident memory management module.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: stable/9/sys/vm/vm_page.c 254087 2013-08-08 06:03:34Z kib $");
81
82#include "opt_vm.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/lock.h>
87#include <sys/kernel.h>
88#include <sys/limits.h>
89#include <sys/malloc.h>
90#include <sys/msgbuf.h>
91#include <sys/mutex.h>
92#include <sys/proc.h>
93#include <sys/sysctl.h>
94#include <sys/vmmeter.h>
95#include <sys/vnode.h>
96
97#include <vm/vm.h>
98#include <vm/pmap.h>
99#include <vm/vm_param.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_object.h>
102#include <vm/vm_page.h>
103#include <vm/vm_pageout.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_phys.h>
106#include <vm/vm_reserv.h>
107#include <vm/vm_extern.h>
108#include <vm/uma.h>
109#include <vm/uma_int.h>
110
111#include <machine/md_var.h>
112
113/*
114 *	Associated with page of user-allocatable memory is a
115 *	page structure.
116 */
117
118struct vpgqueues vm_page_queues[PQ_COUNT];
119struct vpglocks vm_page_queue_lock;
120struct vpglocks vm_page_queue_free_lock;
121
122struct vpglocks	pa_lock[PA_LOCK_COUNT];
123
124vm_page_t vm_page_array;
125long vm_page_array_size;
126long first_page;
127int vm_page_zero_count;
128
129static int boot_pages = UMA_BOOT_PAGES;
130TUNABLE_INT("vm.boot_pages", &boot_pages);
131SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
132	"number of pages allocated for bootstrapping the VM system");
133
134int pa_tryrelock_restart;
135SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
136    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
137
138static uma_zone_t fakepg_zone;
139
140static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
141static void vm_page_queue_remove(int queue, vm_page_t m);
142static void vm_page_enqueue(int queue, vm_page_t m);
143static void vm_page_init_fakepg(void *dummy);
144
145SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
146
147static void
148vm_page_init_fakepg(void *dummy)
149{
150
151	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
152	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
153}
154
155/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
156#if PAGE_SIZE == 32768
157#ifdef CTASSERT
158CTASSERT(sizeof(u_long) >= 8);
159#endif
160#endif
161
162/*
163 * Try to acquire a physical address lock while a pmap is locked.  If we
164 * fail to trylock we unlock and lock the pmap directly and cache the
165 * locked pa in *locked.  The caller should then restart their loop in case
166 * the virtual to physical mapping has changed.
167 */
168int
169vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
170{
171	vm_paddr_t lockpa;
172
173	lockpa = *locked;
174	*locked = pa;
175	if (lockpa) {
176		PA_LOCK_ASSERT(lockpa, MA_OWNED);
177		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
178			return (0);
179		PA_UNLOCK(lockpa);
180	}
181	if (PA_TRYLOCK(pa))
182		return (0);
183	PMAP_UNLOCK(pmap);
184	atomic_add_int(&pa_tryrelock_restart, 1);
185	PA_LOCK(pa);
186	PMAP_LOCK(pmap);
187	return (EAGAIN);
188}
189
190/*
191 *	vm_set_page_size:
192 *
193 *	Sets the page size, perhaps based upon the memory
194 *	size.  Must be called before any use of page-size
195 *	dependent functions.
196 */
197void
198vm_set_page_size(void)
199{
200	if (cnt.v_page_size == 0)
201		cnt.v_page_size = PAGE_SIZE;
202	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
203		panic("vm_set_page_size: page size not a power of two");
204}
205
206/*
207 *	vm_page_blacklist_lookup:
208 *
209 *	See if a physical address in this page has been listed
210 *	in the blacklist tunable.  Entries in the tunable are
211 *	separated by spaces or commas.  If an invalid integer is
212 *	encountered then the rest of the string is skipped.
213 */
214static int
215vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
216{
217	vm_paddr_t bad;
218	char *cp, *pos;
219
220	for (pos = list; *pos != '\0'; pos = cp) {
221		bad = strtoq(pos, &cp, 0);
222		if (*cp != '\0') {
223			if (*cp == ' ' || *cp == ',') {
224				cp++;
225				if (cp == pos)
226					continue;
227			} else
228				break;
229		}
230		if (pa == trunc_page(bad))
231			return (1);
232	}
233	return (0);
234}
235
236/*
237 *	vm_page_startup:
238 *
239 *	Initializes the resident memory module.
240 *
241 *	Allocates memory for the page cells, and
242 *	for the object/offset-to-page hash table headers.
243 *	Each page cell is initialized and placed on the free list.
244 */
245vm_offset_t
246vm_page_startup(vm_offset_t vaddr)
247{
248	vm_offset_t mapped;
249	vm_paddr_t page_range;
250	vm_paddr_t new_end;
251	int i;
252	vm_paddr_t pa;
253	vm_paddr_t last_pa;
254	char *list;
255
256	/* the biggest memory array is the second group of pages */
257	vm_paddr_t end;
258	vm_paddr_t biggestsize;
259	vm_paddr_t low_water, high_water;
260	int biggestone;
261
262	biggestsize = 0;
263	biggestone = 0;
264	vaddr = round_page(vaddr);
265
266	for (i = 0; phys_avail[i + 1]; i += 2) {
267		phys_avail[i] = round_page(phys_avail[i]);
268		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
269	}
270
271	low_water = phys_avail[0];
272	high_water = phys_avail[1];
273
274	for (i = 0; phys_avail[i + 1]; i += 2) {
275		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
276
277		if (size > biggestsize) {
278			biggestone = i;
279			biggestsize = size;
280		}
281		if (phys_avail[i] < low_water)
282			low_water = phys_avail[i];
283		if (phys_avail[i + 1] > high_water)
284			high_water = phys_avail[i + 1];
285	}
286
287#ifdef XEN
288	low_water = 0;
289#endif
290
291	end = phys_avail[biggestone+1];
292
293	/*
294	 * Initialize the page and queue locks.
295	 */
296	mtx_init(&vm_page_queue_mtx, "vm page queue", NULL, MTX_DEF |
297	    MTX_RECURSE);
298	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
299	for (i = 0; i < PA_LOCK_COUNT; i++)
300		mtx_init(&pa_lock[i].data, "vm page", NULL, MTX_DEF);
301
302	/*
303	 * Initialize the queue headers for the hold queue, the active queue,
304	 * and the inactive queue.
305	 */
306	for (i = 0; i < PQ_COUNT; i++)
307		TAILQ_INIT(&vm_page_queues[i].pl);
308	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
309	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
310	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
311
312	/*
313	 * Allocate memory for use when boot strapping the kernel memory
314	 * allocator.
315	 */
316	new_end = end - (boot_pages * UMA_SLAB_SIZE);
317	new_end = trunc_page(new_end);
318	mapped = pmap_map(&vaddr, new_end, end,
319	    VM_PROT_READ | VM_PROT_WRITE);
320	bzero((void *)mapped, end - new_end);
321	uma_startup((void *)mapped, boot_pages);
322
323#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
324    defined(__mips__)
325	/*
326	 * Allocate a bitmap to indicate that a random physical page
327	 * needs to be included in a minidump.
328	 *
329	 * The amd64 port needs this to indicate which direct map pages
330	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
331	 *
332	 * However, i386 still needs this workspace internally within the
333	 * minidump code.  In theory, they are not needed on i386, but are
334	 * included should the sf_buf code decide to use them.
335	 */
336	last_pa = 0;
337	for (i = 0; dump_avail[i + 1] != 0; i += 2)
338		if (dump_avail[i + 1] > last_pa)
339			last_pa = dump_avail[i + 1];
340	page_range = last_pa / PAGE_SIZE;
341	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
342	new_end -= vm_page_dump_size;
343	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
344	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
345	bzero((void *)vm_page_dump, vm_page_dump_size);
346#endif
347#ifdef __amd64__
348	/*
349	 * Request that the physical pages underlying the message buffer be
350	 * included in a crash dump.  Since the message buffer is accessed
351	 * through the direct map, they are not automatically included.
352	 */
353	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
354	last_pa = pa + round_page(msgbufsize);
355	while (pa < last_pa) {
356		dump_add_page(pa);
357		pa += PAGE_SIZE;
358	}
359#endif
360	/*
361	 * Compute the number of pages of memory that will be available for
362	 * use (taking into account the overhead of a page structure per
363	 * page).
364	 */
365	first_page = low_water / PAGE_SIZE;
366#ifdef VM_PHYSSEG_SPARSE
367	page_range = 0;
368	for (i = 0; phys_avail[i + 1] != 0; i += 2)
369		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
370#elif defined(VM_PHYSSEG_DENSE)
371	page_range = high_water / PAGE_SIZE - first_page;
372#else
373#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
374#endif
375	end = new_end;
376
377	/*
378	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
379	 */
380	vaddr += PAGE_SIZE;
381
382	/*
383	 * Initialize the mem entry structures now, and put them in the free
384	 * queue.
385	 */
386	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
387	mapped = pmap_map(&vaddr, new_end, end,
388	    VM_PROT_READ | VM_PROT_WRITE);
389	vm_page_array = (vm_page_t) mapped;
390#if VM_NRESERVLEVEL > 0
391	/*
392	 * Allocate memory for the reservation management system's data
393	 * structures.
394	 */
395	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
396#endif
397#if defined(__amd64__) || defined(__mips__)
398	/*
399	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
400	 * like i386, so the pages must be tracked for a crashdump to include
401	 * this data.  This includes the vm_page_array and the early UMA
402	 * bootstrap pages.
403	 */
404	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
405		dump_add_page(pa);
406#endif
407	phys_avail[biggestone + 1] = new_end;
408
409	/*
410	 * Clear all of the page structures
411	 */
412	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
413	for (i = 0; i < page_range; i++)
414		vm_page_array[i].order = VM_NFREEORDER;
415	vm_page_array_size = page_range;
416
417	/*
418	 * Initialize the physical memory allocator.
419	 */
420	vm_phys_init();
421
422	/*
423	 * Add every available physical page that is not blacklisted to
424	 * the free lists.
425	 */
426	cnt.v_page_count = 0;
427	cnt.v_free_count = 0;
428	list = getenv("vm.blacklist");
429	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
430		pa = phys_avail[i];
431		last_pa = phys_avail[i + 1];
432		while (pa < last_pa) {
433			if (list != NULL &&
434			    vm_page_blacklist_lookup(list, pa))
435				printf("Skipping page with pa 0x%jx\n",
436				    (uintmax_t)pa);
437			else
438				vm_phys_add_page(pa);
439			pa += PAGE_SIZE;
440		}
441	}
442	freeenv(list);
443#if VM_NRESERVLEVEL > 0
444	/*
445	 * Initialize the reservation management system.
446	 */
447	vm_reserv_init();
448#endif
449	return (vaddr);
450}
451
452
453CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0);
454
455void
456vm_page_aflag_set(vm_page_t m, uint8_t bits)
457{
458	uint32_t *addr, val;
459
460	/*
461	 * The PGA_WRITEABLE flag can only be set if the page is managed and
462	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
463	 */
464	KASSERT((bits & PGA_WRITEABLE) == 0 ||
465	    (m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == VPO_BUSY,
466	    ("PGA_WRITEABLE and !VPO_BUSY"));
467
468	/*
469	 * We want to use atomic updates for m->aflags, which is a
470	 * byte wide.  Not all architectures provide atomic operations
471	 * on the single-byte destination.  Punt and access the whole
472	 * 4-byte word with an atomic update.  Parallel non-atomic
473	 * updates to the fields included in the update by proximity
474	 * are handled properly by atomics.
475	 */
476	addr = (void *)&m->aflags;
477	MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
478	val = bits;
479#if BYTE_ORDER == BIG_ENDIAN
480	val <<= 24;
481#endif
482	atomic_set_32(addr, val);
483}
484
485void
486vm_page_aflag_clear(vm_page_t m, uint8_t bits)
487{
488	uint32_t *addr, val;
489
490	/*
491	 * The PGA_REFERENCED flag can only be cleared if the object
492	 * containing the page is locked.
493	 */
494	KASSERT((bits & PGA_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
495	    ("PGA_REFERENCED and !VM_OBJECT_LOCKED"));
496
497	/*
498	 * See the comment in vm_page_aflag_set().
499	 */
500	addr = (void *)&m->aflags;
501	MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
502	val = bits;
503#if BYTE_ORDER == BIG_ENDIAN
504	val <<= 24;
505#endif
506	atomic_clear_32(addr, val);
507}
508
509void
510vm_page_reference(vm_page_t m)
511{
512
513	vm_page_aflag_set(m, PGA_REFERENCED);
514}
515
516void
517vm_page_busy(vm_page_t m)
518{
519
520	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
521	KASSERT((m->oflags & VPO_BUSY) == 0,
522	    ("vm_page_busy: page already busy!!!"));
523	m->oflags |= VPO_BUSY;
524}
525
526/*
527 *      vm_page_flash:
528 *
529 *      wakeup anyone waiting for the page.
530 */
531void
532vm_page_flash(vm_page_t m)
533{
534
535	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
536	if (m->oflags & VPO_WANTED) {
537		m->oflags &= ~VPO_WANTED;
538		wakeup(m);
539	}
540}
541
542/*
543 *      vm_page_wakeup:
544 *
545 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
546 *      page.
547 *
548 */
549void
550vm_page_wakeup(vm_page_t m)
551{
552
553	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
554	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
555	m->oflags &= ~VPO_BUSY;
556	vm_page_flash(m);
557}
558
559void
560vm_page_io_start(vm_page_t m)
561{
562
563	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
564	m->busy++;
565}
566
567void
568vm_page_io_finish(vm_page_t m)
569{
570
571	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
572	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
573	m->busy--;
574	if (m->busy == 0)
575		vm_page_flash(m);
576}
577
578/*
579 * Keep page from being freed by the page daemon
580 * much of the same effect as wiring, except much lower
581 * overhead and should be used only for *very* temporary
582 * holding ("wiring").
583 */
584void
585vm_page_hold(vm_page_t mem)
586{
587
588	vm_page_lock_assert(mem, MA_OWNED);
589        mem->hold_count++;
590}
591
592void
593vm_page_unhold(vm_page_t mem)
594{
595
596	vm_page_lock_assert(mem, MA_OWNED);
597	--mem->hold_count;
598	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
599	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
600		vm_page_free_toq(mem);
601}
602
603/*
604 *	vm_page_unhold_pages:
605 *
606 *	Unhold each of the pages that is referenced by the given array.
607 */
608void
609vm_page_unhold_pages(vm_page_t *ma, int count)
610{
611	struct mtx *mtx, *new_mtx;
612
613	mtx = NULL;
614	for (; count != 0; count--) {
615		/*
616		 * Avoid releasing and reacquiring the same page lock.
617		 */
618		new_mtx = vm_page_lockptr(*ma);
619		if (mtx != new_mtx) {
620			if (mtx != NULL)
621				mtx_unlock(mtx);
622			mtx = new_mtx;
623			mtx_lock(mtx);
624		}
625		vm_page_unhold(*ma);
626		ma++;
627	}
628	if (mtx != NULL)
629		mtx_unlock(mtx);
630}
631
632vm_page_t
633PHYS_TO_VM_PAGE(vm_paddr_t pa)
634{
635	vm_page_t m;
636
637#ifdef VM_PHYSSEG_SPARSE
638	m = vm_phys_paddr_to_vm_page(pa);
639	if (m == NULL)
640		m = vm_phys_fictitious_to_vm_page(pa);
641	return (m);
642#elif defined(VM_PHYSSEG_DENSE)
643	long pi;
644
645	pi = atop(pa);
646	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
647		m = &vm_page_array[pi - first_page];
648		return (m);
649	}
650	return (vm_phys_fictitious_to_vm_page(pa));
651#else
652#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
653#endif
654}
655
656/*
657 *	vm_page_getfake:
658 *
659 *	Create a fictitious page with the specified physical address and
660 *	memory attribute.  The memory attribute is the only the machine-
661 *	dependent aspect of a fictitious page that must be initialized.
662 */
663vm_page_t
664vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
665{
666	vm_page_t m;
667
668	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
669	vm_page_initfake(m, paddr, memattr);
670	return (m);
671}
672
673void
674vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
675{
676
677	if ((m->flags & PG_FICTITIOUS) != 0) {
678		/*
679		 * The page's memattr might have changed since the
680		 * previous initialization.  Update the pmap to the
681		 * new memattr.
682		 */
683		goto memattr;
684	}
685	m->phys_addr = paddr;
686	m->queue = PQ_NONE;
687	/* Fictitious pages don't use "segind". */
688	m->flags = PG_FICTITIOUS;
689	/* Fictitious pages don't use "order" or "pool". */
690	m->oflags = VPO_BUSY | VPO_UNMANAGED;
691	m->wire_count = 1;
692memattr:
693	pmap_page_set_memattr(m, memattr);
694}
695
696/*
697 *	vm_page_putfake:
698 *
699 *	Release a fictitious page.
700 */
701void
702vm_page_putfake(vm_page_t m)
703{
704
705	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
706	KASSERT((m->flags & PG_FICTITIOUS) != 0,
707	    ("vm_page_putfake: bad page %p", m));
708	uma_zfree(fakepg_zone, m);
709}
710
711/*
712 *	vm_page_updatefake:
713 *
714 *	Update the given fictitious page to the specified physical address and
715 *	memory attribute.
716 */
717void
718vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
719{
720
721	KASSERT((m->flags & PG_FICTITIOUS) != 0,
722	    ("vm_page_updatefake: bad page %p", m));
723	m->phys_addr = paddr;
724	pmap_page_set_memattr(m, memattr);
725}
726
727/*
728 *	vm_page_free:
729 *
730 *	Free a page.
731 */
732void
733vm_page_free(vm_page_t m)
734{
735
736	m->flags &= ~PG_ZERO;
737	vm_page_free_toq(m);
738}
739
740/*
741 *	vm_page_free_zero:
742 *
743 *	Free a page to the zerod-pages queue
744 */
745void
746vm_page_free_zero(vm_page_t m)
747{
748
749	m->flags |= PG_ZERO;
750	vm_page_free_toq(m);
751}
752
753/*
754 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
755 * array which is not the request page.
756 */
757void
758vm_page_readahead_finish(vm_page_t m)
759{
760
761	if (m->valid != 0) {
762		/*
763		 * Since the page is not the requested page, whether
764		 * it should be activated or deactivated is not
765		 * obvious.  Empirical results have shown that
766		 * deactivating the page is usually the best choice,
767		 * unless the page is wanted by another thread.
768		 */
769		if (m->oflags & VPO_WANTED) {
770			vm_page_lock(m);
771			vm_page_activate(m);
772			vm_page_unlock(m);
773		} else {
774			vm_page_lock(m);
775			vm_page_deactivate(m);
776			vm_page_unlock(m);
777		}
778		vm_page_wakeup(m);
779	} else {
780		/*
781		 * Free the completely invalid page.  Such page state
782		 * occurs due to the short read operation which did
783		 * not covered our page at all, or in case when a read
784		 * error happens.
785		 */
786		vm_page_lock(m);
787		vm_page_free(m);
788		vm_page_unlock(m);
789	}
790}
791
792/*
793 *	vm_page_sleep:
794 *
795 *	Sleep and release the page and page queues locks.
796 *
797 *	The object containing the given page must be locked.
798 */
799void
800vm_page_sleep(vm_page_t m, const char *msg)
801{
802
803	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
804	if (mtx_owned(&vm_page_queue_mtx))
805		vm_page_unlock_queues();
806	if (mtx_owned(vm_page_lockptr(m)))
807		vm_page_unlock(m);
808
809	/*
810	 * It's possible that while we sleep, the page will get
811	 * unbusied and freed.  If we are holding the object
812	 * lock, we will assume we hold a reference to the object
813	 * such that even if m->object changes, we can re-lock
814	 * it.
815	 */
816	m->oflags |= VPO_WANTED;
817	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
818}
819
820/*
821 *	vm_page_dirty:
822 *
823 *	Set all bits in the page's dirty field.
824 *
825 *	The object containing the specified page must be locked if the
826 *	call is made from the machine-independent layer.
827 *
828 *	See vm_page_clear_dirty_mask().
829 */
830void
831vm_page_dirty(vm_page_t m)
832{
833
834	KASSERT((m->flags & PG_CACHED) == 0,
835	    ("vm_page_dirty: page in cache!"));
836	KASSERT(!VM_PAGE_IS_FREE(m),
837	    ("vm_page_dirty: page is free!"));
838	KASSERT(m->valid == VM_PAGE_BITS_ALL,
839	    ("vm_page_dirty: page is invalid!"));
840	m->dirty = VM_PAGE_BITS_ALL;
841}
842
843/*
844 *	vm_page_splay:
845 *
846 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
847 *	the vm_page containing the given pindex.  If, however, that
848 *	pindex is not found in the vm_object, returns a vm_page that is
849 *	adjacent to the pindex, coming before or after it.
850 */
851vm_page_t
852vm_page_splay(vm_pindex_t pindex, vm_page_t root)
853{
854	struct vm_page dummy;
855	vm_page_t lefttreemax, righttreemin, y;
856
857	if (root == NULL)
858		return (root);
859	lefttreemax = righttreemin = &dummy;
860	for (;; root = y) {
861		if (pindex < root->pindex) {
862			if ((y = root->left) == NULL)
863				break;
864			if (pindex < y->pindex) {
865				/* Rotate right. */
866				root->left = y->right;
867				y->right = root;
868				root = y;
869				if ((y = root->left) == NULL)
870					break;
871			}
872			/* Link into the new root's right tree. */
873			righttreemin->left = root;
874			righttreemin = root;
875		} else if (pindex > root->pindex) {
876			if ((y = root->right) == NULL)
877				break;
878			if (pindex > y->pindex) {
879				/* Rotate left. */
880				root->right = y->left;
881				y->left = root;
882				root = y;
883				if ((y = root->right) == NULL)
884					break;
885			}
886			/* Link into the new root's left tree. */
887			lefttreemax->right = root;
888			lefttreemax = root;
889		} else
890			break;
891	}
892	/* Assemble the new root. */
893	lefttreemax->right = root->left;
894	righttreemin->left = root->right;
895	root->left = dummy.right;
896	root->right = dummy.left;
897	return (root);
898}
899
900/*
901 *	vm_page_insert:		[ internal use only ]
902 *
903 *	Inserts the given mem entry into the object and object list.
904 *
905 *	The object must be locked.
906 */
907void
908vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
909{
910	vm_page_t root;
911
912	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
913	if (m->object != NULL)
914		panic("vm_page_insert: page already inserted");
915
916	/*
917	 * Record the object/offset pair in this page
918	 */
919	m->object = object;
920	m->pindex = pindex;
921
922	/*
923	 * Now link into the object's ordered list of backed pages.
924	 */
925	root = object->root;
926	if (root == NULL) {
927		m->left = NULL;
928		m->right = NULL;
929		TAILQ_INSERT_TAIL(&object->memq, m, listq);
930	} else {
931		root = vm_page_splay(pindex, root);
932		if (pindex < root->pindex) {
933			m->left = root->left;
934			m->right = root;
935			root->left = NULL;
936			TAILQ_INSERT_BEFORE(root, m, listq);
937		} else if (pindex == root->pindex)
938			panic("vm_page_insert: offset already allocated");
939		else {
940			m->right = root->right;
941			m->left = root;
942			root->right = NULL;
943			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
944		}
945	}
946	object->root = m;
947
948	/*
949	 * Show that the object has one more resident page.
950	 */
951	object->resident_page_count++;
952
953	/*
954	 * Hold the vnode until the last page is released.
955	 */
956	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
957		vhold(object->handle);
958
959	/*
960	 * Since we are inserting a new and possibly dirty page,
961	 * update the object's OBJ_MIGHTBEDIRTY flag.
962	 */
963	if (pmap_page_is_write_mapped(m))
964		vm_object_set_writeable_dirty(object);
965}
966
967/*
968 *	vm_page_remove:
969 *
970 *	Removes the given mem entry from the object/offset-page
971 *	table and the object page list, but do not invalidate/terminate
972 *	the backing store.
973 *
974 *	The object must be locked.  The page must be locked if it is managed.
975 */
976void
977vm_page_remove(vm_page_t m)
978{
979	vm_object_t object;
980	vm_page_t next, prev, root;
981
982	if ((m->oflags & VPO_UNMANAGED) == 0)
983		vm_page_lock_assert(m, MA_OWNED);
984	if ((object = m->object) == NULL)
985		return;
986	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
987	if (m->oflags & VPO_BUSY) {
988		m->oflags &= ~VPO_BUSY;
989		vm_page_flash(m);
990	}
991
992	/*
993	 * Now remove from the object's list of backed pages.
994	 */
995	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
996		/*
997		 * Since the page's successor in the list is also its parent
998		 * in the tree, its right subtree must be empty.
999		 */
1000		next->left = m->left;
1001		KASSERT(m->right == NULL,
1002		    ("vm_page_remove: page %p has right child", m));
1003	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1004	    prev->right == m) {
1005		/*
1006		 * Since the page's predecessor in the list is also its parent
1007		 * in the tree, its left subtree must be empty.
1008		 */
1009		KASSERT(m->left == NULL,
1010		    ("vm_page_remove: page %p has left child", m));
1011		prev->right = m->right;
1012	} else {
1013		if (m != object->root)
1014			vm_page_splay(m->pindex, object->root);
1015		if (m->left == NULL)
1016			root = m->right;
1017		else if (m->right == NULL)
1018			root = m->left;
1019		else {
1020			/*
1021			 * Move the page's successor to the root, because
1022			 * pages are usually removed in ascending order.
1023			 */
1024			if (m->right != next)
1025				vm_page_splay(m->pindex, m->right);
1026			next->left = m->left;
1027			root = next;
1028		}
1029		object->root = root;
1030	}
1031	TAILQ_REMOVE(&object->memq, m, listq);
1032
1033	/*
1034	 * And show that the object has one fewer resident page.
1035	 */
1036	object->resident_page_count--;
1037
1038	/*
1039	 * The vnode may now be recycled.
1040	 */
1041	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1042		vdrop(object->handle);
1043
1044	m->object = NULL;
1045}
1046
1047/*
1048 *	vm_page_lookup:
1049 *
1050 *	Returns the page associated with the object/offset
1051 *	pair specified; if none is found, NULL is returned.
1052 *
1053 *	The object must be locked.
1054 */
1055vm_page_t
1056vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1057{
1058	vm_page_t m;
1059
1060	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1061	if ((m = object->root) != NULL && m->pindex != pindex) {
1062		m = vm_page_splay(pindex, m);
1063		if ((object->root = m)->pindex != pindex)
1064			m = NULL;
1065	}
1066	return (m);
1067}
1068
1069/*
1070 *	vm_page_find_least:
1071 *
1072 *	Returns the page associated with the object with least pindex
1073 *	greater than or equal to the parameter pindex, or NULL.
1074 *
1075 *	The object must be locked.
1076 */
1077vm_page_t
1078vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1079{
1080	vm_page_t m;
1081
1082	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1083	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
1084		if (m->pindex < pindex) {
1085			m = vm_page_splay(pindex, object->root);
1086			if ((object->root = m)->pindex < pindex)
1087				m = TAILQ_NEXT(m, listq);
1088		}
1089	}
1090	return (m);
1091}
1092
1093/*
1094 * Returns the given page's successor (by pindex) within the object if it is
1095 * resident; if none is found, NULL is returned.
1096 *
1097 * The object must be locked.
1098 */
1099vm_page_t
1100vm_page_next(vm_page_t m)
1101{
1102	vm_page_t next;
1103
1104	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1105	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1106	    next->pindex != m->pindex + 1)
1107		next = NULL;
1108	return (next);
1109}
1110
1111/*
1112 * Returns the given page's predecessor (by pindex) within the object if it is
1113 * resident; if none is found, NULL is returned.
1114 *
1115 * The object must be locked.
1116 */
1117vm_page_t
1118vm_page_prev(vm_page_t m)
1119{
1120	vm_page_t prev;
1121
1122	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1123	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1124	    prev->pindex != m->pindex - 1)
1125		prev = NULL;
1126	return (prev);
1127}
1128
1129/*
1130 *	vm_page_rename:
1131 *
1132 *	Move the given memory entry from its
1133 *	current object to the specified target object/offset.
1134 *
1135 *	Note: swap associated with the page must be invalidated by the move.  We
1136 *	      have to do this for several reasons:  (1) we aren't freeing the
1137 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1138 *	      moving the page from object A to B, and will then later move
1139 *	      the backing store from A to B and we can't have a conflict.
1140 *
1141 *	Note: we *always* dirty the page.  It is necessary both for the
1142 *	      fact that we moved it, and because we may be invalidating
1143 *	      swap.  If the page is on the cache, we have to deactivate it
1144 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1145 *	      on the cache.
1146 *
1147 *	The objects must be locked.  The page must be locked if it is managed.
1148 */
1149void
1150vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1151{
1152
1153	vm_page_remove(m);
1154	vm_page_insert(m, new_object, new_pindex);
1155	vm_page_dirty(m);
1156}
1157
1158/*
1159 *	Convert all of the given object's cached pages that have a
1160 *	pindex within the given range into free pages.  If the value
1161 *	zero is given for "end", then the range's upper bound is
1162 *	infinity.  If the given object is backed by a vnode and it
1163 *	transitions from having one or more cached pages to none, the
1164 *	vnode's hold count is reduced.
1165 */
1166void
1167vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1168{
1169	vm_page_t m, m_next;
1170	boolean_t empty;
1171
1172	mtx_lock(&vm_page_queue_free_mtx);
1173	if (__predict_false(object->cache == NULL)) {
1174		mtx_unlock(&vm_page_queue_free_mtx);
1175		return;
1176	}
1177	m = object->cache = vm_page_splay(start, object->cache);
1178	if (m->pindex < start) {
1179		if (m->right == NULL)
1180			m = NULL;
1181		else {
1182			m_next = vm_page_splay(start, m->right);
1183			m_next->left = m;
1184			m->right = NULL;
1185			m = object->cache = m_next;
1186		}
1187	}
1188
1189	/*
1190	 * At this point, "m" is either (1) a reference to the page
1191	 * with the least pindex that is greater than or equal to
1192	 * "start" or (2) NULL.
1193	 */
1194	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1195		/*
1196		 * Find "m"'s successor and remove "m" from the
1197		 * object's cache.
1198		 */
1199		if (m->right == NULL) {
1200			object->cache = m->left;
1201			m_next = NULL;
1202		} else {
1203			m_next = vm_page_splay(start, m->right);
1204			m_next->left = m->left;
1205			object->cache = m_next;
1206		}
1207		/* Convert "m" to a free page. */
1208		m->object = NULL;
1209		m->valid = 0;
1210		/* Clear PG_CACHED and set PG_FREE. */
1211		m->flags ^= PG_CACHED | PG_FREE;
1212		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1213		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1214		cnt.v_cache_count--;
1215		cnt.v_free_count++;
1216	}
1217	empty = object->cache == NULL;
1218	mtx_unlock(&vm_page_queue_free_mtx);
1219	if (object->type == OBJT_VNODE && empty)
1220		vdrop(object->handle);
1221}
1222
1223/*
1224 *	Returns the cached page that is associated with the given
1225 *	object and offset.  If, however, none exists, returns NULL.
1226 *
1227 *	The free page queue must be locked.
1228 */
1229static inline vm_page_t
1230vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1231{
1232	vm_page_t m;
1233
1234	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1235	if ((m = object->cache) != NULL && m->pindex != pindex) {
1236		m = vm_page_splay(pindex, m);
1237		if ((object->cache = m)->pindex != pindex)
1238			m = NULL;
1239	}
1240	return (m);
1241}
1242
1243/*
1244 *	Remove the given cached page from its containing object's
1245 *	collection of cached pages.
1246 *
1247 *	The free page queue must be locked.
1248 */
1249void
1250vm_page_cache_remove(vm_page_t m)
1251{
1252	vm_object_t object;
1253	vm_page_t root;
1254
1255	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1256	KASSERT((m->flags & PG_CACHED) != 0,
1257	    ("vm_page_cache_remove: page %p is not cached", m));
1258	object = m->object;
1259	if (m != object->cache) {
1260		root = vm_page_splay(m->pindex, object->cache);
1261		KASSERT(root == m,
1262		    ("vm_page_cache_remove: page %p is not cached in object %p",
1263		    m, object));
1264	}
1265	if (m->left == NULL)
1266		root = m->right;
1267	else if (m->right == NULL)
1268		root = m->left;
1269	else {
1270		root = vm_page_splay(m->pindex, m->left);
1271		root->right = m->right;
1272	}
1273	object->cache = root;
1274	m->object = NULL;
1275	cnt.v_cache_count--;
1276}
1277
1278/*
1279 *	Transfer all of the cached pages with offset greater than or
1280 *	equal to 'offidxstart' from the original object's cache to the
1281 *	new object's cache.  However, any cached pages with offset
1282 *	greater than or equal to the new object's size are kept in the
1283 *	original object.  Initially, the new object's cache must be
1284 *	empty.  Offset 'offidxstart' in the original object must
1285 *	correspond to offset zero in the new object.
1286 *
1287 *	The new object must be locked.
1288 */
1289void
1290vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1291    vm_object_t new_object)
1292{
1293	vm_page_t m, m_next;
1294
1295	/*
1296	 * Insertion into an object's collection of cached pages
1297	 * requires the object to be locked.  In contrast, removal does
1298	 * not.
1299	 */
1300	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1301	KASSERT(new_object->cache == NULL,
1302	    ("vm_page_cache_transfer: object %p has cached pages",
1303	    new_object));
1304	mtx_lock(&vm_page_queue_free_mtx);
1305	if ((m = orig_object->cache) != NULL) {
1306		/*
1307		 * Transfer all of the pages with offset greater than or
1308		 * equal to 'offidxstart' from the original object's
1309		 * cache to the new object's cache.
1310		 */
1311		m = vm_page_splay(offidxstart, m);
1312		if (m->pindex < offidxstart) {
1313			orig_object->cache = m;
1314			new_object->cache = m->right;
1315			m->right = NULL;
1316		} else {
1317			orig_object->cache = m->left;
1318			new_object->cache = m;
1319			m->left = NULL;
1320		}
1321		while ((m = new_object->cache) != NULL) {
1322			if ((m->pindex - offidxstart) >= new_object->size) {
1323				/*
1324				 * Return all of the cached pages with
1325				 * offset greater than or equal to the
1326				 * new object's size to the original
1327				 * object's cache.
1328				 */
1329				new_object->cache = m->left;
1330				m->left = orig_object->cache;
1331				orig_object->cache = m;
1332				break;
1333			}
1334			m_next = vm_page_splay(m->pindex, m->right);
1335			/* Update the page's object and offset. */
1336			m->object = new_object;
1337			m->pindex -= offidxstart;
1338			if (m_next == NULL)
1339				break;
1340			m->right = NULL;
1341			m_next->left = m;
1342			new_object->cache = m_next;
1343		}
1344		KASSERT(new_object->cache == NULL ||
1345		    new_object->type == OBJT_SWAP,
1346		    ("vm_page_cache_transfer: object %p's type is incompatible"
1347		    " with cached pages", new_object));
1348	}
1349	mtx_unlock(&vm_page_queue_free_mtx);
1350}
1351
1352/*
1353 *	Returns TRUE if a cached page is associated with the given object and
1354 *	offset, and FALSE otherwise.
1355 *
1356 *	The object must be locked.
1357 */
1358boolean_t
1359vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1360{
1361	vm_page_t m;
1362
1363	/*
1364	 * Insertion into an object's collection of cached pages requires the
1365	 * object to be locked.  Therefore, if the object is locked and the
1366	 * object's collection is empty, there is no need to acquire the free
1367	 * page queues lock in order to prove that the specified page doesn't
1368	 * exist.
1369	 */
1370	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1371	if (object->cache == NULL)
1372		return (FALSE);
1373	mtx_lock(&vm_page_queue_free_mtx);
1374	m = vm_page_cache_lookup(object, pindex);
1375	mtx_unlock(&vm_page_queue_free_mtx);
1376	return (m != NULL);
1377}
1378
1379/*
1380 *	vm_page_alloc:
1381 *
1382 *	Allocate and return a memory cell associated
1383 *	with this VM object/offset pair.
1384 *
1385 *	The caller must always specify an allocation class.
1386 *
1387 *	allocation classes:
1388 *	VM_ALLOC_NORMAL		normal process request
1389 *	VM_ALLOC_SYSTEM		system *really* needs a page
1390 *	VM_ALLOC_INTERRUPT	interrupt time request
1391 *
1392 *	optional allocation flags:
1393 *	VM_ALLOC_ZERO		prefer a zeroed page
1394 *	VM_ALLOC_WIRED		wire the allocated page
1395 *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1396 *	VM_ALLOC_NOBUSY		do not set the page busy
1397 *	VM_ALLOC_IFCACHED	return page only if it is cached
1398 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1399 *				is cached
1400 *
1401 *	This routine may not sleep.
1402 */
1403vm_page_t
1404vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1405{
1406	struct vnode *vp = NULL;
1407	vm_object_t m_object;
1408	vm_page_t m;
1409	int flags, page_req;
1410
1411	if ((req & VM_ALLOC_NOOBJ) == 0) {
1412		KASSERT(object != NULL,
1413		    ("vm_page_alloc: NULL object."));
1414		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1415	}
1416
1417	page_req = req & VM_ALLOC_CLASS_MASK;
1418
1419	/*
1420	 * The pager is allowed to eat deeper into the free page list.
1421	 */
1422	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT))
1423		page_req = VM_ALLOC_SYSTEM;
1424
1425	mtx_lock(&vm_page_queue_free_mtx);
1426	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1427	    (page_req == VM_ALLOC_SYSTEM &&
1428	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1429	    (page_req == VM_ALLOC_INTERRUPT &&
1430	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1431		/*
1432		 * Allocate from the free queue if the number of free pages
1433		 * exceeds the minimum for the request class.
1434		 */
1435		if (object != NULL &&
1436		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1437			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1438				mtx_unlock(&vm_page_queue_free_mtx);
1439				return (NULL);
1440			}
1441			if (vm_phys_unfree_page(m))
1442				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1443#if VM_NRESERVLEVEL > 0
1444			else if (!vm_reserv_reactivate_page(m))
1445#else
1446			else
1447#endif
1448				panic("vm_page_alloc: cache page %p is missing"
1449				    " from the free queue", m);
1450		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1451			mtx_unlock(&vm_page_queue_free_mtx);
1452			return (NULL);
1453#if VM_NRESERVLEVEL > 0
1454		} else if (object == NULL || object->type == OBJT_DEVICE ||
1455		    object->type == OBJT_SG ||
1456		    (object->flags & OBJ_COLORED) == 0 ||
1457		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1458#else
1459		} else {
1460#endif
1461			m = vm_phys_alloc_pages(object != NULL ?
1462			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1463#if VM_NRESERVLEVEL > 0
1464			if (m == NULL && vm_reserv_reclaim_inactive()) {
1465				m = vm_phys_alloc_pages(object != NULL ?
1466				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1467				    0);
1468			}
1469#endif
1470		}
1471	} else {
1472		/*
1473		 * Not allocatable, give up.
1474		 */
1475		mtx_unlock(&vm_page_queue_free_mtx);
1476		atomic_add_int(&vm_pageout_deficit,
1477		    MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1478		pagedaemon_wakeup();
1479		return (NULL);
1480	}
1481
1482	/*
1483	 *  At this point we had better have found a good page.
1484	 */
1485
1486	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1487	KASSERT(m->queue == PQ_NONE,
1488	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1489	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1490	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1491	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1492	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1493	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1494	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1495	    pmap_page_get_memattr(m)));
1496	if ((m->flags & PG_CACHED) != 0) {
1497		KASSERT(m->valid != 0,
1498		    ("vm_page_alloc: cached page %p is invalid", m));
1499		if (m->object == object && m->pindex == pindex)
1500	  		cnt.v_reactivated++;
1501		else
1502			m->valid = 0;
1503		m_object = m->object;
1504		vm_page_cache_remove(m);
1505		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1506			vp = m_object->handle;
1507	} else {
1508		KASSERT(VM_PAGE_IS_FREE(m),
1509		    ("vm_page_alloc: page %p is not free", m));
1510		KASSERT(m->valid == 0,
1511		    ("vm_page_alloc: free page %p is valid", m));
1512		cnt.v_free_count--;
1513	}
1514
1515	/*
1516	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1517	 * must be cleared before the free page queues lock is released.
1518	 */
1519	flags = 0;
1520	if (req & VM_ALLOC_NODUMP)
1521		flags |= PG_NODUMP;
1522	if (m->flags & PG_ZERO) {
1523		vm_page_zero_count--;
1524		if (req & VM_ALLOC_ZERO)
1525			flags = PG_ZERO;
1526	}
1527	m->flags = flags;
1528	mtx_unlock(&vm_page_queue_free_mtx);
1529	m->aflags = 0;
1530	if (object == NULL || object->type == OBJT_PHYS)
1531		m->oflags = VPO_UNMANAGED;
1532	else
1533		m->oflags = 0;
1534	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
1535		m->oflags |= VPO_BUSY;
1536	if (req & VM_ALLOC_WIRED) {
1537		/*
1538		 * The page lock is not required for wiring a page until that
1539		 * page is inserted into the object.
1540		 */
1541		atomic_add_int(&cnt.v_wire_count, 1);
1542		m->wire_count = 1;
1543	}
1544	m->act_count = 0;
1545
1546	if (object != NULL) {
1547		/* Ignore device objects; the pager sets "memattr" for them. */
1548		if (object->memattr != VM_MEMATTR_DEFAULT &&
1549		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1550			pmap_page_set_memattr(m, object->memattr);
1551		vm_page_insert(m, object, pindex);
1552	} else
1553		m->pindex = pindex;
1554
1555	/*
1556	 * The following call to vdrop() must come after the above call
1557	 * to vm_page_insert() in case both affect the same object and
1558	 * vnode.  Otherwise, the affected vnode's hold count could
1559	 * temporarily become zero.
1560	 */
1561	if (vp != NULL)
1562		vdrop(vp);
1563
1564	/*
1565	 * Don't wakeup too often - wakeup the pageout daemon when
1566	 * we would be nearly out of memory.
1567	 */
1568	if (vm_paging_needed())
1569		pagedaemon_wakeup();
1570
1571	return (m);
1572}
1573
1574/*
1575 * Initialize a page that has been freshly dequeued from a freelist.
1576 * The caller has to drop the vnode returned, if it is not NULL.
1577 *
1578 * To be called with vm_page_queue_free_mtx held.
1579 */
1580struct vnode *
1581vm_page_alloc_init(vm_page_t m)
1582{
1583	struct vnode *drop;
1584	vm_object_t m_object;
1585
1586	KASSERT(m->queue == PQ_NONE,
1587	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1588	    m, m->queue));
1589	KASSERT(m->wire_count == 0,
1590	    ("vm_page_alloc_init: page %p is wired", m));
1591	KASSERT(m->hold_count == 0,
1592	    ("vm_page_alloc_init: page %p is held", m));
1593	KASSERT(m->busy == 0,
1594	    ("vm_page_alloc_init: page %p is busy", m));
1595	KASSERT(m->dirty == 0,
1596	    ("vm_page_alloc_init: page %p is dirty", m));
1597	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1598	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1599	    m, pmap_page_get_memattr(m)));
1600	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1601	drop = NULL;
1602	if ((m->flags & PG_CACHED) != 0) {
1603		m->valid = 0;
1604		m_object = m->object;
1605		vm_page_cache_remove(m);
1606		if (m_object->type == OBJT_VNODE &&
1607		    m_object->cache == NULL)
1608			drop = m_object->handle;
1609	} else {
1610		KASSERT(VM_PAGE_IS_FREE(m),
1611		    ("vm_page_alloc_init: page %p is not free", m));
1612		KASSERT(m->valid == 0,
1613		    ("vm_page_alloc_init: free page %p is valid", m));
1614		cnt.v_free_count--;
1615	}
1616	if (m->flags & PG_ZERO)
1617		vm_page_zero_count--;
1618	/* Don't clear the PG_ZERO flag; we'll need it later. */
1619	m->flags &= PG_ZERO;
1620	m->aflags = 0;
1621	m->oflags = VPO_UNMANAGED;
1622	/* Unmanaged pages don't use "act_count". */
1623	return (drop);
1624}
1625
1626/*
1627 * 	vm_page_alloc_freelist:
1628 *
1629 *	Allocate a page from the specified freelist.
1630 *	Only the ALLOC_CLASS values in req are honored, other request flags
1631 *	are ignored.
1632 */
1633vm_page_t
1634vm_page_alloc_freelist(int flind, int req)
1635{
1636	struct vnode *drop;
1637	vm_page_t m;
1638	int page_req;
1639
1640	m = NULL;
1641	page_req = req & VM_ALLOC_CLASS_MASK;
1642	mtx_lock(&vm_page_queue_free_mtx);
1643	/*
1644	 * Do not allocate reserved pages unless the req has asked for it.
1645	 */
1646	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1647	    (page_req == VM_ALLOC_SYSTEM &&
1648	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1649	    (page_req == VM_ALLOC_INTERRUPT &&
1650	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1651		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1652	}
1653	if (m == NULL) {
1654		mtx_unlock(&vm_page_queue_free_mtx);
1655		return (NULL);
1656	}
1657	drop = vm_page_alloc_init(m);
1658	mtx_unlock(&vm_page_queue_free_mtx);
1659	if (drop)
1660		vdrop(drop);
1661	return (m);
1662}
1663
1664/*
1665 *	vm_wait:	(also see VM_WAIT macro)
1666 *
1667 *	Sleep until free pages are available for allocation.
1668 *	- Called in various places before memory allocations.
1669 */
1670void
1671vm_wait(void)
1672{
1673
1674	mtx_lock(&vm_page_queue_free_mtx);
1675	if (curproc == pageproc) {
1676		vm_pageout_pages_needed = 1;
1677		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1678		    PDROP | PSWP, "VMWait", 0);
1679	} else {
1680		if (!vm_pages_needed) {
1681			vm_pages_needed = 1;
1682			wakeup(&vm_pages_needed);
1683		}
1684		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1685		    "vmwait", 0);
1686	}
1687}
1688
1689/*
1690 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1691 *
1692 *	Sleep until free pages are available for allocation.
1693 *	- Called only in vm_fault so that processes page faulting
1694 *	  can be easily tracked.
1695 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1696 *	  processes will be able to grab memory first.  Do not change
1697 *	  this balance without careful testing first.
1698 */
1699void
1700vm_waitpfault(void)
1701{
1702
1703	mtx_lock(&vm_page_queue_free_mtx);
1704	if (!vm_pages_needed) {
1705		vm_pages_needed = 1;
1706		wakeup(&vm_pages_needed);
1707	}
1708	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1709	    "pfault", 0);
1710}
1711
1712/*
1713 *	vm_page_requeue:
1714 *
1715 *	Move the given page to the tail of its present page queue.
1716 *
1717 *	The page queues must be locked.
1718 */
1719void
1720vm_page_requeue(vm_page_t m)
1721{
1722	struct vpgqueues *vpq;
1723	int queue;
1724
1725	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1726	queue = m->queue;
1727	KASSERT(queue != PQ_NONE,
1728	    ("vm_page_requeue: page %p is not queued", m));
1729	vpq = &vm_page_queues[queue];
1730	TAILQ_REMOVE(&vpq->pl, m, pageq);
1731	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1732}
1733
1734/*
1735 *	vm_page_queue_remove:
1736 *
1737 *	Remove the given page from the specified queue.
1738 *
1739 *	The page and page queues must be locked.
1740 */
1741static __inline void
1742vm_page_queue_remove(int queue, vm_page_t m)
1743{
1744	struct vpgqueues *pq;
1745
1746	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1747	vm_page_lock_assert(m, MA_OWNED);
1748	pq = &vm_page_queues[queue];
1749	TAILQ_REMOVE(&pq->pl, m, pageq);
1750	(*pq->cnt)--;
1751}
1752
1753/*
1754 *	vm_pageq_remove:
1755 *
1756 *	Remove a page from its queue.
1757 *
1758 *	The given page must be locked.
1759 */
1760void
1761vm_pageq_remove(vm_page_t m)
1762{
1763	int queue;
1764
1765	vm_page_lock_assert(m, MA_OWNED);
1766	if ((queue = m->queue) != PQ_NONE) {
1767		vm_page_lock_queues();
1768		m->queue = PQ_NONE;
1769		vm_page_queue_remove(queue, m);
1770		vm_page_unlock_queues();
1771	}
1772}
1773
1774/*
1775 *	vm_page_enqueue:
1776 *
1777 *	Add the given page to the specified queue.
1778 *
1779 *	The page queues must be locked.
1780 */
1781static void
1782vm_page_enqueue(int queue, vm_page_t m)
1783{
1784	struct vpgqueues *vpq;
1785
1786	vpq = &vm_page_queues[queue];
1787	m->queue = queue;
1788	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1789	++*vpq->cnt;
1790}
1791
1792/*
1793 *	vm_page_activate:
1794 *
1795 *	Put the specified page on the active list (if appropriate).
1796 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1797 *	mess with it.
1798 *
1799 *	The page must be locked.
1800 */
1801void
1802vm_page_activate(vm_page_t m)
1803{
1804	int queue;
1805
1806	vm_page_lock_assert(m, MA_OWNED);
1807	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1808	if ((queue = m->queue) != PQ_ACTIVE) {
1809		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1810			if (m->act_count < ACT_INIT)
1811				m->act_count = ACT_INIT;
1812			vm_page_lock_queues();
1813			if (queue != PQ_NONE)
1814				vm_page_queue_remove(queue, m);
1815			vm_page_enqueue(PQ_ACTIVE, m);
1816			vm_page_unlock_queues();
1817		} else
1818			KASSERT(queue == PQ_NONE,
1819			    ("vm_page_activate: wired page %p is queued", m));
1820	} else {
1821		if (m->act_count < ACT_INIT)
1822			m->act_count = ACT_INIT;
1823	}
1824}
1825
1826/*
1827 *	vm_page_free_wakeup:
1828 *
1829 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1830 *	routine is called when a page has been added to the cache or free
1831 *	queues.
1832 *
1833 *	The page queues must be locked.
1834 */
1835static inline void
1836vm_page_free_wakeup(void)
1837{
1838
1839	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1840	/*
1841	 * if pageout daemon needs pages, then tell it that there are
1842	 * some free.
1843	 */
1844	if (vm_pageout_pages_needed &&
1845	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1846		wakeup(&vm_pageout_pages_needed);
1847		vm_pageout_pages_needed = 0;
1848	}
1849	/*
1850	 * wakeup processes that are waiting on memory if we hit a
1851	 * high water mark. And wakeup scheduler process if we have
1852	 * lots of memory. this process will swapin processes.
1853	 */
1854	if (vm_pages_needed && !vm_page_count_min()) {
1855		vm_pages_needed = 0;
1856		wakeup(&cnt.v_free_count);
1857	}
1858}
1859
1860/*
1861 *	vm_page_free_toq:
1862 *
1863 *	Returns the given page to the free list,
1864 *	disassociating it with any VM object.
1865 *
1866 *	The object must be locked.  The page must be locked if it is managed.
1867 */
1868void
1869vm_page_free_toq(vm_page_t m)
1870{
1871
1872	if ((m->oflags & VPO_UNMANAGED) == 0) {
1873		vm_page_lock_assert(m, MA_OWNED);
1874		KASSERT(!pmap_page_is_mapped(m),
1875		    ("vm_page_free_toq: freeing mapped page %p", m));
1876	}
1877	PCPU_INC(cnt.v_tfree);
1878
1879	if (VM_PAGE_IS_FREE(m))
1880		panic("vm_page_free: freeing free page %p", m);
1881	else if (m->busy != 0)
1882		panic("vm_page_free: freeing busy page %p", m);
1883
1884	/*
1885	 * Unqueue, then remove page.  Note that we cannot destroy
1886	 * the page here because we do not want to call the pager's
1887	 * callback routine until after we've put the page on the
1888	 * appropriate free queue.
1889	 */
1890	if ((m->oflags & VPO_UNMANAGED) == 0)
1891		vm_pageq_remove(m);
1892	vm_page_remove(m);
1893
1894	/*
1895	 * If fictitious remove object association and
1896	 * return, otherwise delay object association removal.
1897	 */
1898	if ((m->flags & PG_FICTITIOUS) != 0) {
1899		return;
1900	}
1901
1902	m->valid = 0;
1903	vm_page_undirty(m);
1904
1905	if (m->wire_count != 0)
1906		panic("vm_page_free: freeing wired page %p", m);
1907	if (m->hold_count != 0) {
1908		m->flags &= ~PG_ZERO;
1909		vm_page_lock_queues();
1910		vm_page_enqueue(PQ_HOLD, m);
1911		vm_page_unlock_queues();
1912	} else {
1913		/*
1914		 * Restore the default memory attribute to the page.
1915		 */
1916		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1917			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1918
1919		/*
1920		 * Insert the page into the physical memory allocator's
1921		 * cache/free page queues.
1922		 */
1923		mtx_lock(&vm_page_queue_free_mtx);
1924		m->flags |= PG_FREE;
1925		cnt.v_free_count++;
1926#if VM_NRESERVLEVEL > 0
1927		if (!vm_reserv_free_page(m))
1928#else
1929		if (TRUE)
1930#endif
1931			vm_phys_free_pages(m, 0);
1932		if ((m->flags & PG_ZERO) != 0)
1933			++vm_page_zero_count;
1934		else
1935			vm_page_zero_idle_wakeup();
1936		vm_page_free_wakeup();
1937		mtx_unlock(&vm_page_queue_free_mtx);
1938	}
1939}
1940
1941/*
1942 *	vm_page_wire:
1943 *
1944 *	Mark this page as wired down by yet
1945 *	another map, removing it from paging queues
1946 *	as necessary.
1947 *
1948 *	If the page is fictitious, then its wire count must remain one.
1949 *
1950 *	The page must be locked.
1951 */
1952void
1953vm_page_wire(vm_page_t m)
1954{
1955
1956	/*
1957	 * Only bump the wire statistics if the page is not already wired,
1958	 * and only unqueue the page if it is on some queue (if it is unmanaged
1959	 * it is already off the queues).
1960	 */
1961	vm_page_lock_assert(m, MA_OWNED);
1962	if ((m->flags & PG_FICTITIOUS) != 0) {
1963		KASSERT(m->wire_count == 1,
1964		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1965		    m));
1966		return;
1967	}
1968	if (m->wire_count == 0) {
1969		if ((m->oflags & VPO_UNMANAGED) == 0)
1970			vm_pageq_remove(m);
1971		atomic_add_int(&cnt.v_wire_count, 1);
1972	}
1973	m->wire_count++;
1974	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1975}
1976
1977/*
1978 * vm_page_unwire:
1979 *
1980 * Release one wiring of the specified page, potentially enabling it to be
1981 * paged again.  If paging is enabled, then the value of the parameter
1982 * "activate" determines to which queue the page is added.  If "activate" is
1983 * non-zero, then the page is added to the active queue.  Otherwise, it is
1984 * added to the inactive queue.
1985 *
1986 * However, unless the page belongs to an object, it is not enqueued because
1987 * it cannot be paged out.
1988 *
1989 * If a page is fictitious, then its wire count must alway be one.
1990 *
1991 * A managed page must be locked.
1992 */
1993void
1994vm_page_unwire(vm_page_t m, int activate)
1995{
1996
1997	if ((m->oflags & VPO_UNMANAGED) == 0)
1998		vm_page_lock_assert(m, MA_OWNED);
1999	if ((m->flags & PG_FICTITIOUS) != 0) {
2000		KASSERT(m->wire_count == 1,
2001	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2002		return;
2003	}
2004	if (m->wire_count > 0) {
2005		m->wire_count--;
2006		if (m->wire_count == 0) {
2007			atomic_subtract_int(&cnt.v_wire_count, 1);
2008			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2009			    m->object == NULL)
2010				return;
2011			if (!activate)
2012				m->flags &= ~PG_WINATCFLS;
2013			vm_page_lock_queues();
2014			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2015			vm_page_unlock_queues();
2016		}
2017	} else
2018		panic("vm_page_unwire: page %p's wire count is zero", m);
2019}
2020
2021/*
2022 * Move the specified page to the inactive queue.
2023 *
2024 * Many pages placed on the inactive queue should actually go
2025 * into the cache, but it is difficult to figure out which.  What
2026 * we do instead, if the inactive target is well met, is to put
2027 * clean pages at the head of the inactive queue instead of the tail.
2028 * This will cause them to be moved to the cache more quickly and
2029 * if not actively re-referenced, reclaimed more quickly.  If we just
2030 * stick these pages at the end of the inactive queue, heavy filesystem
2031 * meta-data accesses can cause an unnecessary paging load on memory bound
2032 * processes.  This optimization causes one-time-use metadata to be
2033 * reused more quickly.
2034 *
2035 * Normally athead is 0 resulting in LRU operation.  athead is set
2036 * to 1 if we want this page to be 'as if it were placed in the cache',
2037 * except without unmapping it from the process address space.
2038 *
2039 * The page must be locked.
2040 */
2041static inline void
2042_vm_page_deactivate(vm_page_t m, int athead)
2043{
2044	int queue;
2045
2046	vm_page_lock_assert(m, MA_OWNED);
2047
2048	/*
2049	 * Ignore if already inactive.
2050	 */
2051	if ((queue = m->queue) == PQ_INACTIVE)
2052		return;
2053	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2054		m->flags &= ~PG_WINATCFLS;
2055		vm_page_lock_queues();
2056		if (queue != PQ_NONE)
2057			vm_page_queue_remove(queue, m);
2058		if (athead)
2059			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
2060			    pageq);
2061		else
2062			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
2063			    pageq);
2064		m->queue = PQ_INACTIVE;
2065		cnt.v_inactive_count++;
2066		vm_page_unlock_queues();
2067	}
2068}
2069
2070/*
2071 * Move the specified page to the inactive queue.
2072 *
2073 * The page must be locked.
2074 */
2075void
2076vm_page_deactivate(vm_page_t m)
2077{
2078
2079	_vm_page_deactivate(m, 0);
2080}
2081
2082/*
2083 * vm_page_try_to_cache:
2084 *
2085 * Returns 0 on failure, 1 on success
2086 */
2087int
2088vm_page_try_to_cache(vm_page_t m)
2089{
2090
2091	vm_page_lock_assert(m, MA_OWNED);
2092	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2093	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2094	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2095		return (0);
2096	pmap_remove_all(m);
2097	if (m->dirty)
2098		return (0);
2099	vm_page_cache(m);
2100	return (1);
2101}
2102
2103/*
2104 * vm_page_try_to_free()
2105 *
2106 *	Attempt to free the page.  If we cannot free it, we do nothing.
2107 *	1 is returned on success, 0 on failure.
2108 */
2109int
2110vm_page_try_to_free(vm_page_t m)
2111{
2112
2113	vm_page_lock_assert(m, MA_OWNED);
2114	if (m->object != NULL)
2115		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2116	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2117	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2118		return (0);
2119	pmap_remove_all(m);
2120	if (m->dirty)
2121		return (0);
2122	vm_page_free(m);
2123	return (1);
2124}
2125
2126/*
2127 * vm_page_cache
2128 *
2129 * Put the specified page onto the page cache queue (if appropriate).
2130 *
2131 * The object and page must be locked.
2132 */
2133void
2134vm_page_cache(vm_page_t m)
2135{
2136	vm_object_t object;
2137	vm_page_t next, prev, root;
2138
2139	vm_page_lock_assert(m, MA_OWNED);
2140	object = m->object;
2141	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2142	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
2143	    m->hold_count || m->wire_count)
2144		panic("vm_page_cache: attempting to cache busy page");
2145	pmap_remove_all(m);
2146	if (m->dirty != 0)
2147		panic("vm_page_cache: page %p is dirty", m);
2148	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2149	    (object->type == OBJT_SWAP &&
2150	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2151		/*
2152		 * Hypothesis: A cache-elgible page belonging to a
2153		 * default object or swap object but without a backing
2154		 * store must be zero filled.
2155		 */
2156		vm_page_free(m);
2157		return;
2158	}
2159	KASSERT((m->flags & PG_CACHED) == 0,
2160	    ("vm_page_cache: page %p is already cached", m));
2161	PCPU_INC(cnt.v_tcached);
2162
2163	/*
2164	 * Remove the page from the paging queues.
2165	 */
2166	vm_pageq_remove(m);
2167
2168	/*
2169	 * Remove the page from the object's collection of resident
2170	 * pages.
2171	 */
2172	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
2173		/*
2174		 * Since the page's successor in the list is also its parent
2175		 * in the tree, its right subtree must be empty.
2176		 */
2177		next->left = m->left;
2178		KASSERT(m->right == NULL,
2179		    ("vm_page_cache: page %p has right child", m));
2180	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
2181	    prev->right == m) {
2182		/*
2183		 * Since the page's predecessor in the list is also its parent
2184		 * in the tree, its left subtree must be empty.
2185		 */
2186		KASSERT(m->left == NULL,
2187		    ("vm_page_cache: page %p has left child", m));
2188		prev->right = m->right;
2189	} else {
2190		if (m != object->root)
2191			vm_page_splay(m->pindex, object->root);
2192		if (m->left == NULL)
2193			root = m->right;
2194		else if (m->right == NULL)
2195			root = m->left;
2196		else {
2197			/*
2198			 * Move the page's successor to the root, because
2199			 * pages are usually removed in ascending order.
2200			 */
2201			if (m->right != next)
2202				vm_page_splay(m->pindex, m->right);
2203			next->left = m->left;
2204			root = next;
2205		}
2206		object->root = root;
2207	}
2208	TAILQ_REMOVE(&object->memq, m, listq);
2209	object->resident_page_count--;
2210
2211	/*
2212	 * Restore the default memory attribute to the page.
2213	 */
2214	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2215		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2216
2217	/*
2218	 * Insert the page into the object's collection of cached pages
2219	 * and the physical memory allocator's cache/free page queues.
2220	 */
2221	m->flags &= ~PG_ZERO;
2222	mtx_lock(&vm_page_queue_free_mtx);
2223	m->flags |= PG_CACHED;
2224	cnt.v_cache_count++;
2225	root = object->cache;
2226	if (root == NULL) {
2227		m->left = NULL;
2228		m->right = NULL;
2229	} else {
2230		root = vm_page_splay(m->pindex, root);
2231		if (m->pindex < root->pindex) {
2232			m->left = root->left;
2233			m->right = root;
2234			root->left = NULL;
2235		} else if (__predict_false(m->pindex == root->pindex))
2236			panic("vm_page_cache: offset already cached");
2237		else {
2238			m->right = root->right;
2239			m->left = root;
2240			root->right = NULL;
2241		}
2242	}
2243	object->cache = m;
2244#if VM_NRESERVLEVEL > 0
2245	if (!vm_reserv_free_page(m)) {
2246#else
2247	if (TRUE) {
2248#endif
2249		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2250		vm_phys_free_pages(m, 0);
2251	}
2252	vm_page_free_wakeup();
2253	mtx_unlock(&vm_page_queue_free_mtx);
2254
2255	/*
2256	 * Increment the vnode's hold count if this is the object's only
2257	 * cached page.  Decrement the vnode's hold count if this was
2258	 * the object's only resident page.
2259	 */
2260	if (object->type == OBJT_VNODE) {
2261		if (root == NULL && object->resident_page_count != 0)
2262			vhold(object->handle);
2263		else if (root != NULL && object->resident_page_count == 0)
2264			vdrop(object->handle);
2265	}
2266}
2267
2268/*
2269 * vm_page_dontneed
2270 *
2271 *	Cache, deactivate, or do nothing as appropriate.  This routine
2272 *	is typically used by madvise() MADV_DONTNEED.
2273 *
2274 *	Generally speaking we want to move the page into the cache so
2275 *	it gets reused quickly.  However, this can result in a silly syndrome
2276 *	due to the page recycling too quickly.  Small objects will not be
2277 *	fully cached.  On the otherhand, if we move the page to the inactive
2278 *	queue we wind up with a problem whereby very large objects
2279 *	unnecessarily blow away our inactive and cache queues.
2280 *
2281 *	The solution is to move the pages based on a fixed weighting.  We
2282 *	either leave them alone, deactivate them, or move them to the cache,
2283 *	where moving them to the cache has the highest weighting.
2284 *	By forcing some pages into other queues we eventually force the
2285 *	system to balance the queues, potentially recovering other unrelated
2286 *	space from active.  The idea is to not force this to happen too
2287 *	often.
2288 *
2289 *	The object and page must be locked.
2290 */
2291void
2292vm_page_dontneed(vm_page_t m)
2293{
2294	int dnw;
2295	int head;
2296
2297	vm_page_lock_assert(m, MA_OWNED);
2298	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2299	dnw = PCPU_GET(dnweight);
2300	PCPU_INC(dnweight);
2301
2302	/*
2303	 * Occasionally leave the page alone.
2304	 */
2305	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2306		if (m->act_count >= ACT_INIT)
2307			--m->act_count;
2308		return;
2309	}
2310
2311	/*
2312	 * Clear any references to the page.  Otherwise, the page daemon will
2313	 * immediately reactivate the page.
2314	 *
2315	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2316	 * pmap operation, such as pmap_remove(), could clear a reference in
2317	 * the pmap and set PGA_REFERENCED on the page before the
2318	 * pmap_clear_reference() had completed.  Consequently, the page would
2319	 * appear referenced based upon an old reference that occurred before
2320	 * this function ran.
2321	 */
2322	pmap_clear_reference(m);
2323	vm_page_aflag_clear(m, PGA_REFERENCED);
2324
2325	if (m->dirty == 0 && pmap_is_modified(m))
2326		vm_page_dirty(m);
2327
2328	if (m->dirty || (dnw & 0x0070) == 0) {
2329		/*
2330		 * Deactivate the page 3 times out of 32.
2331		 */
2332		head = 0;
2333	} else {
2334		/*
2335		 * Cache the page 28 times out of every 32.  Note that
2336		 * the page is deactivated instead of cached, but placed
2337		 * at the head of the queue instead of the tail.
2338		 */
2339		head = 1;
2340	}
2341	_vm_page_deactivate(m, head);
2342}
2343
2344/*
2345 * Grab a page, waiting until we are waken up due to the page
2346 * changing state.  We keep on waiting, if the page continues
2347 * to be in the object.  If the page doesn't exist, first allocate it
2348 * and then conditionally zero it.
2349 *
2350 * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2351 * to facilitate its eventual removal.
2352 *
2353 * This routine may sleep.
2354 *
2355 * The object must be locked on entry.  The lock will, however, be released
2356 * and reacquired if the routine sleeps.
2357 */
2358vm_page_t
2359vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2360{
2361	vm_page_t m;
2362
2363	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2364	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2365	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2366retrylookup:
2367	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2368		if ((m->oflags & VPO_BUSY) != 0 ||
2369		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2370			/*
2371			 * Reference the page before unlocking and
2372			 * sleeping so that the page daemon is less
2373			 * likely to reclaim it.
2374			 */
2375			vm_page_aflag_set(m, PGA_REFERENCED);
2376			vm_page_sleep(m, "pgrbwt");
2377			goto retrylookup;
2378		} else {
2379			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2380				vm_page_lock(m);
2381				vm_page_wire(m);
2382				vm_page_unlock(m);
2383			}
2384			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2385				vm_page_busy(m);
2386			return (m);
2387		}
2388	}
2389	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2390	    VM_ALLOC_IGN_SBUSY));
2391	if (m == NULL) {
2392		VM_OBJECT_UNLOCK(object);
2393		VM_WAIT;
2394		VM_OBJECT_LOCK(object);
2395		goto retrylookup;
2396	} else if (m->valid != 0)
2397		return (m);
2398	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2399		pmap_zero_page(m);
2400	return (m);
2401}
2402
2403/*
2404 * Mapping function for valid or dirty bits in a page.
2405 *
2406 * Inputs are required to range within a page.
2407 */
2408vm_page_bits_t
2409vm_page_bits(int base, int size)
2410{
2411	int first_bit;
2412	int last_bit;
2413
2414	KASSERT(
2415	    base + size <= PAGE_SIZE,
2416	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2417	);
2418
2419	if (size == 0)		/* handle degenerate case */
2420		return (0);
2421
2422	first_bit = base >> DEV_BSHIFT;
2423	last_bit = (base + size - 1) >> DEV_BSHIFT;
2424
2425	return (((vm_page_bits_t)2 << last_bit) -
2426	    ((vm_page_bits_t)1 << first_bit));
2427}
2428
2429/*
2430 *	vm_page_set_valid:
2431 *
2432 *	Sets portions of a page valid.  The arguments are expected
2433 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2434 *	of any partial chunks touched by the range.  The invalid portion of
2435 *	such chunks will be zeroed.
2436 *
2437 *	(base + size) must be less then or equal to PAGE_SIZE.
2438 */
2439void
2440vm_page_set_valid(vm_page_t m, int base, int size)
2441{
2442	int endoff, frag;
2443
2444	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2445	if (size == 0)	/* handle degenerate case */
2446		return;
2447
2448	/*
2449	 * If the base is not DEV_BSIZE aligned and the valid
2450	 * bit is clear, we have to zero out a portion of the
2451	 * first block.
2452	 */
2453	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2454	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2455		pmap_zero_page_area(m, frag, base - frag);
2456
2457	/*
2458	 * If the ending offset is not DEV_BSIZE aligned and the
2459	 * valid bit is clear, we have to zero out a portion of
2460	 * the last block.
2461	 */
2462	endoff = base + size;
2463	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2464	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2465		pmap_zero_page_area(m, endoff,
2466		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2467
2468	/*
2469	 * Assert that no previously invalid block that is now being validated
2470	 * is already dirty.
2471	 */
2472	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2473	    ("vm_page_set_valid: page %p is dirty", m));
2474
2475	/*
2476	 * Set valid bits inclusive of any overlap.
2477	 */
2478	m->valid |= vm_page_bits(base, size);
2479}
2480
2481/*
2482 * Clear the given bits from the specified page's dirty field.
2483 */
2484static __inline void
2485vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2486{
2487	uintptr_t addr;
2488#if PAGE_SIZE < 16384
2489	int shift;
2490#endif
2491
2492	/*
2493	 * If the object is locked and the page is neither VPO_BUSY nor
2494	 * write mapped, then the page's dirty field cannot possibly be
2495	 * set by a concurrent pmap operation.
2496	 */
2497	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2498	if ((m->oflags & VPO_BUSY) == 0 && !pmap_page_is_write_mapped(m))
2499		m->dirty &= ~pagebits;
2500	else {
2501		/*
2502		 * The pmap layer can call vm_page_dirty() without
2503		 * holding a distinguished lock.  The combination of
2504		 * the object's lock and an atomic operation suffice
2505		 * to guarantee consistency of the page dirty field.
2506		 *
2507		 * For PAGE_SIZE == 32768 case, compiler already
2508		 * properly aligns the dirty field, so no forcible
2509		 * alignment is needed. Only require existence of
2510		 * atomic_clear_64 when page size is 32768.
2511		 */
2512		addr = (uintptr_t)&m->dirty;
2513#if PAGE_SIZE == 32768
2514		atomic_clear_64((uint64_t *)addr, pagebits);
2515#elif PAGE_SIZE == 16384
2516		atomic_clear_32((uint32_t *)addr, pagebits);
2517#else		/* PAGE_SIZE <= 8192 */
2518		/*
2519		 * Use a trick to perform a 32-bit atomic on the
2520		 * containing aligned word, to not depend on the existence
2521		 * of atomic_clear_{8, 16}.
2522		 */
2523		shift = addr & (sizeof(uint32_t) - 1);
2524#if BYTE_ORDER == BIG_ENDIAN
2525		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2526#else
2527		shift *= NBBY;
2528#endif
2529		addr &= ~(sizeof(uint32_t) - 1);
2530		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2531#endif		/* PAGE_SIZE */
2532	}
2533}
2534
2535/*
2536 *	vm_page_set_validclean:
2537 *
2538 *	Sets portions of a page valid and clean.  The arguments are expected
2539 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2540 *	of any partial chunks touched by the range.  The invalid portion of
2541 *	such chunks will be zero'd.
2542 *
2543 *	(base + size) must be less then or equal to PAGE_SIZE.
2544 */
2545void
2546vm_page_set_validclean(vm_page_t m, int base, int size)
2547{
2548	vm_page_bits_t oldvalid, pagebits;
2549	int endoff, frag;
2550
2551	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2552	if (size == 0)	/* handle degenerate case */
2553		return;
2554
2555	/*
2556	 * If the base is not DEV_BSIZE aligned and the valid
2557	 * bit is clear, we have to zero out a portion of the
2558	 * first block.
2559	 */
2560	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2561	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2562		pmap_zero_page_area(m, frag, base - frag);
2563
2564	/*
2565	 * If the ending offset is not DEV_BSIZE aligned and the
2566	 * valid bit is clear, we have to zero out a portion of
2567	 * the last block.
2568	 */
2569	endoff = base + size;
2570	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2571	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2572		pmap_zero_page_area(m, endoff,
2573		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2574
2575	/*
2576	 * Set valid, clear dirty bits.  If validating the entire
2577	 * page we can safely clear the pmap modify bit.  We also
2578	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2579	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2580	 * be set again.
2581	 *
2582	 * We set valid bits inclusive of any overlap, but we can only
2583	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2584	 * the range.
2585	 */
2586	oldvalid = m->valid;
2587	pagebits = vm_page_bits(base, size);
2588	m->valid |= pagebits;
2589#if 0	/* NOT YET */
2590	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2591		frag = DEV_BSIZE - frag;
2592		base += frag;
2593		size -= frag;
2594		if (size < 0)
2595			size = 0;
2596	}
2597	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2598#endif
2599	if (base == 0 && size == PAGE_SIZE) {
2600		/*
2601		 * The page can only be modified within the pmap if it is
2602		 * mapped, and it can only be mapped if it was previously
2603		 * fully valid.
2604		 */
2605		if (oldvalid == VM_PAGE_BITS_ALL)
2606			/*
2607			 * Perform the pmap_clear_modify() first.  Otherwise,
2608			 * a concurrent pmap operation, such as
2609			 * pmap_protect(), could clear a modification in the
2610			 * pmap and set the dirty field on the page before
2611			 * pmap_clear_modify() had begun and after the dirty
2612			 * field was cleared here.
2613			 */
2614			pmap_clear_modify(m);
2615		m->dirty = 0;
2616		m->oflags &= ~VPO_NOSYNC;
2617	} else if (oldvalid != VM_PAGE_BITS_ALL)
2618		m->dirty &= ~pagebits;
2619	else
2620		vm_page_clear_dirty_mask(m, pagebits);
2621}
2622
2623void
2624vm_page_clear_dirty(vm_page_t m, int base, int size)
2625{
2626
2627	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2628}
2629
2630/*
2631 *	vm_page_set_invalid:
2632 *
2633 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2634 *	valid and dirty bits for the effected areas are cleared.
2635 */
2636void
2637vm_page_set_invalid(vm_page_t m, int base, int size)
2638{
2639	vm_page_bits_t bits;
2640
2641	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2642	bits = vm_page_bits(base, size);
2643	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2644		pmap_remove_all(m);
2645	KASSERT(!pmap_page_is_mapped(m),
2646	    ("vm_page_set_invalid: page %p is mapped", m));
2647	m->valid &= ~bits;
2648	m->dirty &= ~bits;
2649}
2650
2651/*
2652 * vm_page_zero_invalid()
2653 *
2654 *	The kernel assumes that the invalid portions of a page contain
2655 *	garbage, but such pages can be mapped into memory by user code.
2656 *	When this occurs, we must zero out the non-valid portions of the
2657 *	page so user code sees what it expects.
2658 *
2659 *	Pages are most often semi-valid when the end of a file is mapped
2660 *	into memory and the file's size is not page aligned.
2661 */
2662void
2663vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2664{
2665	int b;
2666	int i;
2667
2668	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2669	/*
2670	 * Scan the valid bits looking for invalid sections that
2671	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2672	 * valid bit may be set ) have already been zerod by
2673	 * vm_page_set_validclean().
2674	 */
2675	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2676		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2677		    (m->valid & ((vm_page_bits_t)1 << i))) {
2678			if (i > b) {
2679				pmap_zero_page_area(m,
2680				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2681			}
2682			b = i + 1;
2683		}
2684	}
2685
2686	/*
2687	 * setvalid is TRUE when we can safely set the zero'd areas
2688	 * as being valid.  We can do this if there are no cache consistancy
2689	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2690	 */
2691	if (setvalid)
2692		m->valid = VM_PAGE_BITS_ALL;
2693}
2694
2695/*
2696 *	vm_page_is_valid:
2697 *
2698 *	Is (partial) page valid?  Note that the case where size == 0
2699 *	will return FALSE in the degenerate case where the page is
2700 *	entirely invalid, and TRUE otherwise.
2701 */
2702int
2703vm_page_is_valid(vm_page_t m, int base, int size)
2704{
2705	vm_page_bits_t bits;
2706
2707	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2708	bits = vm_page_bits(base, size);
2709	if (m->valid && ((m->valid & bits) == bits))
2710		return 1;
2711	else
2712		return 0;
2713}
2714
2715/*
2716 * Set the page's dirty bits if the page is modified.
2717 */
2718void
2719vm_page_test_dirty(vm_page_t m)
2720{
2721
2722	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2723	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2724		vm_page_dirty(m);
2725}
2726
2727void
2728vm_page_lock_KBI(vm_page_t m, const char *file, int line)
2729{
2730
2731	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
2732}
2733
2734void
2735vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
2736{
2737
2738	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
2739}
2740
2741int
2742vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
2743{
2744
2745	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
2746}
2747
2748#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
2749void
2750vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
2751{
2752
2753	mtx_assert_(vm_page_lockptr(m), a, file, line);
2754}
2755#endif
2756
2757int so_zerocp_fullpage = 0;
2758
2759/*
2760 *	Replace the given page with a copy.  The copied page assumes
2761 *	the portion of the given page's "wire_count" that is not the
2762 *	responsibility of this copy-on-write mechanism.
2763 *
2764 *	The object containing the given page must have a non-zero
2765 *	paging-in-progress count and be locked.
2766 */
2767void
2768vm_page_cowfault(vm_page_t m)
2769{
2770	vm_page_t mnew;
2771	vm_object_t object;
2772	vm_pindex_t pindex;
2773
2774	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2775	vm_page_lock_assert(m, MA_OWNED);
2776	object = m->object;
2777	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2778	KASSERT(object->paging_in_progress != 0,
2779	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2780	    object));
2781	pindex = m->pindex;
2782
2783 retry_alloc:
2784	pmap_remove_all(m);
2785	vm_page_remove(m);
2786	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2787	if (mnew == NULL) {
2788		vm_page_insert(m, object, pindex);
2789		vm_page_unlock(m);
2790		VM_OBJECT_UNLOCK(object);
2791		VM_WAIT;
2792		VM_OBJECT_LOCK(object);
2793		if (m == vm_page_lookup(object, pindex)) {
2794			vm_page_lock(m);
2795			goto retry_alloc;
2796		} else {
2797			/*
2798			 * Page disappeared during the wait.
2799			 */
2800			return;
2801		}
2802	}
2803
2804	if (m->cow == 0) {
2805		/*
2806		 * check to see if we raced with an xmit complete when
2807		 * waiting to allocate a page.  If so, put things back
2808		 * the way they were
2809		 */
2810		vm_page_unlock(m);
2811		vm_page_lock(mnew);
2812		vm_page_free(mnew);
2813		vm_page_unlock(mnew);
2814		vm_page_insert(m, object, pindex);
2815	} else { /* clear COW & copy page */
2816		if (!so_zerocp_fullpage)
2817			pmap_copy_page(m, mnew);
2818		mnew->valid = VM_PAGE_BITS_ALL;
2819		vm_page_dirty(mnew);
2820		mnew->wire_count = m->wire_count - m->cow;
2821		m->wire_count = m->cow;
2822		vm_page_unlock(m);
2823	}
2824}
2825
2826void
2827vm_page_cowclear(vm_page_t m)
2828{
2829
2830	vm_page_lock_assert(m, MA_OWNED);
2831	if (m->cow) {
2832		m->cow--;
2833		/*
2834		 * let vm_fault add back write permission  lazily
2835		 */
2836	}
2837	/*
2838	 *  sf_buf_free() will free the page, so we needn't do it here
2839	 */
2840}
2841
2842int
2843vm_page_cowsetup(vm_page_t m)
2844{
2845
2846	vm_page_lock_assert(m, MA_OWNED);
2847	if ((m->flags & PG_FICTITIOUS) != 0 ||
2848	    (m->oflags & VPO_UNMANAGED) != 0 ||
2849	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2850		return (EBUSY);
2851	m->cow++;
2852	pmap_remove_write(m);
2853	VM_OBJECT_UNLOCK(m->object);
2854	return (0);
2855}
2856
2857#ifdef INVARIANTS
2858void
2859vm_page_object_lock_assert(vm_page_t m)
2860{
2861
2862	/*
2863	 * Certain of the page's fields may only be modified by the
2864	 * holder of the containing object's lock or the setter of the
2865	 * page's VPO_BUSY flag.  Unfortunately, the setter of the
2866	 * VPO_BUSY flag is not recorded, and thus cannot be checked
2867	 * here.
2868	 */
2869	if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
2870		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2871}
2872#endif
2873
2874#include "opt_ddb.h"
2875#ifdef DDB
2876#include <sys/kernel.h>
2877
2878#include <ddb/ddb.h>
2879
2880DB_SHOW_COMMAND(page, vm_page_print_page_info)
2881{
2882	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2883	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2884	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2885	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2886	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2887	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2888	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2889	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2890	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2891	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2892}
2893
2894DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2895{
2896
2897	db_printf("PQ_FREE:");
2898	db_printf(" %d", cnt.v_free_count);
2899	db_printf("\n");
2900
2901	db_printf("PQ_CACHE:");
2902	db_printf(" %d", cnt.v_cache_count);
2903	db_printf("\n");
2904
2905	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2906		*vm_page_queues[PQ_ACTIVE].cnt,
2907		*vm_page_queues[PQ_INACTIVE].cnt);
2908}
2909
2910DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
2911{
2912	vm_page_t m;
2913	boolean_t phys;
2914
2915	if (!have_addr) {
2916		db_printf("show pginfo addr\n");
2917		return;
2918	}
2919
2920	phys = strchr(modif, 'p') != NULL;
2921	if (phys)
2922		m = PHYS_TO_VM_PAGE(addr);
2923	else
2924		m = (vm_page_t)addr;
2925	db_printf(
2926    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
2927    "  af 0x%x of 0x%x f 0x%x act %d busy %d valid 0x%x dirty 0x%x\n",
2928	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
2929	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
2930	    m->flags, m->act_count, m->busy, m->valid, m->dirty);
2931}
2932#endif /* DDB */
2933