vm_page.c revision 236920
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- The object mutex is held when inserting or removing
71 *	  pages from an object (vm_page_insert() or vm_page_remove()).
72 *
73 */
74
75/*
76 *	Resident memory management module.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: stable/9/sys/vm/vm_page.c 236920 2012-06-11 20:58:23Z kib $");
81
82#include "opt_vm.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/lock.h>
87#include <sys/kernel.h>
88#include <sys/limits.h>
89#include <sys/malloc.h>
90#include <sys/msgbuf.h>
91#include <sys/mutex.h>
92#include <sys/proc.h>
93#include <sys/sysctl.h>
94#include <sys/vmmeter.h>
95#include <sys/vnode.h>
96
97#include <vm/vm.h>
98#include <vm/pmap.h>
99#include <vm/vm_param.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_object.h>
102#include <vm/vm_page.h>
103#include <vm/vm_pageout.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_phys.h>
106#include <vm/vm_reserv.h>
107#include <vm/vm_extern.h>
108#include <vm/uma.h>
109#include <vm/uma_int.h>
110
111#include <machine/md_var.h>
112
113/*
114 *	Associated with page of user-allocatable memory is a
115 *	page structure.
116 */
117
118struct vpgqueues vm_page_queues[PQ_COUNT];
119struct vpglocks vm_page_queue_lock;
120struct vpglocks vm_page_queue_free_lock;
121
122struct vpglocks	pa_lock[PA_LOCK_COUNT];
123
124vm_page_t vm_page_array;
125long vm_page_array_size;
126long first_page;
127int vm_page_zero_count;
128
129static int boot_pages = UMA_BOOT_PAGES;
130TUNABLE_INT("vm.boot_pages", &boot_pages);
131SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
132	"number of pages allocated for bootstrapping the VM system");
133
134int pa_tryrelock_restart;
135SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
136    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
137
138static uma_zone_t fakepg_zone;
139
140static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
141static void vm_page_queue_remove(int queue, vm_page_t m);
142static void vm_page_enqueue(int queue, vm_page_t m);
143static void vm_page_init_fakepg(void *dummy);
144
145SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
146
147static void
148vm_page_init_fakepg(void *dummy)
149{
150
151	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
152	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
153}
154
155/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
156#if PAGE_SIZE == 32768
157#ifdef CTASSERT
158CTASSERT(sizeof(u_long) >= 8);
159#endif
160#endif
161
162/*
163 * Try to acquire a physical address lock while a pmap is locked.  If we
164 * fail to trylock we unlock and lock the pmap directly and cache the
165 * locked pa in *locked.  The caller should then restart their loop in case
166 * the virtual to physical mapping has changed.
167 */
168int
169vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
170{
171	vm_paddr_t lockpa;
172
173	lockpa = *locked;
174	*locked = pa;
175	if (lockpa) {
176		PA_LOCK_ASSERT(lockpa, MA_OWNED);
177		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
178			return (0);
179		PA_UNLOCK(lockpa);
180	}
181	if (PA_TRYLOCK(pa))
182		return (0);
183	PMAP_UNLOCK(pmap);
184	atomic_add_int(&pa_tryrelock_restart, 1);
185	PA_LOCK(pa);
186	PMAP_LOCK(pmap);
187	return (EAGAIN);
188}
189
190/*
191 *	vm_set_page_size:
192 *
193 *	Sets the page size, perhaps based upon the memory
194 *	size.  Must be called before any use of page-size
195 *	dependent functions.
196 */
197void
198vm_set_page_size(void)
199{
200	if (cnt.v_page_size == 0)
201		cnt.v_page_size = PAGE_SIZE;
202	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
203		panic("vm_set_page_size: page size not a power of two");
204}
205
206/*
207 *	vm_page_blacklist_lookup:
208 *
209 *	See if a physical address in this page has been listed
210 *	in the blacklist tunable.  Entries in the tunable are
211 *	separated by spaces or commas.  If an invalid integer is
212 *	encountered then the rest of the string is skipped.
213 */
214static int
215vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
216{
217	vm_paddr_t bad;
218	char *cp, *pos;
219
220	for (pos = list; *pos != '\0'; pos = cp) {
221		bad = strtoq(pos, &cp, 0);
222		if (*cp != '\0') {
223			if (*cp == ' ' || *cp == ',') {
224				cp++;
225				if (cp == pos)
226					continue;
227			} else
228				break;
229		}
230		if (pa == trunc_page(bad))
231			return (1);
232	}
233	return (0);
234}
235
236/*
237 *	vm_page_startup:
238 *
239 *	Initializes the resident memory module.
240 *
241 *	Allocates memory for the page cells, and
242 *	for the object/offset-to-page hash table headers.
243 *	Each page cell is initialized and placed on the free list.
244 */
245vm_offset_t
246vm_page_startup(vm_offset_t vaddr)
247{
248	vm_offset_t mapped;
249	vm_paddr_t page_range;
250	vm_paddr_t new_end;
251	int i;
252	vm_paddr_t pa;
253	vm_paddr_t last_pa;
254	char *list;
255
256	/* the biggest memory array is the second group of pages */
257	vm_paddr_t end;
258	vm_paddr_t biggestsize;
259	vm_paddr_t low_water, high_water;
260	int biggestone;
261
262	biggestsize = 0;
263	biggestone = 0;
264	vaddr = round_page(vaddr);
265
266	for (i = 0; phys_avail[i + 1]; i += 2) {
267		phys_avail[i] = round_page(phys_avail[i]);
268		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
269	}
270
271	low_water = phys_avail[0];
272	high_water = phys_avail[1];
273
274	for (i = 0; phys_avail[i + 1]; i += 2) {
275		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
276
277		if (size > biggestsize) {
278			biggestone = i;
279			biggestsize = size;
280		}
281		if (phys_avail[i] < low_water)
282			low_water = phys_avail[i];
283		if (phys_avail[i + 1] > high_water)
284			high_water = phys_avail[i + 1];
285	}
286
287#ifdef XEN
288	low_water = 0;
289#endif
290
291	end = phys_avail[biggestone+1];
292
293	/*
294	 * Initialize the locks.
295	 */
296	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
297	    MTX_RECURSE);
298	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
299	    MTX_DEF);
300
301	/* Setup page locks. */
302	for (i = 0; i < PA_LOCK_COUNT; i++)
303		mtx_init(&pa_lock[i].data, "page lock", NULL, MTX_DEF);
304
305	/*
306	 * Initialize the queue headers for the hold queue, the active queue,
307	 * and the inactive queue.
308	 */
309	for (i = 0; i < PQ_COUNT; i++)
310		TAILQ_INIT(&vm_page_queues[i].pl);
311	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
312	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
313	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
314
315	/*
316	 * Allocate memory for use when boot strapping the kernel memory
317	 * allocator.
318	 */
319	new_end = end - (boot_pages * UMA_SLAB_SIZE);
320	new_end = trunc_page(new_end);
321	mapped = pmap_map(&vaddr, new_end, end,
322	    VM_PROT_READ | VM_PROT_WRITE);
323	bzero((void *)mapped, end - new_end);
324	uma_startup((void *)mapped, boot_pages);
325
326#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
327    defined(__mips__)
328	/*
329	 * Allocate a bitmap to indicate that a random physical page
330	 * needs to be included in a minidump.
331	 *
332	 * The amd64 port needs this to indicate which direct map pages
333	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
334	 *
335	 * However, i386 still needs this workspace internally within the
336	 * minidump code.  In theory, they are not needed on i386, but are
337	 * included should the sf_buf code decide to use them.
338	 */
339	last_pa = 0;
340	for (i = 0; dump_avail[i + 1] != 0; i += 2)
341		if (dump_avail[i + 1] > last_pa)
342			last_pa = dump_avail[i + 1];
343	page_range = last_pa / PAGE_SIZE;
344	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
345	new_end -= vm_page_dump_size;
346	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
347	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
348	bzero((void *)vm_page_dump, vm_page_dump_size);
349#endif
350#ifdef __amd64__
351	/*
352	 * Request that the physical pages underlying the message buffer be
353	 * included in a crash dump.  Since the message buffer is accessed
354	 * through the direct map, they are not automatically included.
355	 */
356	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
357	last_pa = pa + round_page(msgbufsize);
358	while (pa < last_pa) {
359		dump_add_page(pa);
360		pa += PAGE_SIZE;
361	}
362#endif
363	/*
364	 * Compute the number of pages of memory that will be available for
365	 * use (taking into account the overhead of a page structure per
366	 * page).
367	 */
368	first_page = low_water / PAGE_SIZE;
369#ifdef VM_PHYSSEG_SPARSE
370	page_range = 0;
371	for (i = 0; phys_avail[i + 1] != 0; i += 2)
372		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
373#elif defined(VM_PHYSSEG_DENSE)
374	page_range = high_water / PAGE_SIZE - first_page;
375#else
376#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
377#endif
378	end = new_end;
379
380	/*
381	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
382	 */
383	vaddr += PAGE_SIZE;
384
385	/*
386	 * Initialize the mem entry structures now, and put them in the free
387	 * queue.
388	 */
389	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
390	mapped = pmap_map(&vaddr, new_end, end,
391	    VM_PROT_READ | VM_PROT_WRITE);
392	vm_page_array = (vm_page_t) mapped;
393#if VM_NRESERVLEVEL > 0
394	/*
395	 * Allocate memory for the reservation management system's data
396	 * structures.
397	 */
398	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
399#endif
400#if defined(__amd64__) || defined(__mips__)
401	/*
402	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
403	 * like i386, so the pages must be tracked for a crashdump to include
404	 * this data.  This includes the vm_page_array and the early UMA
405	 * bootstrap pages.
406	 */
407	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
408		dump_add_page(pa);
409#endif
410	phys_avail[biggestone + 1] = new_end;
411
412	/*
413	 * Clear all of the page structures
414	 */
415	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
416	for (i = 0; i < page_range; i++)
417		vm_page_array[i].order = VM_NFREEORDER;
418	vm_page_array_size = page_range;
419
420	/*
421	 * Initialize the physical memory allocator.
422	 */
423	vm_phys_init();
424
425	/*
426	 * Add every available physical page that is not blacklisted to
427	 * the free lists.
428	 */
429	cnt.v_page_count = 0;
430	cnt.v_free_count = 0;
431	list = getenv("vm.blacklist");
432	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
433		pa = phys_avail[i];
434		last_pa = phys_avail[i + 1];
435		while (pa < last_pa) {
436			if (list != NULL &&
437			    vm_page_blacklist_lookup(list, pa))
438				printf("Skipping page with pa 0x%jx\n",
439				    (uintmax_t)pa);
440			else
441				vm_phys_add_page(pa);
442			pa += PAGE_SIZE;
443		}
444	}
445	freeenv(list);
446#if VM_NRESERVLEVEL > 0
447	/*
448	 * Initialize the reservation management system.
449	 */
450	vm_reserv_init();
451#endif
452	return (vaddr);
453}
454
455
456CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0);
457
458void
459vm_page_aflag_set(vm_page_t m, uint8_t bits)
460{
461	uint32_t *addr, val;
462
463	/*
464	 * The PGA_WRITEABLE flag can only be set if the page is managed and
465	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
466	 */
467	KASSERT((bits & PGA_WRITEABLE) == 0 ||
468	    (m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == VPO_BUSY,
469	    ("PGA_WRITEABLE and !VPO_BUSY"));
470
471	/*
472	 * We want to use atomic updates for m->aflags, which is a
473	 * byte wide.  Not all architectures provide atomic operations
474	 * on the single-byte destination.  Punt and access the whole
475	 * 4-byte word with an atomic update.  Parallel non-atomic
476	 * updates to the fields included in the update by proximity
477	 * are handled properly by atomics.
478	 */
479	addr = (void *)&m->aflags;
480	MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
481	val = bits;
482#if BYTE_ORDER == BIG_ENDIAN
483	val <<= 24;
484#endif
485	atomic_set_32(addr, val);
486}
487
488void
489vm_page_aflag_clear(vm_page_t m, uint8_t bits)
490{
491	uint32_t *addr, val;
492
493	/*
494	 * The PGA_REFERENCED flag can only be cleared if the object
495	 * containing the page is locked.
496	 */
497	KASSERT((bits & PGA_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
498	    ("PGA_REFERENCED and !VM_OBJECT_LOCKED"));
499
500	/*
501	 * See the comment in vm_page_aflag_set().
502	 */
503	addr = (void *)&m->aflags;
504	MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
505	val = bits;
506#if BYTE_ORDER == BIG_ENDIAN
507	val <<= 24;
508#endif
509	atomic_clear_32(addr, val);
510}
511
512void
513vm_page_reference(vm_page_t m)
514{
515
516	vm_page_aflag_set(m, PGA_REFERENCED);
517}
518
519void
520vm_page_busy(vm_page_t m)
521{
522
523	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
524	KASSERT((m->oflags & VPO_BUSY) == 0,
525	    ("vm_page_busy: page already busy!!!"));
526	m->oflags |= VPO_BUSY;
527}
528
529/*
530 *      vm_page_flash:
531 *
532 *      wakeup anyone waiting for the page.
533 */
534void
535vm_page_flash(vm_page_t m)
536{
537
538	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
539	if (m->oflags & VPO_WANTED) {
540		m->oflags &= ~VPO_WANTED;
541		wakeup(m);
542	}
543}
544
545/*
546 *      vm_page_wakeup:
547 *
548 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
549 *      page.
550 *
551 */
552void
553vm_page_wakeup(vm_page_t m)
554{
555
556	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
557	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
558	m->oflags &= ~VPO_BUSY;
559	vm_page_flash(m);
560}
561
562void
563vm_page_io_start(vm_page_t m)
564{
565
566	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
567	m->busy++;
568}
569
570void
571vm_page_io_finish(vm_page_t m)
572{
573
574	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
575	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
576	m->busy--;
577	if (m->busy == 0)
578		vm_page_flash(m);
579}
580
581/*
582 * Keep page from being freed by the page daemon
583 * much of the same effect as wiring, except much lower
584 * overhead and should be used only for *very* temporary
585 * holding ("wiring").
586 */
587void
588vm_page_hold(vm_page_t mem)
589{
590
591	vm_page_lock_assert(mem, MA_OWNED);
592        mem->hold_count++;
593}
594
595void
596vm_page_unhold(vm_page_t mem)
597{
598
599	vm_page_lock_assert(mem, MA_OWNED);
600	--mem->hold_count;
601	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
602	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
603		vm_page_free_toq(mem);
604}
605
606/*
607 *	vm_page_unhold_pages:
608 *
609 *	Unhold each of the pages that is referenced by the given array.
610 */
611void
612vm_page_unhold_pages(vm_page_t *ma, int count)
613{
614	struct mtx *mtx, *new_mtx;
615
616	mtx = NULL;
617	for (; count != 0; count--) {
618		/*
619		 * Avoid releasing and reacquiring the same page lock.
620		 */
621		new_mtx = vm_page_lockptr(*ma);
622		if (mtx != new_mtx) {
623			if (mtx != NULL)
624				mtx_unlock(mtx);
625			mtx = new_mtx;
626			mtx_lock(mtx);
627		}
628		vm_page_unhold(*ma);
629		ma++;
630	}
631	if (mtx != NULL)
632		mtx_unlock(mtx);
633}
634
635/*
636 *	vm_page_getfake:
637 *
638 *	Create a fictitious page with the specified physical address and
639 *	memory attribute.  The memory attribute is the only the machine-
640 *	dependent aspect of a fictitious page that must be initialized.
641 */
642vm_page_t
643vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
644{
645	vm_page_t m;
646
647	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
648	m->phys_addr = paddr;
649	m->queue = PQ_NONE;
650	/* Fictitious pages don't use "segind". */
651	m->flags = PG_FICTITIOUS;
652	/* Fictitious pages don't use "order" or "pool". */
653	m->oflags = VPO_BUSY | VPO_UNMANAGED;
654	m->wire_count = 1;
655	pmap_page_set_memattr(m, memattr);
656	return (m);
657}
658
659/*
660 *	vm_page_putfake:
661 *
662 *	Release a fictitious page.
663 */
664void
665vm_page_putfake(vm_page_t m)
666{
667
668	KASSERT((m->flags & PG_FICTITIOUS) != 0,
669	    ("vm_page_putfake: bad page %p", m));
670	uma_zfree(fakepg_zone, m);
671}
672
673/*
674 *	vm_page_updatefake:
675 *
676 *	Update the given fictitious page to the specified physical address and
677 *	memory attribute.
678 */
679void
680vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
681{
682
683	KASSERT((m->flags & PG_FICTITIOUS) != 0,
684	    ("vm_page_updatefake: bad page %p", m));
685	m->phys_addr = paddr;
686	pmap_page_set_memattr(m, memattr);
687}
688
689/*
690 *	vm_page_free:
691 *
692 *	Free a page.
693 */
694void
695vm_page_free(vm_page_t m)
696{
697
698	m->flags &= ~PG_ZERO;
699	vm_page_free_toq(m);
700}
701
702/*
703 *	vm_page_free_zero:
704 *
705 *	Free a page to the zerod-pages queue
706 */
707void
708vm_page_free_zero(vm_page_t m)
709{
710
711	m->flags |= PG_ZERO;
712	vm_page_free_toq(m);
713}
714
715/*
716 *	vm_page_sleep:
717 *
718 *	Sleep and release the page and page queues locks.
719 *
720 *	The object containing the given page must be locked.
721 */
722void
723vm_page_sleep(vm_page_t m, const char *msg)
724{
725
726	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
727	if (mtx_owned(&vm_page_queue_mtx))
728		vm_page_unlock_queues();
729	if (mtx_owned(vm_page_lockptr(m)))
730		vm_page_unlock(m);
731
732	/*
733	 * It's possible that while we sleep, the page will get
734	 * unbusied and freed.  If we are holding the object
735	 * lock, we will assume we hold a reference to the object
736	 * such that even if m->object changes, we can re-lock
737	 * it.
738	 */
739	m->oflags |= VPO_WANTED;
740	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
741}
742
743/*
744 *	vm_page_dirty:
745 *
746 *	Set all bits in the page's dirty field.
747 *
748 *	The object containing the specified page must be locked if the
749 *	call is made from the machine-independent layer.
750 *
751 *	See vm_page_clear_dirty_mask().
752 */
753void
754vm_page_dirty(vm_page_t m)
755{
756
757	KASSERT((m->flags & PG_CACHED) == 0,
758	    ("vm_page_dirty: page in cache!"));
759	KASSERT(!VM_PAGE_IS_FREE(m),
760	    ("vm_page_dirty: page is free!"));
761	KASSERT(m->valid == VM_PAGE_BITS_ALL,
762	    ("vm_page_dirty: page is invalid!"));
763	m->dirty = VM_PAGE_BITS_ALL;
764}
765
766/*
767 *	vm_page_splay:
768 *
769 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
770 *	the vm_page containing the given pindex.  If, however, that
771 *	pindex is not found in the vm_object, returns a vm_page that is
772 *	adjacent to the pindex, coming before or after it.
773 */
774vm_page_t
775vm_page_splay(vm_pindex_t pindex, vm_page_t root)
776{
777	struct vm_page dummy;
778	vm_page_t lefttreemax, righttreemin, y;
779
780	if (root == NULL)
781		return (root);
782	lefttreemax = righttreemin = &dummy;
783	for (;; root = y) {
784		if (pindex < root->pindex) {
785			if ((y = root->left) == NULL)
786				break;
787			if (pindex < y->pindex) {
788				/* Rotate right. */
789				root->left = y->right;
790				y->right = root;
791				root = y;
792				if ((y = root->left) == NULL)
793					break;
794			}
795			/* Link into the new root's right tree. */
796			righttreemin->left = root;
797			righttreemin = root;
798		} else if (pindex > root->pindex) {
799			if ((y = root->right) == NULL)
800				break;
801			if (pindex > y->pindex) {
802				/* Rotate left. */
803				root->right = y->left;
804				y->left = root;
805				root = y;
806				if ((y = root->right) == NULL)
807					break;
808			}
809			/* Link into the new root's left tree. */
810			lefttreemax->right = root;
811			lefttreemax = root;
812		} else
813			break;
814	}
815	/* Assemble the new root. */
816	lefttreemax->right = root->left;
817	righttreemin->left = root->right;
818	root->left = dummy.right;
819	root->right = dummy.left;
820	return (root);
821}
822
823/*
824 *	vm_page_insert:		[ internal use only ]
825 *
826 *	Inserts the given mem entry into the object and object list.
827 *
828 *	The pagetables are not updated but will presumably fault the page
829 *	in if necessary, or if a kernel page the caller will at some point
830 *	enter the page into the kernel's pmap.  We are not allowed to block
831 *	here so we *can't* do this anyway.
832 *
833 *	The object and page must be locked.
834 *	This routine may not block.
835 */
836void
837vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
838{
839	vm_page_t root;
840
841	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
842	if (m->object != NULL)
843		panic("vm_page_insert: page already inserted");
844
845	/*
846	 * Record the object/offset pair in this page
847	 */
848	m->object = object;
849	m->pindex = pindex;
850
851	/*
852	 * Now link into the object's ordered list of backed pages.
853	 */
854	root = object->root;
855	if (root == NULL) {
856		m->left = NULL;
857		m->right = NULL;
858		TAILQ_INSERT_TAIL(&object->memq, m, listq);
859	} else {
860		root = vm_page_splay(pindex, root);
861		if (pindex < root->pindex) {
862			m->left = root->left;
863			m->right = root;
864			root->left = NULL;
865			TAILQ_INSERT_BEFORE(root, m, listq);
866		} else if (pindex == root->pindex)
867			panic("vm_page_insert: offset already allocated");
868		else {
869			m->right = root->right;
870			m->left = root;
871			root->right = NULL;
872			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
873		}
874	}
875	object->root = m;
876
877	/*
878	 * show that the object has one more resident page.
879	 */
880	object->resident_page_count++;
881	/*
882	 * Hold the vnode until the last page is released.
883	 */
884	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
885		vhold((struct vnode *)object->handle);
886
887	/*
888	 * Since we are inserting a new and possibly dirty page,
889	 * update the object's OBJ_MIGHTBEDIRTY flag.
890	 */
891	if (m->aflags & PGA_WRITEABLE)
892		vm_object_set_writeable_dirty(object);
893}
894
895/*
896 *	vm_page_remove:
897 *				NOTE: used by device pager as well -wfj
898 *
899 *	Removes the given mem entry from the object/offset-page
900 *	table and the object page list, but do not invalidate/terminate
901 *	the backing store.
902 *
903 *	The object and page must be locked.
904 *	The underlying pmap entry (if any) is NOT removed here.
905 *	This routine may not block.
906 */
907void
908vm_page_remove(vm_page_t m)
909{
910	vm_object_t object;
911	vm_page_t next, prev, root;
912
913	if ((m->oflags & VPO_UNMANAGED) == 0)
914		vm_page_lock_assert(m, MA_OWNED);
915	if ((object = m->object) == NULL)
916		return;
917	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
918	if (m->oflags & VPO_BUSY) {
919		m->oflags &= ~VPO_BUSY;
920		vm_page_flash(m);
921	}
922
923	/*
924	 * Now remove from the object's list of backed pages.
925	 */
926	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
927		/*
928		 * Since the page's successor in the list is also its parent
929		 * in the tree, its right subtree must be empty.
930		 */
931		next->left = m->left;
932		KASSERT(m->right == NULL,
933		    ("vm_page_remove: page %p has right child", m));
934	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
935	    prev->right == m) {
936		/*
937		 * Since the page's predecessor in the list is also its parent
938		 * in the tree, its left subtree must be empty.
939		 */
940		KASSERT(m->left == NULL,
941		    ("vm_page_remove: page %p has left child", m));
942		prev->right = m->right;
943	} else {
944		if (m != object->root)
945			vm_page_splay(m->pindex, object->root);
946		if (m->left == NULL)
947			root = m->right;
948		else if (m->right == NULL)
949			root = m->left;
950		else {
951			/*
952			 * Move the page's successor to the root, because
953			 * pages are usually removed in ascending order.
954			 */
955			if (m->right != next)
956				vm_page_splay(m->pindex, m->right);
957			next->left = m->left;
958			root = next;
959		}
960		object->root = root;
961	}
962	TAILQ_REMOVE(&object->memq, m, listq);
963
964	/*
965	 * And show that the object has one fewer resident page.
966	 */
967	object->resident_page_count--;
968	/*
969	 * The vnode may now be recycled.
970	 */
971	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
972		vdrop((struct vnode *)object->handle);
973
974	m->object = NULL;
975}
976
977/*
978 *	vm_page_lookup:
979 *
980 *	Returns the page associated with the object/offset
981 *	pair specified; if none is found, NULL is returned.
982 *
983 *	The object must be locked.
984 *	This routine may not block.
985 *	This is a critical path routine
986 */
987vm_page_t
988vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
989{
990	vm_page_t m;
991
992	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
993	if ((m = object->root) != NULL && m->pindex != pindex) {
994		m = vm_page_splay(pindex, m);
995		if ((object->root = m)->pindex != pindex)
996			m = NULL;
997	}
998	return (m);
999}
1000
1001/*
1002 *	vm_page_find_least:
1003 *
1004 *	Returns the page associated with the object with least pindex
1005 *	greater than or equal to the parameter pindex, or NULL.
1006 *
1007 *	The object must be locked.
1008 *	The routine may not block.
1009 */
1010vm_page_t
1011vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1012{
1013	vm_page_t m;
1014
1015	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1016	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
1017		if (m->pindex < pindex) {
1018			m = vm_page_splay(pindex, object->root);
1019			if ((object->root = m)->pindex < pindex)
1020				m = TAILQ_NEXT(m, listq);
1021		}
1022	}
1023	return (m);
1024}
1025
1026/*
1027 * Returns the given page's successor (by pindex) within the object if it is
1028 * resident; if none is found, NULL is returned.
1029 *
1030 * The object must be locked.
1031 */
1032vm_page_t
1033vm_page_next(vm_page_t m)
1034{
1035	vm_page_t next;
1036
1037	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1038	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1039	    next->pindex != m->pindex + 1)
1040		next = NULL;
1041	return (next);
1042}
1043
1044/*
1045 * Returns the given page's predecessor (by pindex) within the object if it is
1046 * resident; if none is found, NULL is returned.
1047 *
1048 * The object must be locked.
1049 */
1050vm_page_t
1051vm_page_prev(vm_page_t m)
1052{
1053	vm_page_t prev;
1054
1055	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1056	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1057	    prev->pindex != m->pindex - 1)
1058		prev = NULL;
1059	return (prev);
1060}
1061
1062/*
1063 *	vm_page_rename:
1064 *
1065 *	Move the given memory entry from its
1066 *	current object to the specified target object/offset.
1067 *
1068 *	The object must be locked.
1069 *	This routine may not block.
1070 *
1071 *	Note: swap associated with the page must be invalidated by the move.  We
1072 *	      have to do this for several reasons:  (1) we aren't freeing the
1073 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1074 *	      moving the page from object A to B, and will then later move
1075 *	      the backing store from A to B and we can't have a conflict.
1076 *
1077 *	Note: we *always* dirty the page.  It is necessary both for the
1078 *	      fact that we moved it, and because we may be invalidating
1079 *	      swap.  If the page is on the cache, we have to deactivate it
1080 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1081 *	      on the cache.
1082 */
1083void
1084vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1085{
1086
1087	vm_page_remove(m);
1088	vm_page_insert(m, new_object, new_pindex);
1089	vm_page_dirty(m);
1090}
1091
1092/*
1093 *	Convert all of the given object's cached pages that have a
1094 *	pindex within the given range into free pages.  If the value
1095 *	zero is given for "end", then the range's upper bound is
1096 *	infinity.  If the given object is backed by a vnode and it
1097 *	transitions from having one or more cached pages to none, the
1098 *	vnode's hold count is reduced.
1099 */
1100void
1101vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1102{
1103	vm_page_t m, m_next;
1104	boolean_t empty;
1105
1106	mtx_lock(&vm_page_queue_free_mtx);
1107	if (__predict_false(object->cache == NULL)) {
1108		mtx_unlock(&vm_page_queue_free_mtx);
1109		return;
1110	}
1111	m = object->cache = vm_page_splay(start, object->cache);
1112	if (m->pindex < start) {
1113		if (m->right == NULL)
1114			m = NULL;
1115		else {
1116			m_next = vm_page_splay(start, m->right);
1117			m_next->left = m;
1118			m->right = NULL;
1119			m = object->cache = m_next;
1120		}
1121	}
1122
1123	/*
1124	 * At this point, "m" is either (1) a reference to the page
1125	 * with the least pindex that is greater than or equal to
1126	 * "start" or (2) NULL.
1127	 */
1128	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1129		/*
1130		 * Find "m"'s successor and remove "m" from the
1131		 * object's cache.
1132		 */
1133		if (m->right == NULL) {
1134			object->cache = m->left;
1135			m_next = NULL;
1136		} else {
1137			m_next = vm_page_splay(start, m->right);
1138			m_next->left = m->left;
1139			object->cache = m_next;
1140		}
1141		/* Convert "m" to a free page. */
1142		m->object = NULL;
1143		m->valid = 0;
1144		/* Clear PG_CACHED and set PG_FREE. */
1145		m->flags ^= PG_CACHED | PG_FREE;
1146		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1147		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1148		cnt.v_cache_count--;
1149		cnt.v_free_count++;
1150	}
1151	empty = object->cache == NULL;
1152	mtx_unlock(&vm_page_queue_free_mtx);
1153	if (object->type == OBJT_VNODE && empty)
1154		vdrop(object->handle);
1155}
1156
1157/*
1158 *	Returns the cached page that is associated with the given
1159 *	object and offset.  If, however, none exists, returns NULL.
1160 *
1161 *	The free page queue must be locked.
1162 */
1163static inline vm_page_t
1164vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1165{
1166	vm_page_t m;
1167
1168	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1169	if ((m = object->cache) != NULL && m->pindex != pindex) {
1170		m = vm_page_splay(pindex, m);
1171		if ((object->cache = m)->pindex != pindex)
1172			m = NULL;
1173	}
1174	return (m);
1175}
1176
1177/*
1178 *	Remove the given cached page from its containing object's
1179 *	collection of cached pages.
1180 *
1181 *	The free page queue must be locked.
1182 */
1183void
1184vm_page_cache_remove(vm_page_t m)
1185{
1186	vm_object_t object;
1187	vm_page_t root;
1188
1189	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1190	KASSERT((m->flags & PG_CACHED) != 0,
1191	    ("vm_page_cache_remove: page %p is not cached", m));
1192	object = m->object;
1193	if (m != object->cache) {
1194		root = vm_page_splay(m->pindex, object->cache);
1195		KASSERT(root == m,
1196		    ("vm_page_cache_remove: page %p is not cached in object %p",
1197		    m, object));
1198	}
1199	if (m->left == NULL)
1200		root = m->right;
1201	else if (m->right == NULL)
1202		root = m->left;
1203	else {
1204		root = vm_page_splay(m->pindex, m->left);
1205		root->right = m->right;
1206	}
1207	object->cache = root;
1208	m->object = NULL;
1209	cnt.v_cache_count--;
1210}
1211
1212/*
1213 *	Transfer all of the cached pages with offset greater than or
1214 *	equal to 'offidxstart' from the original object's cache to the
1215 *	new object's cache.  However, any cached pages with offset
1216 *	greater than or equal to the new object's size are kept in the
1217 *	original object.  Initially, the new object's cache must be
1218 *	empty.  Offset 'offidxstart' in the original object must
1219 *	correspond to offset zero in the new object.
1220 *
1221 *	The new object must be locked.
1222 */
1223void
1224vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1225    vm_object_t new_object)
1226{
1227	vm_page_t m, m_next;
1228
1229	/*
1230	 * Insertion into an object's collection of cached pages
1231	 * requires the object to be locked.  In contrast, removal does
1232	 * not.
1233	 */
1234	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1235	KASSERT(new_object->cache == NULL,
1236	    ("vm_page_cache_transfer: object %p has cached pages",
1237	    new_object));
1238	mtx_lock(&vm_page_queue_free_mtx);
1239	if ((m = orig_object->cache) != NULL) {
1240		/*
1241		 * Transfer all of the pages with offset greater than or
1242		 * equal to 'offidxstart' from the original object's
1243		 * cache to the new object's cache.
1244		 */
1245		m = vm_page_splay(offidxstart, m);
1246		if (m->pindex < offidxstart) {
1247			orig_object->cache = m;
1248			new_object->cache = m->right;
1249			m->right = NULL;
1250		} else {
1251			orig_object->cache = m->left;
1252			new_object->cache = m;
1253			m->left = NULL;
1254		}
1255		while ((m = new_object->cache) != NULL) {
1256			if ((m->pindex - offidxstart) >= new_object->size) {
1257				/*
1258				 * Return all of the cached pages with
1259				 * offset greater than or equal to the
1260				 * new object's size to the original
1261				 * object's cache.
1262				 */
1263				new_object->cache = m->left;
1264				m->left = orig_object->cache;
1265				orig_object->cache = m;
1266				break;
1267			}
1268			m_next = vm_page_splay(m->pindex, m->right);
1269			/* Update the page's object and offset. */
1270			m->object = new_object;
1271			m->pindex -= offidxstart;
1272			if (m_next == NULL)
1273				break;
1274			m->right = NULL;
1275			m_next->left = m;
1276			new_object->cache = m_next;
1277		}
1278		KASSERT(new_object->cache == NULL ||
1279		    new_object->type == OBJT_SWAP,
1280		    ("vm_page_cache_transfer: object %p's type is incompatible"
1281		    " with cached pages", new_object));
1282	}
1283	mtx_unlock(&vm_page_queue_free_mtx);
1284}
1285
1286/*
1287 *	Returns TRUE if a cached page is associated with the given object and
1288 *	offset, and FALSE otherwise.
1289 *
1290 *	The object must be locked.
1291 */
1292boolean_t
1293vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1294{
1295	vm_page_t m;
1296
1297	/*
1298	 * Insertion into an object's collection of cached pages requires the
1299	 * object to be locked.  Therefore, if the object is locked and the
1300	 * object's collection is empty, there is no need to acquire the free
1301	 * page queues lock in order to prove that the specified page doesn't
1302	 * exist.
1303	 */
1304	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1305	if (object->cache == NULL)
1306		return (FALSE);
1307	mtx_lock(&vm_page_queue_free_mtx);
1308	m = vm_page_cache_lookup(object, pindex);
1309	mtx_unlock(&vm_page_queue_free_mtx);
1310	return (m != NULL);
1311}
1312
1313/*
1314 *	vm_page_alloc:
1315 *
1316 *	Allocate and return a memory cell associated
1317 *	with this VM object/offset pair.
1318 *
1319 *	The caller must always specify an allocation class.
1320 *
1321 *	allocation classes:
1322 *	VM_ALLOC_NORMAL		normal process request
1323 *	VM_ALLOC_SYSTEM		system *really* needs a page
1324 *	VM_ALLOC_INTERRUPT	interrupt time request
1325 *
1326 *	optional allocation flags:
1327 *	VM_ALLOC_ZERO		prefer a zeroed page
1328 *	VM_ALLOC_WIRED		wire the allocated page
1329 *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1330 *	VM_ALLOC_NOBUSY		do not set the page busy
1331 *	VM_ALLOC_IFCACHED	return page only if it is cached
1332 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1333 *				is cached
1334 *
1335 *	This routine may not sleep.
1336 */
1337vm_page_t
1338vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1339{
1340	struct vnode *vp = NULL;
1341	vm_object_t m_object;
1342	vm_page_t m;
1343	int flags, page_req;
1344
1345	if ((req & VM_ALLOC_NOOBJ) == 0) {
1346		KASSERT(object != NULL,
1347		    ("vm_page_alloc: NULL object."));
1348		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1349	}
1350
1351	page_req = req & VM_ALLOC_CLASS_MASK;
1352
1353	/*
1354	 * The pager is allowed to eat deeper into the free page list.
1355	 */
1356	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT))
1357		page_req = VM_ALLOC_SYSTEM;
1358
1359	mtx_lock(&vm_page_queue_free_mtx);
1360	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1361	    (page_req == VM_ALLOC_SYSTEM &&
1362	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1363	    (page_req == VM_ALLOC_INTERRUPT &&
1364	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1365		/*
1366		 * Allocate from the free queue if the number of free pages
1367		 * exceeds the minimum for the request class.
1368		 */
1369		if (object != NULL &&
1370		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1371			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1372				mtx_unlock(&vm_page_queue_free_mtx);
1373				return (NULL);
1374			}
1375			if (vm_phys_unfree_page(m))
1376				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1377#if VM_NRESERVLEVEL > 0
1378			else if (!vm_reserv_reactivate_page(m))
1379#else
1380			else
1381#endif
1382				panic("vm_page_alloc: cache page %p is missing"
1383				    " from the free queue", m);
1384		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1385			mtx_unlock(&vm_page_queue_free_mtx);
1386			return (NULL);
1387#if VM_NRESERVLEVEL > 0
1388		} else if (object == NULL || object->type == OBJT_DEVICE ||
1389		    object->type == OBJT_SG ||
1390		    (object->flags & OBJ_COLORED) == 0 ||
1391		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1392#else
1393		} else {
1394#endif
1395			m = vm_phys_alloc_pages(object != NULL ?
1396			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1397#if VM_NRESERVLEVEL > 0
1398			if (m == NULL && vm_reserv_reclaim_inactive()) {
1399				m = vm_phys_alloc_pages(object != NULL ?
1400				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1401				    0);
1402			}
1403#endif
1404		}
1405	} else {
1406		/*
1407		 * Not allocatable, give up.
1408		 */
1409		mtx_unlock(&vm_page_queue_free_mtx);
1410		atomic_add_int(&vm_pageout_deficit,
1411		    MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1412		pagedaemon_wakeup();
1413		return (NULL);
1414	}
1415
1416	/*
1417	 *  At this point we had better have found a good page.
1418	 */
1419
1420	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1421	KASSERT(m->queue == PQ_NONE,
1422	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1423	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1424	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1425	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1426	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1427	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1428	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1429	    pmap_page_get_memattr(m)));
1430	if ((m->flags & PG_CACHED) != 0) {
1431		KASSERT(m->valid != 0,
1432		    ("vm_page_alloc: cached page %p is invalid", m));
1433		if (m->object == object && m->pindex == pindex)
1434	  		cnt.v_reactivated++;
1435		else
1436			m->valid = 0;
1437		m_object = m->object;
1438		vm_page_cache_remove(m);
1439		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1440			vp = m_object->handle;
1441	} else {
1442		KASSERT(VM_PAGE_IS_FREE(m),
1443		    ("vm_page_alloc: page %p is not free", m));
1444		KASSERT(m->valid == 0,
1445		    ("vm_page_alloc: free page %p is valid", m));
1446		cnt.v_free_count--;
1447	}
1448
1449	/*
1450	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1451	 * must be cleared before the free page queues lock is released.
1452	 */
1453	flags = 0;
1454	if (req & VM_ALLOC_NODUMP)
1455		flags |= PG_NODUMP;
1456	if (m->flags & PG_ZERO) {
1457		vm_page_zero_count--;
1458		if (req & VM_ALLOC_ZERO)
1459			flags = PG_ZERO;
1460	}
1461	m->flags = flags;
1462	mtx_unlock(&vm_page_queue_free_mtx);
1463	m->aflags = 0;
1464	if (object == NULL || object->type == OBJT_PHYS)
1465		m->oflags = VPO_UNMANAGED;
1466	else
1467		m->oflags = 0;
1468	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
1469		m->oflags |= VPO_BUSY;
1470	if (req & VM_ALLOC_WIRED) {
1471		/*
1472		 * The page lock is not required for wiring a page until that
1473		 * page is inserted into the object.
1474		 */
1475		atomic_add_int(&cnt.v_wire_count, 1);
1476		m->wire_count = 1;
1477	}
1478	m->act_count = 0;
1479
1480	if (object != NULL) {
1481		/* Ignore device objects; the pager sets "memattr" for them. */
1482		if (object->memattr != VM_MEMATTR_DEFAULT &&
1483		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1484			pmap_page_set_memattr(m, object->memattr);
1485		vm_page_insert(m, object, pindex);
1486	} else
1487		m->pindex = pindex;
1488
1489	/*
1490	 * The following call to vdrop() must come after the above call
1491	 * to vm_page_insert() in case both affect the same object and
1492	 * vnode.  Otherwise, the affected vnode's hold count could
1493	 * temporarily become zero.
1494	 */
1495	if (vp != NULL)
1496		vdrop(vp);
1497
1498	/*
1499	 * Don't wakeup too often - wakeup the pageout daemon when
1500	 * we would be nearly out of memory.
1501	 */
1502	if (vm_paging_needed())
1503		pagedaemon_wakeup();
1504
1505	return (m);
1506}
1507
1508/*
1509 * Initialize a page that has been freshly dequeued from a freelist.
1510 * The caller has to drop the vnode returned, if it is not NULL.
1511 *
1512 * To be called with vm_page_queue_free_mtx held.
1513 */
1514struct vnode *
1515vm_page_alloc_init(vm_page_t m)
1516{
1517	struct vnode *drop;
1518	vm_object_t m_object;
1519
1520	KASSERT(m->queue == PQ_NONE,
1521	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1522	    m, m->queue));
1523	KASSERT(m->wire_count == 0,
1524	    ("vm_page_alloc_init: page %p is wired", m));
1525	KASSERT(m->hold_count == 0,
1526	    ("vm_page_alloc_init: page %p is held", m));
1527	KASSERT(m->busy == 0,
1528	    ("vm_page_alloc_init: page %p is busy", m));
1529	KASSERT(m->dirty == 0,
1530	    ("vm_page_alloc_init: page %p is dirty", m));
1531	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1532	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1533	    m, pmap_page_get_memattr(m)));
1534	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1535	drop = NULL;
1536	if ((m->flags & PG_CACHED) != 0) {
1537		m->valid = 0;
1538		m_object = m->object;
1539		vm_page_cache_remove(m);
1540		if (m_object->type == OBJT_VNODE &&
1541		    m_object->cache == NULL)
1542			drop = m_object->handle;
1543	} else {
1544		KASSERT(VM_PAGE_IS_FREE(m),
1545		    ("vm_page_alloc_init: page %p is not free", m));
1546		KASSERT(m->valid == 0,
1547		    ("vm_page_alloc_init: free page %p is valid", m));
1548		cnt.v_free_count--;
1549	}
1550	if (m->flags & PG_ZERO)
1551		vm_page_zero_count--;
1552	/* Don't clear the PG_ZERO flag; we'll need it later. */
1553	m->flags &= PG_ZERO;
1554	m->aflags = 0;
1555	m->oflags = VPO_UNMANAGED;
1556	/* Unmanaged pages don't use "act_count". */
1557	return (drop);
1558}
1559
1560/*
1561 * 	vm_page_alloc_freelist:
1562 *
1563 *	Allocate a page from the specified freelist.
1564 *	Only the ALLOC_CLASS values in req are honored, other request flags
1565 *	are ignored.
1566 */
1567vm_page_t
1568vm_page_alloc_freelist(int flind, int req)
1569{
1570	struct vnode *drop;
1571	vm_page_t m;
1572	int page_req;
1573
1574	m = NULL;
1575	page_req = req & VM_ALLOC_CLASS_MASK;
1576	mtx_lock(&vm_page_queue_free_mtx);
1577	/*
1578	 * Do not allocate reserved pages unless the req has asked for it.
1579	 */
1580	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1581	    (page_req == VM_ALLOC_SYSTEM &&
1582	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1583	    (page_req == VM_ALLOC_INTERRUPT &&
1584	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1585		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1586	}
1587	if (m == NULL) {
1588		mtx_unlock(&vm_page_queue_free_mtx);
1589		return (NULL);
1590	}
1591	drop = vm_page_alloc_init(m);
1592	mtx_unlock(&vm_page_queue_free_mtx);
1593	if (drop)
1594		vdrop(drop);
1595	return (m);
1596}
1597
1598/*
1599 *	vm_wait:	(also see VM_WAIT macro)
1600 *
1601 *	Block until free pages are available for allocation
1602 *	- Called in various places before memory allocations.
1603 */
1604void
1605vm_wait(void)
1606{
1607
1608	mtx_lock(&vm_page_queue_free_mtx);
1609	if (curproc == pageproc) {
1610		vm_pageout_pages_needed = 1;
1611		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1612		    PDROP | PSWP, "VMWait", 0);
1613	} else {
1614		if (!vm_pages_needed) {
1615			vm_pages_needed = 1;
1616			wakeup(&vm_pages_needed);
1617		}
1618		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1619		    "vmwait", 0);
1620	}
1621}
1622
1623/*
1624 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1625 *
1626 *	Block until free pages are available for allocation
1627 *	- Called only in vm_fault so that processes page faulting
1628 *	  can be easily tracked.
1629 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1630 *	  processes will be able to grab memory first.  Do not change
1631 *	  this balance without careful testing first.
1632 */
1633void
1634vm_waitpfault(void)
1635{
1636
1637	mtx_lock(&vm_page_queue_free_mtx);
1638	if (!vm_pages_needed) {
1639		vm_pages_needed = 1;
1640		wakeup(&vm_pages_needed);
1641	}
1642	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1643	    "pfault", 0);
1644}
1645
1646/*
1647 *	vm_page_requeue:
1648 *
1649 *	Move the given page to the tail of its present page queue.
1650 *
1651 *	The page queues must be locked.
1652 */
1653void
1654vm_page_requeue(vm_page_t m)
1655{
1656	struct vpgqueues *vpq;
1657	int queue;
1658
1659	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1660	queue = m->queue;
1661	KASSERT(queue != PQ_NONE,
1662	    ("vm_page_requeue: page %p is not queued", m));
1663	vpq = &vm_page_queues[queue];
1664	TAILQ_REMOVE(&vpq->pl, m, pageq);
1665	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1666}
1667
1668/*
1669 *	vm_page_queue_remove:
1670 *
1671 *	Remove the given page from the specified queue.
1672 *
1673 *	The page and page queues must be locked.
1674 */
1675static __inline void
1676vm_page_queue_remove(int queue, vm_page_t m)
1677{
1678	struct vpgqueues *pq;
1679
1680	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1681	vm_page_lock_assert(m, MA_OWNED);
1682	pq = &vm_page_queues[queue];
1683	TAILQ_REMOVE(&pq->pl, m, pageq);
1684	(*pq->cnt)--;
1685}
1686
1687/*
1688 *	vm_pageq_remove:
1689 *
1690 *	Remove a page from its queue.
1691 *
1692 *	The given page must be locked.
1693 *	This routine may not block.
1694 */
1695void
1696vm_pageq_remove(vm_page_t m)
1697{
1698	int queue;
1699
1700	vm_page_lock_assert(m, MA_OWNED);
1701	if ((queue = m->queue) != PQ_NONE) {
1702		vm_page_lock_queues();
1703		m->queue = PQ_NONE;
1704		vm_page_queue_remove(queue, m);
1705		vm_page_unlock_queues();
1706	}
1707}
1708
1709/*
1710 *	vm_page_enqueue:
1711 *
1712 *	Add the given page to the specified queue.
1713 *
1714 *	The page queues must be locked.
1715 */
1716static void
1717vm_page_enqueue(int queue, vm_page_t m)
1718{
1719	struct vpgqueues *vpq;
1720
1721	vpq = &vm_page_queues[queue];
1722	m->queue = queue;
1723	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1724	++*vpq->cnt;
1725}
1726
1727/*
1728 *	vm_page_activate:
1729 *
1730 *	Put the specified page on the active list (if appropriate).
1731 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1732 *	mess with it.
1733 *
1734 *	The page must be locked.
1735 *	This routine may not block.
1736 */
1737void
1738vm_page_activate(vm_page_t m)
1739{
1740	int queue;
1741
1742	vm_page_lock_assert(m, MA_OWNED);
1743	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1744	if ((queue = m->queue) != PQ_ACTIVE) {
1745		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1746			if (m->act_count < ACT_INIT)
1747				m->act_count = ACT_INIT;
1748			vm_page_lock_queues();
1749			if (queue != PQ_NONE)
1750				vm_page_queue_remove(queue, m);
1751			vm_page_enqueue(PQ_ACTIVE, m);
1752			vm_page_unlock_queues();
1753		} else
1754			KASSERT(queue == PQ_NONE,
1755			    ("vm_page_activate: wired page %p is queued", m));
1756	} else {
1757		if (m->act_count < ACT_INIT)
1758			m->act_count = ACT_INIT;
1759	}
1760}
1761
1762/*
1763 *	vm_page_free_wakeup:
1764 *
1765 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1766 *	routine is called when a page has been added to the cache or free
1767 *	queues.
1768 *
1769 *	The page queues must be locked.
1770 *	This routine may not block.
1771 */
1772static inline void
1773vm_page_free_wakeup(void)
1774{
1775
1776	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1777	/*
1778	 * if pageout daemon needs pages, then tell it that there are
1779	 * some free.
1780	 */
1781	if (vm_pageout_pages_needed &&
1782	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1783		wakeup(&vm_pageout_pages_needed);
1784		vm_pageout_pages_needed = 0;
1785	}
1786	/*
1787	 * wakeup processes that are waiting on memory if we hit a
1788	 * high water mark. And wakeup scheduler process if we have
1789	 * lots of memory. this process will swapin processes.
1790	 */
1791	if (vm_pages_needed && !vm_page_count_min()) {
1792		vm_pages_needed = 0;
1793		wakeup(&cnt.v_free_count);
1794	}
1795}
1796
1797/*
1798 *	vm_page_free_toq:
1799 *
1800 *	Returns the given page to the free list,
1801 *	disassociating it with any VM object.
1802 *
1803 *	Object and page must be locked prior to entry.
1804 *	This routine may not block.
1805 */
1806
1807void
1808vm_page_free_toq(vm_page_t m)
1809{
1810
1811	if ((m->oflags & VPO_UNMANAGED) == 0) {
1812		vm_page_lock_assert(m, MA_OWNED);
1813		KASSERT(!pmap_page_is_mapped(m),
1814		    ("vm_page_free_toq: freeing mapped page %p", m));
1815	}
1816	PCPU_INC(cnt.v_tfree);
1817
1818	if (VM_PAGE_IS_FREE(m))
1819		panic("vm_page_free: freeing free page %p", m);
1820	else if (m->busy != 0)
1821		panic("vm_page_free: freeing busy page %p", m);
1822
1823	/*
1824	 * unqueue, then remove page.  Note that we cannot destroy
1825	 * the page here because we do not want to call the pager's
1826	 * callback routine until after we've put the page on the
1827	 * appropriate free queue.
1828	 */
1829	if ((m->oflags & VPO_UNMANAGED) == 0)
1830		vm_pageq_remove(m);
1831	vm_page_remove(m);
1832
1833	/*
1834	 * If fictitious remove object association and
1835	 * return, otherwise delay object association removal.
1836	 */
1837	if ((m->flags & PG_FICTITIOUS) != 0) {
1838		return;
1839	}
1840
1841	m->valid = 0;
1842	vm_page_undirty(m);
1843
1844	if (m->wire_count != 0)
1845		panic("vm_page_free: freeing wired page %p", m);
1846	if (m->hold_count != 0) {
1847		m->flags &= ~PG_ZERO;
1848		vm_page_lock_queues();
1849		vm_page_enqueue(PQ_HOLD, m);
1850		vm_page_unlock_queues();
1851	} else {
1852		/*
1853		 * Restore the default memory attribute to the page.
1854		 */
1855		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1856			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1857
1858		/*
1859		 * Insert the page into the physical memory allocator's
1860		 * cache/free page queues.
1861		 */
1862		mtx_lock(&vm_page_queue_free_mtx);
1863		m->flags |= PG_FREE;
1864		cnt.v_free_count++;
1865#if VM_NRESERVLEVEL > 0
1866		if (!vm_reserv_free_page(m))
1867#else
1868		if (TRUE)
1869#endif
1870			vm_phys_free_pages(m, 0);
1871		if ((m->flags & PG_ZERO) != 0)
1872			++vm_page_zero_count;
1873		else
1874			vm_page_zero_idle_wakeup();
1875		vm_page_free_wakeup();
1876		mtx_unlock(&vm_page_queue_free_mtx);
1877	}
1878}
1879
1880/*
1881 *	vm_page_wire:
1882 *
1883 *	Mark this page as wired down by yet
1884 *	another map, removing it from paging queues
1885 *	as necessary.
1886 *
1887 *	If the page is fictitious, then its wire count must remain one.
1888 *
1889 *	The page must be locked.
1890 *	This routine may not block.
1891 */
1892void
1893vm_page_wire(vm_page_t m)
1894{
1895
1896	/*
1897	 * Only bump the wire statistics if the page is not already wired,
1898	 * and only unqueue the page if it is on some queue (if it is unmanaged
1899	 * it is already off the queues).
1900	 */
1901	vm_page_lock_assert(m, MA_OWNED);
1902	if ((m->flags & PG_FICTITIOUS) != 0) {
1903		KASSERT(m->wire_count == 1,
1904		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1905		    m));
1906		return;
1907	}
1908	if (m->wire_count == 0) {
1909		if ((m->oflags & VPO_UNMANAGED) == 0)
1910			vm_pageq_remove(m);
1911		atomic_add_int(&cnt.v_wire_count, 1);
1912	}
1913	m->wire_count++;
1914	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1915}
1916
1917/*
1918 * vm_page_unwire:
1919 *
1920 * Release one wiring of the specified page, potentially enabling it to be
1921 * paged again.  If paging is enabled, then the value of the parameter
1922 * "activate" determines to which queue the page is added.  If "activate" is
1923 * non-zero, then the page is added to the active queue.  Otherwise, it is
1924 * added to the inactive queue.
1925 *
1926 * However, unless the page belongs to an object, it is not enqueued because
1927 * it cannot be paged out.
1928 *
1929 * If a page is fictitious, then its wire count must alway be one.
1930 *
1931 * A managed page must be locked.
1932 */
1933void
1934vm_page_unwire(vm_page_t m, int activate)
1935{
1936
1937	if ((m->oflags & VPO_UNMANAGED) == 0)
1938		vm_page_lock_assert(m, MA_OWNED);
1939	if ((m->flags & PG_FICTITIOUS) != 0) {
1940		KASSERT(m->wire_count == 1,
1941	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
1942		return;
1943	}
1944	if (m->wire_count > 0) {
1945		m->wire_count--;
1946		if (m->wire_count == 0) {
1947			atomic_subtract_int(&cnt.v_wire_count, 1);
1948			if ((m->oflags & VPO_UNMANAGED) != 0 ||
1949			    m->object == NULL)
1950				return;
1951			if (!activate)
1952				m->flags &= ~PG_WINATCFLS;
1953			vm_page_lock_queues();
1954			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
1955			vm_page_unlock_queues();
1956		}
1957	} else
1958		panic("vm_page_unwire: page %p's wire count is zero", m);
1959}
1960
1961/*
1962 * Move the specified page to the inactive queue.
1963 *
1964 * Many pages placed on the inactive queue should actually go
1965 * into the cache, but it is difficult to figure out which.  What
1966 * we do instead, if the inactive target is well met, is to put
1967 * clean pages at the head of the inactive queue instead of the tail.
1968 * This will cause them to be moved to the cache more quickly and
1969 * if not actively re-referenced, reclaimed more quickly.  If we just
1970 * stick these pages at the end of the inactive queue, heavy filesystem
1971 * meta-data accesses can cause an unnecessary paging load on memory bound
1972 * processes.  This optimization causes one-time-use metadata to be
1973 * reused more quickly.
1974 *
1975 * Normally athead is 0 resulting in LRU operation.  athead is set
1976 * to 1 if we want this page to be 'as if it were placed in the cache',
1977 * except without unmapping it from the process address space.
1978 *
1979 * This routine may not block.
1980 */
1981static inline void
1982_vm_page_deactivate(vm_page_t m, int athead)
1983{
1984	int queue;
1985
1986	vm_page_lock_assert(m, MA_OWNED);
1987
1988	/*
1989	 * Ignore if already inactive.
1990	 */
1991	if ((queue = m->queue) == PQ_INACTIVE)
1992		return;
1993	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1994		m->flags &= ~PG_WINATCFLS;
1995		vm_page_lock_queues();
1996		if (queue != PQ_NONE)
1997			vm_page_queue_remove(queue, m);
1998		if (athead)
1999			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
2000			    pageq);
2001		else
2002			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
2003			    pageq);
2004		m->queue = PQ_INACTIVE;
2005		cnt.v_inactive_count++;
2006		vm_page_unlock_queues();
2007	}
2008}
2009
2010/*
2011 * Move the specified page to the inactive queue.
2012 *
2013 * The page must be locked.
2014 */
2015void
2016vm_page_deactivate(vm_page_t m)
2017{
2018
2019	_vm_page_deactivate(m, 0);
2020}
2021
2022/*
2023 * vm_page_try_to_cache:
2024 *
2025 * Returns 0 on failure, 1 on success
2026 */
2027int
2028vm_page_try_to_cache(vm_page_t m)
2029{
2030
2031	vm_page_lock_assert(m, MA_OWNED);
2032	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2033	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2034	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2035		return (0);
2036	pmap_remove_all(m);
2037	if (m->dirty)
2038		return (0);
2039	vm_page_cache(m);
2040	return (1);
2041}
2042
2043/*
2044 * vm_page_try_to_free()
2045 *
2046 *	Attempt to free the page.  If we cannot free it, we do nothing.
2047 *	1 is returned on success, 0 on failure.
2048 */
2049int
2050vm_page_try_to_free(vm_page_t m)
2051{
2052
2053	vm_page_lock_assert(m, MA_OWNED);
2054	if (m->object != NULL)
2055		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2056	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2057	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2058		return (0);
2059	pmap_remove_all(m);
2060	if (m->dirty)
2061		return (0);
2062	vm_page_free(m);
2063	return (1);
2064}
2065
2066/*
2067 * vm_page_cache
2068 *
2069 * Put the specified page onto the page cache queue (if appropriate).
2070 *
2071 * This routine may not block.
2072 */
2073void
2074vm_page_cache(vm_page_t m)
2075{
2076	vm_object_t object;
2077	vm_page_t next, prev, root;
2078
2079	vm_page_lock_assert(m, MA_OWNED);
2080	object = m->object;
2081	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2082	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
2083	    m->hold_count || m->wire_count)
2084		panic("vm_page_cache: attempting to cache busy page");
2085	pmap_remove_all(m);
2086	if (m->dirty != 0)
2087		panic("vm_page_cache: page %p is dirty", m);
2088	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2089	    (object->type == OBJT_SWAP &&
2090	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2091		/*
2092		 * Hypothesis: A cache-elgible page belonging to a
2093		 * default object or swap object but without a backing
2094		 * store must be zero filled.
2095		 */
2096		vm_page_free(m);
2097		return;
2098	}
2099	KASSERT((m->flags & PG_CACHED) == 0,
2100	    ("vm_page_cache: page %p is already cached", m));
2101	PCPU_INC(cnt.v_tcached);
2102
2103	/*
2104	 * Remove the page from the paging queues.
2105	 */
2106	vm_pageq_remove(m);
2107
2108	/*
2109	 * Remove the page from the object's collection of resident
2110	 * pages.
2111	 */
2112	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
2113		/*
2114		 * Since the page's successor in the list is also its parent
2115		 * in the tree, its right subtree must be empty.
2116		 */
2117		next->left = m->left;
2118		KASSERT(m->right == NULL,
2119		    ("vm_page_cache: page %p has right child", m));
2120	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
2121	    prev->right == m) {
2122		/*
2123		 * Since the page's predecessor in the list is also its parent
2124		 * in the tree, its left subtree must be empty.
2125		 */
2126		KASSERT(m->left == NULL,
2127		    ("vm_page_cache: page %p has left child", m));
2128		prev->right = m->right;
2129	} else {
2130		if (m != object->root)
2131			vm_page_splay(m->pindex, object->root);
2132		if (m->left == NULL)
2133			root = m->right;
2134		else if (m->right == NULL)
2135			root = m->left;
2136		else {
2137			/*
2138			 * Move the page's successor to the root, because
2139			 * pages are usually removed in ascending order.
2140			 */
2141			if (m->right != next)
2142				vm_page_splay(m->pindex, m->right);
2143			next->left = m->left;
2144			root = next;
2145		}
2146		object->root = root;
2147	}
2148	TAILQ_REMOVE(&object->memq, m, listq);
2149	object->resident_page_count--;
2150
2151	/*
2152	 * Restore the default memory attribute to the page.
2153	 */
2154	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2155		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2156
2157	/*
2158	 * Insert the page into the object's collection of cached pages
2159	 * and the physical memory allocator's cache/free page queues.
2160	 */
2161	m->flags &= ~PG_ZERO;
2162	mtx_lock(&vm_page_queue_free_mtx);
2163	m->flags |= PG_CACHED;
2164	cnt.v_cache_count++;
2165	root = object->cache;
2166	if (root == NULL) {
2167		m->left = NULL;
2168		m->right = NULL;
2169	} else {
2170		root = vm_page_splay(m->pindex, root);
2171		if (m->pindex < root->pindex) {
2172			m->left = root->left;
2173			m->right = root;
2174			root->left = NULL;
2175		} else if (__predict_false(m->pindex == root->pindex))
2176			panic("vm_page_cache: offset already cached");
2177		else {
2178			m->right = root->right;
2179			m->left = root;
2180			root->right = NULL;
2181		}
2182	}
2183	object->cache = m;
2184#if VM_NRESERVLEVEL > 0
2185	if (!vm_reserv_free_page(m)) {
2186#else
2187	if (TRUE) {
2188#endif
2189		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2190		vm_phys_free_pages(m, 0);
2191	}
2192	vm_page_free_wakeup();
2193	mtx_unlock(&vm_page_queue_free_mtx);
2194
2195	/*
2196	 * Increment the vnode's hold count if this is the object's only
2197	 * cached page.  Decrement the vnode's hold count if this was
2198	 * the object's only resident page.
2199	 */
2200	if (object->type == OBJT_VNODE) {
2201		if (root == NULL && object->resident_page_count != 0)
2202			vhold(object->handle);
2203		else if (root != NULL && object->resident_page_count == 0)
2204			vdrop(object->handle);
2205	}
2206}
2207
2208/*
2209 * vm_page_dontneed
2210 *
2211 *	Cache, deactivate, or do nothing as appropriate.  This routine
2212 *	is typically used by madvise() MADV_DONTNEED.
2213 *
2214 *	Generally speaking we want to move the page into the cache so
2215 *	it gets reused quickly.  However, this can result in a silly syndrome
2216 *	due to the page recycling too quickly.  Small objects will not be
2217 *	fully cached.  On the otherhand, if we move the page to the inactive
2218 *	queue we wind up with a problem whereby very large objects
2219 *	unnecessarily blow away our inactive and cache queues.
2220 *
2221 *	The solution is to move the pages based on a fixed weighting.  We
2222 *	either leave them alone, deactivate them, or move them to the cache,
2223 *	where moving them to the cache has the highest weighting.
2224 *	By forcing some pages into other queues we eventually force the
2225 *	system to balance the queues, potentially recovering other unrelated
2226 *	space from active.  The idea is to not force this to happen too
2227 *	often.
2228 */
2229void
2230vm_page_dontneed(vm_page_t m)
2231{
2232	int dnw;
2233	int head;
2234
2235	vm_page_lock_assert(m, MA_OWNED);
2236	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2237	dnw = PCPU_GET(dnweight);
2238	PCPU_INC(dnweight);
2239
2240	/*
2241	 * Occasionally leave the page alone.
2242	 */
2243	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2244		if (m->act_count >= ACT_INIT)
2245			--m->act_count;
2246		return;
2247	}
2248
2249	/*
2250	 * Clear any references to the page.  Otherwise, the page daemon will
2251	 * immediately reactivate the page.
2252	 *
2253	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2254	 * pmap operation, such as pmap_remove(), could clear a reference in
2255	 * the pmap and set PGA_REFERENCED on the page before the
2256	 * pmap_clear_reference() had completed.  Consequently, the page would
2257	 * appear referenced based upon an old reference that occurred before
2258	 * this function ran.
2259	 */
2260	pmap_clear_reference(m);
2261	vm_page_aflag_clear(m, PGA_REFERENCED);
2262
2263	if (m->dirty == 0 && pmap_is_modified(m))
2264		vm_page_dirty(m);
2265
2266	if (m->dirty || (dnw & 0x0070) == 0) {
2267		/*
2268		 * Deactivate the page 3 times out of 32.
2269		 */
2270		head = 0;
2271	} else {
2272		/*
2273		 * Cache the page 28 times out of every 32.  Note that
2274		 * the page is deactivated instead of cached, but placed
2275		 * at the head of the queue instead of the tail.
2276		 */
2277		head = 1;
2278	}
2279	_vm_page_deactivate(m, head);
2280}
2281
2282/*
2283 * Grab a page, waiting until we are waken up due to the page
2284 * changing state.  We keep on waiting, if the page continues
2285 * to be in the object.  If the page doesn't exist, first allocate it
2286 * and then conditionally zero it.
2287 *
2288 * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2289 * to facilitate its eventual removal.
2290 *
2291 * This routine may block.
2292 */
2293vm_page_t
2294vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2295{
2296	vm_page_t m;
2297
2298	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2299	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2300	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2301retrylookup:
2302	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2303		if ((m->oflags & VPO_BUSY) != 0 ||
2304		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2305			/*
2306			 * Reference the page before unlocking and
2307			 * sleeping so that the page daemon is less
2308			 * likely to reclaim it.
2309			 */
2310			vm_page_aflag_set(m, PGA_REFERENCED);
2311			vm_page_sleep(m, "pgrbwt");
2312			goto retrylookup;
2313		} else {
2314			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2315				vm_page_lock(m);
2316				vm_page_wire(m);
2317				vm_page_unlock(m);
2318			}
2319			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2320				vm_page_busy(m);
2321			return (m);
2322		}
2323	}
2324	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2325	    VM_ALLOC_IGN_SBUSY));
2326	if (m == NULL) {
2327		VM_OBJECT_UNLOCK(object);
2328		VM_WAIT;
2329		VM_OBJECT_LOCK(object);
2330		goto retrylookup;
2331	} else if (m->valid != 0)
2332		return (m);
2333	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2334		pmap_zero_page(m);
2335	return (m);
2336}
2337
2338/*
2339 * Mapping function for valid bits or for dirty bits in
2340 * a page.  May not block.
2341 *
2342 * Inputs are required to range within a page.
2343 */
2344vm_page_bits_t
2345vm_page_bits(int base, int size)
2346{
2347	int first_bit;
2348	int last_bit;
2349
2350	KASSERT(
2351	    base + size <= PAGE_SIZE,
2352	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2353	);
2354
2355	if (size == 0)		/* handle degenerate case */
2356		return (0);
2357
2358	first_bit = base >> DEV_BSHIFT;
2359	last_bit = (base + size - 1) >> DEV_BSHIFT;
2360
2361	return (((vm_page_bits_t)2 << last_bit) -
2362	    ((vm_page_bits_t)1 << first_bit));
2363}
2364
2365/*
2366 *	vm_page_set_valid:
2367 *
2368 *	Sets portions of a page valid.  The arguments are expected
2369 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2370 *	of any partial chunks touched by the range.  The invalid portion of
2371 *	such chunks will be zeroed.
2372 *
2373 *	(base + size) must be less then or equal to PAGE_SIZE.
2374 */
2375void
2376vm_page_set_valid(vm_page_t m, int base, int size)
2377{
2378	int endoff, frag;
2379
2380	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2381	if (size == 0)	/* handle degenerate case */
2382		return;
2383
2384	/*
2385	 * If the base is not DEV_BSIZE aligned and the valid
2386	 * bit is clear, we have to zero out a portion of the
2387	 * first block.
2388	 */
2389	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2390	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2391		pmap_zero_page_area(m, frag, base - frag);
2392
2393	/*
2394	 * If the ending offset is not DEV_BSIZE aligned and the
2395	 * valid bit is clear, we have to zero out a portion of
2396	 * the last block.
2397	 */
2398	endoff = base + size;
2399	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2400	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2401		pmap_zero_page_area(m, endoff,
2402		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2403
2404	/*
2405	 * Assert that no previously invalid block that is now being validated
2406	 * is already dirty.
2407	 */
2408	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2409	    ("vm_page_set_valid: page %p is dirty", m));
2410
2411	/*
2412	 * Set valid bits inclusive of any overlap.
2413	 */
2414	m->valid |= vm_page_bits(base, size);
2415}
2416
2417/*
2418 * Clear the given bits from the specified page's dirty field.
2419 */
2420static __inline void
2421vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2422{
2423	uintptr_t addr;
2424#if PAGE_SIZE < 16384
2425	int shift;
2426#endif
2427
2428	/*
2429	 * If the object is locked and the page is neither VPO_BUSY nor
2430	 * PGA_WRITEABLE, then the page's dirty field cannot possibly be
2431	 * set by a concurrent pmap operation.
2432	 */
2433	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2434	if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0)
2435		m->dirty &= ~pagebits;
2436	else {
2437		/*
2438		 * The pmap layer can call vm_page_dirty() without
2439		 * holding a distinguished lock.  The combination of
2440		 * the object's lock and an atomic operation suffice
2441		 * to guarantee consistency of the page dirty field.
2442		 *
2443		 * For PAGE_SIZE == 32768 case, compiler already
2444		 * properly aligns the dirty field, so no forcible
2445		 * alignment is needed. Only require existence of
2446		 * atomic_clear_64 when page size is 32768.
2447		 */
2448		addr = (uintptr_t)&m->dirty;
2449#if PAGE_SIZE == 32768
2450		atomic_clear_64((uint64_t *)addr, pagebits);
2451#elif PAGE_SIZE == 16384
2452		atomic_clear_32((uint32_t *)addr, pagebits);
2453#else		/* PAGE_SIZE <= 8192 */
2454		/*
2455		 * Use a trick to perform a 32-bit atomic on the
2456		 * containing aligned word, to not depend on the existence
2457		 * of atomic_clear_{8, 16}.
2458		 */
2459		shift = addr & (sizeof(uint32_t) - 1);
2460#if BYTE_ORDER == BIG_ENDIAN
2461		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2462#else
2463		shift *= NBBY;
2464#endif
2465		addr &= ~(sizeof(uint32_t) - 1);
2466		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2467#endif		/* PAGE_SIZE */
2468	}
2469}
2470
2471/*
2472 *	vm_page_set_validclean:
2473 *
2474 *	Sets portions of a page valid and clean.  The arguments are expected
2475 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2476 *	of any partial chunks touched by the range.  The invalid portion of
2477 *	such chunks will be zero'd.
2478 *
2479 *	This routine may not block.
2480 *
2481 *	(base + size) must be less then or equal to PAGE_SIZE.
2482 */
2483void
2484vm_page_set_validclean(vm_page_t m, int base, int size)
2485{
2486	vm_page_bits_t oldvalid, pagebits;
2487	int endoff, frag;
2488
2489	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2490	if (size == 0)	/* handle degenerate case */
2491		return;
2492
2493	/*
2494	 * If the base is not DEV_BSIZE aligned and the valid
2495	 * bit is clear, we have to zero out a portion of the
2496	 * first block.
2497	 */
2498	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2499	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2500		pmap_zero_page_area(m, frag, base - frag);
2501
2502	/*
2503	 * If the ending offset is not DEV_BSIZE aligned and the
2504	 * valid bit is clear, we have to zero out a portion of
2505	 * the last block.
2506	 */
2507	endoff = base + size;
2508	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2509	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2510		pmap_zero_page_area(m, endoff,
2511		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2512
2513	/*
2514	 * Set valid, clear dirty bits.  If validating the entire
2515	 * page we can safely clear the pmap modify bit.  We also
2516	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2517	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2518	 * be set again.
2519	 *
2520	 * We set valid bits inclusive of any overlap, but we can only
2521	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2522	 * the range.
2523	 */
2524	oldvalid = m->valid;
2525	pagebits = vm_page_bits(base, size);
2526	m->valid |= pagebits;
2527#if 0	/* NOT YET */
2528	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2529		frag = DEV_BSIZE - frag;
2530		base += frag;
2531		size -= frag;
2532		if (size < 0)
2533			size = 0;
2534	}
2535	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2536#endif
2537	if (base == 0 && size == PAGE_SIZE) {
2538		/*
2539		 * The page can only be modified within the pmap if it is
2540		 * mapped, and it can only be mapped if it was previously
2541		 * fully valid.
2542		 */
2543		if (oldvalid == VM_PAGE_BITS_ALL)
2544			/*
2545			 * Perform the pmap_clear_modify() first.  Otherwise,
2546			 * a concurrent pmap operation, such as
2547			 * pmap_protect(), could clear a modification in the
2548			 * pmap and set the dirty field on the page before
2549			 * pmap_clear_modify() had begun and after the dirty
2550			 * field was cleared here.
2551			 */
2552			pmap_clear_modify(m);
2553		m->dirty = 0;
2554		m->oflags &= ~VPO_NOSYNC;
2555	} else if (oldvalid != VM_PAGE_BITS_ALL)
2556		m->dirty &= ~pagebits;
2557	else
2558		vm_page_clear_dirty_mask(m, pagebits);
2559}
2560
2561void
2562vm_page_clear_dirty(vm_page_t m, int base, int size)
2563{
2564
2565	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2566}
2567
2568/*
2569 *	vm_page_set_invalid:
2570 *
2571 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2572 *	valid and dirty bits for the effected areas are cleared.
2573 *
2574 *	May not block.
2575 */
2576void
2577vm_page_set_invalid(vm_page_t m, int base, int size)
2578{
2579	vm_page_bits_t bits;
2580
2581	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2582	KASSERT((m->oflags & VPO_BUSY) == 0,
2583	    ("vm_page_set_invalid: page %p is busy", m));
2584	bits = vm_page_bits(base, size);
2585	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2586		pmap_remove_all(m);
2587	KASSERT(!pmap_page_is_mapped(m),
2588	    ("vm_page_set_invalid: page %p is mapped", m));
2589	m->valid &= ~bits;
2590	m->dirty &= ~bits;
2591}
2592
2593/*
2594 * vm_page_zero_invalid()
2595 *
2596 *	The kernel assumes that the invalid portions of a page contain
2597 *	garbage, but such pages can be mapped into memory by user code.
2598 *	When this occurs, we must zero out the non-valid portions of the
2599 *	page so user code sees what it expects.
2600 *
2601 *	Pages are most often semi-valid when the end of a file is mapped
2602 *	into memory and the file's size is not page aligned.
2603 */
2604void
2605vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2606{
2607	int b;
2608	int i;
2609
2610	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2611	/*
2612	 * Scan the valid bits looking for invalid sections that
2613	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2614	 * valid bit may be set ) have already been zerod by
2615	 * vm_page_set_validclean().
2616	 */
2617	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2618		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2619		    (m->valid & ((vm_page_bits_t)1 << i))) {
2620			if (i > b) {
2621				pmap_zero_page_area(m,
2622				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2623			}
2624			b = i + 1;
2625		}
2626	}
2627
2628	/*
2629	 * setvalid is TRUE when we can safely set the zero'd areas
2630	 * as being valid.  We can do this if there are no cache consistancy
2631	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2632	 */
2633	if (setvalid)
2634		m->valid = VM_PAGE_BITS_ALL;
2635}
2636
2637/*
2638 *	vm_page_is_valid:
2639 *
2640 *	Is (partial) page valid?  Note that the case where size == 0
2641 *	will return FALSE in the degenerate case where the page is
2642 *	entirely invalid, and TRUE otherwise.
2643 *
2644 *	May not block.
2645 */
2646int
2647vm_page_is_valid(vm_page_t m, int base, int size)
2648{
2649	vm_page_bits_t bits;
2650
2651	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2652	bits = vm_page_bits(base, size);
2653	if (m->valid && ((m->valid & bits) == bits))
2654		return 1;
2655	else
2656		return 0;
2657}
2658
2659/*
2660 * update dirty bits from pmap/mmu.  May not block.
2661 */
2662void
2663vm_page_test_dirty(vm_page_t m)
2664{
2665
2666	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2667	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2668		vm_page_dirty(m);
2669}
2670
2671void
2672vm_page_lock_KBI(vm_page_t m, const char *file, int line)
2673{
2674
2675	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
2676}
2677
2678void
2679vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
2680{
2681
2682	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
2683}
2684
2685int
2686vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
2687{
2688
2689	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
2690}
2691
2692#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
2693void
2694vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
2695{
2696
2697	mtx_assert_(vm_page_lockptr(m), a, file, line);
2698}
2699#endif
2700
2701int so_zerocp_fullpage = 0;
2702
2703/*
2704 *	Replace the given page with a copy.  The copied page assumes
2705 *	the portion of the given page's "wire_count" that is not the
2706 *	responsibility of this copy-on-write mechanism.
2707 *
2708 *	The object containing the given page must have a non-zero
2709 *	paging-in-progress count and be locked.
2710 */
2711void
2712vm_page_cowfault(vm_page_t m)
2713{
2714	vm_page_t mnew;
2715	vm_object_t object;
2716	vm_pindex_t pindex;
2717
2718	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2719	vm_page_lock_assert(m, MA_OWNED);
2720	object = m->object;
2721	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2722	KASSERT(object->paging_in_progress != 0,
2723	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2724	    object));
2725	pindex = m->pindex;
2726
2727 retry_alloc:
2728	pmap_remove_all(m);
2729	vm_page_remove(m);
2730	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2731	if (mnew == NULL) {
2732		vm_page_insert(m, object, pindex);
2733		vm_page_unlock(m);
2734		VM_OBJECT_UNLOCK(object);
2735		VM_WAIT;
2736		VM_OBJECT_LOCK(object);
2737		if (m == vm_page_lookup(object, pindex)) {
2738			vm_page_lock(m);
2739			goto retry_alloc;
2740		} else {
2741			/*
2742			 * Page disappeared during the wait.
2743			 */
2744			return;
2745		}
2746	}
2747
2748	if (m->cow == 0) {
2749		/*
2750		 * check to see if we raced with an xmit complete when
2751		 * waiting to allocate a page.  If so, put things back
2752		 * the way they were
2753		 */
2754		vm_page_unlock(m);
2755		vm_page_lock(mnew);
2756		vm_page_free(mnew);
2757		vm_page_unlock(mnew);
2758		vm_page_insert(m, object, pindex);
2759	} else { /* clear COW & copy page */
2760		if (!so_zerocp_fullpage)
2761			pmap_copy_page(m, mnew);
2762		mnew->valid = VM_PAGE_BITS_ALL;
2763		vm_page_dirty(mnew);
2764		mnew->wire_count = m->wire_count - m->cow;
2765		m->wire_count = m->cow;
2766		vm_page_unlock(m);
2767	}
2768}
2769
2770void
2771vm_page_cowclear(vm_page_t m)
2772{
2773
2774	vm_page_lock_assert(m, MA_OWNED);
2775	if (m->cow) {
2776		m->cow--;
2777		/*
2778		 * let vm_fault add back write permission  lazily
2779		 */
2780	}
2781	/*
2782	 *  sf_buf_free() will free the page, so we needn't do it here
2783	 */
2784}
2785
2786int
2787vm_page_cowsetup(vm_page_t m)
2788{
2789
2790	vm_page_lock_assert(m, MA_OWNED);
2791	if ((m->flags & PG_FICTITIOUS) != 0 ||
2792	    (m->oflags & VPO_UNMANAGED) != 0 ||
2793	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2794		return (EBUSY);
2795	m->cow++;
2796	pmap_remove_write(m);
2797	VM_OBJECT_UNLOCK(m->object);
2798	return (0);
2799}
2800
2801#ifdef INVARIANTS
2802void
2803vm_page_object_lock_assert(vm_page_t m)
2804{
2805
2806	/*
2807	 * Certain of the page's fields may only be modified by the
2808	 * holder of the containing object's lock or the setter of the
2809	 * page's VPO_BUSY flag.  Unfortunately, the setter of the
2810	 * VPO_BUSY flag is not recorded, and thus cannot be checked
2811	 * here.
2812	 */
2813	if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
2814		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2815}
2816#endif
2817
2818#include "opt_ddb.h"
2819#ifdef DDB
2820#include <sys/kernel.h>
2821
2822#include <ddb/ddb.h>
2823
2824DB_SHOW_COMMAND(page, vm_page_print_page_info)
2825{
2826	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2827	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2828	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2829	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2830	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2831	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2832	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2833	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2834	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2835	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2836}
2837
2838DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2839{
2840
2841	db_printf("PQ_FREE:");
2842	db_printf(" %d", cnt.v_free_count);
2843	db_printf("\n");
2844
2845	db_printf("PQ_CACHE:");
2846	db_printf(" %d", cnt.v_cache_count);
2847	db_printf("\n");
2848
2849	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2850		*vm_page_queues[PQ_ACTIVE].cnt,
2851		*vm_page_queues[PQ_INACTIVE].cnt);
2852}
2853#endif /* DDB */
2854