vm_page.c revision 22521
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 *	$FreeBSD: head/sys/vm/vm_page.c 22521 1997-02-10 02:22:35Z dyson $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *	Resident memory management module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/malloc.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76
77#include <vm/vm.h>
78#include <vm/vm_param.h>
79#include <vm/vm_prot.h>
80#include <sys/lock.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_extern.h>
87
88static void	vm_page_queue_init __P((void));
89static vm_page_t vm_page_select_free __P((vm_object_t object,
90			vm_pindex_t pindex, int prefqueue));
91
92/*
93 *	Associated with page of user-allocatable memory is a
94 *	page structure.
95 */
96
97static struct pglist *vm_page_buckets;	/* Array of buckets */
98static int vm_page_bucket_count;	/* How big is array? */
99static int vm_page_hash_mask;		/* Mask for hash function */
100
101struct pglist vm_page_queue_free[PQ_L2_SIZE] = {0};
102struct pglist vm_page_queue_zero[PQ_L2_SIZE] = {0};
103struct pglist vm_page_queue_active = {0};
104struct pglist vm_page_queue_inactive = {0};
105struct pglist vm_page_queue_cache[PQ_L2_SIZE] = {0};
106
107int no_queue=0;
108
109struct vpgqueues vm_page_queues[PQ_COUNT] = {0};
110int pqcnt[PQ_COUNT] = {0};
111
112static void
113vm_page_queue_init(void) {
114	int i;
115
116	vm_page_queues[PQ_NONE].pl = NULL;
117	vm_page_queues[PQ_NONE].cnt = &no_queue;
118	for(i=0;i<PQ_L2_SIZE;i++) {
119		vm_page_queues[PQ_FREE+i].pl = &vm_page_queue_free[i];
120		vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
121	}
122	for(i=0;i<PQ_L2_SIZE;i++) {
123		vm_page_queues[PQ_ZERO+i].pl = &vm_page_queue_zero[i];
124		vm_page_queues[PQ_ZERO+i].cnt = &cnt.v_free_count;
125	}
126	vm_page_queues[PQ_INACTIVE].pl = &vm_page_queue_inactive;
127	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
128
129	vm_page_queues[PQ_ACTIVE].pl = &vm_page_queue_active;
130	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
131	for(i=0;i<PQ_L2_SIZE;i++) {
132		vm_page_queues[PQ_CACHE+i].pl = &vm_page_queue_cache[i];
133		vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
134	}
135	for(i=0;i<PQ_COUNT;i++) {
136		if (vm_page_queues[i].pl) {
137			TAILQ_INIT(vm_page_queues[i].pl);
138		} else if (i != 0) {
139			panic("vm_page_queue_init: queue %d is null", i);
140		}
141		vm_page_queues[i].lcnt = &pqcnt[i];
142	}
143}
144
145vm_page_t vm_page_array = 0;
146int vm_page_array_size = 0;
147long first_page = 0;
148static long last_page;
149static vm_size_t page_mask;
150static int page_shift;
151int vm_page_zero_count = 0;
152
153/*
154 * map of contiguous valid DEV_BSIZE chunks in a page
155 * (this list is valid for page sizes upto 16*DEV_BSIZE)
156 */
157static u_short vm_page_dev_bsize_chunks[] = {
158	0x0, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff,
159	0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff
160};
161
162static inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
163static int vm_page_freechk_and_unqueue __P((vm_page_t m));
164static void vm_page_free_wakeup __P((void));
165
166/*
167 *	vm_set_page_size:
168 *
169 *	Sets the page size, perhaps based upon the memory
170 *	size.  Must be called before any use of page-size
171 *	dependent functions.
172 *
173 *	Sets page_shift and page_mask from cnt.v_page_size.
174 */
175void
176vm_set_page_size()
177{
178
179	if (cnt.v_page_size == 0)
180		cnt.v_page_size = DEFAULT_PAGE_SIZE;
181	page_mask = cnt.v_page_size - 1;
182	if ((page_mask & cnt.v_page_size) != 0)
183		panic("vm_set_page_size: page size not a power of two");
184	for (page_shift = 0;; page_shift++)
185		if ((1 << page_shift) == cnt.v_page_size)
186			break;
187}
188
189/*
190 *	vm_page_startup:
191 *
192 *	Initializes the resident memory module.
193 *
194 *	Allocates memory for the page cells, and
195 *	for the object/offset-to-page hash table headers.
196 *	Each page cell is initialized and placed on the free list.
197 */
198
199vm_offset_t
200vm_page_startup(starta, enda, vaddr)
201	register vm_offset_t starta;
202	vm_offset_t enda;
203	register vm_offset_t vaddr;
204{
205	register vm_offset_t mapped;
206	register vm_page_t m;
207	register struct pglist *bucket;
208	vm_size_t npages, page_range;
209	register vm_offset_t new_start;
210	int i;
211	vm_offset_t pa;
212	int nblocks;
213	vm_offset_t first_managed_page;
214
215	/* the biggest memory array is the second group of pages */
216	vm_offset_t start;
217	vm_offset_t biggestone, biggestsize;
218
219	vm_offset_t total;
220
221	total = 0;
222	biggestsize = 0;
223	biggestone = 0;
224	nblocks = 0;
225	vaddr = round_page(vaddr);
226
227	for (i = 0; phys_avail[i + 1]; i += 2) {
228		phys_avail[i] = round_page(phys_avail[i]);
229		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
230	}
231
232	for (i = 0; phys_avail[i + 1]; i += 2) {
233		int size = phys_avail[i + 1] - phys_avail[i];
234
235		if (size > biggestsize) {
236			biggestone = i;
237			biggestsize = size;
238		}
239		++nblocks;
240		total += size;
241	}
242
243	start = phys_avail[biggestone];
244
245	/*
246	 * Initialize the queue headers for the free queue, the active queue
247	 * and the inactive queue.
248	 */
249
250	vm_page_queue_init();
251
252	/*
253	 * Allocate (and initialize) the hash table buckets.
254	 *
255	 * The number of buckets MUST BE a power of 2, and the actual value is
256	 * the next power of 2 greater than the number of physical pages in
257	 * the system.
258	 *
259	 * Note: This computation can be tweaked if desired.
260	 */
261	vm_page_buckets = (struct pglist *) vaddr;
262	bucket = vm_page_buckets;
263	if (vm_page_bucket_count == 0) {
264		vm_page_bucket_count = 1;
265		while (vm_page_bucket_count < atop(total))
266			vm_page_bucket_count <<= 1;
267	}
268	vm_page_hash_mask = vm_page_bucket_count - 1;
269
270	/*
271	 * Validate these addresses.
272	 */
273
274	new_start = start + vm_page_bucket_count * sizeof(struct pglist);
275	new_start = round_page(new_start);
276	mapped = vaddr;
277	vaddr = pmap_map(mapped, start, new_start,
278	    VM_PROT_READ | VM_PROT_WRITE);
279	start = new_start;
280	bzero((caddr_t) mapped, vaddr - mapped);
281	mapped = vaddr;
282
283	for (i = 0; i < vm_page_bucket_count; i++) {
284		TAILQ_INIT(bucket);
285		bucket++;
286	}
287
288	/*
289	 * round (or truncate) the addresses to our page size.
290	 */
291
292	/*
293	 * Pre-allocate maps and map entries that cannot be dynamically
294	 * allocated via malloc().  The maps include the kernel_map and
295	 * kmem_map which must be initialized before malloc() will work
296	 * (obviously).  Also could include pager maps which would be
297	 * allocated before kmeminit.
298	 *
299	 * Allow some kernel map entries... this should be plenty since people
300	 * shouldn't be cluttering up the kernel map (they should use their
301	 * own maps).
302	 */
303
304	kentry_data_size = MAX_KMAP * sizeof(struct vm_map) +
305	    MAX_KMAPENT * sizeof(struct vm_map_entry);
306	kentry_data_size = round_page(kentry_data_size);
307	kentry_data = (vm_offset_t) vaddr;
308	vaddr += kentry_data_size;
309
310	/*
311	 * Validate these zone addresses.
312	 */
313
314	new_start = start + (vaddr - mapped);
315	pmap_map(mapped, start, new_start, VM_PROT_READ | VM_PROT_WRITE);
316	bzero((caddr_t) mapped, (vaddr - mapped));
317	start = round_page(new_start);
318
319	/*
320	 * Compute the number of pages of memory that will be available for
321	 * use (taking into account the overhead of a page structure per
322	 * page).
323	 */
324
325	first_page = phys_avail[0] / PAGE_SIZE;
326	last_page = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
327
328	page_range = last_page - (phys_avail[0] / PAGE_SIZE);
329	npages = (total - (page_range * sizeof(struct vm_page)) -
330	    (start - phys_avail[biggestone])) / PAGE_SIZE;
331
332	/*
333	 * Initialize the mem entry structures now, and put them in the free
334	 * queue.
335	 */
336
337	vm_page_array = (vm_page_t) vaddr;
338	mapped = vaddr;
339
340	/*
341	 * Validate these addresses.
342	 */
343
344	new_start = round_page(start + page_range * sizeof(struct vm_page));
345	mapped = pmap_map(mapped, start, new_start,
346	    VM_PROT_READ | VM_PROT_WRITE);
347	start = new_start;
348
349	first_managed_page = start / PAGE_SIZE;
350
351	/*
352	 * Clear all of the page structures
353	 */
354	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
355	vm_page_array_size = page_range;
356
357	cnt.v_page_count = 0;
358	cnt.v_free_count = 0;
359	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
360		if (i == biggestone)
361			pa = ptoa(first_managed_page);
362		else
363			pa = phys_avail[i];
364		while (pa < phys_avail[i + 1] && npages-- > 0) {
365			++cnt.v_page_count;
366			++cnt.v_free_count;
367			m = PHYS_TO_VM_PAGE(pa);
368			m->phys_addr = pa;
369			m->flags = 0;
370			m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
371			m->queue = PQ_FREE + m->pc;
372			TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq);
373			++(*vm_page_queues[m->queue].lcnt);
374			pa += PAGE_SIZE;
375		}
376	}
377
378	return (mapped);
379}
380
381/*
382 *	vm_page_hash:
383 *
384 *	Distributes the object/offset key pair among hash buckets.
385 *
386 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
387 */
388static inline int
389vm_page_hash(object, pindex)
390	vm_object_t object;
391	vm_pindex_t pindex;
392{
393	return ((((unsigned) object) >> 5) + (pindex >> 1)) & vm_page_hash_mask;
394}
395
396/*
397 *	vm_page_insert:		[ internal use only ]
398 *
399 *	Inserts the given mem entry into the object/object-page
400 *	table and object list.
401 *
402 *	The object and page must be locked, and must be splhigh.
403 */
404
405void
406vm_page_insert(m, object, pindex)
407	register vm_page_t m;
408	register vm_object_t object;
409	register vm_pindex_t pindex;
410{
411	register struct pglist *bucket;
412
413	if (m->flags & PG_TABLED)
414		panic("vm_page_insert: already inserted");
415
416	/*
417	 * Record the object/offset pair in this page
418	 */
419
420	m->object = object;
421	m->pindex = pindex;
422
423	/*
424	 * Insert it into the object_object/offset hash table
425	 */
426
427	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
428	TAILQ_INSERT_TAIL(bucket, m, hashq);
429
430	/*
431	 * Now link into the object's list of backed pages.
432	 */
433
434	TAILQ_INSERT_TAIL(&object->memq, m, listq);
435	m->flags |= PG_TABLED;
436	m->object->page_hint = m;
437
438	/*
439	 * And show that the object has one more resident page.
440	 */
441
442	object->resident_page_count++;
443}
444
445/*
446 *	vm_page_remove:		[ internal use only ]
447 *				NOTE: used by device pager as well -wfj
448 *
449 *	Removes the given mem entry from the object/offset-page
450 *	table and the object page list.
451 *
452 *	The object and page must be locked, and at splhigh.
453 */
454
455void
456vm_page_remove(m)
457	register vm_page_t m;
458{
459	register struct pglist *bucket;
460
461	if (!(m->flags & PG_TABLED))
462		return;
463
464	if (m->object->page_hint == m)
465		m->object->page_hint = NULL;
466
467	/*
468	 * Remove from the object_object/offset hash table
469	 */
470
471	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
472	TAILQ_REMOVE(bucket, m, hashq);
473
474	/*
475	 * Now remove from the object's list of backed pages.
476	 */
477
478	TAILQ_REMOVE(&m->object->memq, m, listq);
479
480	/*
481	 * And show that the object has one fewer resident page.
482	 */
483
484	m->object->resident_page_count--;
485
486	m->flags &= ~PG_TABLED;
487}
488
489/*
490 *	vm_page_lookup:
491 *
492 *	Returns the page associated with the object/offset
493 *	pair specified; if none is found, NULL is returned.
494 *
495 *	The object must be locked.  No side effects.
496 */
497
498vm_page_t
499vm_page_lookup(object, pindex)
500	register vm_object_t object;
501	register vm_pindex_t pindex;
502{
503	register vm_page_t m;
504	register struct pglist *bucket;
505	int s;
506
507	/*
508	 * Search the hash table for this object/offset pair
509	 */
510
511	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
512
513	s = splvm();
514	for (m = TAILQ_FIRST(bucket); m != NULL; m = TAILQ_NEXT(m,hashq)) {
515		if ((m->object == object) && (m->pindex == pindex)) {
516			splx(s);
517			m->object->page_hint = m;
518			return (m);
519		}
520	}
521	splx(s);
522	return (NULL);
523}
524
525/*
526 *	vm_page_rename:
527 *
528 *	Move the given memory entry from its
529 *	current object to the specified target object/offset.
530 *
531 *	The object must be locked.
532 */
533void
534vm_page_rename(m, new_object, new_pindex)
535	register vm_page_t m;
536	register vm_object_t new_object;
537	vm_pindex_t new_pindex;
538{
539	int s;
540
541	s = splvm();
542	vm_page_remove(m);
543	vm_page_insert(m, new_object, new_pindex);
544	splx(s);
545}
546
547/*
548 * vm_page_unqueue without any wakeup
549 */
550void
551vm_page_unqueue_nowakeup(m)
552	vm_page_t m;
553{
554	int queue = m->queue;
555	struct vpgqueues *pq;
556	if (queue != PQ_NONE) {
557		pq = &vm_page_queues[queue];
558		m->queue = PQ_NONE;
559		TAILQ_REMOVE(pq->pl, m, pageq);
560		--(*pq->cnt);
561		--(*pq->lcnt);
562	}
563}
564
565/*
566 * vm_page_unqueue must be called at splhigh();
567 */
568void
569vm_page_unqueue(m)
570	vm_page_t m;
571{
572	int queue = m->queue;
573	struct vpgqueues *pq;
574	if (queue != PQ_NONE) {
575		m->queue = PQ_NONE;
576		pq = &vm_page_queues[queue];
577		TAILQ_REMOVE(pq->pl, m, pageq);
578		--(*pq->cnt);
579		--(*pq->lcnt);
580		if ((m->queue - m->pc) == PQ_CACHE) {
581			if ((cnt.v_cache_count + cnt.v_free_count) <
582				(cnt.v_free_reserved + cnt.v_cache_min))
583				pagedaemon_wakeup();
584		}
585	}
586}
587
588/*
589 * Find a page on the specified queue with color optimization.
590 */
591vm_page_t
592vm_page_list_find(basequeue, index)
593	int basequeue, index;
594{
595#if PQ_L2_SIZE > 1
596
597	int i,j;
598	vm_page_t m;
599	int hindex;
600
601	for(j = 0; j < PQ_L1_SIZE; j++) {
602		for(i = (PQ_L2_SIZE/2) - (PQ_L1_SIZE - 1);
603			i >= 0;
604			i -= PQ_L1_SIZE) {
605			hindex = (index + (i+j)) & PQ_L2_MASK;
606			m = TAILQ_FIRST(vm_page_queues[basequeue + hindex].pl);
607			if (m)
608				return m;
609
610			hindex = (index - (i+j)) & PQ_L2_MASK;
611			m = TAILQ_FIRST(vm_page_queues[basequeue + hindex].pl);
612			if (m)
613				return m;
614		}
615	}
616	return NULL;
617#else
618	return TAILQ_FIRST(vm_page_queues[basequeue].pl);
619#endif
620
621}
622
623/*
624 * Find a page on the specified queue with color optimization.
625 */
626vm_page_t
627vm_page_select(object, pindex, basequeue)
628	vm_object_t object;
629	vm_pindex_t pindex;
630	int basequeue;
631{
632
633#if PQ_L2_SIZE > 1
634	int index;
635	index = (pindex + object->pg_color) & PQ_L2_MASK;
636	return vm_page_list_find(basequeue, index);
637
638#else
639	return TAILQ_FIRST(vm_page_queues[basequeue].pl);
640#endif
641
642}
643
644/*
645 * Find a free or zero page, with specified preference.
646 */
647static vm_page_t
648vm_page_select_free(object, pindex, prefqueue)
649	vm_object_t object;
650	vm_pindex_t pindex;
651	int prefqueue;
652{
653#if PQ_L2_SIZE > 1
654	int i,j;
655	int index, hindex;
656#endif
657	vm_page_t m;
658	int oqueuediff;
659
660	if (prefqueue == PQ_ZERO)
661		oqueuediff = PQ_FREE - PQ_ZERO;
662	else
663		oqueuediff = PQ_ZERO - PQ_FREE;
664
665	if (object->page_hint) {
666		 if (object->page_hint->pindex == (pindex - 1)) {
667			vm_offset_t last_phys;
668			if ((object->page_hint->flags & PG_FICTITIOUS) == 0) {
669				if ((object->page_hint < &vm_page_array[cnt.v_page_count-1]) &&
670					(object->page_hint >= &vm_page_array[0])) {
671					int queue;
672					last_phys = VM_PAGE_TO_PHYS(object->page_hint);
673					m = PHYS_TO_VM_PAGE(last_phys + PAGE_SIZE);
674					queue = m->queue - m->pc;
675					if (queue == PQ_FREE || queue == PQ_ZERO) {
676						return m;
677					}
678				}
679			}
680		}
681	}
682
683
684#if PQ_L2_SIZE > 1
685
686	index = pindex + object->pg_color;
687	for(j = 0; j < PQ_L1_SIZE; j++) {
688		for(i = (PQ_L2_SIZE/2) - (PQ_L1_SIZE - 1);
689			(i + j) >= 0;
690			i -= PQ_L1_SIZE) {
691
692			hindex = prefqueue + ((index + (i+j)) & PQ_L2_MASK);
693			if (m = TAILQ_FIRST(vm_page_queues[hindex].pl))
694				return m;
695			if (m = TAILQ_FIRST(vm_page_queues[hindex + oqueuediff].pl))
696				return m;
697
698			hindex = prefqueue + ((index - (i+j)) & PQ_L2_MASK);
699			if (m = TAILQ_FIRST(vm_page_queues[hindex].pl))
700				return m;
701			if (m = TAILQ_FIRST(vm_page_queues[hindex + oqueuediff].pl))
702				return m;
703		}
704	}
705#else
706	if (m = TAILQ_FIRST(vm_page_queues[prefqueue].pl))
707		return m;
708	else
709		return TAILQ_FIRST(vm_page_queues[prefqueue + oqueuediff].pl);
710#endif
711
712	return NULL;
713}
714
715/*
716 *	vm_page_alloc:
717 *
718 *	Allocate and return a memory cell associated
719 *	with this VM object/offset pair.
720 *
721 *	page_req classes:
722 *	VM_ALLOC_NORMAL		normal process request
723 *	VM_ALLOC_SYSTEM		system *really* needs a page
724 *	VM_ALLOC_INTERRUPT	interrupt time request
725 *	VM_ALLOC_ZERO		zero page
726 *
727 *	Object must be locked.
728 */
729vm_page_t
730vm_page_alloc(object, pindex, page_req)
731	vm_object_t object;
732	vm_pindex_t pindex;
733	int page_req;
734{
735	register vm_page_t m;
736	struct vpgqueues *pq;
737	int queue;
738	int s;
739
740#ifdef DIAGNOSTIC
741	m = vm_page_lookup(object, pindex);
742	if (m)
743		panic("vm_page_alloc: page already allocated");
744#endif
745
746	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
747		page_req = VM_ALLOC_SYSTEM;
748	};
749
750	s = splvm();
751
752	switch (page_req) {
753
754	case VM_ALLOC_NORMAL:
755		if (cnt.v_free_count >= cnt.v_free_reserved) {
756			m = vm_page_select_free(object, pindex, PQ_FREE);
757#if defined(DIAGNOSTIC)
758			if (m == NULL)
759				panic("vm_page_alloc(NORMAL): missing page on free queue\n");
760#endif
761		} else {
762			m = vm_page_select(object, pindex, PQ_CACHE);
763			if (m == NULL) {
764				splx(s);
765#if defined(DIAGNOSTIC)
766				if (cnt.v_cache_count > 0)
767					printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
768#endif
769				pagedaemon_wakeup();
770				return (NULL);
771			}
772		}
773		break;
774
775	case VM_ALLOC_ZERO:
776		if (cnt.v_free_count >= cnt.v_free_reserved) {
777			m = vm_page_select_free(object, pindex, PQ_ZERO);
778#if defined(DIAGNOSTIC)
779			if (m == NULL)
780				panic("vm_page_alloc(ZERO): missing page on free queue\n");
781#endif
782		} else {
783			m = vm_page_select(object, pindex, PQ_CACHE);
784			if (m == NULL) {
785				splx(s);
786#if defined(DIAGNOSTIC)
787				if (cnt.v_cache_count > 0)
788					printf("vm_page_alloc(ZERO): missing pages on cache queue: %d\n", cnt.v_cache_count);
789#endif
790				pagedaemon_wakeup();
791				return (NULL);
792			}
793		}
794		break;
795
796	case VM_ALLOC_SYSTEM:
797		if ((cnt.v_free_count >= cnt.v_free_reserved) ||
798		    ((cnt.v_cache_count == 0) &&
799		    (cnt.v_free_count >= cnt.v_interrupt_free_min))) {
800			m = vm_page_select_free(object, pindex, PQ_FREE);
801#if defined(DIAGNOSTIC)
802			if (m == NULL)
803				panic("vm_page_alloc(SYSTEM): missing page on free queue\n");
804#endif
805		} else {
806			m = vm_page_select(object, pindex, PQ_CACHE);
807			if (m == NULL) {
808				splx(s);
809#if defined(DIAGNOSTIC)
810				if (cnt.v_cache_count > 0)
811					printf("vm_page_alloc(SYSTEM): missing pages on cache queue: %d\n", cnt.v_cache_count);
812#endif
813				pagedaemon_wakeup();
814				return (NULL);
815			}
816		}
817		break;
818
819	case VM_ALLOC_INTERRUPT:
820		if (cnt.v_free_count > 0) {
821			m = vm_page_select_free(object, pindex, PQ_FREE);
822#if defined(DIAGNOSTIC)
823			if (m == NULL)
824				panic("vm_page_alloc(INTERRUPT): missing page on free queue\n");
825#endif
826		} else {
827			splx(s);
828			pagedaemon_wakeup();
829			return (NULL);
830		}
831		break;
832
833	default:
834		panic("vm_page_alloc: invalid allocation class");
835	}
836
837	queue = m->queue;
838	if (queue == PQ_ZERO)
839		--vm_page_zero_count;
840	pq = &vm_page_queues[queue];
841	TAILQ_REMOVE(pq->pl, m, pageq);
842	--(*pq->cnt);
843	--(*pq->lcnt);
844	if ((m->queue - m->pc) == PQ_ZERO) {
845		m->flags = PG_ZERO|PG_BUSY;
846	} else if ((m->queue - m->pc) == PQ_CACHE) {
847		vm_page_remove(m);
848		m->flags = PG_BUSY;
849	} else {
850		m->flags = PG_BUSY;
851	}
852	m->wire_count = 0;
853	m->hold_count = 0;
854	m->act_count = 0;
855	m->busy = 0;
856	m->valid = 0;
857	m->dirty = 0;
858	m->queue = PQ_NONE;
859
860	/* XXX before splx until vm_page_insert is safe */
861	vm_page_insert(m, object, pindex);
862
863	splx(s);
864
865	/*
866	 * Don't wakeup too often - wakeup the pageout daemon when
867	 * we would be nearly out of memory.
868	 */
869	if (((cnt.v_free_count + cnt.v_cache_count) <
870		(cnt.v_free_reserved + cnt.v_cache_min)) ||
871			(cnt.v_free_count < cnt.v_pageout_free_min))
872		pagedaemon_wakeup();
873
874	return (m);
875}
876
877void
878vm_wait()
879{
880	int s;
881
882	s = splvm();
883	if (curproc == pageproc) {
884		vm_pageout_pages_needed = 1;
885		tsleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
886	} else {
887		if (!vm_pages_needed) {
888			vm_pages_needed++;
889			wakeup(&vm_pages_needed);
890		}
891		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
892	}
893	splx(s);
894}
895
896
897/*
898 *	vm_page_activate:
899 *
900 *	Put the specified page on the active list (if appropriate).
901 *
902 *	The page queues must be locked.
903 */
904void
905vm_page_activate(m)
906	register vm_page_t m;
907{
908	int s;
909
910	s = splvm();
911	if (m->queue == PQ_ACTIVE)
912		panic("vm_page_activate: already active");
913
914	if ((m->queue - m->pc) == PQ_CACHE)
915		cnt.v_reactivated++;
916
917	vm_page_unqueue(m);
918
919	if (m->wire_count == 0) {
920		m->queue = PQ_ACTIVE;
921		++(*vm_page_queues[PQ_ACTIVE].lcnt);
922		TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
923		if (m->act_count < ACT_INIT)
924			m->act_count = ACT_INIT;
925		cnt.v_active_count++;
926	}
927	splx(s);
928}
929
930/*
931 * helper routine for vm_page_free and vm_page_free_zero
932 */
933static int
934vm_page_freechk_and_unqueue(m)
935	vm_page_t m;
936{
937	if (m->busy ||
938		(m->flags & PG_BUSY) ||
939		((m->queue - m->pc) == PQ_FREE) ||
940		(m->hold_count != 0)) {
941		printf("vm_page_free: pindex(%ld), busy(%d), PG_BUSY(%d), hold(%d)\n",
942			m->pindex, m->busy,
943			(m->flags & PG_BUSY) ? 1 : 0, m->hold_count);
944		if ((m->queue - m->pc) == PQ_FREE)
945			panic("vm_page_free: freeing free page");
946		else
947			panic("vm_page_free: freeing busy page");
948	}
949
950	vm_page_remove(m);
951	vm_page_unqueue_nowakeup(m);
952	if ((m->flags & PG_FICTITIOUS) != 0) {
953		return 0;
954	}
955	if (m->wire_count != 0) {
956		if (m->wire_count > 1) {
957			panic("vm_page_free: invalid wire count (%d), pindex: 0x%x",
958				m->wire_count, m->pindex);
959		}
960		m->wire_count = 0;
961		cnt.v_wire_count--;
962	}
963
964	return 1;
965}
966
967/*
968 * helper routine for vm_page_free and vm_page_free_zero
969 */
970static __inline void
971vm_page_free_wakeup()
972{
973
974/*
975 * if pageout daemon needs pages, then tell it that there are
976 * some free.
977 */
978	if (vm_pageout_pages_needed) {
979		wakeup(&vm_pageout_pages_needed);
980		vm_pageout_pages_needed = 0;
981	}
982	/*
983	 * wakeup processes that are waiting on memory if we hit a
984	 * high water mark. And wakeup scheduler process if we have
985	 * lots of memory. this process will swapin processes.
986	 */
987	if (vm_pages_needed &&
988		((cnt.v_free_count + cnt.v_cache_count) >= cnt.v_free_min)) {
989		wakeup(&cnt.v_free_count);
990		vm_pages_needed = 0;
991	}
992}
993
994/*
995 *	vm_page_free:
996 *
997 *	Returns the given page to the free list,
998 *	disassociating it with any VM object.
999 *
1000 *	Object and page must be locked prior to entry.
1001 */
1002void
1003vm_page_free(m)
1004	register vm_page_t m;
1005{
1006	int s;
1007	struct vpgqueues *pq;
1008
1009	s = splvm();
1010
1011	cnt.v_tfree++;
1012
1013	if (!vm_page_freechk_and_unqueue(m)) {
1014		splx(s);
1015		return;
1016	}
1017
1018	m->queue = PQ_FREE + m->pc;
1019	pq = &vm_page_queues[m->queue];
1020	++(*pq->lcnt);
1021	++(*pq->cnt);
1022	/*
1023	 * If the pageout process is grabbing the page, it is likely
1024	 * that the page is NOT in the cache.  It is more likely that
1025	 * the page will be partially in the cache if it is being
1026	 * explicitly freed.
1027	 */
1028	if (curproc == pageproc) {
1029		TAILQ_INSERT_TAIL(pq->pl, m, pageq);
1030	} else {
1031		TAILQ_INSERT_HEAD(pq->pl, m, pageq);
1032	}
1033	vm_page_free_wakeup();
1034	splx(s);
1035}
1036
1037void
1038vm_page_free_zero(m)
1039	register vm_page_t m;
1040{
1041	int s;
1042	struct vpgqueues *pq;
1043
1044	s = splvm();
1045
1046	cnt.v_tfree++;
1047
1048	if (!vm_page_freechk_and_unqueue(m)) {
1049		splx(s);
1050		return;
1051	}
1052
1053	m->queue = PQ_ZERO + m->pc;
1054	pq = &vm_page_queues[m->queue];
1055	++(*pq->lcnt);
1056	++(*pq->cnt);
1057
1058	TAILQ_INSERT_HEAD(pq->pl, m, pageq);
1059	++vm_page_zero_count;
1060	vm_page_free_wakeup();
1061	splx(s);
1062}
1063
1064/*
1065 *	vm_page_wire:
1066 *
1067 *	Mark this page as wired down by yet
1068 *	another map, removing it from paging queues
1069 *	as necessary.
1070 *
1071 *	The page queues must be locked.
1072 */
1073void
1074vm_page_wire(m)
1075	register vm_page_t m;
1076{
1077	int s;
1078
1079	if (m->wire_count == 0) {
1080		s = splvm();
1081		vm_page_unqueue(m);
1082		splx(s);
1083		cnt.v_wire_count++;
1084	}
1085	++(*vm_page_queues[PQ_NONE].lcnt);
1086	m->wire_count++;
1087	m->flags |= PG_MAPPED;
1088}
1089
1090/*
1091 *	vm_page_unwire:
1092 *
1093 *	Release one wiring of this page, potentially
1094 *	enabling it to be paged again.
1095 *
1096 *	The page queues must be locked.
1097 */
1098void
1099vm_page_unwire(m)
1100	register vm_page_t m;
1101{
1102	int s;
1103
1104	s = splvm();
1105
1106	if (m->wire_count > 0)
1107		m->wire_count--;
1108
1109	if (m->wire_count == 0) {
1110		cnt.v_wire_count--;
1111		TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1112		m->queue = PQ_ACTIVE;
1113		++(*vm_page_queues[PQ_ACTIVE].lcnt);
1114		cnt.v_active_count++;
1115	}
1116	splx(s);
1117}
1118
1119
1120/*
1121 *	vm_page_deactivate:
1122 *
1123 *	Returns the given page to the inactive list,
1124 *	indicating that no physical maps have access
1125 *	to this page.  [Used by the physical mapping system.]
1126 *
1127 *	The page queues must be locked.
1128 */
1129void
1130vm_page_deactivate(m)
1131	register vm_page_t m;
1132{
1133	int s;
1134
1135	/*
1136	 * Only move active pages -- ignore locked or already inactive ones.
1137	 *
1138	 * XXX: sometimes we get pages which aren't wired down or on any queue -
1139	 * we need to put them on the inactive queue also, otherwise we lose
1140	 * track of them. Paul Mackerras (paulus@cs.anu.edu.au) 9-Jan-93.
1141	 */
1142	if (m->queue == PQ_INACTIVE)
1143		return;
1144
1145	s = splvm();
1146	if (m->wire_count == 0 && m->hold_count == 0) {
1147		if ((m->queue - m->pc) == PQ_CACHE)
1148			cnt.v_reactivated++;
1149		vm_page_unqueue(m);
1150		TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
1151		m->queue = PQ_INACTIVE;
1152		++(*vm_page_queues[PQ_INACTIVE].lcnt);
1153		cnt.v_inactive_count++;
1154	}
1155	splx(s);
1156}
1157
1158/*
1159 * vm_page_cache
1160 *
1161 * Put the specified page onto the page cache queue (if appropriate).
1162 */
1163void
1164vm_page_cache(m)
1165	register vm_page_t m;
1166{
1167	int s;
1168
1169	if ((m->flags & PG_BUSY) || m->busy || m->wire_count) {
1170		printf("vm_page_cache: attempting to cache busy page\n");
1171		return;
1172	}
1173	if ((m->queue - m->pc) == PQ_CACHE)
1174		return;
1175
1176	vm_page_protect(m, VM_PROT_NONE);
1177	if (m->dirty != 0) {
1178		panic("vm_page_cache: caching a dirty page, pindex: %d", m->pindex);
1179	}
1180	s = splvm();
1181	vm_page_unqueue_nowakeup(m);
1182	m->queue = PQ_CACHE + m->pc;
1183	++(*vm_page_queues[m->queue].lcnt);
1184	TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq);
1185	cnt.v_cache_count++;
1186	vm_page_free_wakeup();
1187	splx(s);
1188}
1189
1190
1191/*
1192 * mapping function for valid bits or for dirty bits in
1193 * a page
1194 */
1195inline int
1196vm_page_bits(int base, int size)
1197{
1198	u_short chunk;
1199
1200	if ((base == 0) && (size >= PAGE_SIZE))
1201		return VM_PAGE_BITS_ALL;
1202	size = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1203	base = (base % PAGE_SIZE) / DEV_BSIZE;
1204	chunk = vm_page_dev_bsize_chunks[size / DEV_BSIZE];
1205	return (chunk << base) & VM_PAGE_BITS_ALL;
1206}
1207
1208/*
1209 * set a page valid and clean
1210 */
1211void
1212vm_page_set_validclean(m, base, size)
1213	vm_page_t m;
1214	int base;
1215	int size;
1216{
1217	int pagebits = vm_page_bits(base, size);
1218	m->valid |= pagebits;
1219	m->dirty &= ~pagebits;
1220	if( base == 0 && size == PAGE_SIZE)
1221		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1222}
1223
1224/*
1225 * set a page (partially) invalid
1226 */
1227void
1228vm_page_set_invalid(m, base, size)
1229	vm_page_t m;
1230	int base;
1231	int size;
1232{
1233	int bits;
1234
1235	m->valid &= ~(bits = vm_page_bits(base, size));
1236	if (m->valid == 0)
1237		m->dirty &= ~bits;
1238}
1239
1240/*
1241 * is (partial) page valid?
1242 */
1243int
1244vm_page_is_valid(m, base, size)
1245	vm_page_t m;
1246	int base;
1247	int size;
1248{
1249	int bits = vm_page_bits(base, size);
1250
1251	if (m->valid && ((m->valid & bits) == bits))
1252		return 1;
1253	else
1254		return 0;
1255}
1256
1257void
1258vm_page_test_dirty(m)
1259	vm_page_t m;
1260{
1261	if ((m->dirty != VM_PAGE_BITS_ALL) &&
1262	    pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
1263		m->dirty = VM_PAGE_BITS_ALL;
1264	}
1265}
1266
1267/*
1268 * This interface is for merging with malloc() someday.
1269 * Even if we never implement compaction so that contiguous allocation
1270 * works after initialization time, malloc()'s data structures are good
1271 * for statistics and for allocations of less than a page.
1272 */
1273void *
1274contigmalloc(size, type, flags, low, high, alignment, boundary)
1275	unsigned long size;	/* should be size_t here and for malloc() */
1276	int type;
1277	int flags;
1278	unsigned long low;
1279	unsigned long high;
1280	unsigned long alignment;
1281	unsigned long boundary;
1282{
1283	int i, s, start;
1284	vm_offset_t addr, phys, tmp_addr;
1285	int pass;
1286	vm_page_t pga = vm_page_array;
1287
1288	size = round_page(size);
1289	if (size == 0)
1290		panic("vm_page_alloc_contig: size must not be 0");
1291	if ((alignment & (alignment - 1)) != 0)
1292		panic("vm_page_alloc_contig: alignment must be a power of 2");
1293	if ((boundary & (boundary - 1)) != 0)
1294		panic("vm_page_alloc_contig: boundary must be a power of 2");
1295
1296	start = 0;
1297	for (pass = 0; pass <= 1; pass++) {
1298		s = splvm();
1299again:
1300		/*
1301		 * Find first page in array that is free, within range, aligned, and
1302		 * such that the boundary won't be crossed.
1303		 */
1304		for (i = start; i < cnt.v_page_count; i++) {
1305			int pqtype;
1306			phys = VM_PAGE_TO_PHYS(&pga[i]);
1307			pqtype = pga[i].queue - pga[i].pc;
1308			if (((pqtype == PQ_ZERO) || (pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1309			    (phys >= low) && (phys < high) &&
1310			    ((phys & (alignment - 1)) == 0) &&
1311			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1312				break;
1313		}
1314
1315		/*
1316		 * If the above failed or we will exceed the upper bound, fail.
1317		 */
1318		if ((i == cnt.v_page_count) ||
1319			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1320			vm_page_t m, next;
1321
1322again1:
1323			for (m = TAILQ_FIRST(&vm_page_queue_inactive);
1324				m != NULL;
1325				m = next) {
1326
1327				if (m->queue != PQ_INACTIVE) {
1328					break;
1329				}
1330
1331				next = TAILQ_NEXT(m, pageq);
1332				if (m->flags & PG_BUSY) {
1333					m->flags |= PG_WANTED;
1334					tsleep(m, PVM, "vpctw0", 0);
1335					goto again1;
1336				}
1337				vm_page_test_dirty(m);
1338				if (m->dirty) {
1339					if (m->object->type == OBJT_VNODE) {
1340						vm_object_page_clean(m->object, 0, 0, TRUE, TRUE);
1341						goto again1;
1342					} else if (m->object->type == OBJT_SWAP ||
1343								m->object->type == OBJT_DEFAULT) {
1344						vm_page_protect(m, VM_PROT_NONE);
1345						vm_pageout_flush(&m, 1, 0);
1346						goto again1;
1347					}
1348				}
1349				if ((m->dirty == 0) &&
1350					(m->busy == 0) &&
1351					(m->hold_count == 0))
1352					vm_page_cache(m);
1353			}
1354
1355			for (m = TAILQ_FIRST(&vm_page_queue_active);
1356				m != NULL;
1357				m = next) {
1358
1359				if (m->queue != PQ_ACTIVE) {
1360					break;
1361				}
1362
1363				next = TAILQ_NEXT(m, pageq);
1364				if (m->flags & PG_BUSY) {
1365					m->flags |= PG_WANTED;
1366					tsleep(m, PVM, "vpctw1", 0);
1367					goto again1;
1368				}
1369				vm_page_test_dirty(m);
1370				if (m->dirty) {
1371					if (m->object->type == OBJT_VNODE) {
1372						vm_object_page_clean(m->object, 0, 0, TRUE, TRUE);
1373						goto again1;
1374					} else if (m->object->type == OBJT_SWAP ||
1375								m->object->type == OBJT_DEFAULT) {
1376						vm_page_protect(m, VM_PROT_NONE);
1377						vm_pageout_flush(&m, 1, 0);
1378						goto again1;
1379					}
1380				}
1381				if ((m->dirty == 0) &&
1382					(m->busy == 0) &&
1383					(m->hold_count == 0))
1384					vm_page_cache(m);
1385			}
1386
1387			splx(s);
1388			continue;
1389		}
1390		start = i;
1391
1392		/*
1393		 * Check successive pages for contiguous and free.
1394		 */
1395		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1396			int pqtype;
1397			pqtype = pga[i].queue - pga[i].pc;
1398			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1399			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1400			    ((pqtype != PQ_ZERO) && (pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1401				start++;
1402				goto again;
1403			}
1404		}
1405
1406		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1407			int pqtype;
1408			vm_page_t m = &pga[i];
1409
1410			pqtype = m->queue - m->pc;
1411			if (pqtype == PQ_CACHE)
1412				vm_page_free(m);
1413
1414			TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
1415			--(*vm_page_queues[m->queue].lcnt);
1416			cnt.v_free_count--;
1417			m->valid = VM_PAGE_BITS_ALL;
1418			m->flags = 0;
1419			m->dirty = 0;
1420			m->wire_count = 0;
1421			m->busy = 0;
1422			m->queue = PQ_NONE;
1423			m->object = NULL;
1424			vm_page_wire(m);
1425		}
1426
1427		/*
1428		 * We've found a contiguous chunk that meets are requirements.
1429		 * Allocate kernel VM, unfree and assign the physical pages to it and
1430		 * return kernel VM pointer.
1431		 */
1432		tmp_addr = addr = kmem_alloc_pageable(kernel_map, size);
1433		if (addr == 0) {
1434			/*
1435			 * XXX We almost never run out of kernel virtual
1436			 * space, so we don't make the allocated memory
1437			 * above available.
1438			 */
1439			splx(s);
1440			return (NULL);
1441		}
1442
1443		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1444			vm_page_t m = &pga[i];
1445			vm_page_insert(m, kernel_object,
1446				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1447			pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
1448			tmp_addr += PAGE_SIZE;
1449		}
1450
1451		splx(s);
1452		return ((void *)addr);
1453	}
1454	return NULL;
1455}
1456
1457vm_offset_t
1458vm_page_alloc_contig(size, low, high, alignment)
1459	vm_offset_t size;
1460	vm_offset_t low;
1461	vm_offset_t high;
1462	vm_offset_t alignment;
1463{
1464	return ((vm_offset_t)contigmalloc(size, M_DEVBUF, M_NOWAIT, low, high,
1465					  alignment, 0ul));
1466}
1467
1468#include "opt_ddb.h"
1469#ifdef DDB
1470#include <sys/kernel.h>
1471
1472#include <ddb/ddb.h>
1473
1474DB_SHOW_COMMAND(page, vm_page_print_page_info)
1475{
1476	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1477	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1478	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1479	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1480	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1481	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1482	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1483	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1484	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1485	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1486}
1487
1488DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1489{
1490	int i;
1491	db_printf("PQ_FREE:");
1492	for(i=0;i<PQ_L2_SIZE;i++) {
1493		db_printf(" %d", *vm_page_queues[PQ_FREE + i].lcnt);
1494	}
1495	db_printf("\n");
1496
1497	db_printf("PQ_CACHE:");
1498	for(i=0;i<PQ_L2_SIZE;i++) {
1499		db_printf(" %d", *vm_page_queues[PQ_CACHE + i].lcnt);
1500	}
1501	db_printf("\n");
1502
1503	db_printf("PQ_ZERO:");
1504	for(i=0;i<PQ_L2_SIZE;i++) {
1505		db_printf(" %d", *vm_page_queues[PQ_ZERO + i].lcnt);
1506	}
1507	db_printf("\n");
1508
1509	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1510		*vm_page_queues[PQ_ACTIVE].lcnt,
1511		*vm_page_queues[PQ_INACTIVE].lcnt);
1512}
1513#endif /* DDB */
1514