vm_page.c revision 204415
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- a hash chain mutex is required when associating or disassociating
71 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72 *	  regardless of other mutexes or the busy state of a page.
73 *
74 *	- either a hash chain mutex OR a busied page is required in order
75 *	  to modify the page flags.  A hash chain mutex must be obtained in
76 *	  order to busy a page.  A page's flags cannot be modified by a
77 *	  hash chain mutex if the page is marked busy.
78 *
79 *	- The object memq mutex is held when inserting or removing
80 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81 *	  is different from the object's main mutex.
82 *
83 *	Generally speaking, you have to be aware of side effects when running
84 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86 *	vm_page_cache(), vm_page_activate(), and a number of other routines
87 *	will release the hash chain mutex for you.  Intermediate manipulation
88 *	routines such as vm_page_flag_set() expect the hash chain to be held
89 *	on entry and the hash chain will remain held on return.
90 *
91 *	pageq scanning can only occur with the pageq in question locked.
92 *	We have a known bottleneck with the active queue, but the cache
93 *	and free queues are actually arrays already.
94 */
95
96/*
97 *	Resident memory management module.
98 */
99
100#include <sys/cdefs.h>
101__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 204415 2010-02-27 17:09:28Z kib $");
102
103#include "opt_vm.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/lock.h>
108#include <sys/kernel.h>
109#include <sys/limits.h>
110#include <sys/malloc.h>
111#include <sys/mutex.h>
112#include <sys/proc.h>
113#include <sys/sysctl.h>
114#include <sys/vmmeter.h>
115#include <sys/vnode.h>
116
117#include <vm/vm.h>
118#include <vm/vm_param.h>
119#include <vm/vm_kern.h>
120#include <vm/vm_object.h>
121#include <vm/vm_page.h>
122#include <vm/vm_pageout.h>
123#include <vm/vm_pager.h>
124#include <vm/vm_phys.h>
125#include <vm/vm_reserv.h>
126#include <vm/vm_extern.h>
127#include <vm/uma.h>
128#include <vm/uma_int.h>
129
130#include <machine/md_var.h>
131
132/*
133 *	Associated with page of user-allocatable memory is a
134 *	page structure.
135 */
136
137struct vpgqueues vm_page_queues[PQ_COUNT];
138struct vpglocks vm_page_queue_lock;
139struct vpglocks vm_page_queue_free_lock;
140
141vm_page_t vm_page_array = 0;
142int vm_page_array_size = 0;
143long first_page = 0;
144int vm_page_zero_count = 0;
145
146static int boot_pages = UMA_BOOT_PAGES;
147TUNABLE_INT("vm.boot_pages", &boot_pages);
148SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
149	"number of pages allocated for bootstrapping the VM system");
150
151static void vm_page_enqueue(int queue, vm_page_t m);
152
153/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
154#if PAGE_SIZE == 32768
155#ifdef CTASSERT
156CTASSERT(sizeof(u_long) >= 8);
157#endif
158#endif
159
160/*
161 *	vm_set_page_size:
162 *
163 *	Sets the page size, perhaps based upon the memory
164 *	size.  Must be called before any use of page-size
165 *	dependent functions.
166 */
167void
168vm_set_page_size(void)
169{
170	if (cnt.v_page_size == 0)
171		cnt.v_page_size = PAGE_SIZE;
172	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
173		panic("vm_set_page_size: page size not a power of two");
174}
175
176/*
177 *	vm_page_blacklist_lookup:
178 *
179 *	See if a physical address in this page has been listed
180 *	in the blacklist tunable.  Entries in the tunable are
181 *	separated by spaces or commas.  If an invalid integer is
182 *	encountered then the rest of the string is skipped.
183 */
184static int
185vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
186{
187	vm_paddr_t bad;
188	char *cp, *pos;
189
190	for (pos = list; *pos != '\0'; pos = cp) {
191		bad = strtoq(pos, &cp, 0);
192		if (*cp != '\0') {
193			if (*cp == ' ' || *cp == ',') {
194				cp++;
195				if (cp == pos)
196					continue;
197			} else
198				break;
199		}
200		if (pa == trunc_page(bad))
201			return (1);
202	}
203	return (0);
204}
205
206/*
207 *	vm_page_startup:
208 *
209 *	Initializes the resident memory module.
210 *
211 *	Allocates memory for the page cells, and
212 *	for the object/offset-to-page hash table headers.
213 *	Each page cell is initialized and placed on the free list.
214 */
215vm_offset_t
216vm_page_startup(vm_offset_t vaddr)
217{
218	vm_offset_t mapped;
219	vm_paddr_t page_range;
220	vm_paddr_t new_end;
221	int i;
222	vm_paddr_t pa;
223	int nblocks;
224	vm_paddr_t last_pa;
225	char *list;
226
227	/* the biggest memory array is the second group of pages */
228	vm_paddr_t end;
229	vm_paddr_t biggestsize;
230	vm_paddr_t low_water, high_water;
231	int biggestone;
232
233	biggestsize = 0;
234	biggestone = 0;
235	nblocks = 0;
236	vaddr = round_page(vaddr);
237
238	for (i = 0; phys_avail[i + 1]; i += 2) {
239		phys_avail[i] = round_page(phys_avail[i]);
240		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
241	}
242
243	low_water = phys_avail[0];
244	high_water = phys_avail[1];
245
246	for (i = 0; phys_avail[i + 1]; i += 2) {
247		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
248
249		if (size > biggestsize) {
250			biggestone = i;
251			biggestsize = size;
252		}
253		if (phys_avail[i] < low_water)
254			low_water = phys_avail[i];
255		if (phys_avail[i + 1] > high_water)
256			high_water = phys_avail[i + 1];
257		++nblocks;
258	}
259
260#ifdef XEN
261	low_water = 0;
262#endif
263
264	end = phys_avail[biggestone+1];
265
266	/*
267	 * Initialize the locks.
268	 */
269	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
270	    MTX_RECURSE);
271	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
272	    MTX_DEF);
273
274	/*
275	 * Initialize the queue headers for the hold queue, the active queue,
276	 * and the inactive queue.
277	 */
278	for (i = 0; i < PQ_COUNT; i++)
279		TAILQ_INIT(&vm_page_queues[i].pl);
280	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
281	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
282	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
283
284	/*
285	 * Allocate memory for use when boot strapping the kernel memory
286	 * allocator.
287	 */
288	new_end = end - (boot_pages * UMA_SLAB_SIZE);
289	new_end = trunc_page(new_end);
290	mapped = pmap_map(&vaddr, new_end, end,
291	    VM_PROT_READ | VM_PROT_WRITE);
292	bzero((void *)mapped, end - new_end);
293	uma_startup((void *)mapped, boot_pages);
294
295#if defined(__amd64__) || defined(__i386__) || defined(__arm__)
296	/*
297	 * Allocate a bitmap to indicate that a random physical page
298	 * needs to be included in a minidump.
299	 *
300	 * The amd64 port needs this to indicate which direct map pages
301	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
302	 *
303	 * However, i386 still needs this workspace internally within the
304	 * minidump code.  In theory, they are not needed on i386, but are
305	 * included should the sf_buf code decide to use them.
306	 */
307	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
308	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
309	new_end -= vm_page_dump_size;
310	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
311	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
312	bzero((void *)vm_page_dump, vm_page_dump_size);
313#endif
314	/*
315	 * Compute the number of pages of memory that will be available for
316	 * use (taking into account the overhead of a page structure per
317	 * page).
318	 */
319	first_page = low_water / PAGE_SIZE;
320#ifdef VM_PHYSSEG_SPARSE
321	page_range = 0;
322	for (i = 0; phys_avail[i + 1] != 0; i += 2)
323		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
324#elif defined(VM_PHYSSEG_DENSE)
325	page_range = high_water / PAGE_SIZE - first_page;
326#else
327#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
328#endif
329	end = new_end;
330
331	/*
332	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
333	 */
334	vaddr += PAGE_SIZE;
335
336	/*
337	 * Initialize the mem entry structures now, and put them in the free
338	 * queue.
339	 */
340	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
341	mapped = pmap_map(&vaddr, new_end, end,
342	    VM_PROT_READ | VM_PROT_WRITE);
343	vm_page_array = (vm_page_t) mapped;
344#if VM_NRESERVLEVEL > 0
345	/*
346	 * Allocate memory for the reservation management system's data
347	 * structures.
348	 */
349	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
350#endif
351#ifdef __amd64__
352	/*
353	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
354	 * so the pages must be tracked for a crashdump to include this data.
355	 * This includes the vm_page_array and the early UMA bootstrap pages.
356	 */
357	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
358		dump_add_page(pa);
359#endif
360	phys_avail[biggestone + 1] = new_end;
361
362	/*
363	 * Clear all of the page structures
364	 */
365	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
366	for (i = 0; i < page_range; i++)
367		vm_page_array[i].order = VM_NFREEORDER;
368	vm_page_array_size = page_range;
369
370	/*
371	 * Initialize the physical memory allocator.
372	 */
373	vm_phys_init();
374
375	/*
376	 * Add every available physical page that is not blacklisted to
377	 * the free lists.
378	 */
379	cnt.v_page_count = 0;
380	cnt.v_free_count = 0;
381	list = getenv("vm.blacklist");
382	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
383		pa = phys_avail[i];
384		last_pa = phys_avail[i + 1];
385		while (pa < last_pa) {
386			if (list != NULL &&
387			    vm_page_blacklist_lookup(list, pa))
388				printf("Skipping page with pa 0x%jx\n",
389				    (uintmax_t)pa);
390			else
391				vm_phys_add_page(pa);
392			pa += PAGE_SIZE;
393		}
394	}
395	freeenv(list);
396#if VM_NRESERVLEVEL > 0
397	/*
398	 * Initialize the reservation management system.
399	 */
400	vm_reserv_init();
401#endif
402	return (vaddr);
403}
404
405void
406vm_page_flag_set(vm_page_t m, unsigned short bits)
407{
408
409	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
410	m->flags |= bits;
411}
412
413void
414vm_page_flag_clear(vm_page_t m, unsigned short bits)
415{
416
417	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
418	m->flags &= ~bits;
419}
420
421void
422vm_page_busy(vm_page_t m)
423{
424
425	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
426	KASSERT((m->oflags & VPO_BUSY) == 0,
427	    ("vm_page_busy: page already busy!!!"));
428	m->oflags |= VPO_BUSY;
429}
430
431/*
432 *      vm_page_flash:
433 *
434 *      wakeup anyone waiting for the page.
435 */
436void
437vm_page_flash(vm_page_t m)
438{
439
440	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
441	if (m->oflags & VPO_WANTED) {
442		m->oflags &= ~VPO_WANTED;
443		wakeup(m);
444	}
445}
446
447/*
448 *      vm_page_wakeup:
449 *
450 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
451 *      page.
452 *
453 */
454void
455vm_page_wakeup(vm_page_t m)
456{
457
458	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
459	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
460	m->oflags &= ~VPO_BUSY;
461	vm_page_flash(m);
462}
463
464void
465vm_page_io_start(vm_page_t m)
466{
467
468	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
469	m->busy++;
470}
471
472void
473vm_page_io_finish(vm_page_t m)
474{
475
476	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
477	m->busy--;
478	if (m->busy == 0)
479		vm_page_flash(m);
480}
481
482/*
483 * Keep page from being freed by the page daemon
484 * much of the same effect as wiring, except much lower
485 * overhead and should be used only for *very* temporary
486 * holding ("wiring").
487 */
488void
489vm_page_hold(vm_page_t mem)
490{
491
492	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
493        mem->hold_count++;
494}
495
496void
497vm_page_unhold(vm_page_t mem)
498{
499
500	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
501	--mem->hold_count;
502	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
503	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
504		vm_page_free_toq(mem);
505}
506
507/*
508 *	vm_page_free:
509 *
510 *	Free a page.
511 */
512void
513vm_page_free(vm_page_t m)
514{
515
516	m->flags &= ~PG_ZERO;
517	vm_page_free_toq(m);
518}
519
520/*
521 *	vm_page_free_zero:
522 *
523 *	Free a page to the zerod-pages queue
524 */
525void
526vm_page_free_zero(vm_page_t m)
527{
528
529	m->flags |= PG_ZERO;
530	vm_page_free_toq(m);
531}
532
533/*
534 *	vm_page_sleep:
535 *
536 *	Sleep and release the page queues lock.
537 *
538 *	The object containing the given page must be locked.
539 */
540void
541vm_page_sleep(vm_page_t m, const char *msg)
542{
543
544	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
545	if (!mtx_owned(&vm_page_queue_mtx))
546		vm_page_lock_queues();
547	vm_page_flag_set(m, PG_REFERENCED);
548	vm_page_unlock_queues();
549
550	/*
551	 * It's possible that while we sleep, the page will get
552	 * unbusied and freed.  If we are holding the object
553	 * lock, we will assume we hold a reference to the object
554	 * such that even if m->object changes, we can re-lock
555	 * it.
556	 */
557	m->oflags |= VPO_WANTED;
558	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
559}
560
561/*
562 *	vm_page_dirty:
563 *
564 *	make page all dirty
565 */
566void
567vm_page_dirty(vm_page_t m)
568{
569
570	KASSERT((m->flags & PG_CACHED) == 0,
571	    ("vm_page_dirty: page in cache!"));
572	KASSERT(!VM_PAGE_IS_FREE(m),
573	    ("vm_page_dirty: page is free!"));
574	KASSERT(m->valid == VM_PAGE_BITS_ALL,
575	    ("vm_page_dirty: page is invalid!"));
576	m->dirty = VM_PAGE_BITS_ALL;
577}
578
579/*
580 *	vm_page_splay:
581 *
582 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
583 *	the vm_page containing the given pindex.  If, however, that
584 *	pindex is not found in the vm_object, returns a vm_page that is
585 *	adjacent to the pindex, coming before or after it.
586 */
587vm_page_t
588vm_page_splay(vm_pindex_t pindex, vm_page_t root)
589{
590	struct vm_page dummy;
591	vm_page_t lefttreemax, righttreemin, y;
592
593	if (root == NULL)
594		return (root);
595	lefttreemax = righttreemin = &dummy;
596	for (;; root = y) {
597		if (pindex < root->pindex) {
598			if ((y = root->left) == NULL)
599				break;
600			if (pindex < y->pindex) {
601				/* Rotate right. */
602				root->left = y->right;
603				y->right = root;
604				root = y;
605				if ((y = root->left) == NULL)
606					break;
607			}
608			/* Link into the new root's right tree. */
609			righttreemin->left = root;
610			righttreemin = root;
611		} else if (pindex > root->pindex) {
612			if ((y = root->right) == NULL)
613				break;
614			if (pindex > y->pindex) {
615				/* Rotate left. */
616				root->right = y->left;
617				y->left = root;
618				root = y;
619				if ((y = root->right) == NULL)
620					break;
621			}
622			/* Link into the new root's left tree. */
623			lefttreemax->right = root;
624			lefttreemax = root;
625		} else
626			break;
627	}
628	/* Assemble the new root. */
629	lefttreemax->right = root->left;
630	righttreemin->left = root->right;
631	root->left = dummy.right;
632	root->right = dummy.left;
633	return (root);
634}
635
636/*
637 *	vm_page_insert:		[ internal use only ]
638 *
639 *	Inserts the given mem entry into the object and object list.
640 *
641 *	The pagetables are not updated but will presumably fault the page
642 *	in if necessary, or if a kernel page the caller will at some point
643 *	enter the page into the kernel's pmap.  We are not allowed to block
644 *	here so we *can't* do this anyway.
645 *
646 *	The object and page must be locked.
647 *	This routine may not block.
648 */
649void
650vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
651{
652	vm_page_t root;
653
654	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
655	if (m->object != NULL)
656		panic("vm_page_insert: page already inserted");
657
658	/*
659	 * Record the object/offset pair in this page
660	 */
661	m->object = object;
662	m->pindex = pindex;
663
664	/*
665	 * Now link into the object's ordered list of backed pages.
666	 */
667	root = object->root;
668	if (root == NULL) {
669		m->left = NULL;
670		m->right = NULL;
671		TAILQ_INSERT_TAIL(&object->memq, m, listq);
672	} else {
673		root = vm_page_splay(pindex, root);
674		if (pindex < root->pindex) {
675			m->left = root->left;
676			m->right = root;
677			root->left = NULL;
678			TAILQ_INSERT_BEFORE(root, m, listq);
679		} else if (pindex == root->pindex)
680			panic("vm_page_insert: offset already allocated");
681		else {
682			m->right = root->right;
683			m->left = root;
684			root->right = NULL;
685			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
686		}
687	}
688	object->root = m;
689	object->generation++;
690
691	/*
692	 * show that the object has one more resident page.
693	 */
694	object->resident_page_count++;
695	/*
696	 * Hold the vnode until the last page is released.
697	 */
698	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
699		vhold((struct vnode *)object->handle);
700
701	/*
702	 * Since we are inserting a new and possibly dirty page,
703	 * update the object's OBJ_MIGHTBEDIRTY flag.
704	 */
705	if (m->flags & PG_WRITEABLE)
706		vm_object_set_writeable_dirty(object);
707}
708
709/*
710 *	vm_page_remove:
711 *				NOTE: used by device pager as well -wfj
712 *
713 *	Removes the given mem entry from the object/offset-page
714 *	table and the object page list, but do not invalidate/terminate
715 *	the backing store.
716 *
717 *	The object and page must be locked.
718 *	The underlying pmap entry (if any) is NOT removed here.
719 *	This routine may not block.
720 */
721void
722vm_page_remove(vm_page_t m)
723{
724	vm_object_t object;
725	vm_page_t root;
726
727	if ((object = m->object) == NULL)
728		return;
729	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
730	if (m->oflags & VPO_BUSY) {
731		m->oflags &= ~VPO_BUSY;
732		vm_page_flash(m);
733	}
734	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
735
736	/*
737	 * Now remove from the object's list of backed pages.
738	 */
739	if (m != object->root)
740		vm_page_splay(m->pindex, object->root);
741	if (m->left == NULL)
742		root = m->right;
743	else {
744		root = vm_page_splay(m->pindex, m->left);
745		root->right = m->right;
746	}
747	object->root = root;
748	TAILQ_REMOVE(&object->memq, m, listq);
749
750	/*
751	 * And show that the object has one fewer resident page.
752	 */
753	object->resident_page_count--;
754	object->generation++;
755	/*
756	 * The vnode may now be recycled.
757	 */
758	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
759		vdrop((struct vnode *)object->handle);
760
761	m->object = NULL;
762}
763
764/*
765 *	vm_page_lookup:
766 *
767 *	Returns the page associated with the object/offset
768 *	pair specified; if none is found, NULL is returned.
769 *
770 *	The object must be locked.
771 *	This routine may not block.
772 *	This is a critical path routine
773 */
774vm_page_t
775vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
776{
777	vm_page_t m;
778
779	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
780	if ((m = object->root) != NULL && m->pindex != pindex) {
781		m = vm_page_splay(pindex, m);
782		if ((object->root = m)->pindex != pindex)
783			m = NULL;
784	}
785	return (m);
786}
787
788/*
789 *	vm_page_rename:
790 *
791 *	Move the given memory entry from its
792 *	current object to the specified target object/offset.
793 *
794 *	The object must be locked.
795 *	This routine may not block.
796 *
797 *	Note: swap associated with the page must be invalidated by the move.  We
798 *	      have to do this for several reasons:  (1) we aren't freeing the
799 *	      page, (2) we are dirtying the page, (3) the VM system is probably
800 *	      moving the page from object A to B, and will then later move
801 *	      the backing store from A to B and we can't have a conflict.
802 *
803 *	Note: we *always* dirty the page.  It is necessary both for the
804 *	      fact that we moved it, and because we may be invalidating
805 *	      swap.  If the page is on the cache, we have to deactivate it
806 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
807 *	      on the cache.
808 */
809void
810vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
811{
812
813	vm_page_remove(m);
814	vm_page_insert(m, new_object, new_pindex);
815	vm_page_dirty(m);
816}
817
818/*
819 *	Convert all of the given object's cached pages that have a
820 *	pindex within the given range into free pages.  If the value
821 *	zero is given for "end", then the range's upper bound is
822 *	infinity.  If the given object is backed by a vnode and it
823 *	transitions from having one or more cached pages to none, the
824 *	vnode's hold count is reduced.
825 */
826void
827vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
828{
829	vm_page_t m, m_next;
830	boolean_t empty;
831
832	mtx_lock(&vm_page_queue_free_mtx);
833	if (__predict_false(object->cache == NULL)) {
834		mtx_unlock(&vm_page_queue_free_mtx);
835		return;
836	}
837	m = object->cache = vm_page_splay(start, object->cache);
838	if (m->pindex < start) {
839		if (m->right == NULL)
840			m = NULL;
841		else {
842			m_next = vm_page_splay(start, m->right);
843			m_next->left = m;
844			m->right = NULL;
845			m = object->cache = m_next;
846		}
847	}
848
849	/*
850	 * At this point, "m" is either (1) a reference to the page
851	 * with the least pindex that is greater than or equal to
852	 * "start" or (2) NULL.
853	 */
854	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
855		/*
856		 * Find "m"'s successor and remove "m" from the
857		 * object's cache.
858		 */
859		if (m->right == NULL) {
860			object->cache = m->left;
861			m_next = NULL;
862		} else {
863			m_next = vm_page_splay(start, m->right);
864			m_next->left = m->left;
865			object->cache = m_next;
866		}
867		/* Convert "m" to a free page. */
868		m->object = NULL;
869		m->valid = 0;
870		/* Clear PG_CACHED and set PG_FREE. */
871		m->flags ^= PG_CACHED | PG_FREE;
872		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
873		    ("vm_page_cache_free: page %p has inconsistent flags", m));
874		cnt.v_cache_count--;
875		cnt.v_free_count++;
876	}
877	empty = object->cache == NULL;
878	mtx_unlock(&vm_page_queue_free_mtx);
879	if (object->type == OBJT_VNODE && empty)
880		vdrop(object->handle);
881}
882
883/*
884 *	Returns the cached page that is associated with the given
885 *	object and offset.  If, however, none exists, returns NULL.
886 *
887 *	The free page queue must be locked.
888 */
889static inline vm_page_t
890vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
891{
892	vm_page_t m;
893
894	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
895	if ((m = object->cache) != NULL && m->pindex != pindex) {
896		m = vm_page_splay(pindex, m);
897		if ((object->cache = m)->pindex != pindex)
898			m = NULL;
899	}
900	return (m);
901}
902
903/*
904 *	Remove the given cached page from its containing object's
905 *	collection of cached pages.
906 *
907 *	The free page queue must be locked.
908 */
909void
910vm_page_cache_remove(vm_page_t m)
911{
912	vm_object_t object;
913	vm_page_t root;
914
915	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
916	KASSERT((m->flags & PG_CACHED) != 0,
917	    ("vm_page_cache_remove: page %p is not cached", m));
918	object = m->object;
919	if (m != object->cache) {
920		root = vm_page_splay(m->pindex, object->cache);
921		KASSERT(root == m,
922		    ("vm_page_cache_remove: page %p is not cached in object %p",
923		    m, object));
924	}
925	if (m->left == NULL)
926		root = m->right;
927	else if (m->right == NULL)
928		root = m->left;
929	else {
930		root = vm_page_splay(m->pindex, m->left);
931		root->right = m->right;
932	}
933	object->cache = root;
934	m->object = NULL;
935	cnt.v_cache_count--;
936}
937
938/*
939 *	Transfer all of the cached pages with offset greater than or
940 *	equal to 'offidxstart' from the original object's cache to the
941 *	new object's cache.  However, any cached pages with offset
942 *	greater than or equal to the new object's size are kept in the
943 *	original object.  Initially, the new object's cache must be
944 *	empty.  Offset 'offidxstart' in the original object must
945 *	correspond to offset zero in the new object.
946 *
947 *	The new object must be locked.
948 */
949void
950vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
951    vm_object_t new_object)
952{
953	vm_page_t m, m_next;
954
955	/*
956	 * Insertion into an object's collection of cached pages
957	 * requires the object to be locked.  In contrast, removal does
958	 * not.
959	 */
960	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
961	KASSERT(new_object->cache == NULL,
962	    ("vm_page_cache_transfer: object %p has cached pages",
963	    new_object));
964	mtx_lock(&vm_page_queue_free_mtx);
965	if ((m = orig_object->cache) != NULL) {
966		/*
967		 * Transfer all of the pages with offset greater than or
968		 * equal to 'offidxstart' from the original object's
969		 * cache to the new object's cache.
970		 */
971		m = vm_page_splay(offidxstart, m);
972		if (m->pindex < offidxstart) {
973			orig_object->cache = m;
974			new_object->cache = m->right;
975			m->right = NULL;
976		} else {
977			orig_object->cache = m->left;
978			new_object->cache = m;
979			m->left = NULL;
980		}
981		while ((m = new_object->cache) != NULL) {
982			if ((m->pindex - offidxstart) >= new_object->size) {
983				/*
984				 * Return all of the cached pages with
985				 * offset greater than or equal to the
986				 * new object's size to the original
987				 * object's cache.
988				 */
989				new_object->cache = m->left;
990				m->left = orig_object->cache;
991				orig_object->cache = m;
992				break;
993			}
994			m_next = vm_page_splay(m->pindex, m->right);
995			/* Update the page's object and offset. */
996			m->object = new_object;
997			m->pindex -= offidxstart;
998			if (m_next == NULL)
999				break;
1000			m->right = NULL;
1001			m_next->left = m;
1002			new_object->cache = m_next;
1003		}
1004		KASSERT(new_object->cache == NULL ||
1005		    new_object->type == OBJT_SWAP,
1006		    ("vm_page_cache_transfer: object %p's type is incompatible"
1007		    " with cached pages", new_object));
1008	}
1009	mtx_unlock(&vm_page_queue_free_mtx);
1010}
1011
1012/*
1013 *	vm_page_alloc:
1014 *
1015 *	Allocate and return a memory cell associated
1016 *	with this VM object/offset pair.
1017 *
1018 *	page_req classes:
1019 *	VM_ALLOC_NORMAL		normal process request
1020 *	VM_ALLOC_SYSTEM		system *really* needs a page
1021 *	VM_ALLOC_INTERRUPT	interrupt time request
1022 *	VM_ALLOC_ZERO		zero page
1023 *	VM_ALLOC_WIRED		wire the allocated page
1024 *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1025 *	VM_ALLOC_NOBUSY		do not set the page busy
1026 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1027 *				is cached
1028 *
1029 *	This routine may not sleep.
1030 */
1031vm_page_t
1032vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1033{
1034	struct vnode *vp = NULL;
1035	vm_object_t m_object;
1036	vm_page_t m;
1037	int flags, page_req;
1038
1039	page_req = req & VM_ALLOC_CLASS_MASK;
1040	KASSERT(curthread->td_intr_nesting_level == 0 ||
1041	    page_req == VM_ALLOC_INTERRUPT,
1042	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1043
1044	if ((req & VM_ALLOC_NOOBJ) == 0) {
1045		KASSERT(object != NULL,
1046		    ("vm_page_alloc: NULL object."));
1047		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1048	}
1049
1050	/*
1051	 * The pager is allowed to eat deeper into the free page list.
1052	 */
1053	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1054		page_req = VM_ALLOC_SYSTEM;
1055	};
1056
1057	mtx_lock(&vm_page_queue_free_mtx);
1058	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1059	    (page_req == VM_ALLOC_SYSTEM &&
1060	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1061	    (page_req == VM_ALLOC_INTERRUPT &&
1062	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1063		/*
1064		 * Allocate from the free queue if the number of free pages
1065		 * exceeds the minimum for the request class.
1066		 */
1067		if (object != NULL &&
1068		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1069			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1070				mtx_unlock(&vm_page_queue_free_mtx);
1071				return (NULL);
1072			}
1073			if (vm_phys_unfree_page(m))
1074				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1075#if VM_NRESERVLEVEL > 0
1076			else if (!vm_reserv_reactivate_page(m))
1077#else
1078			else
1079#endif
1080				panic("vm_page_alloc: cache page %p is missing"
1081				    " from the free queue", m);
1082		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1083			mtx_unlock(&vm_page_queue_free_mtx);
1084			return (NULL);
1085#if VM_NRESERVLEVEL > 0
1086		} else if (object == NULL || object->type == OBJT_DEVICE ||
1087		    (object->flags & OBJ_COLORED) == 0 ||
1088		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1089#else
1090		} else {
1091#endif
1092			m = vm_phys_alloc_pages(object != NULL ?
1093			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1094#if VM_NRESERVLEVEL > 0
1095			if (m == NULL && vm_reserv_reclaim_inactive()) {
1096				m = vm_phys_alloc_pages(object != NULL ?
1097				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1098				    0);
1099			}
1100#endif
1101		}
1102	} else {
1103		/*
1104		 * Not allocatable, give up.
1105		 */
1106		mtx_unlock(&vm_page_queue_free_mtx);
1107		atomic_add_int(&vm_pageout_deficit, 1);
1108		pagedaemon_wakeup();
1109		return (NULL);
1110	}
1111
1112	/*
1113	 *  At this point we had better have found a good page.
1114	 */
1115
1116	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1117	KASSERT(m->queue == PQ_NONE,
1118	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1119	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1120	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1121	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1122	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1123	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1124	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1125	    pmap_page_get_memattr(m)));
1126	if ((m->flags & PG_CACHED) != 0) {
1127		KASSERT(m->valid != 0,
1128		    ("vm_page_alloc: cached page %p is invalid", m));
1129		if (m->object == object && m->pindex == pindex)
1130	  		cnt.v_reactivated++;
1131		else
1132			m->valid = 0;
1133		m_object = m->object;
1134		vm_page_cache_remove(m);
1135		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1136			vp = m_object->handle;
1137	} else {
1138		KASSERT(VM_PAGE_IS_FREE(m),
1139		    ("vm_page_alloc: page %p is not free", m));
1140		KASSERT(m->valid == 0,
1141		    ("vm_page_alloc: free page %p is valid", m));
1142		cnt.v_free_count--;
1143	}
1144
1145	/*
1146	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1147	 */
1148	flags = 0;
1149	if (m->flags & PG_ZERO) {
1150		vm_page_zero_count--;
1151		if (req & VM_ALLOC_ZERO)
1152			flags = PG_ZERO;
1153	}
1154	if (object == NULL || object->type == OBJT_PHYS)
1155		flags |= PG_UNMANAGED;
1156	m->flags = flags;
1157	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1158		m->oflags = 0;
1159	else
1160		m->oflags = VPO_BUSY;
1161	if (req & VM_ALLOC_WIRED) {
1162		atomic_add_int(&cnt.v_wire_count, 1);
1163		m->wire_count = 1;
1164	}
1165	m->act_count = 0;
1166	mtx_unlock(&vm_page_queue_free_mtx);
1167
1168	if (object != NULL) {
1169		/* Ignore device objects; the pager sets "memattr" for them. */
1170		if (object->memattr != VM_MEMATTR_DEFAULT &&
1171		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1172			pmap_page_set_memattr(m, object->memattr);
1173		vm_page_insert(m, object, pindex);
1174	} else
1175		m->pindex = pindex;
1176
1177	/*
1178	 * The following call to vdrop() must come after the above call
1179	 * to vm_page_insert() in case both affect the same object and
1180	 * vnode.  Otherwise, the affected vnode's hold count could
1181	 * temporarily become zero.
1182	 */
1183	if (vp != NULL)
1184		vdrop(vp);
1185
1186	/*
1187	 * Don't wakeup too often - wakeup the pageout daemon when
1188	 * we would be nearly out of memory.
1189	 */
1190	if (vm_paging_needed())
1191		pagedaemon_wakeup();
1192
1193	return (m);
1194}
1195
1196/*
1197 *	vm_wait:	(also see VM_WAIT macro)
1198 *
1199 *	Block until free pages are available for allocation
1200 *	- Called in various places before memory allocations.
1201 */
1202void
1203vm_wait(void)
1204{
1205
1206	mtx_lock(&vm_page_queue_free_mtx);
1207	if (curproc == pageproc) {
1208		vm_pageout_pages_needed = 1;
1209		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1210		    PDROP | PSWP, "VMWait", 0);
1211	} else {
1212		if (!vm_pages_needed) {
1213			vm_pages_needed = 1;
1214			wakeup(&vm_pages_needed);
1215		}
1216		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1217		    "vmwait", 0);
1218	}
1219}
1220
1221/*
1222 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1223 *
1224 *	Block until free pages are available for allocation
1225 *	- Called only in vm_fault so that processes page faulting
1226 *	  can be easily tracked.
1227 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1228 *	  processes will be able to grab memory first.  Do not change
1229 *	  this balance without careful testing first.
1230 */
1231void
1232vm_waitpfault(void)
1233{
1234
1235	mtx_lock(&vm_page_queue_free_mtx);
1236	if (!vm_pages_needed) {
1237		vm_pages_needed = 1;
1238		wakeup(&vm_pages_needed);
1239	}
1240	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1241	    "pfault", 0);
1242}
1243
1244/*
1245 *	vm_page_requeue:
1246 *
1247 *	If the given page is contained within a page queue, move it to the tail
1248 *	of that queue.
1249 *
1250 *	The page queues must be locked.
1251 */
1252void
1253vm_page_requeue(vm_page_t m)
1254{
1255	int queue = VM_PAGE_GETQUEUE(m);
1256	struct vpgqueues *vpq;
1257
1258	if (queue != PQ_NONE) {
1259		vpq = &vm_page_queues[queue];
1260		TAILQ_REMOVE(&vpq->pl, m, pageq);
1261		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1262	}
1263}
1264
1265/*
1266 *	vm_pageq_remove:
1267 *
1268 *	Remove a page from its queue.
1269 *
1270 *	The queue containing the given page must be locked.
1271 *	This routine may not block.
1272 */
1273void
1274vm_pageq_remove(vm_page_t m)
1275{
1276	int queue = VM_PAGE_GETQUEUE(m);
1277	struct vpgqueues *pq;
1278
1279	if (queue != PQ_NONE) {
1280		VM_PAGE_SETQUEUE2(m, PQ_NONE);
1281		pq = &vm_page_queues[queue];
1282		TAILQ_REMOVE(&pq->pl, m, pageq);
1283		(*pq->cnt)--;
1284	}
1285}
1286
1287/*
1288 *	vm_page_enqueue:
1289 *
1290 *	Add the given page to the specified queue.
1291 *
1292 *	The page queues must be locked.
1293 */
1294static void
1295vm_page_enqueue(int queue, vm_page_t m)
1296{
1297	struct vpgqueues *vpq;
1298
1299	vpq = &vm_page_queues[queue];
1300	VM_PAGE_SETQUEUE2(m, queue);
1301	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1302	++*vpq->cnt;
1303}
1304
1305/*
1306 *	vm_page_activate:
1307 *
1308 *	Put the specified page on the active list (if appropriate).
1309 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1310 *	mess with it.
1311 *
1312 *	The page queues must be locked.
1313 *	This routine may not block.
1314 */
1315void
1316vm_page_activate(vm_page_t m)
1317{
1318
1319	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1320	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1321		vm_pageq_remove(m);
1322		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1323			if (m->act_count < ACT_INIT)
1324				m->act_count = ACT_INIT;
1325			vm_page_enqueue(PQ_ACTIVE, m);
1326		}
1327	} else {
1328		if (m->act_count < ACT_INIT)
1329			m->act_count = ACT_INIT;
1330	}
1331}
1332
1333/*
1334 *	vm_page_free_wakeup:
1335 *
1336 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1337 *	routine is called when a page has been added to the cache or free
1338 *	queues.
1339 *
1340 *	The page queues must be locked.
1341 *	This routine may not block.
1342 */
1343static inline void
1344vm_page_free_wakeup(void)
1345{
1346
1347	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1348	/*
1349	 * if pageout daemon needs pages, then tell it that there are
1350	 * some free.
1351	 */
1352	if (vm_pageout_pages_needed &&
1353	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1354		wakeup(&vm_pageout_pages_needed);
1355		vm_pageout_pages_needed = 0;
1356	}
1357	/*
1358	 * wakeup processes that are waiting on memory if we hit a
1359	 * high water mark. And wakeup scheduler process if we have
1360	 * lots of memory. this process will swapin processes.
1361	 */
1362	if (vm_pages_needed && !vm_page_count_min()) {
1363		vm_pages_needed = 0;
1364		wakeup(&cnt.v_free_count);
1365	}
1366}
1367
1368/*
1369 *	vm_page_free_toq:
1370 *
1371 *	Returns the given page to the free list,
1372 *	disassociating it with any VM object.
1373 *
1374 *	Object and page must be locked prior to entry.
1375 *	This routine may not block.
1376 */
1377
1378void
1379vm_page_free_toq(vm_page_t m)
1380{
1381
1382	if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1383		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1384	KASSERT(!pmap_page_is_mapped(m),
1385	    ("vm_page_free_toq: freeing mapped page %p", m));
1386	PCPU_INC(cnt.v_tfree);
1387
1388	if (m->busy || VM_PAGE_IS_FREE(m)) {
1389		printf(
1390		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1391		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1392		    m->hold_count);
1393		if (VM_PAGE_IS_FREE(m))
1394			panic("vm_page_free: freeing free page");
1395		else
1396			panic("vm_page_free: freeing busy page");
1397	}
1398
1399	/*
1400	 * unqueue, then remove page.  Note that we cannot destroy
1401	 * the page here because we do not want to call the pager's
1402	 * callback routine until after we've put the page on the
1403	 * appropriate free queue.
1404	 */
1405	vm_pageq_remove(m);
1406	vm_page_remove(m);
1407
1408	/*
1409	 * If fictitious remove object association and
1410	 * return, otherwise delay object association removal.
1411	 */
1412	if ((m->flags & PG_FICTITIOUS) != 0) {
1413		return;
1414	}
1415
1416	m->valid = 0;
1417	vm_page_undirty(m);
1418
1419	if (m->wire_count != 0) {
1420		if (m->wire_count > 1) {
1421			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1422				m->wire_count, (long)m->pindex);
1423		}
1424		panic("vm_page_free: freeing wired page");
1425	}
1426	if (m->hold_count != 0) {
1427		m->flags &= ~PG_ZERO;
1428		vm_page_enqueue(PQ_HOLD, m);
1429	} else {
1430		/*
1431		 * Restore the default memory attribute to the page.
1432		 */
1433		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1434			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1435
1436		/*
1437		 * Insert the page into the physical memory allocator's
1438		 * cache/free page queues.
1439		 */
1440		mtx_lock(&vm_page_queue_free_mtx);
1441		m->flags |= PG_FREE;
1442		cnt.v_free_count++;
1443#if VM_NRESERVLEVEL > 0
1444		if (!vm_reserv_free_page(m))
1445#else
1446		if (TRUE)
1447#endif
1448			vm_phys_free_pages(m, 0);
1449		if ((m->flags & PG_ZERO) != 0)
1450			++vm_page_zero_count;
1451		else
1452			vm_page_zero_idle_wakeup();
1453		vm_page_free_wakeup();
1454		mtx_unlock(&vm_page_queue_free_mtx);
1455	}
1456}
1457
1458/*
1459 *	vm_page_wire:
1460 *
1461 *	Mark this page as wired down by yet
1462 *	another map, removing it from paging queues
1463 *	as necessary.
1464 *
1465 *	The page queues must be locked.
1466 *	This routine may not block.
1467 */
1468void
1469vm_page_wire(vm_page_t m)
1470{
1471
1472	/*
1473	 * Only bump the wire statistics if the page is not already wired,
1474	 * and only unqueue the page if it is on some queue (if it is unmanaged
1475	 * it is already off the queues).
1476	 */
1477	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1478	if (m->flags & PG_FICTITIOUS)
1479		return;
1480	if (m->wire_count == 0) {
1481		if ((m->flags & PG_UNMANAGED) == 0)
1482			vm_pageq_remove(m);
1483		atomic_add_int(&cnt.v_wire_count, 1);
1484	}
1485	m->wire_count++;
1486	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1487}
1488
1489/*
1490 *	vm_page_unwire:
1491 *
1492 *	Release one wiring of this page, potentially
1493 *	enabling it to be paged again.
1494 *
1495 *	Many pages placed on the inactive queue should actually go
1496 *	into the cache, but it is difficult to figure out which.  What
1497 *	we do instead, if the inactive target is well met, is to put
1498 *	clean pages at the head of the inactive queue instead of the tail.
1499 *	This will cause them to be moved to the cache more quickly and
1500 *	if not actively re-referenced, freed more quickly.  If we just
1501 *	stick these pages at the end of the inactive queue, heavy filesystem
1502 *	meta-data accesses can cause an unnecessary paging load on memory bound
1503 *	processes.  This optimization causes one-time-use metadata to be
1504 *	reused more quickly.
1505 *
1506 *	BUT, if we are in a low-memory situation we have no choice but to
1507 *	put clean pages on the cache queue.
1508 *
1509 *	A number of routines use vm_page_unwire() to guarantee that the page
1510 *	will go into either the inactive or active queues, and will NEVER
1511 *	be placed in the cache - for example, just after dirtying a page.
1512 *	dirty pages in the cache are not allowed.
1513 *
1514 *	The page queues must be locked.
1515 *	This routine may not block.
1516 */
1517void
1518vm_page_unwire(vm_page_t m, int activate)
1519{
1520
1521	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1522	if (m->flags & PG_FICTITIOUS)
1523		return;
1524	if (m->wire_count > 0) {
1525		m->wire_count--;
1526		if (m->wire_count == 0) {
1527			atomic_subtract_int(&cnt.v_wire_count, 1);
1528			if (m->flags & PG_UNMANAGED) {
1529				;
1530			} else if (activate)
1531				vm_page_enqueue(PQ_ACTIVE, m);
1532			else {
1533				vm_page_flag_clear(m, PG_WINATCFLS);
1534				vm_page_enqueue(PQ_INACTIVE, m);
1535			}
1536		}
1537	} else {
1538		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1539	}
1540}
1541
1542
1543/*
1544 * Move the specified page to the inactive queue.  If the page has
1545 * any associated swap, the swap is deallocated.
1546 *
1547 * Normally athead is 0 resulting in LRU operation.  athead is set
1548 * to 1 if we want this page to be 'as if it were placed in the cache',
1549 * except without unmapping it from the process address space.
1550 *
1551 * This routine may not block.
1552 */
1553static inline void
1554_vm_page_deactivate(vm_page_t m, int athead)
1555{
1556
1557	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1558
1559	/*
1560	 * Ignore if already inactive.
1561	 */
1562	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1563		return;
1564	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1565		vm_page_flag_clear(m, PG_WINATCFLS);
1566		vm_pageq_remove(m);
1567		if (athead)
1568			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1569		else
1570			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1571		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1572		cnt.v_inactive_count++;
1573	}
1574}
1575
1576void
1577vm_page_deactivate(vm_page_t m)
1578{
1579    _vm_page_deactivate(m, 0);
1580}
1581
1582/*
1583 * vm_page_try_to_cache:
1584 *
1585 * Returns 0 on failure, 1 on success
1586 */
1587int
1588vm_page_try_to_cache(vm_page_t m)
1589{
1590
1591	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1592	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1593	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1594	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1595		return (0);
1596	}
1597	pmap_remove_all(m);
1598	if (m->dirty)
1599		return (0);
1600	vm_page_cache(m);
1601	return (1);
1602}
1603
1604/*
1605 * vm_page_try_to_free()
1606 *
1607 *	Attempt to free the page.  If we cannot free it, we do nothing.
1608 *	1 is returned on success, 0 on failure.
1609 */
1610int
1611vm_page_try_to_free(vm_page_t m)
1612{
1613
1614	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1615	if (m->object != NULL)
1616		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1617	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1618	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1619		return (0);
1620	}
1621	pmap_remove_all(m);
1622	if (m->dirty)
1623		return (0);
1624	vm_page_free(m);
1625	return (1);
1626}
1627
1628/*
1629 * vm_page_cache
1630 *
1631 * Put the specified page onto the page cache queue (if appropriate).
1632 *
1633 * This routine may not block.
1634 */
1635void
1636vm_page_cache(vm_page_t m)
1637{
1638	vm_object_t object;
1639	vm_page_t root;
1640
1641	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1642	object = m->object;
1643	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1644	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1645	    m->hold_count || m->wire_count) {
1646		panic("vm_page_cache: attempting to cache busy page");
1647	}
1648	pmap_remove_all(m);
1649	if (m->dirty != 0)
1650		panic("vm_page_cache: page %p is dirty", m);
1651	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1652	    (object->type == OBJT_SWAP &&
1653	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1654		/*
1655		 * Hypothesis: A cache-elgible page belonging to a
1656		 * default object or swap object but without a backing
1657		 * store must be zero filled.
1658		 */
1659		vm_page_free(m);
1660		return;
1661	}
1662	KASSERT((m->flags & PG_CACHED) == 0,
1663	    ("vm_page_cache: page %p is already cached", m));
1664	cnt.v_tcached++;
1665
1666	/*
1667	 * Remove the page from the paging queues.
1668	 */
1669	vm_pageq_remove(m);
1670
1671	/*
1672	 * Remove the page from the object's collection of resident
1673	 * pages.
1674	 */
1675	if (m != object->root)
1676		vm_page_splay(m->pindex, object->root);
1677	if (m->left == NULL)
1678		root = m->right;
1679	else {
1680		root = vm_page_splay(m->pindex, m->left);
1681		root->right = m->right;
1682	}
1683	object->root = root;
1684	TAILQ_REMOVE(&object->memq, m, listq);
1685	object->resident_page_count--;
1686	object->generation++;
1687
1688	/*
1689	 * Restore the default memory attribute to the page.
1690	 */
1691	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1692		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1693
1694	/*
1695	 * Insert the page into the object's collection of cached pages
1696	 * and the physical memory allocator's cache/free page queues.
1697	 */
1698	vm_page_flag_clear(m, PG_ZERO);
1699	mtx_lock(&vm_page_queue_free_mtx);
1700	m->flags |= PG_CACHED;
1701	cnt.v_cache_count++;
1702	root = object->cache;
1703	if (root == NULL) {
1704		m->left = NULL;
1705		m->right = NULL;
1706	} else {
1707		root = vm_page_splay(m->pindex, root);
1708		if (m->pindex < root->pindex) {
1709			m->left = root->left;
1710			m->right = root;
1711			root->left = NULL;
1712		} else if (__predict_false(m->pindex == root->pindex))
1713			panic("vm_page_cache: offset already cached");
1714		else {
1715			m->right = root->right;
1716			m->left = root;
1717			root->right = NULL;
1718		}
1719	}
1720	object->cache = m;
1721#if VM_NRESERVLEVEL > 0
1722	if (!vm_reserv_free_page(m)) {
1723#else
1724	if (TRUE) {
1725#endif
1726		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
1727		vm_phys_free_pages(m, 0);
1728	}
1729	vm_page_free_wakeup();
1730	mtx_unlock(&vm_page_queue_free_mtx);
1731
1732	/*
1733	 * Increment the vnode's hold count if this is the object's only
1734	 * cached page.  Decrement the vnode's hold count if this was
1735	 * the object's only resident page.
1736	 */
1737	if (object->type == OBJT_VNODE) {
1738		if (root == NULL && object->resident_page_count != 0)
1739			vhold(object->handle);
1740		else if (root != NULL && object->resident_page_count == 0)
1741			vdrop(object->handle);
1742	}
1743}
1744
1745/*
1746 * vm_page_dontneed
1747 *
1748 *	Cache, deactivate, or do nothing as appropriate.  This routine
1749 *	is typically used by madvise() MADV_DONTNEED.
1750 *
1751 *	Generally speaking we want to move the page into the cache so
1752 *	it gets reused quickly.  However, this can result in a silly syndrome
1753 *	due to the page recycling too quickly.  Small objects will not be
1754 *	fully cached.  On the otherhand, if we move the page to the inactive
1755 *	queue we wind up with a problem whereby very large objects
1756 *	unnecessarily blow away our inactive and cache queues.
1757 *
1758 *	The solution is to move the pages based on a fixed weighting.  We
1759 *	either leave them alone, deactivate them, or move them to the cache,
1760 *	where moving them to the cache has the highest weighting.
1761 *	By forcing some pages into other queues we eventually force the
1762 *	system to balance the queues, potentially recovering other unrelated
1763 *	space from active.  The idea is to not force this to happen too
1764 *	often.
1765 */
1766void
1767vm_page_dontneed(vm_page_t m)
1768{
1769	static int dnweight;
1770	int dnw;
1771	int head;
1772
1773	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1774	dnw = ++dnweight;
1775
1776	/*
1777	 * occassionally leave the page alone
1778	 */
1779	if ((dnw & 0x01F0) == 0 ||
1780	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
1781		if (m->act_count >= ACT_INIT)
1782			--m->act_count;
1783		return;
1784	}
1785
1786	/*
1787	 * Clear any references to the page.  Otherwise, the page daemon will
1788	 * immediately reactivate the page.
1789	 */
1790	vm_page_flag_clear(m, PG_REFERENCED);
1791	pmap_clear_reference(m);
1792
1793	if (m->dirty == 0 && pmap_is_modified(m))
1794		vm_page_dirty(m);
1795
1796	if (m->dirty || (dnw & 0x0070) == 0) {
1797		/*
1798		 * Deactivate the page 3 times out of 32.
1799		 */
1800		head = 0;
1801	} else {
1802		/*
1803		 * Cache the page 28 times out of every 32.  Note that
1804		 * the page is deactivated instead of cached, but placed
1805		 * at the head of the queue instead of the tail.
1806		 */
1807		head = 1;
1808	}
1809	_vm_page_deactivate(m, head);
1810}
1811
1812/*
1813 * Grab a page, waiting until we are waken up due to the page
1814 * changing state.  We keep on waiting, if the page continues
1815 * to be in the object.  If the page doesn't exist, first allocate it
1816 * and then conditionally zero it.
1817 *
1818 * This routine may block.
1819 */
1820vm_page_t
1821vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1822{
1823	vm_page_t m;
1824
1825	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1826retrylookup:
1827	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1828		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1829			if ((allocflags & VM_ALLOC_RETRY) == 0)
1830				return (NULL);
1831			goto retrylookup;
1832		} else {
1833			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1834				vm_page_lock_queues();
1835				vm_page_wire(m);
1836				vm_page_unlock_queues();
1837			}
1838			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1839				vm_page_busy(m);
1840			return (m);
1841		}
1842	}
1843	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1844	if (m == NULL) {
1845		VM_OBJECT_UNLOCK(object);
1846		VM_WAIT;
1847		VM_OBJECT_LOCK(object);
1848		if ((allocflags & VM_ALLOC_RETRY) == 0)
1849			return (NULL);
1850		goto retrylookup;
1851	} else if (m->valid != 0)
1852		return (m);
1853	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1854		pmap_zero_page(m);
1855	return (m);
1856}
1857
1858/*
1859 * Mapping function for valid bits or for dirty bits in
1860 * a page.  May not block.
1861 *
1862 * Inputs are required to range within a page.
1863 */
1864int
1865vm_page_bits(int base, int size)
1866{
1867	int first_bit;
1868	int last_bit;
1869
1870	KASSERT(
1871	    base + size <= PAGE_SIZE,
1872	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1873	);
1874
1875	if (size == 0)		/* handle degenerate case */
1876		return (0);
1877
1878	first_bit = base >> DEV_BSHIFT;
1879	last_bit = (base + size - 1) >> DEV_BSHIFT;
1880
1881	return ((2 << last_bit) - (1 << first_bit));
1882}
1883
1884/*
1885 *	vm_page_set_valid:
1886 *
1887 *	Sets portions of a page valid.  The arguments are expected
1888 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1889 *	of any partial chunks touched by the range.  The invalid portion of
1890 *	such chunks will be zeroed.
1891 *
1892 *	(base + size) must be less then or equal to PAGE_SIZE.
1893 */
1894void
1895vm_page_set_valid(vm_page_t m, int base, int size)
1896{
1897	int endoff, frag;
1898
1899	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1900	if (size == 0)	/* handle degenerate case */
1901		return;
1902
1903	/*
1904	 * If the base is not DEV_BSIZE aligned and the valid
1905	 * bit is clear, we have to zero out a portion of the
1906	 * first block.
1907	 */
1908	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1909	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1910		pmap_zero_page_area(m, frag, base - frag);
1911
1912	/*
1913	 * If the ending offset is not DEV_BSIZE aligned and the
1914	 * valid bit is clear, we have to zero out a portion of
1915	 * the last block.
1916	 */
1917	endoff = base + size;
1918	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1919	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1920		pmap_zero_page_area(m, endoff,
1921		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1922
1923	/*
1924	 * Assert that no previously invalid block that is now being validated
1925	 * is already dirty.
1926	 */
1927	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
1928	    ("vm_page_set_valid: page %p is dirty", m));
1929
1930	/*
1931	 * Set valid bits inclusive of any overlap.
1932	 */
1933	m->valid |= vm_page_bits(base, size);
1934}
1935
1936/*
1937 *	vm_page_set_validclean:
1938 *
1939 *	Sets portions of a page valid and clean.  The arguments are expected
1940 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1941 *	of any partial chunks touched by the range.  The invalid portion of
1942 *	such chunks will be zero'd.
1943 *
1944 *	This routine may not block.
1945 *
1946 *	(base + size) must be less then or equal to PAGE_SIZE.
1947 */
1948void
1949vm_page_set_validclean(vm_page_t m, int base, int size)
1950{
1951	int pagebits;
1952	int frag;
1953	int endoff;
1954
1955	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1956	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1957	if (size == 0)	/* handle degenerate case */
1958		return;
1959
1960	/*
1961	 * If the base is not DEV_BSIZE aligned and the valid
1962	 * bit is clear, we have to zero out a portion of the
1963	 * first block.
1964	 */
1965	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1966	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1967		pmap_zero_page_area(m, frag, base - frag);
1968
1969	/*
1970	 * If the ending offset is not DEV_BSIZE aligned and the
1971	 * valid bit is clear, we have to zero out a portion of
1972	 * the last block.
1973	 */
1974	endoff = base + size;
1975	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1976	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1977		pmap_zero_page_area(m, endoff,
1978		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1979
1980	/*
1981	 * Set valid, clear dirty bits.  If validating the entire
1982	 * page we can safely clear the pmap modify bit.  We also
1983	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1984	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1985	 * be set again.
1986	 *
1987	 * We set valid bits inclusive of any overlap, but we can only
1988	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1989	 * the range.
1990	 */
1991	pagebits = vm_page_bits(base, size);
1992	m->valid |= pagebits;
1993#if 0	/* NOT YET */
1994	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1995		frag = DEV_BSIZE - frag;
1996		base += frag;
1997		size -= frag;
1998		if (size < 0)
1999			size = 0;
2000	}
2001	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2002#endif
2003	m->dirty &= ~pagebits;
2004	if (base == 0 && size == PAGE_SIZE) {
2005		pmap_clear_modify(m);
2006		m->oflags &= ~VPO_NOSYNC;
2007	}
2008}
2009
2010void
2011vm_page_clear_dirty(vm_page_t m, int base, int size)
2012{
2013
2014	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2015	m->dirty &= ~vm_page_bits(base, size);
2016}
2017
2018/*
2019 *	vm_page_set_invalid:
2020 *
2021 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2022 *	valid and dirty bits for the effected areas are cleared.
2023 *
2024 *	May not block.
2025 */
2026void
2027vm_page_set_invalid(vm_page_t m, int base, int size)
2028{
2029	int bits;
2030
2031	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2032	bits = vm_page_bits(base, size);
2033	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2034	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2035		pmap_remove_all(m);
2036	m->valid &= ~bits;
2037	m->dirty &= ~bits;
2038	m->object->generation++;
2039}
2040
2041/*
2042 * vm_page_zero_invalid()
2043 *
2044 *	The kernel assumes that the invalid portions of a page contain
2045 *	garbage, but such pages can be mapped into memory by user code.
2046 *	When this occurs, we must zero out the non-valid portions of the
2047 *	page so user code sees what it expects.
2048 *
2049 *	Pages are most often semi-valid when the end of a file is mapped
2050 *	into memory and the file's size is not page aligned.
2051 */
2052void
2053vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2054{
2055	int b;
2056	int i;
2057
2058	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2059	/*
2060	 * Scan the valid bits looking for invalid sections that
2061	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2062	 * valid bit may be set ) have already been zerod by
2063	 * vm_page_set_validclean().
2064	 */
2065	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2066		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2067		    (m->valid & (1 << i))
2068		) {
2069			if (i > b) {
2070				pmap_zero_page_area(m,
2071				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2072			}
2073			b = i + 1;
2074		}
2075	}
2076
2077	/*
2078	 * setvalid is TRUE when we can safely set the zero'd areas
2079	 * as being valid.  We can do this if there are no cache consistancy
2080	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2081	 */
2082	if (setvalid)
2083		m->valid = VM_PAGE_BITS_ALL;
2084}
2085
2086/*
2087 *	vm_page_is_valid:
2088 *
2089 *	Is (partial) page valid?  Note that the case where size == 0
2090 *	will return FALSE in the degenerate case where the page is
2091 *	entirely invalid, and TRUE otherwise.
2092 *
2093 *	May not block.
2094 */
2095int
2096vm_page_is_valid(vm_page_t m, int base, int size)
2097{
2098	int bits = vm_page_bits(base, size);
2099
2100	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2101	if (m->valid && ((m->valid & bits) == bits))
2102		return 1;
2103	else
2104		return 0;
2105}
2106
2107/*
2108 * update dirty bits from pmap/mmu.  May not block.
2109 */
2110void
2111vm_page_test_dirty(vm_page_t m)
2112{
2113	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
2114		vm_page_dirty(m);
2115	}
2116}
2117
2118int so_zerocp_fullpage = 0;
2119
2120/*
2121 *	Replace the given page with a copy.  The copied page assumes
2122 *	the portion of the given page's "wire_count" that is not the
2123 *	responsibility of this copy-on-write mechanism.
2124 *
2125 *	The object containing the given page must have a non-zero
2126 *	paging-in-progress count and be locked.
2127 */
2128void
2129vm_page_cowfault(vm_page_t m)
2130{
2131	vm_page_t mnew;
2132	vm_object_t object;
2133	vm_pindex_t pindex;
2134
2135	object = m->object;
2136	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2137	KASSERT(object->paging_in_progress != 0,
2138	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2139	    object));
2140	pindex = m->pindex;
2141
2142 retry_alloc:
2143	pmap_remove_all(m);
2144	vm_page_remove(m);
2145	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2146	if (mnew == NULL) {
2147		vm_page_insert(m, object, pindex);
2148		vm_page_unlock_queues();
2149		VM_OBJECT_UNLOCK(object);
2150		VM_WAIT;
2151		VM_OBJECT_LOCK(object);
2152		if (m == vm_page_lookup(object, pindex)) {
2153			vm_page_lock_queues();
2154			goto retry_alloc;
2155		} else {
2156			/*
2157			 * Page disappeared during the wait.
2158			 */
2159			vm_page_lock_queues();
2160			return;
2161		}
2162	}
2163
2164	if (m->cow == 0) {
2165		/*
2166		 * check to see if we raced with an xmit complete when
2167		 * waiting to allocate a page.  If so, put things back
2168		 * the way they were
2169		 */
2170		vm_page_free(mnew);
2171		vm_page_insert(m, object, pindex);
2172	} else { /* clear COW & copy page */
2173		if (!so_zerocp_fullpage)
2174			pmap_copy_page(m, mnew);
2175		mnew->valid = VM_PAGE_BITS_ALL;
2176		vm_page_dirty(mnew);
2177		mnew->wire_count = m->wire_count - m->cow;
2178		m->wire_count = m->cow;
2179	}
2180}
2181
2182void
2183vm_page_cowclear(vm_page_t m)
2184{
2185
2186	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2187	if (m->cow) {
2188		m->cow--;
2189		/*
2190		 * let vm_fault add back write permission  lazily
2191		 */
2192	}
2193	/*
2194	 *  sf_buf_free() will free the page, so we needn't do it here
2195	 */
2196}
2197
2198int
2199vm_page_cowsetup(vm_page_t m)
2200{
2201
2202	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2203	if (m->cow == USHRT_MAX - 1)
2204		return (EBUSY);
2205	m->cow++;
2206	pmap_remove_write(m);
2207	return (0);
2208}
2209
2210#include "opt_ddb.h"
2211#ifdef DDB
2212#include <sys/kernel.h>
2213
2214#include <ddb/ddb.h>
2215
2216DB_SHOW_COMMAND(page, vm_page_print_page_info)
2217{
2218	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2219	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2220	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2221	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2222	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2223	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2224	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2225	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2226	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2227	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2228}
2229
2230DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2231{
2232
2233	db_printf("PQ_FREE:");
2234	db_printf(" %d", cnt.v_free_count);
2235	db_printf("\n");
2236
2237	db_printf("PQ_CACHE:");
2238	db_printf(" %d", cnt.v_cache_count);
2239	db_printf("\n");
2240
2241	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2242		*vm_page_queues[PQ_ACTIVE].cnt,
2243		*vm_page_queues[PQ_INACTIVE].cnt);
2244}
2245#endif /* DDB */
2246