vm_page.c revision 177414
1222322Sadrian/*-
2222322Sadrian * Copyright (c) 1991 Regents of the University of California.
3222322Sadrian * All rights reserved.
4222322Sadrian * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5222322Sadrian *
6222322Sadrian * This code is derived from software contributed to Berkeley by
7222322Sadrian * The Mach Operating System project at Carnegie-Mellon University.
8222322Sadrian *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- a hash chain mutex is required when associating or disassociating
71 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72 *	  regardless of other mutexes or the busy state of a page.
73 *
74 *	- either a hash chain mutex OR a busied page is required in order
75 *	  to modify the page flags.  A hash chain mutex must be obtained in
76 *	  order to busy a page.  A page's flags cannot be modified by a
77 *	  hash chain mutex if the page is marked busy.
78 *
79 *	- The object memq mutex is held when inserting or removing
80 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81 *	  is different from the object's main mutex.
82 *
83 *	Generally speaking, you have to be aware of side effects when running
84 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86 *	vm_page_cache(), vm_page_activate(), and a number of other routines
87 *	will release the hash chain mutex for you.  Intermediate manipulation
88 *	routines such as vm_page_flag_set() expect the hash chain to be held
89 *	on entry and the hash chain will remain held on return.
90 *
91 *	pageq scanning can only occur with the pageq in question locked.
92 *	We have a known bottleneck with the active queue, but the cache
93 *	and free queues are actually arrays already.
94 */
95
96/*
97 *	Resident memory management module.
98 */
99
100#include <sys/cdefs.h>
101__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 177414 2008-03-19 20:24:35Z alc $");
102
103#include "opt_vm.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/lock.h>
108#include <sys/kernel.h>
109#include <sys/malloc.h>
110#include <sys/mutex.h>
111#include <sys/proc.h>
112#include <sys/sysctl.h>
113#include <sys/vmmeter.h>
114#include <sys/vnode.h>
115
116#include <vm/vm.h>
117#include <vm/vm_param.h>
118#include <vm/vm_kern.h>
119#include <vm/vm_object.h>
120#include <vm/vm_page.h>
121#include <vm/vm_pageout.h>
122#include <vm/vm_pager.h>
123#include <vm/vm_phys.h>
124#include <vm/vm_reserv.h>
125#include <vm/vm_extern.h>
126#include <vm/uma.h>
127#include <vm/uma_int.h>
128
129#include <machine/md_var.h>
130
131/*
132 *	Associated with page of user-allocatable memory is a
133 *	page structure.
134 */
135
136struct vpgqueues vm_page_queues[PQ_COUNT];
137struct mtx vm_page_queue_mtx;
138struct mtx vm_page_queue_free_mtx;
139
140vm_page_t vm_page_array = 0;
141int vm_page_array_size = 0;
142long first_page = 0;
143int vm_page_zero_count = 0;
144
145static int boot_pages = UMA_BOOT_PAGES;
146TUNABLE_INT("vm.boot_pages", &boot_pages);
147SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
148	"number of pages allocated for bootstrapping the VM system");
149
150static void vm_page_enqueue(int queue, vm_page_t m);
151
152/*
153 *	vm_set_page_size:
154 *
155 *	Sets the page size, perhaps based upon the memory
156 *	size.  Must be called before any use of page-size
157 *	dependent functions.
158 */
159void
160vm_set_page_size(void)
161{
162	if (cnt.v_page_size == 0)
163		cnt.v_page_size = PAGE_SIZE;
164	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
165		panic("vm_set_page_size: page size not a power of two");
166}
167
168/*
169 *	vm_page_blacklist_lookup:
170 *
171 *	See if a physical address in this page has been listed
172 *	in the blacklist tunable.  Entries in the tunable are
173 *	separated by spaces or commas.  If an invalid integer is
174 *	encountered then the rest of the string is skipped.
175 */
176static int
177vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
178{
179	vm_paddr_t bad;
180	char *cp, *pos;
181
182	for (pos = list; *pos != '\0'; pos = cp) {
183		bad = strtoq(pos, &cp, 0);
184		if (*cp != '\0') {
185			if (*cp == ' ' || *cp == ',') {
186				cp++;
187				if (cp == pos)
188					continue;
189			} else
190				break;
191		}
192		if (pa == trunc_page(bad))
193			return (1);
194	}
195	return (0);
196}
197
198/*
199 *	vm_page_startup:
200 *
201 *	Initializes the resident memory module.
202 *
203 *	Allocates memory for the page cells, and
204 *	for the object/offset-to-page hash table headers.
205 *	Each page cell is initialized and placed on the free list.
206 */
207vm_offset_t
208vm_page_startup(vm_offset_t vaddr)
209{
210	vm_offset_t mapped;
211	vm_paddr_t page_range;
212	vm_paddr_t new_end;
213	int i;
214	vm_paddr_t pa;
215	int nblocks;
216	vm_paddr_t last_pa;
217	char *list;
218
219	/* the biggest memory array is the second group of pages */
220	vm_paddr_t end;
221	vm_paddr_t biggestsize;
222	vm_paddr_t low_water, high_water;
223	int biggestone;
224
225	biggestsize = 0;
226	biggestone = 0;
227	nblocks = 0;
228	vaddr = round_page(vaddr);
229
230	for (i = 0; phys_avail[i + 1]; i += 2) {
231		phys_avail[i] = round_page(phys_avail[i]);
232		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
233	}
234
235	low_water = phys_avail[0];
236	high_water = phys_avail[1];
237
238	for (i = 0; phys_avail[i + 1]; i += 2) {
239		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
240
241		if (size > biggestsize) {
242			biggestone = i;
243			biggestsize = size;
244		}
245		if (phys_avail[i] < low_water)
246			low_water = phys_avail[i];
247		if (phys_avail[i + 1] > high_water)
248			high_water = phys_avail[i + 1];
249		++nblocks;
250	}
251
252	end = phys_avail[biggestone+1];
253
254	/*
255	 * Initialize the locks.
256	 */
257	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
258	    MTX_RECURSE);
259	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
260	    MTX_DEF);
261
262	/*
263	 * Initialize the queue headers for the hold queue, the active queue,
264	 * and the inactive queue.
265	 */
266	for (i = 0; i < PQ_COUNT; i++)
267		TAILQ_INIT(&vm_page_queues[i].pl);
268	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
269	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
270	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
271
272	/*
273	 * Allocate memory for use when boot strapping the kernel memory
274	 * allocator.
275	 */
276	new_end = end - (boot_pages * UMA_SLAB_SIZE);
277	new_end = trunc_page(new_end);
278	mapped = pmap_map(&vaddr, new_end, end,
279	    VM_PROT_READ | VM_PROT_WRITE);
280	bzero((void *)mapped, end - new_end);
281	uma_startup((void *)mapped, boot_pages);
282
283#if defined(__amd64__) || defined(__i386__)
284	/*
285	 * Allocate a bitmap to indicate that a random physical page
286	 * needs to be included in a minidump.
287	 *
288	 * The amd64 port needs this to indicate which direct map pages
289	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
290	 *
291	 * However, i386 still needs this workspace internally within the
292	 * minidump code.  In theory, they are not needed on i386, but are
293	 * included should the sf_buf code decide to use them.
294	 */
295	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
296	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
297	new_end -= vm_page_dump_size;
298	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
299	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
300	bzero((void *)vm_page_dump, vm_page_dump_size);
301#endif
302	/*
303	 * Compute the number of pages of memory that will be available for
304	 * use (taking into account the overhead of a page structure per
305	 * page).
306	 */
307	first_page = low_water / PAGE_SIZE;
308#ifdef VM_PHYSSEG_SPARSE
309	page_range = 0;
310	for (i = 0; phys_avail[i + 1] != 0; i += 2)
311		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
312#elif defined(VM_PHYSSEG_DENSE)
313	page_range = high_water / PAGE_SIZE - first_page;
314#else
315#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
316#endif
317	end = new_end;
318
319	/*
320	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
321	 */
322	vaddr += PAGE_SIZE;
323
324	/*
325	 * Initialize the mem entry structures now, and put them in the free
326	 * queue.
327	 */
328	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
329	mapped = pmap_map(&vaddr, new_end, end,
330	    VM_PROT_READ | VM_PROT_WRITE);
331	vm_page_array = (vm_page_t) mapped;
332#if VM_NRESERVLEVEL > 0
333	/*
334	 * Allocate memory for the reservation management system's data
335	 * structures.
336	 */
337	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
338#endif
339#ifdef __amd64__
340	/*
341	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
342	 * so the pages must be tracked for a crashdump to include this data.
343	 * This includes the vm_page_array and the early UMA bootstrap pages.
344	 */
345	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
346		dump_add_page(pa);
347#endif
348	phys_avail[biggestone + 1] = new_end;
349
350	/*
351	 * Clear all of the page structures
352	 */
353	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
354	for (i = 0; i < page_range; i++)
355		vm_page_array[i].order = VM_NFREEORDER;
356	vm_page_array_size = page_range;
357
358	/*
359	 * Initialize the physical memory allocator.
360	 */
361	vm_phys_init();
362
363	/*
364	 * Add every available physical page that is not blacklisted to
365	 * the free lists.
366	 */
367	cnt.v_page_count = 0;
368	cnt.v_free_count = 0;
369	list = getenv("vm.blacklist");
370	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
371		pa = phys_avail[i];
372		last_pa = phys_avail[i + 1];
373		while (pa < last_pa) {
374			if (list != NULL &&
375			    vm_page_blacklist_lookup(list, pa))
376				printf("Skipping page with pa 0x%jx\n",
377				    (uintmax_t)pa);
378			else
379				vm_phys_add_page(pa);
380			pa += PAGE_SIZE;
381		}
382	}
383	freeenv(list);
384#if VM_NRESERVLEVEL > 0
385	/*
386	 * Initialize the reservation management system.
387	 */
388	vm_reserv_init();
389#endif
390	return (vaddr);
391}
392
393void
394vm_page_flag_set(vm_page_t m, unsigned short bits)
395{
396
397	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
398	m->flags |= bits;
399}
400
401void
402vm_page_flag_clear(vm_page_t m, unsigned short bits)
403{
404
405	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
406	m->flags &= ~bits;
407}
408
409void
410vm_page_busy(vm_page_t m)
411{
412
413	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
414	KASSERT((m->oflags & VPO_BUSY) == 0,
415	    ("vm_page_busy: page already busy!!!"));
416	m->oflags |= VPO_BUSY;
417}
418
419/*
420 *      vm_page_flash:
421 *
422 *      wakeup anyone waiting for the page.
423 */
424void
425vm_page_flash(vm_page_t m)
426{
427
428	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
429	if (m->oflags & VPO_WANTED) {
430		m->oflags &= ~VPO_WANTED;
431		wakeup(m);
432	}
433}
434
435/*
436 *      vm_page_wakeup:
437 *
438 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
439 *      page.
440 *
441 */
442void
443vm_page_wakeup(vm_page_t m)
444{
445
446	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
447	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
448	m->oflags &= ~VPO_BUSY;
449	vm_page_flash(m);
450}
451
452void
453vm_page_io_start(vm_page_t m)
454{
455
456	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
457	m->busy++;
458}
459
460void
461vm_page_io_finish(vm_page_t m)
462{
463
464	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
465	m->busy--;
466	if (m->busy == 0)
467		vm_page_flash(m);
468}
469
470/*
471 * Keep page from being freed by the page daemon
472 * much of the same effect as wiring, except much lower
473 * overhead and should be used only for *very* temporary
474 * holding ("wiring").
475 */
476void
477vm_page_hold(vm_page_t mem)
478{
479
480	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
481        mem->hold_count++;
482}
483
484void
485vm_page_unhold(vm_page_t mem)
486{
487
488	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
489	--mem->hold_count;
490	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
491	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
492		vm_page_free_toq(mem);
493}
494
495/*
496 *	vm_page_free:
497 *
498 *	Free a page.
499 */
500void
501vm_page_free(vm_page_t m)
502{
503
504	m->flags &= ~PG_ZERO;
505	vm_page_free_toq(m);
506}
507
508/*
509 *	vm_page_free_zero:
510 *
511 *	Free a page to the zerod-pages queue
512 */
513void
514vm_page_free_zero(vm_page_t m)
515{
516
517	m->flags |= PG_ZERO;
518	vm_page_free_toq(m);
519}
520
521/*
522 *	vm_page_sleep:
523 *
524 *	Sleep and release the page queues lock.
525 *
526 *	The object containing the given page must be locked.
527 */
528void
529vm_page_sleep(vm_page_t m, const char *msg)
530{
531
532	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
533	if (!mtx_owned(&vm_page_queue_mtx))
534		vm_page_lock_queues();
535	vm_page_flag_set(m, PG_REFERENCED);
536	vm_page_unlock_queues();
537
538	/*
539	 * It's possible that while we sleep, the page will get
540	 * unbusied and freed.  If we are holding the object
541	 * lock, we will assume we hold a reference to the object
542	 * such that even if m->object changes, we can re-lock
543	 * it.
544	 */
545	m->oflags |= VPO_WANTED;
546	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
547}
548
549/*
550 *	vm_page_dirty:
551 *
552 *	make page all dirty
553 */
554void
555vm_page_dirty(vm_page_t m)
556{
557	KASSERT((m->flags & PG_CACHED) == 0,
558	    ("vm_page_dirty: page in cache!"));
559	KASSERT(!VM_PAGE_IS_FREE(m),
560	    ("vm_page_dirty: page is free!"));
561	m->dirty = VM_PAGE_BITS_ALL;
562}
563
564/*
565 *	vm_page_splay:
566 *
567 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
568 *	the vm_page containing the given pindex.  If, however, that
569 *	pindex is not found in the vm_object, returns a vm_page that is
570 *	adjacent to the pindex, coming before or after it.
571 */
572vm_page_t
573vm_page_splay(vm_pindex_t pindex, vm_page_t root)
574{
575	struct vm_page dummy;
576	vm_page_t lefttreemax, righttreemin, y;
577
578	if (root == NULL)
579		return (root);
580	lefttreemax = righttreemin = &dummy;
581	for (;; root = y) {
582		if (pindex < root->pindex) {
583			if ((y = root->left) == NULL)
584				break;
585			if (pindex < y->pindex) {
586				/* Rotate right. */
587				root->left = y->right;
588				y->right = root;
589				root = y;
590				if ((y = root->left) == NULL)
591					break;
592			}
593			/* Link into the new root's right tree. */
594			righttreemin->left = root;
595			righttreemin = root;
596		} else if (pindex > root->pindex) {
597			if ((y = root->right) == NULL)
598				break;
599			if (pindex > y->pindex) {
600				/* Rotate left. */
601				root->right = y->left;
602				y->left = root;
603				root = y;
604				if ((y = root->right) == NULL)
605					break;
606			}
607			/* Link into the new root's left tree. */
608			lefttreemax->right = root;
609			lefttreemax = root;
610		} else
611			break;
612	}
613	/* Assemble the new root. */
614	lefttreemax->right = root->left;
615	righttreemin->left = root->right;
616	root->left = dummy.right;
617	root->right = dummy.left;
618	return (root);
619}
620
621/*
622 *	vm_page_insert:		[ internal use only ]
623 *
624 *	Inserts the given mem entry into the object and object list.
625 *
626 *	The pagetables are not updated but will presumably fault the page
627 *	in if necessary, or if a kernel page the caller will at some point
628 *	enter the page into the kernel's pmap.  We are not allowed to block
629 *	here so we *can't* do this anyway.
630 *
631 *	The object and page must be locked.
632 *	This routine may not block.
633 */
634void
635vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
636{
637	vm_page_t root;
638
639	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
640	if (m->object != NULL)
641		panic("vm_page_insert: page already inserted");
642
643	/*
644	 * Record the object/offset pair in this page
645	 */
646	m->object = object;
647	m->pindex = pindex;
648
649	/*
650	 * Now link into the object's ordered list of backed pages.
651	 */
652	root = object->root;
653	if (root == NULL) {
654		m->left = NULL;
655		m->right = NULL;
656		TAILQ_INSERT_TAIL(&object->memq, m, listq);
657	} else {
658		root = vm_page_splay(pindex, root);
659		if (pindex < root->pindex) {
660			m->left = root->left;
661			m->right = root;
662			root->left = NULL;
663			TAILQ_INSERT_BEFORE(root, m, listq);
664		} else if (pindex == root->pindex)
665			panic("vm_page_insert: offset already allocated");
666		else {
667			m->right = root->right;
668			m->left = root;
669			root->right = NULL;
670			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
671		}
672	}
673	object->root = m;
674	object->generation++;
675
676	/*
677	 * show that the object has one more resident page.
678	 */
679	object->resident_page_count++;
680	/*
681	 * Hold the vnode until the last page is released.
682	 */
683	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
684		vhold((struct vnode *)object->handle);
685
686	/*
687	 * Since we are inserting a new and possibly dirty page,
688	 * update the object's OBJ_MIGHTBEDIRTY flag.
689	 */
690	if (m->flags & PG_WRITEABLE)
691		vm_object_set_writeable_dirty(object);
692}
693
694/*
695 *	vm_page_remove:
696 *				NOTE: used by device pager as well -wfj
697 *
698 *	Removes the given mem entry from the object/offset-page
699 *	table and the object page list, but do not invalidate/terminate
700 *	the backing store.
701 *
702 *	The object and page must be locked.
703 *	The underlying pmap entry (if any) is NOT removed here.
704 *	This routine may not block.
705 */
706void
707vm_page_remove(vm_page_t m)
708{
709	vm_object_t object;
710	vm_page_t root;
711
712	if ((object = m->object) == NULL)
713		return;
714	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
715	if (m->oflags & VPO_BUSY) {
716		m->oflags &= ~VPO_BUSY;
717		vm_page_flash(m);
718	}
719	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
720
721	/*
722	 * Now remove from the object's list of backed pages.
723	 */
724	if (m != object->root)
725		vm_page_splay(m->pindex, object->root);
726	if (m->left == NULL)
727		root = m->right;
728	else {
729		root = vm_page_splay(m->pindex, m->left);
730		root->right = m->right;
731	}
732	object->root = root;
733	TAILQ_REMOVE(&object->memq, m, listq);
734
735	/*
736	 * And show that the object has one fewer resident page.
737	 */
738	object->resident_page_count--;
739	object->generation++;
740	/*
741	 * The vnode may now be recycled.
742	 */
743	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
744		vdrop((struct vnode *)object->handle);
745
746	m->object = NULL;
747}
748
749/*
750 *	vm_page_lookup:
751 *
752 *	Returns the page associated with the object/offset
753 *	pair specified; if none is found, NULL is returned.
754 *
755 *	The object must be locked.
756 *	This routine may not block.
757 *	This is a critical path routine
758 */
759vm_page_t
760vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
761{
762	vm_page_t m;
763
764	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
765	if ((m = object->root) != NULL && m->pindex != pindex) {
766		m = vm_page_splay(pindex, m);
767		if ((object->root = m)->pindex != pindex)
768			m = NULL;
769	}
770	return (m);
771}
772
773/*
774 *	vm_page_rename:
775 *
776 *	Move the given memory entry from its
777 *	current object to the specified target object/offset.
778 *
779 *	The object must be locked.
780 *	This routine may not block.
781 *
782 *	Note: swap associated with the page must be invalidated by the move.  We
783 *	      have to do this for several reasons:  (1) we aren't freeing the
784 *	      page, (2) we are dirtying the page, (3) the VM system is probably
785 *	      moving the page from object A to B, and will then later move
786 *	      the backing store from A to B and we can't have a conflict.
787 *
788 *	Note: we *always* dirty the page.  It is necessary both for the
789 *	      fact that we moved it, and because we may be invalidating
790 *	      swap.  If the page is on the cache, we have to deactivate it
791 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
792 *	      on the cache.
793 */
794void
795vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
796{
797
798	vm_page_remove(m);
799	vm_page_insert(m, new_object, new_pindex);
800	vm_page_dirty(m);
801}
802
803/*
804 *	Convert all of the given object's cached pages that have a
805 *	pindex within the given range into free pages.  If the value
806 *	zero is given for "end", then the range's upper bound is
807 *	infinity.  If the given object is backed by a vnode and it
808 *	transitions from having one or more cached pages to none, the
809 *	vnode's hold count is reduced.
810 */
811void
812vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
813{
814	vm_page_t m, m_next;
815	boolean_t empty;
816
817	mtx_lock(&vm_page_queue_free_mtx);
818	if (__predict_false(object->cache == NULL)) {
819		mtx_unlock(&vm_page_queue_free_mtx);
820		return;
821	}
822	m = object->cache = vm_page_splay(start, object->cache);
823	if (m->pindex < start) {
824		if (m->right == NULL)
825			m = NULL;
826		else {
827			m_next = vm_page_splay(start, m->right);
828			m_next->left = m;
829			m->right = NULL;
830			m = object->cache = m_next;
831		}
832	}
833
834	/*
835	 * At this point, "m" is either (1) a reference to the page
836	 * with the least pindex that is greater than or equal to
837	 * "start" or (2) NULL.
838	 */
839	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
840		/*
841		 * Find "m"'s successor and remove "m" from the
842		 * object's cache.
843		 */
844		if (m->right == NULL) {
845			object->cache = m->left;
846			m_next = NULL;
847		} else {
848			m_next = vm_page_splay(start, m->right);
849			m_next->left = m->left;
850			object->cache = m_next;
851		}
852		/* Convert "m" to a free page. */
853		m->object = NULL;
854		m->valid = 0;
855		/* Clear PG_CACHED and set PG_FREE. */
856		m->flags ^= PG_CACHED | PG_FREE;
857		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
858		    ("vm_page_cache_free: page %p has inconsistent flags", m));
859		cnt.v_cache_count--;
860		cnt.v_free_count++;
861	}
862	empty = object->cache == NULL;
863	mtx_unlock(&vm_page_queue_free_mtx);
864	if (object->type == OBJT_VNODE && empty)
865		vdrop(object->handle);
866}
867
868/*
869 *	Returns the cached page that is associated with the given
870 *	object and offset.  If, however, none exists, returns NULL.
871 *
872 *	The free page queue must be locked.
873 */
874static inline vm_page_t
875vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
876{
877	vm_page_t m;
878
879	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
880	if ((m = object->cache) != NULL && m->pindex != pindex) {
881		m = vm_page_splay(pindex, m);
882		if ((object->cache = m)->pindex != pindex)
883			m = NULL;
884	}
885	return (m);
886}
887
888/*
889 *	Remove the given cached page from its containing object's
890 *	collection of cached pages.
891 *
892 *	The free page queue must be locked.
893 */
894void
895vm_page_cache_remove(vm_page_t m)
896{
897	vm_object_t object;
898	vm_page_t root;
899
900	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
901	KASSERT((m->flags & PG_CACHED) != 0,
902	    ("vm_page_cache_remove: page %p is not cached", m));
903	object = m->object;
904	if (m != object->cache) {
905		root = vm_page_splay(m->pindex, object->cache);
906		KASSERT(root == m,
907		    ("vm_page_cache_remove: page %p is not cached in object %p",
908		    m, object));
909	}
910	if (m->left == NULL)
911		root = m->right;
912	else if (m->right == NULL)
913		root = m->left;
914	else {
915		root = vm_page_splay(m->pindex, m->left);
916		root->right = m->right;
917	}
918	object->cache = root;
919	m->object = NULL;
920	cnt.v_cache_count--;
921}
922
923/*
924 *	Transfer all of the cached pages with offset greater than or
925 *	equal to 'offidxstart' from the original object's cache to the
926 *	new object's cache.  However, any cached pages with offset
927 *	greater than or equal to the new object's size are kept in the
928 *	original object.  Initially, the new object's cache must be
929 *	empty.  Offset 'offidxstart' in the original object must
930 *	correspond to offset zero in the new object.
931 *
932 *	The new object must be locked.
933 */
934void
935vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
936    vm_object_t new_object)
937{
938	vm_page_t m, m_next;
939
940	/*
941	 * Insertion into an object's collection of cached pages
942	 * requires the object to be locked.  In contrast, removal does
943	 * not.
944	 */
945	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
946	KASSERT(new_object->cache == NULL,
947	    ("vm_page_cache_transfer: object %p has cached pages",
948	    new_object));
949	mtx_lock(&vm_page_queue_free_mtx);
950	if ((m = orig_object->cache) != NULL) {
951		/*
952		 * Transfer all of the pages with offset greater than or
953		 * equal to 'offidxstart' from the original object's
954		 * cache to the new object's cache.
955		 */
956		m = vm_page_splay(offidxstart, m);
957		if (m->pindex < offidxstart) {
958			orig_object->cache = m;
959			new_object->cache = m->right;
960			m->right = NULL;
961		} else {
962			orig_object->cache = m->left;
963			new_object->cache = m;
964			m->left = NULL;
965		}
966		while ((m = new_object->cache) != NULL) {
967			if ((m->pindex - offidxstart) >= new_object->size) {
968				/*
969				 * Return all of the cached pages with
970				 * offset greater than or equal to the
971				 * new object's size to the original
972				 * object's cache.
973				 */
974				new_object->cache = m->left;
975				m->left = orig_object->cache;
976				orig_object->cache = m;
977				break;
978			}
979			m_next = vm_page_splay(m->pindex, m->right);
980			/* Update the page's object and offset. */
981			m->object = new_object;
982			m->pindex -= offidxstart;
983			if (m_next == NULL)
984				break;
985			m->right = NULL;
986			m_next->left = m;
987			new_object->cache = m_next;
988		}
989		KASSERT(new_object->cache == NULL ||
990		    new_object->type == OBJT_SWAP,
991		    ("vm_page_cache_transfer: object %p's type is incompatible"
992		    " with cached pages", new_object));
993	}
994	mtx_unlock(&vm_page_queue_free_mtx);
995}
996
997/*
998 *	vm_page_alloc:
999 *
1000 *	Allocate and return a memory cell associated
1001 *	with this VM object/offset pair.
1002 *
1003 *	page_req classes:
1004 *	VM_ALLOC_NORMAL		normal process request
1005 *	VM_ALLOC_SYSTEM		system *really* needs a page
1006 *	VM_ALLOC_INTERRUPT	interrupt time request
1007 *	VM_ALLOC_ZERO		zero page
1008 *
1009 *	This routine may not block.
1010 */
1011vm_page_t
1012vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1013{
1014	struct vnode *vp = NULL;
1015	vm_object_t m_object;
1016	vm_page_t m;
1017	int flags, page_req;
1018
1019	page_req = req & VM_ALLOC_CLASS_MASK;
1020	KASSERT(curthread->td_intr_nesting_level == 0 ||
1021	    page_req == VM_ALLOC_INTERRUPT,
1022	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1023
1024	if ((req & VM_ALLOC_NOOBJ) == 0) {
1025		KASSERT(object != NULL,
1026		    ("vm_page_alloc: NULL object."));
1027		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1028	}
1029
1030	/*
1031	 * The pager is allowed to eat deeper into the free page list.
1032	 */
1033	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1034		page_req = VM_ALLOC_SYSTEM;
1035	};
1036
1037	mtx_lock(&vm_page_queue_free_mtx);
1038	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1039	    (page_req == VM_ALLOC_SYSTEM &&
1040	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1041	    (page_req == VM_ALLOC_INTERRUPT &&
1042	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1043		/*
1044		 * Allocate from the free queue if the number of free pages
1045		 * exceeds the minimum for the request class.
1046		 */
1047		if (object != NULL &&
1048		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1049			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1050				mtx_unlock(&vm_page_queue_free_mtx);
1051				return (NULL);
1052			}
1053			if (vm_phys_unfree_page(m))
1054				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1055#if VM_NRESERVLEVEL > 0
1056			else if (!vm_reserv_reactivate_page(m))
1057#else
1058			else
1059#endif
1060				panic("vm_page_alloc: cache page %p is missing"
1061				    " from the free queue", m);
1062		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1063			mtx_unlock(&vm_page_queue_free_mtx);
1064			return (NULL);
1065#if VM_NRESERVLEVEL > 0
1066		} else if (object == NULL ||
1067		    (object->flags & OBJ_COLORED) == 0 ||
1068		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1069#else
1070		} else {
1071#endif
1072			m = vm_phys_alloc_pages(object != NULL ?
1073			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1074#if VM_NRESERVLEVEL > 0
1075			if (m == NULL && vm_reserv_reclaim()) {
1076				m = vm_phys_alloc_pages(object != NULL ?
1077				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1078				    0);
1079			}
1080#endif
1081		}
1082	} else {
1083		/*
1084		 * Not allocatable, give up.
1085		 */
1086		mtx_unlock(&vm_page_queue_free_mtx);
1087		atomic_add_int(&vm_pageout_deficit, 1);
1088		pagedaemon_wakeup();
1089		return (NULL);
1090	}
1091
1092	/*
1093	 *  At this point we had better have found a good page.
1094	 */
1095
1096	KASSERT(
1097	    m != NULL,
1098	    ("vm_page_alloc(): missing page on free queue")
1099	);
1100	if ((m->flags & PG_CACHED) != 0) {
1101		KASSERT(m->valid != 0,
1102		    ("vm_page_alloc: cached page %p is invalid", m));
1103		if (m->object == object && m->pindex == pindex)
1104	  		cnt.v_reactivated++;
1105		else
1106			m->valid = 0;
1107		m_object = m->object;
1108		vm_page_cache_remove(m);
1109		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1110			vp = m_object->handle;
1111	} else {
1112		KASSERT(VM_PAGE_IS_FREE(m),
1113		    ("vm_page_alloc: page %p is not free", m));
1114		KASSERT(m->valid == 0,
1115		    ("vm_page_alloc: free page %p is valid", m));
1116		cnt.v_free_count--;
1117	}
1118
1119	/*
1120	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1121	 */
1122	flags = 0;
1123	if (m->flags & PG_ZERO) {
1124		vm_page_zero_count--;
1125		if (req & VM_ALLOC_ZERO)
1126			flags = PG_ZERO;
1127	}
1128	if (object == NULL || object->type == OBJT_PHYS)
1129		flags |= PG_UNMANAGED;
1130	m->flags = flags;
1131	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1132		m->oflags = 0;
1133	else
1134		m->oflags = VPO_BUSY;
1135	if (req & VM_ALLOC_WIRED) {
1136		atomic_add_int(&cnt.v_wire_count, 1);
1137		m->wire_count = 1;
1138	} else
1139		m->wire_count = 0;
1140	m->hold_count = 0;
1141	m->act_count = 0;
1142	m->busy = 0;
1143	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
1144	mtx_unlock(&vm_page_queue_free_mtx);
1145
1146	if ((req & VM_ALLOC_NOOBJ) == 0)
1147		vm_page_insert(m, object, pindex);
1148	else
1149		m->pindex = pindex;
1150
1151	/*
1152	 * The following call to vdrop() must come after the above call
1153	 * to vm_page_insert() in case both affect the same object and
1154	 * vnode.  Otherwise, the affected vnode's hold count could
1155	 * temporarily become zero.
1156	 */
1157	if (vp != NULL)
1158		vdrop(vp);
1159
1160	/*
1161	 * Don't wakeup too often - wakeup the pageout daemon when
1162	 * we would be nearly out of memory.
1163	 */
1164	if (vm_paging_needed())
1165		pagedaemon_wakeup();
1166
1167	return (m);
1168}
1169
1170/*
1171 *	vm_wait:	(also see VM_WAIT macro)
1172 *
1173 *	Block until free pages are available for allocation
1174 *	- Called in various places before memory allocations.
1175 */
1176void
1177vm_wait(void)
1178{
1179
1180	mtx_lock(&vm_page_queue_free_mtx);
1181	if (curproc == pageproc) {
1182		vm_pageout_pages_needed = 1;
1183		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1184		    PDROP | PSWP, "VMWait", 0);
1185	} else {
1186		if (!vm_pages_needed) {
1187			vm_pages_needed = 1;
1188			wakeup(&vm_pages_needed);
1189		}
1190		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1191		    "vmwait", 0);
1192	}
1193}
1194
1195/*
1196 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1197 *
1198 *	Block until free pages are available for allocation
1199 *	- Called only in vm_fault so that processes page faulting
1200 *	  can be easily tracked.
1201 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1202 *	  processes will be able to grab memory first.  Do not change
1203 *	  this balance without careful testing first.
1204 */
1205void
1206vm_waitpfault(void)
1207{
1208
1209	mtx_lock(&vm_page_queue_free_mtx);
1210	if (!vm_pages_needed) {
1211		vm_pages_needed = 1;
1212		wakeup(&vm_pages_needed);
1213	}
1214	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1215	    "pfault", 0);
1216}
1217
1218/*
1219 *	vm_page_requeue:
1220 *
1221 *	If the given page is contained within a page queue, move it to the tail
1222 *	of that queue.
1223 *
1224 *	The page queues must be locked.
1225 */
1226void
1227vm_page_requeue(vm_page_t m)
1228{
1229	int queue = VM_PAGE_GETQUEUE(m);
1230	struct vpgqueues *vpq;
1231
1232	if (queue != PQ_NONE) {
1233		vpq = &vm_page_queues[queue];
1234		TAILQ_REMOVE(&vpq->pl, m, pageq);
1235		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1236	}
1237}
1238
1239/*
1240 *	vm_pageq_remove:
1241 *
1242 *	Remove a page from its queue.
1243 *
1244 *	The queue containing the given page must be locked.
1245 *	This routine may not block.
1246 */
1247void
1248vm_pageq_remove(vm_page_t m)
1249{
1250	int queue = VM_PAGE_GETQUEUE(m);
1251	struct vpgqueues *pq;
1252
1253	if (queue != PQ_NONE) {
1254		VM_PAGE_SETQUEUE2(m, PQ_NONE);
1255		pq = &vm_page_queues[queue];
1256		TAILQ_REMOVE(&pq->pl, m, pageq);
1257		(*pq->cnt)--;
1258	}
1259}
1260
1261/*
1262 *	vm_page_enqueue:
1263 *
1264 *	Add the given page to the specified queue.
1265 *
1266 *	The page queues must be locked.
1267 */
1268static void
1269vm_page_enqueue(int queue, vm_page_t m)
1270{
1271	struct vpgqueues *vpq;
1272
1273	vpq = &vm_page_queues[queue];
1274	VM_PAGE_SETQUEUE2(m, queue);
1275	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1276	++*vpq->cnt;
1277}
1278
1279/*
1280 *	vm_page_activate:
1281 *
1282 *	Put the specified page on the active list (if appropriate).
1283 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1284 *	mess with it.
1285 *
1286 *	The page queues must be locked.
1287 *	This routine may not block.
1288 */
1289void
1290vm_page_activate(vm_page_t m)
1291{
1292
1293	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1294	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1295		vm_pageq_remove(m);
1296		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1297			if (m->act_count < ACT_INIT)
1298				m->act_count = ACT_INIT;
1299			vm_page_enqueue(PQ_ACTIVE, m);
1300		}
1301	} else {
1302		if (m->act_count < ACT_INIT)
1303			m->act_count = ACT_INIT;
1304	}
1305}
1306
1307/*
1308 *	vm_page_free_wakeup:
1309 *
1310 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1311 *	routine is called when a page has been added to the cache or free
1312 *	queues.
1313 *
1314 *	The page queues must be locked.
1315 *	This routine may not block.
1316 */
1317static inline void
1318vm_page_free_wakeup(void)
1319{
1320
1321	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1322	/*
1323	 * if pageout daemon needs pages, then tell it that there are
1324	 * some free.
1325	 */
1326	if (vm_pageout_pages_needed &&
1327	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1328		wakeup(&vm_pageout_pages_needed);
1329		vm_pageout_pages_needed = 0;
1330	}
1331	/*
1332	 * wakeup processes that are waiting on memory if we hit a
1333	 * high water mark. And wakeup scheduler process if we have
1334	 * lots of memory. this process will swapin processes.
1335	 */
1336	if (vm_pages_needed && !vm_page_count_min()) {
1337		vm_pages_needed = 0;
1338		wakeup(&cnt.v_free_count);
1339	}
1340}
1341
1342/*
1343 *	vm_page_free_toq:
1344 *
1345 *	Returns the given page to the free list,
1346 *	disassociating it with any VM object.
1347 *
1348 *	Object and page must be locked prior to entry.
1349 *	This routine may not block.
1350 */
1351
1352void
1353vm_page_free_toq(vm_page_t m)
1354{
1355
1356	if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1357		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1358	KASSERT(!pmap_page_is_mapped(m),
1359	    ("vm_page_free_toq: freeing mapped page %p", m));
1360	PCPU_INC(cnt.v_tfree);
1361
1362	if (m->busy || VM_PAGE_IS_FREE(m)) {
1363		printf(
1364		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1365		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1366		    m->hold_count);
1367		if (VM_PAGE_IS_FREE(m))
1368			panic("vm_page_free: freeing free page");
1369		else
1370			panic("vm_page_free: freeing busy page");
1371	}
1372
1373	/*
1374	 * unqueue, then remove page.  Note that we cannot destroy
1375	 * the page here because we do not want to call the pager's
1376	 * callback routine until after we've put the page on the
1377	 * appropriate free queue.
1378	 */
1379	vm_pageq_remove(m);
1380	vm_page_remove(m);
1381
1382	/*
1383	 * If fictitious remove object association and
1384	 * return, otherwise delay object association removal.
1385	 */
1386	if ((m->flags & PG_FICTITIOUS) != 0) {
1387		return;
1388	}
1389
1390	m->valid = 0;
1391	vm_page_undirty(m);
1392
1393	if (m->wire_count != 0) {
1394		if (m->wire_count > 1) {
1395			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1396				m->wire_count, (long)m->pindex);
1397		}
1398		panic("vm_page_free: freeing wired page");
1399	}
1400	if (m->hold_count != 0) {
1401		m->flags &= ~PG_ZERO;
1402		vm_page_enqueue(PQ_HOLD, m);
1403	} else {
1404		mtx_lock(&vm_page_queue_free_mtx);
1405		m->flags |= PG_FREE;
1406		cnt.v_free_count++;
1407#if VM_NRESERVLEVEL > 0
1408		if (!vm_reserv_free_page(m))
1409#else
1410		if (TRUE)
1411#endif
1412			vm_phys_free_pages(m, 0);
1413		if ((m->flags & PG_ZERO) != 0)
1414			++vm_page_zero_count;
1415		else
1416			vm_page_zero_idle_wakeup();
1417		vm_page_free_wakeup();
1418		mtx_unlock(&vm_page_queue_free_mtx);
1419	}
1420}
1421
1422/*
1423 *	vm_page_wire:
1424 *
1425 *	Mark this page as wired down by yet
1426 *	another map, removing it from paging queues
1427 *	as necessary.
1428 *
1429 *	The page queues must be locked.
1430 *	This routine may not block.
1431 */
1432void
1433vm_page_wire(vm_page_t m)
1434{
1435
1436	/*
1437	 * Only bump the wire statistics if the page is not already wired,
1438	 * and only unqueue the page if it is on some queue (if it is unmanaged
1439	 * it is already off the queues).
1440	 */
1441	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1442	if (m->flags & PG_FICTITIOUS)
1443		return;
1444	if (m->wire_count == 0) {
1445		if ((m->flags & PG_UNMANAGED) == 0)
1446			vm_pageq_remove(m);
1447		atomic_add_int(&cnt.v_wire_count, 1);
1448	}
1449	m->wire_count++;
1450	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1451}
1452
1453/*
1454 *	vm_page_unwire:
1455 *
1456 *	Release one wiring of this page, potentially
1457 *	enabling it to be paged again.
1458 *
1459 *	Many pages placed on the inactive queue should actually go
1460 *	into the cache, but it is difficult to figure out which.  What
1461 *	we do instead, if the inactive target is well met, is to put
1462 *	clean pages at the head of the inactive queue instead of the tail.
1463 *	This will cause them to be moved to the cache more quickly and
1464 *	if not actively re-referenced, freed more quickly.  If we just
1465 *	stick these pages at the end of the inactive queue, heavy filesystem
1466 *	meta-data accesses can cause an unnecessary paging load on memory bound
1467 *	processes.  This optimization causes one-time-use metadata to be
1468 *	reused more quickly.
1469 *
1470 *	BUT, if we are in a low-memory situation we have no choice but to
1471 *	put clean pages on the cache queue.
1472 *
1473 *	A number of routines use vm_page_unwire() to guarantee that the page
1474 *	will go into either the inactive or active queues, and will NEVER
1475 *	be placed in the cache - for example, just after dirtying a page.
1476 *	dirty pages in the cache are not allowed.
1477 *
1478 *	The page queues must be locked.
1479 *	This routine may not block.
1480 */
1481void
1482vm_page_unwire(vm_page_t m, int activate)
1483{
1484
1485	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1486	if (m->flags & PG_FICTITIOUS)
1487		return;
1488	if (m->wire_count > 0) {
1489		m->wire_count--;
1490		if (m->wire_count == 0) {
1491			atomic_subtract_int(&cnt.v_wire_count, 1);
1492			if (m->flags & PG_UNMANAGED) {
1493				;
1494			} else if (activate)
1495				vm_page_enqueue(PQ_ACTIVE, m);
1496			else {
1497				vm_page_flag_clear(m, PG_WINATCFLS);
1498				vm_page_enqueue(PQ_INACTIVE, m);
1499			}
1500		}
1501	} else {
1502		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1503	}
1504}
1505
1506
1507/*
1508 * Move the specified page to the inactive queue.  If the page has
1509 * any associated swap, the swap is deallocated.
1510 *
1511 * Normally athead is 0 resulting in LRU operation.  athead is set
1512 * to 1 if we want this page to be 'as if it were placed in the cache',
1513 * except without unmapping it from the process address space.
1514 *
1515 * This routine may not block.
1516 */
1517static inline void
1518_vm_page_deactivate(vm_page_t m, int athead)
1519{
1520
1521	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1522
1523	/*
1524	 * Ignore if already inactive.
1525	 */
1526	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1527		return;
1528	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1529		vm_page_flag_clear(m, PG_WINATCFLS);
1530		vm_pageq_remove(m);
1531		if (athead)
1532			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1533		else
1534			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1535		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1536		cnt.v_inactive_count++;
1537	}
1538}
1539
1540void
1541vm_page_deactivate(vm_page_t m)
1542{
1543    _vm_page_deactivate(m, 0);
1544}
1545
1546/*
1547 * vm_page_try_to_cache:
1548 *
1549 * Returns 0 on failure, 1 on success
1550 */
1551int
1552vm_page_try_to_cache(vm_page_t m)
1553{
1554
1555	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1556	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1557	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1558	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1559		return (0);
1560	}
1561	pmap_remove_all(m);
1562	if (m->dirty)
1563		return (0);
1564	vm_page_cache(m);
1565	return (1);
1566}
1567
1568/*
1569 * vm_page_try_to_free()
1570 *
1571 *	Attempt to free the page.  If we cannot free it, we do nothing.
1572 *	1 is returned on success, 0 on failure.
1573 */
1574int
1575vm_page_try_to_free(vm_page_t m)
1576{
1577
1578	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1579	if (m->object != NULL)
1580		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1581	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1582	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1583		return (0);
1584	}
1585	pmap_remove_all(m);
1586	if (m->dirty)
1587		return (0);
1588	vm_page_free(m);
1589	return (1);
1590}
1591
1592/*
1593 * vm_page_cache
1594 *
1595 * Put the specified page onto the page cache queue (if appropriate).
1596 *
1597 * This routine may not block.
1598 */
1599void
1600vm_page_cache(vm_page_t m)
1601{
1602	vm_object_t object;
1603	vm_page_t root;
1604
1605	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1606	object = m->object;
1607	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1608	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1609	    m->hold_count || m->wire_count) {
1610		panic("vm_page_cache: attempting to cache busy page");
1611	}
1612	pmap_remove_all(m);
1613	if (m->dirty != 0)
1614		panic("vm_page_cache: page %p is dirty", m);
1615	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1616	    (object->type == OBJT_SWAP &&
1617	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1618		/*
1619		 * Hypothesis: A cache-elgible page belonging to a
1620		 * default object or swap object but without a backing
1621		 * store must be zero filled.
1622		 */
1623		vm_page_free(m);
1624		return;
1625	}
1626	KASSERT((m->flags & PG_CACHED) == 0,
1627	    ("vm_page_cache: page %p is already cached", m));
1628	cnt.v_tcached++;
1629
1630	/*
1631	 * Remove the page from the paging queues.
1632	 */
1633	vm_pageq_remove(m);
1634
1635	/*
1636	 * Remove the page from the object's collection of resident
1637	 * pages.
1638	 */
1639	if (m != object->root)
1640		vm_page_splay(m->pindex, object->root);
1641	if (m->left == NULL)
1642		root = m->right;
1643	else {
1644		root = vm_page_splay(m->pindex, m->left);
1645		root->right = m->right;
1646	}
1647	object->root = root;
1648	TAILQ_REMOVE(&object->memq, m, listq);
1649	object->resident_page_count--;
1650	object->generation++;
1651
1652	/*
1653	 * Insert the page into the object's collection of cached pages
1654	 * and the physical memory allocator's cache/free page queues.
1655	 */
1656	vm_page_flag_clear(m, PG_ZERO);
1657	mtx_lock(&vm_page_queue_free_mtx);
1658	m->flags |= PG_CACHED;
1659	cnt.v_cache_count++;
1660	root = object->cache;
1661	if (root == NULL) {
1662		m->left = NULL;
1663		m->right = NULL;
1664	} else {
1665		root = vm_page_splay(m->pindex, root);
1666		if (m->pindex < root->pindex) {
1667			m->left = root->left;
1668			m->right = root;
1669			root->left = NULL;
1670		} else if (__predict_false(m->pindex == root->pindex))
1671			panic("vm_page_cache: offset already cached");
1672		else {
1673			m->right = root->right;
1674			m->left = root;
1675			root->right = NULL;
1676		}
1677	}
1678	object->cache = m;
1679#if VM_NRESERVLEVEL > 0
1680	if (!vm_reserv_free_page(m)) {
1681#else
1682	if (TRUE) {
1683#endif
1684		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
1685		vm_phys_free_pages(m, 0);
1686	}
1687	vm_page_free_wakeup();
1688	mtx_unlock(&vm_page_queue_free_mtx);
1689
1690	/*
1691	 * Increment the vnode's hold count if this is the object's only
1692	 * cached page.  Decrement the vnode's hold count if this was
1693	 * the object's only resident page.
1694	 */
1695	if (object->type == OBJT_VNODE) {
1696		if (root == NULL && object->resident_page_count != 0)
1697			vhold(object->handle);
1698		else if (root != NULL && object->resident_page_count == 0)
1699			vdrop(object->handle);
1700	}
1701}
1702
1703/*
1704 * vm_page_dontneed
1705 *
1706 *	Cache, deactivate, or do nothing as appropriate.  This routine
1707 *	is typically used by madvise() MADV_DONTNEED.
1708 *
1709 *	Generally speaking we want to move the page into the cache so
1710 *	it gets reused quickly.  However, this can result in a silly syndrome
1711 *	due to the page recycling too quickly.  Small objects will not be
1712 *	fully cached.  On the otherhand, if we move the page to the inactive
1713 *	queue we wind up with a problem whereby very large objects
1714 *	unnecessarily blow away our inactive and cache queues.
1715 *
1716 *	The solution is to move the pages based on a fixed weighting.  We
1717 *	either leave them alone, deactivate them, or move them to the cache,
1718 *	where moving them to the cache has the highest weighting.
1719 *	By forcing some pages into other queues we eventually force the
1720 *	system to balance the queues, potentially recovering other unrelated
1721 *	space from active.  The idea is to not force this to happen too
1722 *	often.
1723 */
1724void
1725vm_page_dontneed(vm_page_t m)
1726{
1727	static int dnweight;
1728	int dnw;
1729	int head;
1730
1731	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1732	dnw = ++dnweight;
1733
1734	/*
1735	 * occassionally leave the page alone
1736	 */
1737	if ((dnw & 0x01F0) == 0 ||
1738	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
1739		if (m->act_count >= ACT_INIT)
1740			--m->act_count;
1741		return;
1742	}
1743
1744	if (m->dirty == 0 && pmap_is_modified(m))
1745		vm_page_dirty(m);
1746
1747	if (m->dirty || (dnw & 0x0070) == 0) {
1748		/*
1749		 * Deactivate the page 3 times out of 32.
1750		 */
1751		head = 0;
1752	} else {
1753		/*
1754		 * Cache the page 28 times out of every 32.  Note that
1755		 * the page is deactivated instead of cached, but placed
1756		 * at the head of the queue instead of the tail.
1757		 */
1758		head = 1;
1759	}
1760	_vm_page_deactivate(m, head);
1761}
1762
1763/*
1764 * Grab a page, waiting until we are waken up due to the page
1765 * changing state.  We keep on waiting, if the page continues
1766 * to be in the object.  If the page doesn't exist, first allocate it
1767 * and then conditionally zero it.
1768 *
1769 * This routine may block.
1770 */
1771vm_page_t
1772vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1773{
1774	vm_page_t m;
1775
1776	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1777retrylookup:
1778	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1779		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1780			if ((allocflags & VM_ALLOC_RETRY) == 0)
1781				return (NULL);
1782			goto retrylookup;
1783		} else {
1784			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1785				vm_page_lock_queues();
1786				vm_page_wire(m);
1787				vm_page_unlock_queues();
1788			}
1789			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1790				vm_page_busy(m);
1791			return (m);
1792		}
1793	}
1794	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1795	if (m == NULL) {
1796		VM_OBJECT_UNLOCK(object);
1797		VM_WAIT;
1798		VM_OBJECT_LOCK(object);
1799		if ((allocflags & VM_ALLOC_RETRY) == 0)
1800			return (NULL);
1801		goto retrylookup;
1802	} else if (m->valid != 0)
1803		return (m);
1804	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1805		pmap_zero_page(m);
1806	return (m);
1807}
1808
1809/*
1810 * Mapping function for valid bits or for dirty bits in
1811 * a page.  May not block.
1812 *
1813 * Inputs are required to range within a page.
1814 */
1815int
1816vm_page_bits(int base, int size)
1817{
1818	int first_bit;
1819	int last_bit;
1820
1821	KASSERT(
1822	    base + size <= PAGE_SIZE,
1823	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1824	);
1825
1826	if (size == 0)		/* handle degenerate case */
1827		return (0);
1828
1829	first_bit = base >> DEV_BSHIFT;
1830	last_bit = (base + size - 1) >> DEV_BSHIFT;
1831
1832	return ((2 << last_bit) - (1 << first_bit));
1833}
1834
1835/*
1836 *	vm_page_set_validclean:
1837 *
1838 *	Sets portions of a page valid and clean.  The arguments are expected
1839 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1840 *	of any partial chunks touched by the range.  The invalid portion of
1841 *	such chunks will be zero'd.
1842 *
1843 *	This routine may not block.
1844 *
1845 *	(base + size) must be less then or equal to PAGE_SIZE.
1846 */
1847void
1848vm_page_set_validclean(vm_page_t m, int base, int size)
1849{
1850	int pagebits;
1851	int frag;
1852	int endoff;
1853
1854	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1855	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1856	if (size == 0)	/* handle degenerate case */
1857		return;
1858
1859	/*
1860	 * If the base is not DEV_BSIZE aligned and the valid
1861	 * bit is clear, we have to zero out a portion of the
1862	 * first block.
1863	 */
1864	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1865	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1866		pmap_zero_page_area(m, frag, base - frag);
1867
1868	/*
1869	 * If the ending offset is not DEV_BSIZE aligned and the
1870	 * valid bit is clear, we have to zero out a portion of
1871	 * the last block.
1872	 */
1873	endoff = base + size;
1874	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1875	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1876		pmap_zero_page_area(m, endoff,
1877		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1878
1879	/*
1880	 * Set valid, clear dirty bits.  If validating the entire
1881	 * page we can safely clear the pmap modify bit.  We also
1882	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1883	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1884	 * be set again.
1885	 *
1886	 * We set valid bits inclusive of any overlap, but we can only
1887	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1888	 * the range.
1889	 */
1890	pagebits = vm_page_bits(base, size);
1891	m->valid |= pagebits;
1892#if 0	/* NOT YET */
1893	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1894		frag = DEV_BSIZE - frag;
1895		base += frag;
1896		size -= frag;
1897		if (size < 0)
1898			size = 0;
1899	}
1900	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1901#endif
1902	m->dirty &= ~pagebits;
1903	if (base == 0 && size == PAGE_SIZE) {
1904		pmap_clear_modify(m);
1905		m->oflags &= ~VPO_NOSYNC;
1906	}
1907}
1908
1909void
1910vm_page_clear_dirty(vm_page_t m, int base, int size)
1911{
1912
1913	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1914	m->dirty &= ~vm_page_bits(base, size);
1915}
1916
1917/*
1918 *	vm_page_set_invalid:
1919 *
1920 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1921 *	valid and dirty bits for the effected areas are cleared.
1922 *
1923 *	May not block.
1924 */
1925void
1926vm_page_set_invalid(vm_page_t m, int base, int size)
1927{
1928	int bits;
1929
1930	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1931	bits = vm_page_bits(base, size);
1932	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1933	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1934		pmap_remove_all(m);
1935	m->valid &= ~bits;
1936	m->dirty &= ~bits;
1937	m->object->generation++;
1938}
1939
1940/*
1941 * vm_page_zero_invalid()
1942 *
1943 *	The kernel assumes that the invalid portions of a page contain
1944 *	garbage, but such pages can be mapped into memory by user code.
1945 *	When this occurs, we must zero out the non-valid portions of the
1946 *	page so user code sees what it expects.
1947 *
1948 *	Pages are most often semi-valid when the end of a file is mapped
1949 *	into memory and the file's size is not page aligned.
1950 */
1951void
1952vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1953{
1954	int b;
1955	int i;
1956
1957	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1958	/*
1959	 * Scan the valid bits looking for invalid sections that
1960	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1961	 * valid bit may be set ) have already been zerod by
1962	 * vm_page_set_validclean().
1963	 */
1964	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1965		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1966		    (m->valid & (1 << i))
1967		) {
1968			if (i > b) {
1969				pmap_zero_page_area(m,
1970				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1971			}
1972			b = i + 1;
1973		}
1974	}
1975
1976	/*
1977	 * setvalid is TRUE when we can safely set the zero'd areas
1978	 * as being valid.  We can do this if there are no cache consistancy
1979	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1980	 */
1981	if (setvalid)
1982		m->valid = VM_PAGE_BITS_ALL;
1983}
1984
1985/*
1986 *	vm_page_is_valid:
1987 *
1988 *	Is (partial) page valid?  Note that the case where size == 0
1989 *	will return FALSE in the degenerate case where the page is
1990 *	entirely invalid, and TRUE otherwise.
1991 *
1992 *	May not block.
1993 */
1994int
1995vm_page_is_valid(vm_page_t m, int base, int size)
1996{
1997	int bits = vm_page_bits(base, size);
1998
1999	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2000	if (m->valid && ((m->valid & bits) == bits))
2001		return 1;
2002	else
2003		return 0;
2004}
2005
2006/*
2007 * update dirty bits from pmap/mmu.  May not block.
2008 */
2009void
2010vm_page_test_dirty(vm_page_t m)
2011{
2012	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
2013		vm_page_dirty(m);
2014	}
2015}
2016
2017int so_zerocp_fullpage = 0;
2018
2019/*
2020 *	Replace the given page with a copy.  The copied page assumes
2021 *	the portion of the given page's "wire_count" that is not the
2022 *	responsibility of this copy-on-write mechanism.
2023 *
2024 *	The object containing the given page must have a non-zero
2025 *	paging-in-progress count and be locked.
2026 */
2027void
2028vm_page_cowfault(vm_page_t m)
2029{
2030	vm_page_t mnew;
2031	vm_object_t object;
2032	vm_pindex_t pindex;
2033
2034	object = m->object;
2035	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2036	KASSERT(object->paging_in_progress != 0,
2037	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2038	    object));
2039	pindex = m->pindex;
2040
2041 retry_alloc:
2042	pmap_remove_all(m);
2043	vm_page_remove(m);
2044	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2045	if (mnew == NULL) {
2046		vm_page_insert(m, object, pindex);
2047		vm_page_unlock_queues();
2048		VM_OBJECT_UNLOCK(object);
2049		VM_WAIT;
2050		VM_OBJECT_LOCK(object);
2051		if (m == vm_page_lookup(object, pindex)) {
2052			vm_page_lock_queues();
2053			goto retry_alloc;
2054		} else {
2055			/*
2056			 * Page disappeared during the wait.
2057			 */
2058			vm_page_lock_queues();
2059			return;
2060		}
2061	}
2062
2063	if (m->cow == 0) {
2064		/*
2065		 * check to see if we raced with an xmit complete when
2066		 * waiting to allocate a page.  If so, put things back
2067		 * the way they were
2068		 */
2069		vm_page_free(mnew);
2070		vm_page_insert(m, object, pindex);
2071	} else { /* clear COW & copy page */
2072		if (!so_zerocp_fullpage)
2073			pmap_copy_page(m, mnew);
2074		mnew->valid = VM_PAGE_BITS_ALL;
2075		vm_page_dirty(mnew);
2076		mnew->wire_count = m->wire_count - m->cow;
2077		m->wire_count = m->cow;
2078	}
2079}
2080
2081void
2082vm_page_cowclear(vm_page_t m)
2083{
2084
2085	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2086	if (m->cow) {
2087		m->cow--;
2088		/*
2089		 * let vm_fault add back write permission  lazily
2090		 */
2091	}
2092	/*
2093	 *  sf_buf_free() will free the page, so we needn't do it here
2094	 */
2095}
2096
2097void
2098vm_page_cowsetup(vm_page_t m)
2099{
2100
2101	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2102	m->cow++;
2103	pmap_remove_write(m);
2104}
2105
2106#include "opt_ddb.h"
2107#ifdef DDB
2108#include <sys/kernel.h>
2109
2110#include <ddb/ddb.h>
2111
2112DB_SHOW_COMMAND(page, vm_page_print_page_info)
2113{
2114	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2115	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2116	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2117	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2118	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2119	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2120	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2121	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2122	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2123	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2124}
2125
2126DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2127{
2128
2129	db_printf("PQ_FREE:");
2130	db_printf(" %d", cnt.v_free_count);
2131	db_printf("\n");
2132
2133	db_printf("PQ_CACHE:");
2134	db_printf(" %d", cnt.v_cache_count);
2135	db_printf("\n");
2136
2137	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2138		*vm_page_queues[PQ_ACTIVE].cnt,
2139		*vm_page_queues[PQ_INACTIVE].cnt);
2140}
2141#endif /* DDB */
2142