vm_page.c revision 151104
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*-
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 151104 2005-10-08 21:03:54Z des $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/kernel.h>
106#include <sys/malloc.h>
107#include <sys/mutex.h>
108#include <sys/proc.h>
109#include <sys/sysctl.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124/*
125 *	Associated with page of user-allocatable memory is a
126 *	page structure.
127 */
128
129struct mtx vm_page_queue_mtx;
130struct mtx vm_page_queue_free_mtx;
131
132vm_page_t vm_page_array = 0;
133int vm_page_array_size = 0;
134long first_page = 0;
135int vm_page_zero_count = 0;
136
137static int boot_pages = UMA_BOOT_PAGES;
138TUNABLE_INT("vm.boot_pages", &boot_pages);
139SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
140	"number of pages allocated for bootstrapping the VM system");
141
142/*
143 *	vm_set_page_size:
144 *
145 *	Sets the page size, perhaps based upon the memory
146 *	size.  Must be called before any use of page-size
147 *	dependent functions.
148 */
149void
150vm_set_page_size(void)
151{
152	if (cnt.v_page_size == 0)
153		cnt.v_page_size = PAGE_SIZE;
154	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
155		panic("vm_set_page_size: page size not a power of two");
156}
157
158/*
159 *	vm_page_startup:
160 *
161 *	Initializes the resident memory module.
162 *
163 *	Allocates memory for the page cells, and
164 *	for the object/offset-to-page hash table headers.
165 *	Each page cell is initialized and placed on the free list.
166 */
167vm_offset_t
168vm_page_startup(vm_offset_t vaddr)
169{
170	vm_offset_t mapped;
171	vm_size_t npages;
172	vm_paddr_t page_range;
173	vm_paddr_t new_end;
174	int i;
175	vm_paddr_t pa;
176	int nblocks;
177	vm_paddr_t last_pa;
178
179	/* the biggest memory array is the second group of pages */
180	vm_paddr_t end;
181	vm_paddr_t biggestsize;
182	int biggestone;
183
184	vm_paddr_t total;
185
186	total = 0;
187	biggestsize = 0;
188	biggestone = 0;
189	nblocks = 0;
190	vaddr = round_page(vaddr);
191
192	for (i = 0; phys_avail[i + 1]; i += 2) {
193		phys_avail[i] = round_page(phys_avail[i]);
194		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
195	}
196
197	for (i = 0; phys_avail[i + 1]; i += 2) {
198		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
199
200		if (size > biggestsize) {
201			biggestone = i;
202			biggestsize = size;
203		}
204		++nblocks;
205		total += size;
206	}
207
208	end = phys_avail[biggestone+1];
209
210	/*
211	 * Initialize the locks.
212	 */
213	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
214	    MTX_RECURSE);
215	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
216	    MTX_SPIN);
217
218	/*
219	 * Initialize the queue headers for the free queue, the active queue
220	 * and the inactive queue.
221	 */
222	vm_pageq_init();
223
224	/*
225	 * Allocate memory for use when boot strapping the kernel memory
226	 * allocator.
227	 */
228	new_end = end - (boot_pages * UMA_SLAB_SIZE);
229	new_end = trunc_page(new_end);
230	mapped = pmap_map(&vaddr, new_end, end,
231	    VM_PROT_READ | VM_PROT_WRITE);
232	bzero((void *)mapped, end - new_end);
233	uma_startup((void *)mapped, boot_pages);
234
235	/*
236	 * Compute the number of pages of memory that will be available for
237	 * use (taking into account the overhead of a page structure per
238	 * page).
239	 */
240	first_page = phys_avail[0] / PAGE_SIZE;
241	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
242	npages = (total - (page_range * sizeof(struct vm_page)) -
243	    (end - new_end)) / PAGE_SIZE;
244	end = new_end;
245
246	/*
247	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
248	 */
249	vaddr += PAGE_SIZE;
250
251	/*
252	 * Initialize the mem entry structures now, and put them in the free
253	 * queue.
254	 */
255	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
256	mapped = pmap_map(&vaddr, new_end, end,
257	    VM_PROT_READ | VM_PROT_WRITE);
258	vm_page_array = (vm_page_t) mapped;
259	phys_avail[biggestone + 1] = new_end;
260
261	/*
262	 * Clear all of the page structures
263	 */
264	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
265	vm_page_array_size = page_range;
266
267	/*
268	 * Construct the free queue(s) in descending order (by physical
269	 * address) so that the first 16MB of physical memory is allocated
270	 * last rather than first.  On large-memory machines, this avoids
271	 * the exhaustion of low physical memory before isa_dma_init has run.
272	 */
273	cnt.v_page_count = 0;
274	cnt.v_free_count = 0;
275	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
276		pa = phys_avail[i];
277		last_pa = phys_avail[i + 1];
278		while (pa < last_pa && npages-- > 0) {
279			vm_pageq_add_new_page(pa);
280			pa += PAGE_SIZE;
281		}
282	}
283	return (vaddr);
284}
285
286void
287vm_page_flag_set(vm_page_t m, unsigned short bits)
288{
289
290	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
291	m->flags |= bits;
292}
293
294void
295vm_page_flag_clear(vm_page_t m, unsigned short bits)
296{
297
298	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
299	m->flags &= ~bits;
300}
301
302void
303vm_page_busy(vm_page_t m)
304{
305
306	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
307	KASSERT((m->flags & PG_BUSY) == 0,
308	    ("vm_page_busy: page already busy!!!"));
309	vm_page_flag_set(m, PG_BUSY);
310}
311
312/*
313 *      vm_page_flash:
314 *
315 *      wakeup anyone waiting for the page.
316 */
317void
318vm_page_flash(vm_page_t m)
319{
320
321	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
322	if (m->flags & PG_WANTED) {
323		vm_page_flag_clear(m, PG_WANTED);
324		wakeup(m);
325	}
326}
327
328/*
329 *      vm_page_wakeup:
330 *
331 *      clear the PG_BUSY flag and wakeup anyone waiting for the
332 *      page.
333 *
334 */
335void
336vm_page_wakeup(vm_page_t m)
337{
338
339	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
340	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
341	vm_page_flag_clear(m, PG_BUSY);
342	vm_page_flash(m);
343}
344
345void
346vm_page_io_start(vm_page_t m)
347{
348
349	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
350	m->busy++;
351}
352
353void
354vm_page_io_finish(vm_page_t m)
355{
356
357	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
358	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
359	m->busy--;
360	if (m->busy == 0)
361		vm_page_flash(m);
362}
363
364/*
365 * Keep page from being freed by the page daemon
366 * much of the same effect as wiring, except much lower
367 * overhead and should be used only for *very* temporary
368 * holding ("wiring").
369 */
370void
371vm_page_hold(vm_page_t mem)
372{
373
374	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
375        mem->hold_count++;
376}
377
378void
379vm_page_unhold(vm_page_t mem)
380{
381
382	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
383	--mem->hold_count;
384	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
385	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
386		vm_page_free_toq(mem);
387}
388
389/*
390 *	vm_page_free:
391 *
392 *	Free a page
393 *
394 *	The clearing of PG_ZERO is a temporary safety until the code can be
395 *	reviewed to determine that PG_ZERO is being properly cleared on
396 *	write faults or maps.  PG_ZERO was previously cleared in
397 *	vm_page_alloc().
398 */
399void
400vm_page_free(vm_page_t m)
401{
402	vm_page_flag_clear(m, PG_ZERO);
403	vm_page_free_toq(m);
404	vm_page_zero_idle_wakeup();
405}
406
407/*
408 *	vm_page_free_zero:
409 *
410 *	Free a page to the zerod-pages queue
411 */
412void
413vm_page_free_zero(vm_page_t m)
414{
415	vm_page_flag_set(m, PG_ZERO);
416	vm_page_free_toq(m);
417}
418
419/*
420 *	vm_page_sleep_if_busy:
421 *
422 *	Sleep and release the page queues lock if PG_BUSY is set or,
423 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
424 *	thread slept and the page queues lock was released.
425 *	Otherwise, retains the page queues lock and returns FALSE.
426 */
427int
428vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
429{
430	vm_object_t object;
431
432	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
433	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
434	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
435		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
436		/*
437		 * It's possible that while we sleep, the page will get
438		 * unbusied and freed.  If we are holding the object
439		 * lock, we will assume we hold a reference to the object
440		 * such that even if m->object changes, we can re-lock
441		 * it.
442		 */
443		object = m->object;
444		VM_OBJECT_UNLOCK(object);
445		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
446		VM_OBJECT_LOCK(object);
447		return (TRUE);
448	}
449	return (FALSE);
450}
451
452/*
453 *	vm_page_dirty:
454 *
455 *	make page all dirty
456 */
457void
458vm_page_dirty(vm_page_t m)
459{
460	KASSERT(m->queue - m->pc != PQ_CACHE,
461	    ("vm_page_dirty: page in cache!"));
462	KASSERT(m->queue - m->pc != PQ_FREE,
463	    ("vm_page_dirty: page is free!"));
464	m->dirty = VM_PAGE_BITS_ALL;
465}
466
467/*
468 *	vm_page_splay:
469 *
470 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
471 *	the vm_page containing the given pindex.  If, however, that
472 *	pindex is not found in the vm_object, returns a vm_page that is
473 *	adjacent to the pindex, coming before or after it.
474 */
475vm_page_t
476vm_page_splay(vm_pindex_t pindex, vm_page_t root)
477{
478	struct vm_page dummy;
479	vm_page_t lefttreemax, righttreemin, y;
480
481	if (root == NULL)
482		return (root);
483	lefttreemax = righttreemin = &dummy;
484	for (;; root = y) {
485		if (pindex < root->pindex) {
486			if ((y = root->left) == NULL)
487				break;
488			if (pindex < y->pindex) {
489				/* Rotate right. */
490				root->left = y->right;
491				y->right = root;
492				root = y;
493				if ((y = root->left) == NULL)
494					break;
495			}
496			/* Link into the new root's right tree. */
497			righttreemin->left = root;
498			righttreemin = root;
499		} else if (pindex > root->pindex) {
500			if ((y = root->right) == NULL)
501				break;
502			if (pindex > y->pindex) {
503				/* Rotate left. */
504				root->right = y->left;
505				y->left = root;
506				root = y;
507				if ((y = root->right) == NULL)
508					break;
509			}
510			/* Link into the new root's left tree. */
511			lefttreemax->right = root;
512			lefttreemax = root;
513		} else
514			break;
515	}
516	/* Assemble the new root. */
517	lefttreemax->right = root->left;
518	righttreemin->left = root->right;
519	root->left = dummy.right;
520	root->right = dummy.left;
521	return (root);
522}
523
524/*
525 *	vm_page_insert:		[ internal use only ]
526 *
527 *	Inserts the given mem entry into the object and object list.
528 *
529 *	The pagetables are not updated but will presumably fault the page
530 *	in if necessary, or if a kernel page the caller will at some point
531 *	enter the page into the kernel's pmap.  We are not allowed to block
532 *	here so we *can't* do this anyway.
533 *
534 *	The object and page must be locked.
535 *	This routine may not block.
536 */
537void
538vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
539{
540	vm_page_t root;
541
542	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
543	if (m->object != NULL)
544		panic("vm_page_insert: page already inserted");
545
546	/*
547	 * Record the object/offset pair in this page
548	 */
549	m->object = object;
550	m->pindex = pindex;
551
552	/*
553	 * Now link into the object's ordered list of backed pages.
554	 */
555	root = object->root;
556	if (root == NULL) {
557		m->left = NULL;
558		m->right = NULL;
559		TAILQ_INSERT_TAIL(&object->memq, m, listq);
560	} else {
561		root = vm_page_splay(pindex, root);
562		if (pindex < root->pindex) {
563			m->left = root->left;
564			m->right = root;
565			root->left = NULL;
566			TAILQ_INSERT_BEFORE(root, m, listq);
567		} else if (pindex == root->pindex)
568			panic("vm_page_insert: offset already allocated");
569		else {
570			m->right = root->right;
571			m->left = root;
572			root->right = NULL;
573			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
574		}
575	}
576	object->root = m;
577	object->generation++;
578
579	/*
580	 * show that the object has one more resident page.
581	 */
582	object->resident_page_count++;
583	/*
584	 * Hold the vnode until the last page is released.
585	 */
586	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
587		vhold((struct vnode *)object->handle);
588
589	/*
590	 * Since we are inserting a new and possibly dirty page,
591	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
592	 */
593	if (m->flags & PG_WRITEABLE)
594		vm_object_set_writeable_dirty(object);
595}
596
597/*
598 *	vm_page_remove:
599 *				NOTE: used by device pager as well -wfj
600 *
601 *	Removes the given mem entry from the object/offset-page
602 *	table and the object page list, but do not invalidate/terminate
603 *	the backing store.
604 *
605 *	The object and page must be locked.
606 *	The underlying pmap entry (if any) is NOT removed here.
607 *	This routine may not block.
608 */
609void
610vm_page_remove(vm_page_t m)
611{
612	vm_object_t object;
613	vm_page_t root;
614
615	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
616	if ((object = m->object) == NULL)
617		return;
618	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
619	if (m->flags & PG_BUSY) {
620		vm_page_flag_clear(m, PG_BUSY);
621		vm_page_flash(m);
622	}
623
624	/*
625	 * Now remove from the object's list of backed pages.
626	 */
627	if (m != object->root)
628		vm_page_splay(m->pindex, object->root);
629	if (m->left == NULL)
630		root = m->right;
631	else {
632		root = vm_page_splay(m->pindex, m->left);
633		root->right = m->right;
634	}
635	object->root = root;
636	TAILQ_REMOVE(&object->memq, m, listq);
637
638	/*
639	 * And show that the object has one fewer resident page.
640	 */
641	object->resident_page_count--;
642	object->generation++;
643	/*
644	 * The vnode may now be recycled.
645	 */
646	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
647		vdrop((struct vnode *)object->handle);
648
649	m->object = NULL;
650}
651
652/*
653 *	vm_page_lookup:
654 *
655 *	Returns the page associated with the object/offset
656 *	pair specified; if none is found, NULL is returned.
657 *
658 *	The object must be locked.
659 *	This routine may not block.
660 *	This is a critical path routine
661 */
662vm_page_t
663vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
664{
665	vm_page_t m;
666
667	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
668	if ((m = object->root) != NULL && m->pindex != pindex) {
669		m = vm_page_splay(pindex, m);
670		if ((object->root = m)->pindex != pindex)
671			m = NULL;
672	}
673	return (m);
674}
675
676/*
677 *	vm_page_rename:
678 *
679 *	Move the given memory entry from its
680 *	current object to the specified target object/offset.
681 *
682 *	The object must be locked.
683 *	This routine may not block.
684 *
685 *	Note: swap associated with the page must be invalidated by the move.  We
686 *	      have to do this for several reasons:  (1) we aren't freeing the
687 *	      page, (2) we are dirtying the page, (3) the VM system is probably
688 *	      moving the page from object A to B, and will then later move
689 *	      the backing store from A to B and we can't have a conflict.
690 *
691 *	Note: we *always* dirty the page.  It is necessary both for the
692 *	      fact that we moved it, and because we may be invalidating
693 *	      swap.  If the page is on the cache, we have to deactivate it
694 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
695 *	      on the cache.
696 */
697void
698vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
699{
700
701	vm_page_remove(m);
702	vm_page_insert(m, new_object, new_pindex);
703	if (m->queue - m->pc == PQ_CACHE)
704		vm_page_deactivate(m);
705	vm_page_dirty(m);
706}
707
708/*
709 *	vm_page_select_cache:
710 *
711 *	Move a page of the given color from the cache queue to the free
712 *	queue.  As pages might be found, but are not applicable, they are
713 *	deactivated.
714 *
715 *	This routine may not block.
716 */
717vm_page_t
718vm_page_select_cache(int color)
719{
720	vm_object_t object;
721	vm_page_t m;
722	boolean_t was_trylocked;
723
724	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
725	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
726		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
727		KASSERT(!pmap_page_is_mapped(m),
728		    ("Found mapped cache page %p", m));
729		KASSERT((m->flags & PG_UNMANAGED) == 0,
730		    ("Found unmanaged cache page %p", m));
731		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
732		if (m->hold_count == 0 && (object = m->object,
733		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
734		    VM_OBJECT_LOCKED(object))) {
735			KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0,
736			    ("Found busy cache page %p", m));
737			vm_page_free(m);
738			if (was_trylocked)
739				VM_OBJECT_UNLOCK(object);
740			break;
741		}
742		vm_page_deactivate(m);
743	}
744	return (m);
745}
746
747/*
748 *	vm_page_alloc:
749 *
750 *	Allocate and return a memory cell associated
751 *	with this VM object/offset pair.
752 *
753 *	page_req classes:
754 *	VM_ALLOC_NORMAL		normal process request
755 *	VM_ALLOC_SYSTEM		system *really* needs a page
756 *	VM_ALLOC_INTERRUPT	interrupt time request
757 *	VM_ALLOC_ZERO		zero page
758 *
759 *	This routine may not block.
760 *
761 *	Additional special handling is required when called from an
762 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
763 *	the page cache in this case.
764 */
765vm_page_t
766vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
767{
768	vm_page_t m = NULL;
769	int color, flags, page_req;
770
771	page_req = req & VM_ALLOC_CLASS_MASK;
772	KASSERT(curthread->td_intr_nesting_level == 0 ||
773	    page_req == VM_ALLOC_INTERRUPT,
774	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
775
776	if ((req & VM_ALLOC_NOOBJ) == 0) {
777		KASSERT(object != NULL,
778		    ("vm_page_alloc: NULL object."));
779		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
780		color = (pindex + object->pg_color) & PQ_L2_MASK;
781	} else
782		color = pindex & PQ_L2_MASK;
783
784	/*
785	 * The pager is allowed to eat deeper into the free page list.
786	 */
787	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
788		page_req = VM_ALLOC_SYSTEM;
789	};
790
791loop:
792	mtx_lock_spin(&vm_page_queue_free_mtx);
793	if (cnt.v_free_count > cnt.v_free_reserved ||
794	    (page_req == VM_ALLOC_SYSTEM &&
795	     cnt.v_cache_count == 0 &&
796	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
797	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
798		/*
799		 * Allocate from the free queue if the number of free pages
800		 * exceeds the minimum for the request class.
801		 */
802		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
803	} else if (page_req != VM_ALLOC_INTERRUPT) {
804		mtx_unlock_spin(&vm_page_queue_free_mtx);
805		/*
806		 * Allocatable from cache (non-interrupt only).  On success,
807		 * we must free the page and try again, thus ensuring that
808		 * cnt.v_*_free_min counters are replenished.
809		 */
810		vm_page_lock_queues();
811		if ((m = vm_page_select_cache(color)) == NULL) {
812#if defined(DIAGNOSTIC)
813			if (cnt.v_cache_count > 0)
814				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
815#endif
816			vm_page_unlock_queues();
817			atomic_add_int(&vm_pageout_deficit, 1);
818			pagedaemon_wakeup();
819			return (NULL);
820		}
821		vm_page_unlock_queues();
822		goto loop;
823	} else {
824		/*
825		 * Not allocatable from cache from interrupt, give up.
826		 */
827		mtx_unlock_spin(&vm_page_queue_free_mtx);
828		atomic_add_int(&vm_pageout_deficit, 1);
829		pagedaemon_wakeup();
830		return (NULL);
831	}
832
833	/*
834	 *  At this point we had better have found a good page.
835	 */
836
837	KASSERT(
838	    m != NULL,
839	    ("vm_page_alloc(): missing page on free queue")
840	);
841
842	/*
843	 * Remove from free queue
844	 */
845	vm_pageq_remove_nowakeup(m);
846
847	/*
848	 * Initialize structure.  Only the PG_ZERO flag is inherited.
849	 */
850	flags = PG_BUSY;
851	if (m->flags & PG_ZERO) {
852		vm_page_zero_count--;
853		if (req & VM_ALLOC_ZERO)
854			flags = PG_ZERO | PG_BUSY;
855	}
856	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
857		flags &= ~PG_BUSY;
858	m->flags = flags;
859	if (req & VM_ALLOC_WIRED) {
860		atomic_add_int(&cnt.v_wire_count, 1);
861		m->wire_count = 1;
862	} else
863		m->wire_count = 0;
864	m->hold_count = 0;
865	m->act_count = 0;
866	m->busy = 0;
867	m->valid = 0;
868	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
869	mtx_unlock_spin(&vm_page_queue_free_mtx);
870
871	if ((req & VM_ALLOC_NOOBJ) == 0)
872		vm_page_insert(m, object, pindex);
873	else
874		m->pindex = pindex;
875
876	/*
877	 * Don't wakeup too often - wakeup the pageout daemon when
878	 * we would be nearly out of memory.
879	 */
880	if (vm_paging_needed())
881		pagedaemon_wakeup();
882
883	return (m);
884}
885
886/*
887 *	vm_wait:	(also see VM_WAIT macro)
888 *
889 *	Block until free pages are available for allocation
890 *	- Called in various places before memory allocations.
891 */
892void
893vm_wait(void)
894{
895
896	vm_page_lock_queues();
897	if (curproc == pageproc) {
898		vm_pageout_pages_needed = 1;
899		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
900		    PDROP | PSWP, "VMWait", 0);
901	} else {
902		if (!vm_pages_needed) {
903			vm_pages_needed = 1;
904			wakeup(&vm_pages_needed);
905		}
906		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
907		    "vmwait", 0);
908	}
909}
910
911/*
912 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
913 *
914 *	Block until free pages are available for allocation
915 *	- Called only in vm_fault so that processes page faulting
916 *	  can be easily tracked.
917 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
918 *	  processes will be able to grab memory first.  Do not change
919 *	  this balance without careful testing first.
920 */
921void
922vm_waitpfault(void)
923{
924
925	vm_page_lock_queues();
926	if (!vm_pages_needed) {
927		vm_pages_needed = 1;
928		wakeup(&vm_pages_needed);
929	}
930	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
931	    "pfault", 0);
932}
933
934/*
935 *	vm_page_activate:
936 *
937 *	Put the specified page on the active list (if appropriate).
938 *	Ensure that act_count is at least ACT_INIT but do not otherwise
939 *	mess with it.
940 *
941 *	The page queues must be locked.
942 *	This routine may not block.
943 */
944void
945vm_page_activate(vm_page_t m)
946{
947
948	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
949	if (m->queue != PQ_ACTIVE) {
950		if ((m->queue - m->pc) == PQ_CACHE)
951			cnt.v_reactivated++;
952		vm_pageq_remove(m);
953		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
954			if (m->act_count < ACT_INIT)
955				m->act_count = ACT_INIT;
956			vm_pageq_enqueue(PQ_ACTIVE, m);
957		}
958	} else {
959		if (m->act_count < ACT_INIT)
960			m->act_count = ACT_INIT;
961	}
962}
963
964/*
965 *	vm_page_free_wakeup:
966 *
967 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
968 *	routine is called when a page has been added to the cache or free
969 *	queues.
970 *
971 *	The page queues must be locked.
972 *	This routine may not block.
973 */
974static __inline void
975vm_page_free_wakeup(void)
976{
977
978	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
979	/*
980	 * if pageout daemon needs pages, then tell it that there are
981	 * some free.
982	 */
983	if (vm_pageout_pages_needed &&
984	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
985		wakeup(&vm_pageout_pages_needed);
986		vm_pageout_pages_needed = 0;
987	}
988	/*
989	 * wakeup processes that are waiting on memory if we hit a
990	 * high water mark. And wakeup scheduler process if we have
991	 * lots of memory. this process will swapin processes.
992	 */
993	if (vm_pages_needed && !vm_page_count_min()) {
994		vm_pages_needed = 0;
995		wakeup(&cnt.v_free_count);
996	}
997}
998
999/*
1000 *	vm_page_free_toq:
1001 *
1002 *	Returns the given page to the PQ_FREE list,
1003 *	disassociating it with any VM object.
1004 *
1005 *	Object and page must be locked prior to entry.
1006 *	This routine may not block.
1007 */
1008
1009void
1010vm_page_free_toq(vm_page_t m)
1011{
1012	struct vpgqueues *pq;
1013
1014	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1015	cnt.v_tfree++;
1016
1017	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1018		printf(
1019		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1020		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1021		    m->hold_count);
1022		if ((m->queue - m->pc) == PQ_FREE)
1023			panic("vm_page_free: freeing free page");
1024		else
1025			panic("vm_page_free: freeing busy page");
1026	}
1027
1028	/*
1029	 * unqueue, then remove page.  Note that we cannot destroy
1030	 * the page here because we do not want to call the pager's
1031	 * callback routine until after we've put the page on the
1032	 * appropriate free queue.
1033	 */
1034	vm_pageq_remove_nowakeup(m);
1035	vm_page_remove(m);
1036
1037	/*
1038	 * If fictitious remove object association and
1039	 * return, otherwise delay object association removal.
1040	 */
1041	if ((m->flags & PG_FICTITIOUS) != 0) {
1042		return;
1043	}
1044
1045	m->valid = 0;
1046	vm_page_undirty(m);
1047
1048	if (m->wire_count != 0) {
1049		if (m->wire_count > 1) {
1050			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1051				m->wire_count, (long)m->pindex);
1052		}
1053		panic("vm_page_free: freeing wired page");
1054	}
1055
1056	/*
1057	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1058	 */
1059	if (m->flags & PG_UNMANAGED) {
1060		m->flags &= ~PG_UNMANAGED;
1061	}
1062
1063	if (m->hold_count != 0) {
1064		m->flags &= ~PG_ZERO;
1065		m->queue = PQ_HOLD;
1066	} else
1067		m->queue = PQ_FREE + m->pc;
1068	pq = &vm_page_queues[m->queue];
1069	mtx_lock_spin(&vm_page_queue_free_mtx);
1070	pq->lcnt++;
1071	++(*pq->cnt);
1072
1073	/*
1074	 * Put zero'd pages on the end ( where we look for zero'd pages
1075	 * first ) and non-zerod pages at the head.
1076	 */
1077	if (m->flags & PG_ZERO) {
1078		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1079		++vm_page_zero_count;
1080	} else {
1081		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1082	}
1083	mtx_unlock_spin(&vm_page_queue_free_mtx);
1084	vm_page_free_wakeup();
1085}
1086
1087/*
1088 *	vm_page_unmanage:
1089 *
1090 * 	Prevent PV management from being done on the page.  The page is
1091 *	removed from the paging queues as if it were wired, and as a
1092 *	consequence of no longer being managed the pageout daemon will not
1093 *	touch it (since there is no way to locate the pte mappings for the
1094 *	page).  madvise() calls that mess with the pmap will also no longer
1095 *	operate on the page.
1096 *
1097 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1098 *	will clear the flag.
1099 *
1100 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1101 *	physical memory as backing store rather then swap-backed memory and
1102 *	will eventually be extended to support 4MB unmanaged physical
1103 *	mappings.
1104 */
1105void
1106vm_page_unmanage(vm_page_t m)
1107{
1108
1109	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1110	if ((m->flags & PG_UNMANAGED) == 0) {
1111		if (m->wire_count == 0)
1112			vm_pageq_remove(m);
1113	}
1114	vm_page_flag_set(m, PG_UNMANAGED);
1115}
1116
1117/*
1118 *	vm_page_wire:
1119 *
1120 *	Mark this page as wired down by yet
1121 *	another map, removing it from paging queues
1122 *	as necessary.
1123 *
1124 *	The page queues must be locked.
1125 *	This routine may not block.
1126 */
1127void
1128vm_page_wire(vm_page_t m)
1129{
1130
1131	/*
1132	 * Only bump the wire statistics if the page is not already wired,
1133	 * and only unqueue the page if it is on some queue (if it is unmanaged
1134	 * it is already off the queues).
1135	 */
1136	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1137	if (m->flags & PG_FICTITIOUS)
1138		return;
1139	if (m->wire_count == 0) {
1140		if ((m->flags & PG_UNMANAGED) == 0)
1141			vm_pageq_remove(m);
1142		atomic_add_int(&cnt.v_wire_count, 1);
1143	}
1144	m->wire_count++;
1145	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1146}
1147
1148/*
1149 *	vm_page_unwire:
1150 *
1151 *	Release one wiring of this page, potentially
1152 *	enabling it to be paged again.
1153 *
1154 *	Many pages placed on the inactive queue should actually go
1155 *	into the cache, but it is difficult to figure out which.  What
1156 *	we do instead, if the inactive target is well met, is to put
1157 *	clean pages at the head of the inactive queue instead of the tail.
1158 *	This will cause them to be moved to the cache more quickly and
1159 *	if not actively re-referenced, freed more quickly.  If we just
1160 *	stick these pages at the end of the inactive queue, heavy filesystem
1161 *	meta-data accesses can cause an unnecessary paging load on memory bound
1162 *	processes.  This optimization causes one-time-use metadata to be
1163 *	reused more quickly.
1164 *
1165 *	BUT, if we are in a low-memory situation we have no choice but to
1166 *	put clean pages on the cache queue.
1167 *
1168 *	A number of routines use vm_page_unwire() to guarantee that the page
1169 *	will go into either the inactive or active queues, and will NEVER
1170 *	be placed in the cache - for example, just after dirtying a page.
1171 *	dirty pages in the cache are not allowed.
1172 *
1173 *	The page queues must be locked.
1174 *	This routine may not block.
1175 */
1176void
1177vm_page_unwire(vm_page_t m, int activate)
1178{
1179
1180	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1181	if (m->flags & PG_FICTITIOUS)
1182		return;
1183	if (m->wire_count > 0) {
1184		m->wire_count--;
1185		if (m->wire_count == 0) {
1186			atomic_subtract_int(&cnt.v_wire_count, 1);
1187			if (m->flags & PG_UNMANAGED) {
1188				;
1189			} else if (activate)
1190				vm_pageq_enqueue(PQ_ACTIVE, m);
1191			else {
1192				vm_page_flag_clear(m, PG_WINATCFLS);
1193				vm_pageq_enqueue(PQ_INACTIVE, m);
1194			}
1195		}
1196	} else {
1197		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1198	}
1199}
1200
1201
1202/*
1203 * Move the specified page to the inactive queue.  If the page has
1204 * any associated swap, the swap is deallocated.
1205 *
1206 * Normally athead is 0 resulting in LRU operation.  athead is set
1207 * to 1 if we want this page to be 'as if it were placed in the cache',
1208 * except without unmapping it from the process address space.
1209 *
1210 * This routine may not block.
1211 */
1212static __inline void
1213_vm_page_deactivate(vm_page_t m, int athead)
1214{
1215
1216	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1217
1218	/*
1219	 * Ignore if already inactive.
1220	 */
1221	if (m->queue == PQ_INACTIVE)
1222		return;
1223	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1224		if ((m->queue - m->pc) == PQ_CACHE)
1225			cnt.v_reactivated++;
1226		vm_page_flag_clear(m, PG_WINATCFLS);
1227		vm_pageq_remove(m);
1228		if (athead)
1229			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1230		else
1231			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1232		m->queue = PQ_INACTIVE;
1233		vm_page_queues[PQ_INACTIVE].lcnt++;
1234		cnt.v_inactive_count++;
1235	}
1236}
1237
1238void
1239vm_page_deactivate(vm_page_t m)
1240{
1241    _vm_page_deactivate(m, 0);
1242}
1243
1244/*
1245 * vm_page_try_to_cache:
1246 *
1247 * Returns 0 on failure, 1 on success
1248 */
1249int
1250vm_page_try_to_cache(vm_page_t m)
1251{
1252
1253	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1254	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1255	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1256	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1257		return (0);
1258	}
1259	pmap_remove_all(m);
1260	if (m->dirty)
1261		return (0);
1262	vm_page_cache(m);
1263	return (1);
1264}
1265
1266/*
1267 * vm_page_try_to_free()
1268 *
1269 *	Attempt to free the page.  If we cannot free it, we do nothing.
1270 *	1 is returned on success, 0 on failure.
1271 */
1272int
1273vm_page_try_to_free(vm_page_t m)
1274{
1275
1276	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1277	if (m->object != NULL)
1278		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1279	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1280	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1281		return (0);
1282	}
1283	pmap_remove_all(m);
1284	if (m->dirty)
1285		return (0);
1286	vm_page_free(m);
1287	return (1);
1288}
1289
1290/*
1291 * vm_page_cache
1292 *
1293 * Put the specified page onto the page cache queue (if appropriate).
1294 *
1295 * This routine may not block.
1296 */
1297void
1298vm_page_cache(vm_page_t m)
1299{
1300
1301	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1302	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1303	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1304	    m->hold_count || m->wire_count) {
1305		printf("vm_page_cache: attempting to cache busy page\n");
1306		return;
1307	}
1308	if ((m->queue - m->pc) == PQ_CACHE)
1309		return;
1310
1311	/*
1312	 * Remove all pmaps and indicate that the page is not
1313	 * writeable or mapped.
1314	 */
1315	pmap_remove_all(m);
1316	if (m->dirty != 0) {
1317		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1318			(long)m->pindex);
1319	}
1320	vm_pageq_remove_nowakeup(m);
1321	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1322	vm_page_free_wakeup();
1323}
1324
1325/*
1326 * vm_page_dontneed
1327 *
1328 *	Cache, deactivate, or do nothing as appropriate.  This routine
1329 *	is typically used by madvise() MADV_DONTNEED.
1330 *
1331 *	Generally speaking we want to move the page into the cache so
1332 *	it gets reused quickly.  However, this can result in a silly syndrome
1333 *	due to the page recycling too quickly.  Small objects will not be
1334 *	fully cached.  On the otherhand, if we move the page to the inactive
1335 *	queue we wind up with a problem whereby very large objects
1336 *	unnecessarily blow away our inactive and cache queues.
1337 *
1338 *	The solution is to move the pages based on a fixed weighting.  We
1339 *	either leave them alone, deactivate them, or move them to the cache,
1340 *	where moving them to the cache has the highest weighting.
1341 *	By forcing some pages into other queues we eventually force the
1342 *	system to balance the queues, potentially recovering other unrelated
1343 *	space from active.  The idea is to not force this to happen too
1344 *	often.
1345 */
1346void
1347vm_page_dontneed(vm_page_t m)
1348{
1349	static int dnweight;
1350	int dnw;
1351	int head;
1352
1353	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1354	dnw = ++dnweight;
1355
1356	/*
1357	 * occassionally leave the page alone
1358	 */
1359	if ((dnw & 0x01F0) == 0 ||
1360	    m->queue == PQ_INACTIVE ||
1361	    m->queue - m->pc == PQ_CACHE
1362	) {
1363		if (m->act_count >= ACT_INIT)
1364			--m->act_count;
1365		return;
1366	}
1367
1368	if (m->dirty == 0 && pmap_is_modified(m))
1369		vm_page_dirty(m);
1370
1371	if (m->dirty || (dnw & 0x0070) == 0) {
1372		/*
1373		 * Deactivate the page 3 times out of 32.
1374		 */
1375		head = 0;
1376	} else {
1377		/*
1378		 * Cache the page 28 times out of every 32.  Note that
1379		 * the page is deactivated instead of cached, but placed
1380		 * at the head of the queue instead of the tail.
1381		 */
1382		head = 1;
1383	}
1384	_vm_page_deactivate(m, head);
1385}
1386
1387/*
1388 * Grab a page, waiting until we are waken up due to the page
1389 * changing state.  We keep on waiting, if the page continues
1390 * to be in the object.  If the page doesn't exist, first allocate it
1391 * and then conditionally zero it.
1392 *
1393 * This routine may block.
1394 */
1395vm_page_t
1396vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1397{
1398	vm_page_t m;
1399
1400	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1401retrylookup:
1402	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1403		vm_page_lock_queues();
1404		if (m->busy || (m->flags & PG_BUSY)) {
1405			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1406			VM_OBJECT_UNLOCK(object);
1407			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1408			VM_OBJECT_LOCK(object);
1409			if ((allocflags & VM_ALLOC_RETRY) == 0)
1410				return (NULL);
1411			goto retrylookup;
1412		} else {
1413			if (allocflags & VM_ALLOC_WIRED)
1414				vm_page_wire(m);
1415			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1416				vm_page_busy(m);
1417			vm_page_unlock_queues();
1418			return (m);
1419		}
1420	}
1421	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1422	if (m == NULL) {
1423		VM_OBJECT_UNLOCK(object);
1424		VM_WAIT;
1425		VM_OBJECT_LOCK(object);
1426		if ((allocflags & VM_ALLOC_RETRY) == 0)
1427			return (NULL);
1428		goto retrylookup;
1429	}
1430	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1431		pmap_zero_page(m);
1432	return (m);
1433}
1434
1435/*
1436 * Mapping function for valid bits or for dirty bits in
1437 * a page.  May not block.
1438 *
1439 * Inputs are required to range within a page.
1440 */
1441__inline int
1442vm_page_bits(int base, int size)
1443{
1444	int first_bit;
1445	int last_bit;
1446
1447	KASSERT(
1448	    base + size <= PAGE_SIZE,
1449	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1450	);
1451
1452	if (size == 0)		/* handle degenerate case */
1453		return (0);
1454
1455	first_bit = base >> DEV_BSHIFT;
1456	last_bit = (base + size - 1) >> DEV_BSHIFT;
1457
1458	return ((2 << last_bit) - (1 << first_bit));
1459}
1460
1461/*
1462 *	vm_page_set_validclean:
1463 *
1464 *	Sets portions of a page valid and clean.  The arguments are expected
1465 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1466 *	of any partial chunks touched by the range.  The invalid portion of
1467 *	such chunks will be zero'd.
1468 *
1469 *	This routine may not block.
1470 *
1471 *	(base + size) must be less then or equal to PAGE_SIZE.
1472 */
1473void
1474vm_page_set_validclean(vm_page_t m, int base, int size)
1475{
1476	int pagebits;
1477	int frag;
1478	int endoff;
1479
1480	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1481	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1482	if (size == 0)	/* handle degenerate case */
1483		return;
1484
1485	/*
1486	 * If the base is not DEV_BSIZE aligned and the valid
1487	 * bit is clear, we have to zero out a portion of the
1488	 * first block.
1489	 */
1490	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1491	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1492		pmap_zero_page_area(m, frag, base - frag);
1493
1494	/*
1495	 * If the ending offset is not DEV_BSIZE aligned and the
1496	 * valid bit is clear, we have to zero out a portion of
1497	 * the last block.
1498	 */
1499	endoff = base + size;
1500	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1501	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1502		pmap_zero_page_area(m, endoff,
1503		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1504
1505	/*
1506	 * Set valid, clear dirty bits.  If validating the entire
1507	 * page we can safely clear the pmap modify bit.  We also
1508	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1509	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1510	 * be set again.
1511	 *
1512	 * We set valid bits inclusive of any overlap, but we can only
1513	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1514	 * the range.
1515	 */
1516	pagebits = vm_page_bits(base, size);
1517	m->valid |= pagebits;
1518#if 0	/* NOT YET */
1519	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1520		frag = DEV_BSIZE - frag;
1521		base += frag;
1522		size -= frag;
1523		if (size < 0)
1524			size = 0;
1525	}
1526	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1527#endif
1528	m->dirty &= ~pagebits;
1529	if (base == 0 && size == PAGE_SIZE) {
1530		pmap_clear_modify(m);
1531		vm_page_flag_clear(m, PG_NOSYNC);
1532	}
1533}
1534
1535void
1536vm_page_clear_dirty(vm_page_t m, int base, int size)
1537{
1538
1539	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1540	m->dirty &= ~vm_page_bits(base, size);
1541}
1542
1543/*
1544 *	vm_page_set_invalid:
1545 *
1546 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1547 *	valid and dirty bits for the effected areas are cleared.
1548 *
1549 *	May not block.
1550 */
1551void
1552vm_page_set_invalid(vm_page_t m, int base, int size)
1553{
1554	int bits;
1555
1556	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1557	bits = vm_page_bits(base, size);
1558	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1559	m->valid &= ~bits;
1560	m->dirty &= ~bits;
1561	m->object->generation++;
1562}
1563
1564/*
1565 * vm_page_zero_invalid()
1566 *
1567 *	The kernel assumes that the invalid portions of a page contain
1568 *	garbage, but such pages can be mapped into memory by user code.
1569 *	When this occurs, we must zero out the non-valid portions of the
1570 *	page so user code sees what it expects.
1571 *
1572 *	Pages are most often semi-valid when the end of a file is mapped
1573 *	into memory and the file's size is not page aligned.
1574 */
1575void
1576vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1577{
1578	int b;
1579	int i;
1580
1581	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1582	/*
1583	 * Scan the valid bits looking for invalid sections that
1584	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1585	 * valid bit may be set ) have already been zerod by
1586	 * vm_page_set_validclean().
1587	 */
1588	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1589		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1590		    (m->valid & (1 << i))
1591		) {
1592			if (i > b) {
1593				pmap_zero_page_area(m,
1594				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1595			}
1596			b = i + 1;
1597		}
1598	}
1599
1600	/*
1601	 * setvalid is TRUE when we can safely set the zero'd areas
1602	 * as being valid.  We can do this if there are no cache consistancy
1603	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1604	 */
1605	if (setvalid)
1606		m->valid = VM_PAGE_BITS_ALL;
1607}
1608
1609/*
1610 *	vm_page_is_valid:
1611 *
1612 *	Is (partial) page valid?  Note that the case where size == 0
1613 *	will return FALSE in the degenerate case where the page is
1614 *	entirely invalid, and TRUE otherwise.
1615 *
1616 *	May not block.
1617 */
1618int
1619vm_page_is_valid(vm_page_t m, int base, int size)
1620{
1621	int bits = vm_page_bits(base, size);
1622
1623	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1624	if (m->valid && ((m->valid & bits) == bits))
1625		return 1;
1626	else
1627		return 0;
1628}
1629
1630/*
1631 * update dirty bits from pmap/mmu.  May not block.
1632 */
1633void
1634vm_page_test_dirty(vm_page_t m)
1635{
1636	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1637		vm_page_dirty(m);
1638	}
1639}
1640
1641int so_zerocp_fullpage = 0;
1642
1643void
1644vm_page_cowfault(vm_page_t m)
1645{
1646	vm_page_t mnew;
1647	vm_object_t object;
1648	vm_pindex_t pindex;
1649
1650	object = m->object;
1651	pindex = m->pindex;
1652
1653 retry_alloc:
1654	vm_page_remove(m);
1655	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1656	if (mnew == NULL) {
1657		vm_page_insert(m, object, pindex);
1658		vm_page_unlock_queues();
1659		VM_OBJECT_UNLOCK(object);
1660		VM_WAIT;
1661		VM_OBJECT_LOCK(object);
1662		vm_page_lock_queues();
1663		goto retry_alloc;
1664	}
1665
1666	if (m->cow == 0) {
1667		/*
1668		 * check to see if we raced with an xmit complete when
1669		 * waiting to allocate a page.  If so, put things back
1670		 * the way they were
1671		 */
1672		vm_page_free(mnew);
1673		vm_page_insert(m, object, pindex);
1674	} else { /* clear COW & copy page */
1675		if (!so_zerocp_fullpage)
1676			pmap_copy_page(m, mnew);
1677		mnew->valid = VM_PAGE_BITS_ALL;
1678		vm_page_dirty(mnew);
1679		vm_page_flag_clear(mnew, PG_BUSY);
1680	}
1681}
1682
1683void
1684vm_page_cowclear(vm_page_t m)
1685{
1686
1687	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1688	if (m->cow) {
1689		m->cow--;
1690		/*
1691		 * let vm_fault add back write permission  lazily
1692		 */
1693	}
1694	/*
1695	 *  sf_buf_free() will free the page, so we needn't do it here
1696	 */
1697}
1698
1699void
1700vm_page_cowsetup(vm_page_t m)
1701{
1702
1703	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1704	m->cow++;
1705	pmap_page_protect(m, VM_PROT_READ);
1706}
1707
1708#include "opt_ddb.h"
1709#ifdef DDB
1710#include <sys/kernel.h>
1711
1712#include <ddb/ddb.h>
1713
1714DB_SHOW_COMMAND(page, vm_page_print_page_info)
1715{
1716	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1717	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1718	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1719	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1720	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1721	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1722	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1723	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1724	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1725	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1726}
1727
1728DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1729{
1730	int i;
1731	db_printf("PQ_FREE:");
1732	for (i = 0; i < PQ_L2_SIZE; i++) {
1733		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1734	}
1735	db_printf("\n");
1736
1737	db_printf("PQ_CACHE:");
1738	for (i = 0; i < PQ_L2_SIZE; i++) {
1739		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1740	}
1741	db_printf("\n");
1742
1743	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1744		vm_page_queues[PQ_ACTIVE].lcnt,
1745		vm_page_queues[PQ_INACTIVE].lcnt);
1746}
1747#endif /* DDB */
1748