vm_page.c revision 139825
190075Sobrien/*-
290075Sobrien * Copyright (c) 1991 Regents of the University of California.
390075Sobrien * All rights reserved.
490075Sobrien *
5169689Skan * This code is derived from software contributed to Berkeley by
690075Sobrien * The Mach Operating System project at Carnegie-Mellon University.
790075Sobrien *
890075Sobrien * Redistribution and use in source and binary forms, with or without
990075Sobrien * modification, are permitted provided that the following conditions
1090075Sobrien * are met:
1190075Sobrien * 1. Redistributions of source code must retain the above copyright
1290075Sobrien *    notice, this list of conditions and the following disclaimer.
1390075Sobrien * 2. Redistributions in binary form must reproduce the above copyright
1490075Sobrien *    notice, this list of conditions and the following disclaimer in the
15146895Skan *    documentation and/or other materials provided with the distribution.
1690075Sobrien * 4. Neither the name of the University nor the names of its contributors
17146895Skan *    may be used to endorse or promote products derived from this software
18146895Skan *    without specific prior written permission.
19146895Skan *
20146895Skan * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
2190075Sobrien * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2290075Sobrien * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2390075Sobrien * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24169689Skan * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25169689Skan * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26169689Skan * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27110611Skan * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28110611Skan * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*-
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 139825 2005-01-07 02:29:27Z imp $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/malloc.h>
106#include <sys/mutex.h>
107#include <sys/proc.h>
108#include <sys/vmmeter.h>
109#include <sys/vnode.h>
110
111#include <vm/vm.h>
112#include <vm/vm_param.h>
113#include <vm/vm_kern.h>
114#include <vm/vm_object.h>
115#include <vm/vm_page.h>
116#include <vm/vm_pageout.h>
117#include <vm/vm_pager.h>
118#include <vm/vm_extern.h>
119#include <vm/uma.h>
120#include <vm/uma_int.h>
121
122/*
123 *	Associated with page of user-allocatable memory is a
124 *	page structure.
125 */
126
127struct mtx vm_page_queue_mtx;
128struct mtx vm_page_queue_free_mtx;
129
130vm_page_t vm_page_array = 0;
131int vm_page_array_size = 0;
132long first_page = 0;
133int vm_page_zero_count = 0;
134
135/*
136 *	vm_set_page_size:
137 *
138 *	Sets the page size, perhaps based upon the memory
139 *	size.  Must be called before any use of page-size
140 *	dependent functions.
141 */
142void
143vm_set_page_size(void)
144{
145	if (cnt.v_page_size == 0)
146		cnt.v_page_size = PAGE_SIZE;
147	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
148		panic("vm_set_page_size: page size not a power of two");
149}
150
151/*
152 *	vm_page_startup:
153 *
154 *	Initializes the resident memory module.
155 *
156 *	Allocates memory for the page cells, and
157 *	for the object/offset-to-page hash table headers.
158 *	Each page cell is initialized and placed on the free list.
159 */
160vm_offset_t
161vm_page_startup(vm_offset_t vaddr)
162{
163	vm_offset_t mapped;
164	vm_size_t npages;
165	vm_paddr_t page_range;
166	vm_paddr_t new_end;
167	int i;
168	vm_paddr_t pa;
169	int nblocks;
170	vm_paddr_t last_pa;
171
172	/* the biggest memory array is the second group of pages */
173	vm_paddr_t end;
174	vm_paddr_t biggestsize;
175	int biggestone;
176
177	vm_paddr_t total;
178	vm_size_t bootpages;
179
180	total = 0;
181	biggestsize = 0;
182	biggestone = 0;
183	nblocks = 0;
184	vaddr = round_page(vaddr);
185
186	for (i = 0; phys_avail[i + 1]; i += 2) {
187		phys_avail[i] = round_page(phys_avail[i]);
188		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189	}
190
191	for (i = 0; phys_avail[i + 1]; i += 2) {
192		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
193
194		if (size > biggestsize) {
195			biggestone = i;
196			biggestsize = size;
197		}
198		++nblocks;
199		total += size;
200	}
201
202	end = phys_avail[biggestone+1];
203
204	/*
205	 * Initialize the locks.
206	 */
207	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
208	    MTX_RECURSE);
209	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
210	    MTX_SPIN);
211
212	/*
213	 * Initialize the queue headers for the free queue, the active queue
214	 * and the inactive queue.
215	 */
216	vm_pageq_init();
217
218	/*
219	 * Allocate memory for use when boot strapping the kernel memory
220	 * allocator.
221	 */
222	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
223	new_end = end - bootpages;
224	new_end = trunc_page(new_end);
225	mapped = pmap_map(&vaddr, new_end, end,
226	    VM_PROT_READ | VM_PROT_WRITE);
227	bzero((caddr_t) mapped, end - new_end);
228	uma_startup((caddr_t)mapped);
229
230	/*
231	 * Compute the number of pages of memory that will be available for
232	 * use (taking into account the overhead of a page structure per
233	 * page).
234	 */
235	first_page = phys_avail[0] / PAGE_SIZE;
236	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
237	npages = (total - (page_range * sizeof(struct vm_page)) -
238	    (end - new_end)) / PAGE_SIZE;
239	end = new_end;
240
241	/*
242	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
243	 */
244	vaddr += PAGE_SIZE;
245
246	/*
247	 * Initialize the mem entry structures now, and put them in the free
248	 * queue.
249	 */
250	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
251	mapped = pmap_map(&vaddr, new_end, end,
252	    VM_PROT_READ | VM_PROT_WRITE);
253	vm_page_array = (vm_page_t) mapped;
254	phys_avail[biggestone + 1] = new_end;
255
256	/*
257	 * Clear all of the page structures
258	 */
259	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
260	vm_page_array_size = page_range;
261
262	/*
263	 * Construct the free queue(s) in descending order (by physical
264	 * address) so that the first 16MB of physical memory is allocated
265	 * last rather than first.  On large-memory machines, this avoids
266	 * the exhaustion of low physical memory before isa_dma_init has run.
267	 */
268	cnt.v_page_count = 0;
269	cnt.v_free_count = 0;
270	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
271		pa = phys_avail[i];
272		last_pa = phys_avail[i + 1];
273		while (pa < last_pa && npages-- > 0) {
274			vm_pageq_add_new_page(pa);
275			pa += PAGE_SIZE;
276		}
277	}
278	return (vaddr);
279}
280
281void
282vm_page_flag_set(vm_page_t m, unsigned short bits)
283{
284
285	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
286	m->flags |= bits;
287}
288
289void
290vm_page_flag_clear(vm_page_t m, unsigned short bits)
291{
292
293	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
294	m->flags &= ~bits;
295}
296
297void
298vm_page_busy(vm_page_t m)
299{
300
301	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
302	KASSERT((m->flags & PG_BUSY) == 0,
303	    ("vm_page_busy: page already busy!!!"));
304	vm_page_flag_set(m, PG_BUSY);
305}
306
307/*
308 *      vm_page_flash:
309 *
310 *      wakeup anyone waiting for the page.
311 */
312void
313vm_page_flash(vm_page_t m)
314{
315
316	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
317	if (m->flags & PG_WANTED) {
318		vm_page_flag_clear(m, PG_WANTED);
319		wakeup(m);
320	}
321}
322
323/*
324 *      vm_page_wakeup:
325 *
326 *      clear the PG_BUSY flag and wakeup anyone waiting for the
327 *      page.
328 *
329 */
330void
331vm_page_wakeup(vm_page_t m)
332{
333
334	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
335	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
336	vm_page_flag_clear(m, PG_BUSY);
337	vm_page_flash(m);
338}
339
340void
341vm_page_io_start(vm_page_t m)
342{
343
344	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
345	m->busy++;
346}
347
348void
349vm_page_io_finish(vm_page_t m)
350{
351
352	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
353	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
354	m->busy--;
355	if (m->busy == 0)
356		vm_page_flash(m);
357}
358
359/*
360 * Keep page from being freed by the page daemon
361 * much of the same effect as wiring, except much lower
362 * overhead and should be used only for *very* temporary
363 * holding ("wiring").
364 */
365void
366vm_page_hold(vm_page_t mem)
367{
368
369	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
370        mem->hold_count++;
371}
372
373void
374vm_page_unhold(vm_page_t mem)
375{
376
377	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
378	--mem->hold_count;
379	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
380	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
381		vm_page_free_toq(mem);
382}
383
384/*
385 *	vm_page_free:
386 *
387 *	Free a page
388 *
389 *	The clearing of PG_ZERO is a temporary safety until the code can be
390 *	reviewed to determine that PG_ZERO is being properly cleared on
391 *	write faults or maps.  PG_ZERO was previously cleared in
392 *	vm_page_alloc().
393 */
394void
395vm_page_free(vm_page_t m)
396{
397	vm_page_flag_clear(m, PG_ZERO);
398	vm_page_free_toq(m);
399	vm_page_zero_idle_wakeup();
400}
401
402/*
403 *	vm_page_free_zero:
404 *
405 *	Free a page to the zerod-pages queue
406 */
407void
408vm_page_free_zero(vm_page_t m)
409{
410	vm_page_flag_set(m, PG_ZERO);
411	vm_page_free_toq(m);
412}
413
414/*
415 *	vm_page_sleep_if_busy:
416 *
417 *	Sleep and release the page queues lock if PG_BUSY is set or,
418 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
419 *	thread slept and the page queues lock was released.
420 *	Otherwise, retains the page queues lock and returns FALSE.
421 */
422int
423vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
424{
425	vm_object_t object;
426
427	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
428	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
429	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
430		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
431		/*
432		 * It's possible that while we sleep, the page will get
433		 * unbusied and freed.  If we are holding the object
434		 * lock, we will assume we hold a reference to the object
435		 * such that even if m->object changes, we can re-lock
436		 * it.
437		 */
438		object = m->object;
439		VM_OBJECT_UNLOCK(object);
440		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
441		VM_OBJECT_LOCK(object);
442		return (TRUE);
443	}
444	return (FALSE);
445}
446
447/*
448 *	vm_page_dirty:
449 *
450 *	make page all dirty
451 */
452void
453vm_page_dirty(vm_page_t m)
454{
455	KASSERT(m->queue - m->pc != PQ_CACHE,
456	    ("vm_page_dirty: page in cache!"));
457	KASSERT(m->queue - m->pc != PQ_FREE,
458	    ("vm_page_dirty: page is free!"));
459	m->dirty = VM_PAGE_BITS_ALL;
460}
461
462/*
463 *	vm_page_splay:
464 *
465 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
466 *	the vm_page containing the given pindex.  If, however, that
467 *	pindex is not found in the vm_object, returns a vm_page that is
468 *	adjacent to the pindex, coming before or after it.
469 */
470vm_page_t
471vm_page_splay(vm_pindex_t pindex, vm_page_t root)
472{
473	struct vm_page dummy;
474	vm_page_t lefttreemax, righttreemin, y;
475
476	if (root == NULL)
477		return (root);
478	lefttreemax = righttreemin = &dummy;
479	for (;; root = y) {
480		if (pindex < root->pindex) {
481			if ((y = root->left) == NULL)
482				break;
483			if (pindex < y->pindex) {
484				/* Rotate right. */
485				root->left = y->right;
486				y->right = root;
487				root = y;
488				if ((y = root->left) == NULL)
489					break;
490			}
491			/* Link into the new root's right tree. */
492			righttreemin->left = root;
493			righttreemin = root;
494		} else if (pindex > root->pindex) {
495			if ((y = root->right) == NULL)
496				break;
497			if (pindex > y->pindex) {
498				/* Rotate left. */
499				root->right = y->left;
500				y->left = root;
501				root = y;
502				if ((y = root->right) == NULL)
503					break;
504			}
505			/* Link into the new root's left tree. */
506			lefttreemax->right = root;
507			lefttreemax = root;
508		} else
509			break;
510	}
511	/* Assemble the new root. */
512	lefttreemax->right = root->left;
513	righttreemin->left = root->right;
514	root->left = dummy.right;
515	root->right = dummy.left;
516	return (root);
517}
518
519/*
520 *	vm_page_insert:		[ internal use only ]
521 *
522 *	Inserts the given mem entry into the object and object list.
523 *
524 *	The pagetables are not updated but will presumably fault the page
525 *	in if necessary, or if a kernel page the caller will at some point
526 *	enter the page into the kernel's pmap.  We are not allowed to block
527 *	here so we *can't* do this anyway.
528 *
529 *	The object and page must be locked.
530 *	This routine may not block.
531 */
532void
533vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
534{
535	vm_page_t root;
536
537	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
538	if (m->object != NULL)
539		panic("vm_page_insert: page already inserted");
540
541	/*
542	 * Record the object/offset pair in this page
543	 */
544	m->object = object;
545	m->pindex = pindex;
546
547	/*
548	 * Now link into the object's ordered list of backed pages.
549	 */
550	root = object->root;
551	if (root == NULL) {
552		m->left = NULL;
553		m->right = NULL;
554		TAILQ_INSERT_TAIL(&object->memq, m, listq);
555	} else {
556		root = vm_page_splay(pindex, root);
557		if (pindex < root->pindex) {
558			m->left = root->left;
559			m->right = root;
560			root->left = NULL;
561			TAILQ_INSERT_BEFORE(root, m, listq);
562		} else if (pindex == root->pindex)
563			panic("vm_page_insert: offset already allocated");
564		else {
565			m->right = root->right;
566			m->left = root;
567			root->right = NULL;
568			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
569		}
570	}
571	object->root = m;
572	object->generation++;
573
574	/*
575	 * show that the object has one more resident page.
576	 */
577	object->resident_page_count++;
578
579	/*
580	 * Since we are inserting a new and possibly dirty page,
581	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
582	 */
583	if (m->flags & PG_WRITEABLE)
584		vm_object_set_writeable_dirty(object);
585}
586
587/*
588 *	vm_page_remove:
589 *				NOTE: used by device pager as well -wfj
590 *
591 *	Removes the given mem entry from the object/offset-page
592 *	table and the object page list, but do not invalidate/terminate
593 *	the backing store.
594 *
595 *	The object and page must be locked.
596 *	The underlying pmap entry (if any) is NOT removed here.
597 *	This routine may not block.
598 */
599void
600vm_page_remove(vm_page_t m)
601{
602	vm_object_t object;
603	vm_page_t root;
604
605	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
606	if ((object = m->object) == NULL)
607		return;
608	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
609	if (m->flags & PG_BUSY) {
610		vm_page_flag_clear(m, PG_BUSY);
611		vm_page_flash(m);
612	}
613
614	/*
615	 * Now remove from the object's list of backed pages.
616	 */
617	if (m != object->root)
618		vm_page_splay(m->pindex, object->root);
619	if (m->left == NULL)
620		root = m->right;
621	else {
622		root = vm_page_splay(m->pindex, m->left);
623		root->right = m->right;
624	}
625	object->root = root;
626	TAILQ_REMOVE(&object->memq, m, listq);
627
628	/*
629	 * And show that the object has one fewer resident page.
630	 */
631	object->resident_page_count--;
632	object->generation++;
633
634	m->object = NULL;
635}
636
637/*
638 *	vm_page_lookup:
639 *
640 *	Returns the page associated with the object/offset
641 *	pair specified; if none is found, NULL is returned.
642 *
643 *	The object must be locked.
644 *	This routine may not block.
645 *	This is a critical path routine
646 */
647vm_page_t
648vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
649{
650	vm_page_t m;
651
652	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
653	if ((m = object->root) != NULL && m->pindex != pindex) {
654		m = vm_page_splay(pindex, m);
655		if ((object->root = m)->pindex != pindex)
656			m = NULL;
657	}
658	return (m);
659}
660
661/*
662 *	vm_page_rename:
663 *
664 *	Move the given memory entry from its
665 *	current object to the specified target object/offset.
666 *
667 *	The object must be locked.
668 *	This routine may not block.
669 *
670 *	Note: swap associated with the page must be invalidated by the move.  We
671 *	      have to do this for several reasons:  (1) we aren't freeing the
672 *	      page, (2) we are dirtying the page, (3) the VM system is probably
673 *	      moving the page from object A to B, and will then later move
674 *	      the backing store from A to B and we can't have a conflict.
675 *
676 *	Note: we *always* dirty the page.  It is necessary both for the
677 *	      fact that we moved it, and because we may be invalidating
678 *	      swap.  If the page is on the cache, we have to deactivate it
679 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
680 *	      on the cache.
681 */
682void
683vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
684{
685
686	vm_page_remove(m);
687	vm_page_insert(m, new_object, new_pindex);
688	if (m->queue - m->pc == PQ_CACHE)
689		vm_page_deactivate(m);
690	vm_page_dirty(m);
691}
692
693/*
694 *	vm_page_select_cache:
695 *
696 *	Find a page on the cache queue with color optimization.  As pages
697 *	might be found, but not applicable, they are deactivated.  This
698 *	keeps us from using potentially busy cached pages.
699 *
700 *	This routine may not block.
701 */
702vm_page_t
703vm_page_select_cache(int color)
704{
705	vm_page_t m;
706
707	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
708	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
709		if (m->hold_count == 0 && (VM_OBJECT_TRYLOCK(m->object) ||
710		    VM_OBJECT_LOCKED(m->object))) {
711			KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0,
712			    ("Found busy cache page %p", m));
713			KASSERT(m->dirty == 0,
714			    ("Found dirty cache page %p", m));
715			KASSERT(!pmap_page_is_mapped(m),
716			    ("Found mapped cache page %p", m));
717			KASSERT((m->flags & PG_UNMANAGED) == 0,
718			    ("Found unmanaged cache page %p", m));
719			KASSERT(m->wire_count == 0,
720			    ("Found wired cache page %p", m));
721			break;
722		}
723		vm_page_deactivate(m);
724	}
725	return (m);
726}
727
728/*
729 *	vm_page_alloc:
730 *
731 *	Allocate and return a memory cell associated
732 *	with this VM object/offset pair.
733 *
734 *	page_req classes:
735 *	VM_ALLOC_NORMAL		normal process request
736 *	VM_ALLOC_SYSTEM		system *really* needs a page
737 *	VM_ALLOC_INTERRUPT	interrupt time request
738 *	VM_ALLOC_ZERO		zero page
739 *
740 *	This routine may not block.
741 *
742 *	Additional special handling is required when called from an
743 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
744 *	the page cache in this case.
745 */
746vm_page_t
747vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
748{
749	vm_object_t m_object;
750	vm_page_t m = NULL;
751	int color, flags, page_req;
752
753	page_req = req & VM_ALLOC_CLASS_MASK;
754	KASSERT(curthread->td_intr_nesting_level == 0 ||
755	    page_req == VM_ALLOC_INTERRUPT,
756	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
757
758	if ((req & VM_ALLOC_NOOBJ) == 0) {
759		KASSERT(object != NULL,
760		    ("vm_page_alloc: NULL object."));
761		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
762		color = (pindex + object->pg_color) & PQ_L2_MASK;
763	} else
764		color = pindex & PQ_L2_MASK;
765
766	/*
767	 * The pager is allowed to eat deeper into the free page list.
768	 */
769	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
770		page_req = VM_ALLOC_SYSTEM;
771	};
772
773loop:
774	mtx_lock_spin(&vm_page_queue_free_mtx);
775	if (cnt.v_free_count > cnt.v_free_reserved ||
776	    (page_req == VM_ALLOC_SYSTEM &&
777	     cnt.v_cache_count == 0 &&
778	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
779	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
780		/*
781		 * Allocate from the free queue if the number of free pages
782		 * exceeds the minimum for the request class.
783		 */
784		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
785	} else if (page_req != VM_ALLOC_INTERRUPT) {
786		mtx_unlock_spin(&vm_page_queue_free_mtx);
787		/*
788		 * Allocatable from cache (non-interrupt only).  On success,
789		 * we must free the page and try again, thus ensuring that
790		 * cnt.v_*_free_min counters are replenished.
791		 */
792		vm_page_lock_queues();
793		if ((m = vm_page_select_cache(color)) == NULL) {
794#if defined(DIAGNOSTIC)
795			if (cnt.v_cache_count > 0)
796				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
797#endif
798			vm_page_unlock_queues();
799			atomic_add_int(&vm_pageout_deficit, 1);
800			pagedaemon_wakeup();
801			return (NULL);
802		}
803		m_object = m->object;
804		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
805		vm_page_free(m);
806		vm_page_unlock_queues();
807		if (m_object != object)
808			VM_OBJECT_UNLOCK(m_object);
809		goto loop;
810	} else {
811		/*
812		 * Not allocatable from cache from interrupt, give up.
813		 */
814		mtx_unlock_spin(&vm_page_queue_free_mtx);
815		atomic_add_int(&vm_pageout_deficit, 1);
816		pagedaemon_wakeup();
817		return (NULL);
818	}
819
820	/*
821	 *  At this point we had better have found a good page.
822	 */
823
824	KASSERT(
825	    m != NULL,
826	    ("vm_page_alloc(): missing page on free queue")
827	);
828
829	/*
830	 * Remove from free queue
831	 */
832	vm_pageq_remove_nowakeup(m);
833
834	/*
835	 * Initialize structure.  Only the PG_ZERO flag is inherited.
836	 */
837	flags = PG_BUSY;
838	if (m->flags & PG_ZERO) {
839		vm_page_zero_count--;
840		if (req & VM_ALLOC_ZERO)
841			flags = PG_ZERO | PG_BUSY;
842	}
843	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
844		flags &= ~PG_BUSY;
845	m->flags = flags;
846	if (req & VM_ALLOC_WIRED) {
847		atomic_add_int(&cnt.v_wire_count, 1);
848		m->wire_count = 1;
849	} else
850		m->wire_count = 0;
851	m->hold_count = 0;
852	m->act_count = 0;
853	m->busy = 0;
854	m->valid = 0;
855	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
856	mtx_unlock_spin(&vm_page_queue_free_mtx);
857
858	if ((req & VM_ALLOC_NOOBJ) == 0)
859		vm_page_insert(m, object, pindex);
860	else
861		m->pindex = pindex;
862
863	/*
864	 * Don't wakeup too often - wakeup the pageout daemon when
865	 * we would be nearly out of memory.
866	 */
867	if (vm_paging_needed())
868		pagedaemon_wakeup();
869
870	return (m);
871}
872
873/*
874 *	vm_wait:	(also see VM_WAIT macro)
875 *
876 *	Block until free pages are available for allocation
877 *	- Called in various places before memory allocations.
878 */
879void
880vm_wait(void)
881{
882
883	vm_page_lock_queues();
884	if (curproc == pageproc) {
885		vm_pageout_pages_needed = 1;
886		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
887		    PDROP | PSWP, "VMWait", 0);
888	} else {
889		if (!vm_pages_needed) {
890			vm_pages_needed = 1;
891			wakeup(&vm_pages_needed);
892		}
893		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
894		    "vmwait", 0);
895	}
896}
897
898/*
899 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
900 *
901 *	Block until free pages are available for allocation
902 *	- Called only in vm_fault so that processes page faulting
903 *	  can be easily tracked.
904 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
905 *	  processes will be able to grab memory first.  Do not change
906 *	  this balance without careful testing first.
907 */
908void
909vm_waitpfault(void)
910{
911
912	vm_page_lock_queues();
913	if (!vm_pages_needed) {
914		vm_pages_needed = 1;
915		wakeup(&vm_pages_needed);
916	}
917	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
918	    "pfault", 0);
919}
920
921/*
922 *	vm_page_activate:
923 *
924 *	Put the specified page on the active list (if appropriate).
925 *	Ensure that act_count is at least ACT_INIT but do not otherwise
926 *	mess with it.
927 *
928 *	The page queues must be locked.
929 *	This routine may not block.
930 */
931void
932vm_page_activate(vm_page_t m)
933{
934
935	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
936	if (m->queue != PQ_ACTIVE) {
937		if ((m->queue - m->pc) == PQ_CACHE)
938			cnt.v_reactivated++;
939		vm_pageq_remove(m);
940		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
941			if (m->act_count < ACT_INIT)
942				m->act_count = ACT_INIT;
943			vm_pageq_enqueue(PQ_ACTIVE, m);
944		}
945	} else {
946		if (m->act_count < ACT_INIT)
947			m->act_count = ACT_INIT;
948	}
949}
950
951/*
952 *	vm_page_free_wakeup:
953 *
954 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
955 *	routine is called when a page has been added to the cache or free
956 *	queues.
957 *
958 *	The page queues must be locked.
959 *	This routine may not block.
960 */
961static __inline void
962vm_page_free_wakeup(void)
963{
964
965	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
966	/*
967	 * if pageout daemon needs pages, then tell it that there are
968	 * some free.
969	 */
970	if (vm_pageout_pages_needed &&
971	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
972		wakeup(&vm_pageout_pages_needed);
973		vm_pageout_pages_needed = 0;
974	}
975	/*
976	 * wakeup processes that are waiting on memory if we hit a
977	 * high water mark. And wakeup scheduler process if we have
978	 * lots of memory. this process will swapin processes.
979	 */
980	if (vm_pages_needed && !vm_page_count_min()) {
981		vm_pages_needed = 0;
982		wakeup(&cnt.v_free_count);
983	}
984}
985
986/*
987 *	vm_page_free_toq:
988 *
989 *	Returns the given page to the PQ_FREE list,
990 *	disassociating it with any VM object.
991 *
992 *	Object and page must be locked prior to entry.
993 *	This routine may not block.
994 */
995
996void
997vm_page_free_toq(vm_page_t m)
998{
999	struct vpgqueues *pq;
1000	vm_object_t object = m->object;
1001
1002	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1003	cnt.v_tfree++;
1004
1005	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1006		printf(
1007		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1008		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1009		    m->hold_count);
1010		if ((m->queue - m->pc) == PQ_FREE)
1011			panic("vm_page_free: freeing free page");
1012		else
1013			panic("vm_page_free: freeing busy page");
1014	}
1015
1016	/*
1017	 * unqueue, then remove page.  Note that we cannot destroy
1018	 * the page here because we do not want to call the pager's
1019	 * callback routine until after we've put the page on the
1020	 * appropriate free queue.
1021	 */
1022	vm_pageq_remove_nowakeup(m);
1023	vm_page_remove(m);
1024
1025	/*
1026	 * If fictitious remove object association and
1027	 * return, otherwise delay object association removal.
1028	 */
1029	if ((m->flags & PG_FICTITIOUS) != 0) {
1030		return;
1031	}
1032
1033	m->valid = 0;
1034	vm_page_undirty(m);
1035
1036	if (m->wire_count != 0) {
1037		if (m->wire_count > 1) {
1038			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1039				m->wire_count, (long)m->pindex);
1040		}
1041		panic("vm_page_free: freeing wired page");
1042	}
1043
1044	/*
1045	 * If we've exhausted the object's resident pages we want to free
1046	 * it up.
1047	 */
1048	if (object &&
1049	    (object->type == OBJT_VNODE) &&
1050	    ((object->flags & OBJ_DEAD) == 0)
1051	) {
1052		struct vnode *vp = (struct vnode *)object->handle;
1053
1054		if (vp) {
1055			VI_LOCK(vp);
1056			if (VSHOULDFREE(vp))
1057				vfree(vp);
1058			VI_UNLOCK(vp);
1059		}
1060	}
1061
1062	/*
1063	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1064	 */
1065	if (m->flags & PG_UNMANAGED) {
1066		m->flags &= ~PG_UNMANAGED;
1067	}
1068
1069	if (m->hold_count != 0) {
1070		m->flags &= ~PG_ZERO;
1071		m->queue = PQ_HOLD;
1072	} else
1073		m->queue = PQ_FREE + m->pc;
1074	pq = &vm_page_queues[m->queue];
1075	mtx_lock_spin(&vm_page_queue_free_mtx);
1076	pq->lcnt++;
1077	++(*pq->cnt);
1078
1079	/*
1080	 * Put zero'd pages on the end ( where we look for zero'd pages
1081	 * first ) and non-zerod pages at the head.
1082	 */
1083	if (m->flags & PG_ZERO) {
1084		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1085		++vm_page_zero_count;
1086	} else {
1087		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1088	}
1089	mtx_unlock_spin(&vm_page_queue_free_mtx);
1090	vm_page_free_wakeup();
1091}
1092
1093/*
1094 *	vm_page_unmanage:
1095 *
1096 * 	Prevent PV management from being done on the page.  The page is
1097 *	removed from the paging queues as if it were wired, and as a
1098 *	consequence of no longer being managed the pageout daemon will not
1099 *	touch it (since there is no way to locate the pte mappings for the
1100 *	page).  madvise() calls that mess with the pmap will also no longer
1101 *	operate on the page.
1102 *
1103 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1104 *	will clear the flag.
1105 *
1106 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1107 *	physical memory as backing store rather then swap-backed memory and
1108 *	will eventually be extended to support 4MB unmanaged physical
1109 *	mappings.
1110 */
1111void
1112vm_page_unmanage(vm_page_t m)
1113{
1114
1115	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1116	if ((m->flags & PG_UNMANAGED) == 0) {
1117		if (m->wire_count == 0)
1118			vm_pageq_remove(m);
1119	}
1120	vm_page_flag_set(m, PG_UNMANAGED);
1121}
1122
1123/*
1124 *	vm_page_wire:
1125 *
1126 *	Mark this page as wired down by yet
1127 *	another map, removing it from paging queues
1128 *	as necessary.
1129 *
1130 *	The page queues must be locked.
1131 *	This routine may not block.
1132 */
1133void
1134vm_page_wire(vm_page_t m)
1135{
1136
1137	/*
1138	 * Only bump the wire statistics if the page is not already wired,
1139	 * and only unqueue the page if it is on some queue (if it is unmanaged
1140	 * it is already off the queues).
1141	 */
1142	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1143	if (m->flags & PG_FICTITIOUS)
1144		return;
1145	if (m->wire_count == 0) {
1146		if ((m->flags & PG_UNMANAGED) == 0)
1147			vm_pageq_remove(m);
1148		atomic_add_int(&cnt.v_wire_count, 1);
1149	}
1150	m->wire_count++;
1151	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1152}
1153
1154/*
1155 *	vm_page_unwire:
1156 *
1157 *	Release one wiring of this page, potentially
1158 *	enabling it to be paged again.
1159 *
1160 *	Many pages placed on the inactive queue should actually go
1161 *	into the cache, but it is difficult to figure out which.  What
1162 *	we do instead, if the inactive target is well met, is to put
1163 *	clean pages at the head of the inactive queue instead of the tail.
1164 *	This will cause them to be moved to the cache more quickly and
1165 *	if not actively re-referenced, freed more quickly.  If we just
1166 *	stick these pages at the end of the inactive queue, heavy filesystem
1167 *	meta-data accesses can cause an unnecessary paging load on memory bound
1168 *	processes.  This optimization causes one-time-use metadata to be
1169 *	reused more quickly.
1170 *
1171 *	BUT, if we are in a low-memory situation we have no choice but to
1172 *	put clean pages on the cache queue.
1173 *
1174 *	A number of routines use vm_page_unwire() to guarantee that the page
1175 *	will go into either the inactive or active queues, and will NEVER
1176 *	be placed in the cache - for example, just after dirtying a page.
1177 *	dirty pages in the cache are not allowed.
1178 *
1179 *	The page queues must be locked.
1180 *	This routine may not block.
1181 */
1182void
1183vm_page_unwire(vm_page_t m, int activate)
1184{
1185
1186	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1187	if (m->flags & PG_FICTITIOUS)
1188		return;
1189	if (m->wire_count > 0) {
1190		m->wire_count--;
1191		if (m->wire_count == 0) {
1192			atomic_subtract_int(&cnt.v_wire_count, 1);
1193			if (m->flags & PG_UNMANAGED) {
1194				;
1195			} else if (activate)
1196				vm_pageq_enqueue(PQ_ACTIVE, m);
1197			else {
1198				vm_page_flag_clear(m, PG_WINATCFLS);
1199				vm_pageq_enqueue(PQ_INACTIVE, m);
1200			}
1201		}
1202	} else {
1203		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1204	}
1205}
1206
1207
1208/*
1209 * Move the specified page to the inactive queue.  If the page has
1210 * any associated swap, the swap is deallocated.
1211 *
1212 * Normally athead is 0 resulting in LRU operation.  athead is set
1213 * to 1 if we want this page to be 'as if it were placed in the cache',
1214 * except without unmapping it from the process address space.
1215 *
1216 * This routine may not block.
1217 */
1218static __inline void
1219_vm_page_deactivate(vm_page_t m, int athead)
1220{
1221
1222	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1223
1224	/*
1225	 * Ignore if already inactive.
1226	 */
1227	if (m->queue == PQ_INACTIVE)
1228		return;
1229	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1230		if ((m->queue - m->pc) == PQ_CACHE)
1231			cnt.v_reactivated++;
1232		vm_page_flag_clear(m, PG_WINATCFLS);
1233		vm_pageq_remove(m);
1234		if (athead)
1235			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1236		else
1237			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1238		m->queue = PQ_INACTIVE;
1239		vm_page_queues[PQ_INACTIVE].lcnt++;
1240		cnt.v_inactive_count++;
1241	}
1242}
1243
1244void
1245vm_page_deactivate(vm_page_t m)
1246{
1247    _vm_page_deactivate(m, 0);
1248}
1249
1250/*
1251 * vm_page_try_to_cache:
1252 *
1253 * Returns 0 on failure, 1 on success
1254 */
1255int
1256vm_page_try_to_cache(vm_page_t m)
1257{
1258
1259	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1260	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1261	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1262	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1263		return (0);
1264	}
1265	pmap_remove_all(m);
1266	if (m->dirty)
1267		return (0);
1268	vm_page_cache(m);
1269	return (1);
1270}
1271
1272/*
1273 * vm_page_try_to_free()
1274 *
1275 *	Attempt to free the page.  If we cannot free it, we do nothing.
1276 *	1 is returned on success, 0 on failure.
1277 */
1278int
1279vm_page_try_to_free(vm_page_t m)
1280{
1281
1282	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1283	if (m->object != NULL)
1284		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1285	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1286	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1287		return (0);
1288	}
1289	pmap_remove_all(m);
1290	if (m->dirty)
1291		return (0);
1292	vm_page_free(m);
1293	return (1);
1294}
1295
1296/*
1297 * vm_page_cache
1298 *
1299 * Put the specified page onto the page cache queue (if appropriate).
1300 *
1301 * This routine may not block.
1302 */
1303void
1304vm_page_cache(vm_page_t m)
1305{
1306
1307	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1308	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1309	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1310	    m->hold_count || m->wire_count) {
1311		printf("vm_page_cache: attempting to cache busy page\n");
1312		return;
1313	}
1314	if ((m->queue - m->pc) == PQ_CACHE)
1315		return;
1316
1317	/*
1318	 * Remove all pmaps and indicate that the page is not
1319	 * writeable or mapped.
1320	 */
1321	pmap_remove_all(m);
1322	if (m->dirty != 0) {
1323		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1324			(long)m->pindex);
1325	}
1326	vm_pageq_remove_nowakeup(m);
1327	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1328	vm_page_free_wakeup();
1329}
1330
1331/*
1332 * vm_page_dontneed
1333 *
1334 *	Cache, deactivate, or do nothing as appropriate.  This routine
1335 *	is typically used by madvise() MADV_DONTNEED.
1336 *
1337 *	Generally speaking we want to move the page into the cache so
1338 *	it gets reused quickly.  However, this can result in a silly syndrome
1339 *	due to the page recycling too quickly.  Small objects will not be
1340 *	fully cached.  On the otherhand, if we move the page to the inactive
1341 *	queue we wind up with a problem whereby very large objects
1342 *	unnecessarily blow away our inactive and cache queues.
1343 *
1344 *	The solution is to move the pages based on a fixed weighting.  We
1345 *	either leave them alone, deactivate them, or move them to the cache,
1346 *	where moving them to the cache has the highest weighting.
1347 *	By forcing some pages into other queues we eventually force the
1348 *	system to balance the queues, potentially recovering other unrelated
1349 *	space from active.  The idea is to not force this to happen too
1350 *	often.
1351 */
1352void
1353vm_page_dontneed(vm_page_t m)
1354{
1355	static int dnweight;
1356	int dnw;
1357	int head;
1358
1359	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1360	dnw = ++dnweight;
1361
1362	/*
1363	 * occassionally leave the page alone
1364	 */
1365	if ((dnw & 0x01F0) == 0 ||
1366	    m->queue == PQ_INACTIVE ||
1367	    m->queue - m->pc == PQ_CACHE
1368	) {
1369		if (m->act_count >= ACT_INIT)
1370			--m->act_count;
1371		return;
1372	}
1373
1374	if (m->dirty == 0 && pmap_is_modified(m))
1375		vm_page_dirty(m);
1376
1377	if (m->dirty || (dnw & 0x0070) == 0) {
1378		/*
1379		 * Deactivate the page 3 times out of 32.
1380		 */
1381		head = 0;
1382	} else {
1383		/*
1384		 * Cache the page 28 times out of every 32.  Note that
1385		 * the page is deactivated instead of cached, but placed
1386		 * at the head of the queue instead of the tail.
1387		 */
1388		head = 1;
1389	}
1390	_vm_page_deactivate(m, head);
1391}
1392
1393/*
1394 * Grab a page, waiting until we are waken up due to the page
1395 * changing state.  We keep on waiting, if the page continues
1396 * to be in the object.  If the page doesn't exist, first allocate it
1397 * and then conditionally zero it.
1398 *
1399 * This routine may block.
1400 */
1401vm_page_t
1402vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1403{
1404	vm_page_t m;
1405
1406	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1407retrylookup:
1408	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1409		vm_page_lock_queues();
1410		if (m->busy || (m->flags & PG_BUSY)) {
1411			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1412			VM_OBJECT_UNLOCK(object);
1413			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1414			VM_OBJECT_LOCK(object);
1415			if ((allocflags & VM_ALLOC_RETRY) == 0)
1416				return (NULL);
1417			goto retrylookup;
1418		} else {
1419			if (allocflags & VM_ALLOC_WIRED)
1420				vm_page_wire(m);
1421			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1422				vm_page_busy(m);
1423			vm_page_unlock_queues();
1424			return (m);
1425		}
1426	}
1427	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1428	if (m == NULL) {
1429		VM_OBJECT_UNLOCK(object);
1430		VM_WAIT;
1431		VM_OBJECT_LOCK(object);
1432		if ((allocflags & VM_ALLOC_RETRY) == 0)
1433			return (NULL);
1434		goto retrylookup;
1435	}
1436	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1437		pmap_zero_page(m);
1438	return (m);
1439}
1440
1441/*
1442 * Mapping function for valid bits or for dirty bits in
1443 * a page.  May not block.
1444 *
1445 * Inputs are required to range within a page.
1446 */
1447__inline int
1448vm_page_bits(int base, int size)
1449{
1450	int first_bit;
1451	int last_bit;
1452
1453	KASSERT(
1454	    base + size <= PAGE_SIZE,
1455	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1456	);
1457
1458	if (size == 0)		/* handle degenerate case */
1459		return (0);
1460
1461	first_bit = base >> DEV_BSHIFT;
1462	last_bit = (base + size - 1) >> DEV_BSHIFT;
1463
1464	return ((2 << last_bit) - (1 << first_bit));
1465}
1466
1467/*
1468 *	vm_page_set_validclean:
1469 *
1470 *	Sets portions of a page valid and clean.  The arguments are expected
1471 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1472 *	of any partial chunks touched by the range.  The invalid portion of
1473 *	such chunks will be zero'd.
1474 *
1475 *	This routine may not block.
1476 *
1477 *	(base + size) must be less then or equal to PAGE_SIZE.
1478 */
1479void
1480vm_page_set_validclean(vm_page_t m, int base, int size)
1481{
1482	int pagebits;
1483	int frag;
1484	int endoff;
1485
1486	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1487	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1488	if (size == 0)	/* handle degenerate case */
1489		return;
1490
1491	/*
1492	 * If the base is not DEV_BSIZE aligned and the valid
1493	 * bit is clear, we have to zero out a portion of the
1494	 * first block.
1495	 */
1496	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1497	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1498		pmap_zero_page_area(m, frag, base - frag);
1499
1500	/*
1501	 * If the ending offset is not DEV_BSIZE aligned and the
1502	 * valid bit is clear, we have to zero out a portion of
1503	 * the last block.
1504	 */
1505	endoff = base + size;
1506	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1507	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1508		pmap_zero_page_area(m, endoff,
1509		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1510
1511	/*
1512	 * Set valid, clear dirty bits.  If validating the entire
1513	 * page we can safely clear the pmap modify bit.  We also
1514	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1515	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1516	 * be set again.
1517	 *
1518	 * We set valid bits inclusive of any overlap, but we can only
1519	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1520	 * the range.
1521	 */
1522	pagebits = vm_page_bits(base, size);
1523	m->valid |= pagebits;
1524#if 0	/* NOT YET */
1525	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1526		frag = DEV_BSIZE - frag;
1527		base += frag;
1528		size -= frag;
1529		if (size < 0)
1530			size = 0;
1531	}
1532	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1533#endif
1534	m->dirty &= ~pagebits;
1535	if (base == 0 && size == PAGE_SIZE) {
1536		pmap_clear_modify(m);
1537		vm_page_flag_clear(m, PG_NOSYNC);
1538	}
1539}
1540
1541void
1542vm_page_clear_dirty(vm_page_t m, int base, int size)
1543{
1544
1545	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1546	m->dirty &= ~vm_page_bits(base, size);
1547}
1548
1549/*
1550 *	vm_page_set_invalid:
1551 *
1552 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1553 *	valid and dirty bits for the effected areas are cleared.
1554 *
1555 *	May not block.
1556 */
1557void
1558vm_page_set_invalid(vm_page_t m, int base, int size)
1559{
1560	int bits;
1561
1562	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1563	bits = vm_page_bits(base, size);
1564	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1565	m->valid &= ~bits;
1566	m->dirty &= ~bits;
1567	m->object->generation++;
1568}
1569
1570/*
1571 * vm_page_zero_invalid()
1572 *
1573 *	The kernel assumes that the invalid portions of a page contain
1574 *	garbage, but such pages can be mapped into memory by user code.
1575 *	When this occurs, we must zero out the non-valid portions of the
1576 *	page so user code sees what it expects.
1577 *
1578 *	Pages are most often semi-valid when the end of a file is mapped
1579 *	into memory and the file's size is not page aligned.
1580 */
1581void
1582vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1583{
1584	int b;
1585	int i;
1586
1587	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1588	/*
1589	 * Scan the valid bits looking for invalid sections that
1590	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1591	 * valid bit may be set ) have already been zerod by
1592	 * vm_page_set_validclean().
1593	 */
1594	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1595		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1596		    (m->valid & (1 << i))
1597		) {
1598			if (i > b) {
1599				pmap_zero_page_area(m,
1600				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1601			}
1602			b = i + 1;
1603		}
1604	}
1605
1606	/*
1607	 * setvalid is TRUE when we can safely set the zero'd areas
1608	 * as being valid.  We can do this if there are no cache consistancy
1609	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1610	 */
1611	if (setvalid)
1612		m->valid = VM_PAGE_BITS_ALL;
1613}
1614
1615/*
1616 *	vm_page_is_valid:
1617 *
1618 *	Is (partial) page valid?  Note that the case where size == 0
1619 *	will return FALSE in the degenerate case where the page is
1620 *	entirely invalid, and TRUE otherwise.
1621 *
1622 *	May not block.
1623 */
1624int
1625vm_page_is_valid(vm_page_t m, int base, int size)
1626{
1627	int bits = vm_page_bits(base, size);
1628
1629	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1630	if (m->valid && ((m->valid & bits) == bits))
1631		return 1;
1632	else
1633		return 0;
1634}
1635
1636/*
1637 * update dirty bits from pmap/mmu.  May not block.
1638 */
1639void
1640vm_page_test_dirty(vm_page_t m)
1641{
1642	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1643		vm_page_dirty(m);
1644	}
1645}
1646
1647int so_zerocp_fullpage = 0;
1648
1649void
1650vm_page_cowfault(vm_page_t m)
1651{
1652	vm_page_t mnew;
1653	vm_object_t object;
1654	vm_pindex_t pindex;
1655
1656	object = m->object;
1657	pindex = m->pindex;
1658
1659 retry_alloc:
1660	vm_page_remove(m);
1661	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1662	if (mnew == NULL) {
1663		vm_page_insert(m, object, pindex);
1664		vm_page_unlock_queues();
1665		VM_OBJECT_UNLOCK(object);
1666		VM_WAIT;
1667		VM_OBJECT_LOCK(object);
1668		vm_page_lock_queues();
1669		goto retry_alloc;
1670	}
1671
1672	if (m->cow == 0) {
1673		/*
1674		 * check to see if we raced with an xmit complete when
1675		 * waiting to allocate a page.  If so, put things back
1676		 * the way they were
1677		 */
1678		vm_page_free(mnew);
1679		vm_page_insert(m, object, pindex);
1680	} else { /* clear COW & copy page */
1681		if (!so_zerocp_fullpage)
1682			pmap_copy_page(m, mnew);
1683		mnew->valid = VM_PAGE_BITS_ALL;
1684		vm_page_dirty(mnew);
1685		vm_page_flag_clear(mnew, PG_BUSY);
1686	}
1687}
1688
1689void
1690vm_page_cowclear(vm_page_t m)
1691{
1692
1693	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1694	if (m->cow) {
1695		m->cow--;
1696		/*
1697		 * let vm_fault add back write permission  lazily
1698		 */
1699	}
1700	/*
1701	 *  sf_buf_free() will free the page, so we needn't do it here
1702	 */
1703}
1704
1705void
1706vm_page_cowsetup(vm_page_t m)
1707{
1708
1709	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1710	m->cow++;
1711	pmap_page_protect(m, VM_PROT_READ);
1712}
1713
1714#include "opt_ddb.h"
1715#ifdef DDB
1716#include <sys/kernel.h>
1717
1718#include <ddb/ddb.h>
1719
1720DB_SHOW_COMMAND(page, vm_page_print_page_info)
1721{
1722	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1723	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1724	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1725	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1726	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1727	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1728	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1729	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1730	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1731	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1732}
1733
1734DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1735{
1736	int i;
1737	db_printf("PQ_FREE:");
1738	for (i = 0; i < PQ_L2_SIZE; i++) {
1739		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1740	}
1741	db_printf("\n");
1742
1743	db_printf("PQ_CACHE:");
1744	for (i = 0; i < PQ_L2_SIZE; i++) {
1745		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1746	}
1747	db_printf("\n");
1748
1749	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1750		vm_page_queues[PQ_ACTIVE].lcnt,
1751		vm_page_queues[PQ_INACTIVE].lcnt);
1752}
1753#endif /* DDB */
1754