vm_page.c revision 125798
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 */
38
39/*
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 *
45 * Permission to use, copy, modify and distribute this software and
46 * its documentation is hereby granted, provided that both the copyright
47 * notice and this permission notice appear in all copies of the
48 * software, derivative works or modified versions, and any portions
49 * thereof, and that both notices appear in supporting documentation.
50 *
51 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
52 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
53 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 *
55 * Carnegie Mellon requests users of this software to return to
56 *
57 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
58 *  School of Computer Science
59 *  Carnegie Mellon University
60 *  Pittsburgh PA 15213-3890
61 *
62 * any improvements or extensions that they make and grant Carnegie the
63 * rights to redistribute these changes.
64 */
65
66/*
67 *			GENERAL RULES ON VM_PAGE MANIPULATION
68 *
69 *	- a pageq mutex is required when adding or removing a page from a
70 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
71 *	  busy state of a page.
72 *
73 *	- a hash chain mutex is required when associating or disassociating
74 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
75 *	  regardless of other mutexes or the busy state of a page.
76 *
77 *	- either a hash chain mutex OR a busied page is required in order
78 *	  to modify the page flags.  A hash chain mutex must be obtained in
79 *	  order to busy a page.  A page's flags cannot be modified by a
80 *	  hash chain mutex if the page is marked busy.
81 *
82 *	- The object memq mutex is held when inserting or removing
83 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
84 *	  is different from the object's main mutex.
85 *
86 *	Generally speaking, you have to be aware of side effects when running
87 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
88 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
89 *	vm_page_cache(), vm_page_activate(), and a number of other routines
90 *	will release the hash chain mutex for you.  Intermediate manipulation
91 *	routines such as vm_page_flag_set() expect the hash chain to be held
92 *	on entry and the hash chain will remain held on return.
93 *
94 *	pageq scanning can only occur with the pageq in question locked.
95 *	We have a known bottleneck with the active queue, but the cache
96 *	and free queues are actually arrays already.
97 */
98
99/*
100 *	Resident memory management module.
101 */
102
103#include <sys/cdefs.h>
104__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 125798 2004-02-14 08:54:37Z alc $");
105
106#include <sys/param.h>
107#include <sys/systm.h>
108#include <sys/lock.h>
109#include <sys/malloc.h>
110#include <sys/mutex.h>
111#include <sys/proc.h>
112#include <sys/vmmeter.h>
113#include <sys/vnode.h>
114
115#include <vm/vm.h>
116#include <vm/vm_param.h>
117#include <vm/vm_kern.h>
118#include <vm/vm_object.h>
119#include <vm/vm_page.h>
120#include <vm/vm_pageout.h>
121#include <vm/vm_pager.h>
122#include <vm/vm_extern.h>
123#include <vm/uma.h>
124#include <vm/uma_int.h>
125
126/*
127 *	Associated with page of user-allocatable memory is a
128 *	page structure.
129 */
130
131struct mtx vm_page_queue_mtx;
132struct mtx vm_page_queue_free_mtx;
133
134vm_page_t vm_page_array = 0;
135int vm_page_array_size = 0;
136long first_page = 0;
137int vm_page_zero_count = 0;
138
139/*
140 *	vm_set_page_size:
141 *
142 *	Sets the page size, perhaps based upon the memory
143 *	size.  Must be called before any use of page-size
144 *	dependent functions.
145 */
146void
147vm_set_page_size(void)
148{
149	if (cnt.v_page_size == 0)
150		cnt.v_page_size = PAGE_SIZE;
151	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
152		panic("vm_set_page_size: page size not a power of two");
153}
154
155/*
156 *	vm_page_startup:
157 *
158 *	Initializes the resident memory module.
159 *
160 *	Allocates memory for the page cells, and
161 *	for the object/offset-to-page hash table headers.
162 *	Each page cell is initialized and placed on the free list.
163 */
164vm_offset_t
165vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166{
167	vm_offset_t mapped;
168	vm_size_t npages;
169	vm_paddr_t page_range;
170	vm_paddr_t new_end;
171	int i;
172	vm_paddr_t pa;
173	int nblocks;
174	vm_paddr_t last_pa;
175
176	/* the biggest memory array is the second group of pages */
177	vm_paddr_t end;
178	vm_paddr_t biggestsize;
179	int biggestone;
180
181	vm_paddr_t total;
182	vm_size_t bootpages;
183
184	total = 0;
185	biggestsize = 0;
186	biggestone = 0;
187	nblocks = 0;
188	vaddr = round_page(vaddr);
189
190	for (i = 0; phys_avail[i + 1]; i += 2) {
191		phys_avail[i] = round_page(phys_avail[i]);
192		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
193	}
194
195	for (i = 0; phys_avail[i + 1]; i += 2) {
196		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
197
198		if (size > biggestsize) {
199			biggestone = i;
200			biggestsize = size;
201		}
202		++nblocks;
203		total += size;
204	}
205
206	end = phys_avail[biggestone+1];
207
208	/*
209	 * Initialize the locks.  Recursive acquisition of the vm page
210	 * queue free mutex begins in contigmalloc1().
211	 */
212	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
213	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
214	   MTX_RECURSE | MTX_SPIN);
215
216	/*
217	 * Initialize the queue headers for the free queue, the active queue
218	 * and the inactive queue.
219	 */
220	vm_pageq_init();
221
222	/*
223	 * Allocate memory for use when boot strapping the kernel memory
224	 * allocator.
225	 */
226	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
227	new_end = end - bootpages;
228	new_end = trunc_page(new_end);
229	mapped = pmap_map(&vaddr, new_end, end,
230	    VM_PROT_READ | VM_PROT_WRITE);
231	bzero((caddr_t) mapped, end - new_end);
232	uma_startup((caddr_t)mapped);
233
234	/*
235	 * Compute the number of pages of memory that will be available for
236	 * use (taking into account the overhead of a page structure per
237	 * page).
238	 */
239	first_page = phys_avail[0] / PAGE_SIZE;
240	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
241	npages = (total - (page_range * sizeof(struct vm_page)) -
242	    (end - new_end)) / PAGE_SIZE;
243	end = new_end;
244
245	/*
246	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
247	 */
248	vaddr += PAGE_SIZE;
249
250	/*
251	 * Initialize the mem entry structures now, and put them in the free
252	 * queue.
253	 */
254	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
255	mapped = pmap_map(&vaddr, new_end, end,
256	    VM_PROT_READ | VM_PROT_WRITE);
257	vm_page_array = (vm_page_t) mapped;
258	phys_avail[biggestone + 1] = new_end;
259
260	/*
261	 * Clear all of the page structures
262	 */
263	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
264	vm_page_array_size = page_range;
265
266	/*
267	 * Construct the free queue(s) in descending order (by physical
268	 * address) so that the first 16MB of physical memory is allocated
269	 * last rather than first.  On large-memory machines, this avoids
270	 * the exhaustion of low physical memory before isa_dmainit has run.
271	 */
272	cnt.v_page_count = 0;
273	cnt.v_free_count = 0;
274	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
275		pa = phys_avail[i];
276		last_pa = phys_avail[i + 1];
277		while (pa < last_pa && npages-- > 0) {
278			vm_pageq_add_new_page(pa);
279			pa += PAGE_SIZE;
280		}
281	}
282	return (vaddr);
283}
284
285void
286vm_page_flag_set(vm_page_t m, unsigned short bits)
287{
288
289	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
290	m->flags |= bits;
291}
292
293void
294vm_page_flag_clear(vm_page_t m, unsigned short bits)
295{
296
297	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
298	m->flags &= ~bits;
299}
300
301void
302vm_page_busy(vm_page_t m)
303{
304	KASSERT((m->flags & PG_BUSY) == 0,
305	    ("vm_page_busy: page already busy!!!"));
306	vm_page_flag_set(m, PG_BUSY);
307}
308
309/*
310 *      vm_page_flash:
311 *
312 *      wakeup anyone waiting for the page.
313 */
314void
315vm_page_flash(vm_page_t m)
316{
317	if (m->flags & PG_WANTED) {
318		vm_page_flag_clear(m, PG_WANTED);
319		wakeup(m);
320	}
321}
322
323/*
324 *      vm_page_wakeup:
325 *
326 *      clear the PG_BUSY flag and wakeup anyone waiting for the
327 *      page.
328 *
329 */
330void
331vm_page_wakeup(vm_page_t m)
332{
333	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
334	vm_page_flag_clear(m, PG_BUSY);
335	vm_page_flash(m);
336}
337
338void
339vm_page_io_start(vm_page_t m)
340{
341
342	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
343	m->busy++;
344}
345
346void
347vm_page_io_finish(vm_page_t m)
348{
349
350	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
351	m->busy--;
352	if (m->busy == 0)
353		vm_page_flash(m);
354}
355
356/*
357 * Keep page from being freed by the page daemon
358 * much of the same effect as wiring, except much lower
359 * overhead and should be used only for *very* temporary
360 * holding ("wiring").
361 */
362void
363vm_page_hold(vm_page_t mem)
364{
365
366	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
367        mem->hold_count++;
368}
369
370void
371vm_page_unhold(vm_page_t mem)
372{
373
374	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
375	--mem->hold_count;
376	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
377	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
378		vm_page_free_toq(mem);
379}
380
381/*
382 *	vm_page_free:
383 *
384 *	Free a page
385 *
386 *	The clearing of PG_ZERO is a temporary safety until the code can be
387 *	reviewed to determine that PG_ZERO is being properly cleared on
388 *	write faults or maps.  PG_ZERO was previously cleared in
389 *	vm_page_alloc().
390 */
391void
392vm_page_free(vm_page_t m)
393{
394	vm_page_flag_clear(m, PG_ZERO);
395	vm_page_free_toq(m);
396	vm_page_zero_idle_wakeup();
397}
398
399/*
400 *	vm_page_free_zero:
401 *
402 *	Free a page to the zerod-pages queue
403 */
404void
405vm_page_free_zero(vm_page_t m)
406{
407	vm_page_flag_set(m, PG_ZERO);
408	vm_page_free_toq(m);
409}
410
411/*
412 *	vm_page_sleep_if_busy:
413 *
414 *	Sleep and release the page queues lock if PG_BUSY is set or,
415 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
416 *	thread slept and the page queues lock was released.
417 *	Otherwise, retains the page queues lock and returns FALSE.
418 */
419int
420vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
421{
422	int is_object_locked;
423
424	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
425	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
426		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
427		/*
428		 * Remove mtx_owned() after vm_object locking is finished.
429		 */
430		if ((is_object_locked = m->object != NULL &&
431		     mtx_owned(&m->object->mtx)))
432			mtx_unlock(&m->object->mtx);
433		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
434		if (is_object_locked)
435			mtx_lock(&m->object->mtx);
436		return (TRUE);
437	}
438	return (FALSE);
439}
440
441/*
442 *	vm_page_dirty:
443 *
444 *	make page all dirty
445 */
446void
447vm_page_dirty(vm_page_t m)
448{
449	KASSERT(m->queue - m->pc != PQ_CACHE,
450	    ("vm_page_dirty: page in cache!"));
451	KASSERT(m->queue - m->pc != PQ_FREE,
452	    ("vm_page_dirty: page is free!"));
453	m->dirty = VM_PAGE_BITS_ALL;
454}
455
456/*
457 *	vm_page_splay:
458 *
459 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
460 *	the vm_page containing the given pindex.  If, however, that
461 *	pindex is not found in the vm_object, returns a vm_page that is
462 *	adjacent to the pindex, coming before or after it.
463 */
464vm_page_t
465vm_page_splay(vm_pindex_t pindex, vm_page_t root)
466{
467	struct vm_page dummy;
468	vm_page_t lefttreemax, righttreemin, y;
469
470	if (root == NULL)
471		return (root);
472	lefttreemax = righttreemin = &dummy;
473	for (;; root = y) {
474		if (pindex < root->pindex) {
475			if ((y = root->left) == NULL)
476				break;
477			if (pindex < y->pindex) {
478				/* Rotate right. */
479				root->left = y->right;
480				y->right = root;
481				root = y;
482				if ((y = root->left) == NULL)
483					break;
484			}
485			/* Link into the new root's right tree. */
486			righttreemin->left = root;
487			righttreemin = root;
488		} else if (pindex > root->pindex) {
489			if ((y = root->right) == NULL)
490				break;
491			if (pindex > y->pindex) {
492				/* Rotate left. */
493				root->right = y->left;
494				y->left = root;
495				root = y;
496				if ((y = root->right) == NULL)
497					break;
498			}
499			/* Link into the new root's left tree. */
500			lefttreemax->right = root;
501			lefttreemax = root;
502		} else
503			break;
504	}
505	/* Assemble the new root. */
506	lefttreemax->right = root->left;
507	righttreemin->left = root->right;
508	root->left = dummy.right;
509	root->right = dummy.left;
510	return (root);
511}
512
513/*
514 *	vm_page_insert:		[ internal use only ]
515 *
516 *	Inserts the given mem entry into the object and object list.
517 *
518 *	The pagetables are not updated but will presumably fault the page
519 *	in if necessary, or if a kernel page the caller will at some point
520 *	enter the page into the kernel's pmap.  We are not allowed to block
521 *	here so we *can't* do this anyway.
522 *
523 *	The object and page must be locked, and must be splhigh.
524 *	This routine may not block.
525 */
526void
527vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
528{
529	vm_page_t root;
530
531	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
532	if (m->object != NULL)
533		panic("vm_page_insert: page already inserted");
534
535	/*
536	 * Record the object/offset pair in this page
537	 */
538	m->object = object;
539	m->pindex = pindex;
540
541	/*
542	 * Now link into the object's ordered list of backed pages.
543	 */
544	root = object->root;
545	if (root == NULL) {
546		m->left = NULL;
547		m->right = NULL;
548		TAILQ_INSERT_TAIL(&object->memq, m, listq);
549	} else {
550		root = vm_page_splay(pindex, root);
551		if (pindex < root->pindex) {
552			m->left = root->left;
553			m->right = root;
554			root->left = NULL;
555			TAILQ_INSERT_BEFORE(root, m, listq);
556		} else if (pindex == root->pindex)
557			panic("vm_page_insert: offset already allocated");
558		else {
559			m->right = root->right;
560			m->left = root;
561			root->right = NULL;
562			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
563		}
564	}
565	object->root = m;
566	object->generation++;
567
568	/*
569	 * show that the object has one more resident page.
570	 */
571	object->resident_page_count++;
572
573	/*
574	 * Since we are inserting a new and possibly dirty page,
575	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
576	 */
577	if (m->flags & PG_WRITEABLE)
578		vm_object_set_writeable_dirty(object);
579}
580
581/*
582 *	vm_page_remove:
583 *				NOTE: used by device pager as well -wfj
584 *
585 *	Removes the given mem entry from the object/offset-page
586 *	table and the object page list, but do not invalidate/terminate
587 *	the backing store.
588 *
589 *	The object and page must be locked, and at splhigh.
590 *	The underlying pmap entry (if any) is NOT removed here.
591 *	This routine may not block.
592 */
593void
594vm_page_remove(vm_page_t m)
595{
596	vm_object_t object;
597	vm_page_t root;
598
599	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
600	if (m->object == NULL)
601		return;
602#ifndef	__alpha__
603	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
604#endif
605	if ((m->flags & PG_BUSY) == 0) {
606		panic("vm_page_remove: page not busy");
607	}
608
609	/*
610	 * Basically destroy the page.
611	 */
612	vm_page_wakeup(m);
613
614	object = m->object;
615
616	/*
617	 * Now remove from the object's list of backed pages.
618	 */
619	if (m != object->root)
620		vm_page_splay(m->pindex, object->root);
621	if (m->left == NULL)
622		root = m->right;
623	else {
624		root = vm_page_splay(m->pindex, m->left);
625		root->right = m->right;
626	}
627	object->root = root;
628	TAILQ_REMOVE(&object->memq, m, listq);
629
630	/*
631	 * And show that the object has one fewer resident page.
632	 */
633	object->resident_page_count--;
634	object->generation++;
635
636	m->object = NULL;
637}
638
639/*
640 *	vm_page_lookup:
641 *
642 *	Returns the page associated with the object/offset
643 *	pair specified; if none is found, NULL is returned.
644 *
645 *	The object must be locked.
646 *	This routine may not block.
647 *	This is a critical path routine
648 */
649vm_page_t
650vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
651{
652	vm_page_t m;
653
654	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
655	if ((m = object->root) != NULL && m->pindex != pindex) {
656		m = vm_page_splay(pindex, m);
657		if ((object->root = m)->pindex != pindex)
658			m = NULL;
659	}
660	return (m);
661}
662
663/*
664 *	vm_page_rename:
665 *
666 *	Move the given memory entry from its
667 *	current object to the specified target object/offset.
668 *
669 *	The object must be locked.
670 *	This routine may not block.
671 *
672 *	Note: this routine will raise itself to splvm(), the caller need not.
673 *
674 *	Note: swap associated with the page must be invalidated by the move.  We
675 *	      have to do this for several reasons:  (1) we aren't freeing the
676 *	      page, (2) we are dirtying the page, (3) the VM system is probably
677 *	      moving the page from object A to B, and will then later move
678 *	      the backing store from A to B and we can't have a conflict.
679 *
680 *	Note: we *always* dirty the page.  It is necessary both for the
681 *	      fact that we moved it, and because we may be invalidating
682 *	      swap.  If the page is on the cache, we have to deactivate it
683 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
684 *	      on the cache.
685 */
686void
687vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
688{
689	int s;
690
691	s = splvm();
692	vm_page_remove(m);
693	vm_page_insert(m, new_object, new_pindex);
694	if (m->queue - m->pc == PQ_CACHE)
695		vm_page_deactivate(m);
696	vm_page_dirty(m);
697	splx(s);
698}
699
700/*
701 *	vm_page_select_cache:
702 *
703 *	Find a page on the cache queue with color optimization.  As pages
704 *	might be found, but not applicable, they are deactivated.  This
705 *	keeps us from using potentially busy cached pages.
706 *
707 *	This routine must be called at splvm().
708 *	This routine may not block.
709 */
710vm_page_t
711vm_page_select_cache(int color)
712{
713	vm_page_t m;
714
715	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
716	while (TRUE) {
717		m = vm_pageq_find(PQ_CACHE, color, FALSE);
718		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
719			       m->hold_count || m->wire_count ||
720			  (!VM_OBJECT_TRYLOCK(m->object) &&
721			   !VM_OBJECT_LOCKED(m->object)))) {
722			vm_page_deactivate(m);
723			continue;
724		}
725		return m;
726	}
727}
728
729/*
730 *	vm_page_alloc:
731 *
732 *	Allocate and return a memory cell associated
733 *	with this VM object/offset pair.
734 *
735 *	page_req classes:
736 *	VM_ALLOC_NORMAL		normal process request
737 *	VM_ALLOC_SYSTEM		system *really* needs a page
738 *	VM_ALLOC_INTERRUPT	interrupt time request
739 *	VM_ALLOC_ZERO		zero page
740 *
741 *	This routine may not block.
742 *
743 *	Additional special handling is required when called from an
744 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
745 *	the page cache in this case.
746 */
747vm_page_t
748vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
749{
750	vm_object_t m_object;
751	vm_page_t m = NULL;
752	int color, flags, page_req, s;
753
754	page_req = req & VM_ALLOC_CLASS_MASK;
755
756	if ((req & VM_ALLOC_NOOBJ) == 0) {
757		KASSERT(object != NULL,
758		    ("vm_page_alloc: NULL object."));
759		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
760		color = (pindex + object->pg_color) & PQ_L2_MASK;
761	} else
762		color = pindex & PQ_L2_MASK;
763
764	/*
765	 * The pager is allowed to eat deeper into the free page list.
766	 */
767	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
768		page_req = VM_ALLOC_SYSTEM;
769	};
770
771	s = splvm();
772loop:
773	mtx_lock_spin(&vm_page_queue_free_mtx);
774	if (cnt.v_free_count > cnt.v_free_reserved ||
775	    (page_req == VM_ALLOC_SYSTEM &&
776	     cnt.v_cache_count == 0 &&
777	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
778	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
779		/*
780		 * Allocate from the free queue if the number of free pages
781		 * exceeds the minimum for the request class.
782		 */
783		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
784	} else if (page_req != VM_ALLOC_INTERRUPT) {
785		mtx_unlock_spin(&vm_page_queue_free_mtx);
786		/*
787		 * Allocatable from cache (non-interrupt only).  On success,
788		 * we must free the page and try again, thus ensuring that
789		 * cnt.v_*_free_min counters are replenished.
790		 */
791		vm_page_lock_queues();
792		if ((m = vm_page_select_cache(color)) == NULL) {
793			vm_page_unlock_queues();
794			splx(s);
795#if defined(DIAGNOSTIC)
796			if (cnt.v_cache_count > 0)
797				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
798#endif
799			atomic_add_int(&vm_pageout_deficit, 1);
800			pagedaemon_wakeup();
801			return (NULL);
802		}
803		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
804		m_object = m->object;
805		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
806		vm_page_busy(m);
807		pmap_remove_all(m);
808		vm_page_free(m);
809		vm_page_unlock_queues();
810		if (m_object != object)
811			VM_OBJECT_UNLOCK(m_object);
812		goto loop;
813	} else {
814		/*
815		 * Not allocatable from cache from interrupt, give up.
816		 */
817		mtx_unlock_spin(&vm_page_queue_free_mtx);
818		splx(s);
819		atomic_add_int(&vm_pageout_deficit, 1);
820		pagedaemon_wakeup();
821		return (NULL);
822	}
823
824	/*
825	 *  At this point we had better have found a good page.
826	 */
827
828	KASSERT(
829	    m != NULL,
830	    ("vm_page_alloc(): missing page on free queue\n")
831	);
832
833	/*
834	 * Remove from free queue
835	 */
836
837	vm_pageq_remove_nowakeup(m);
838
839	/*
840	 * Initialize structure.  Only the PG_ZERO flag is inherited.
841	 */
842	flags = PG_BUSY;
843	if (m->flags & PG_ZERO) {
844		vm_page_zero_count--;
845		if (req & VM_ALLOC_ZERO)
846			flags = PG_ZERO | PG_BUSY;
847	}
848	m->flags = flags;
849	if (req & VM_ALLOC_WIRED) {
850		atomic_add_int(&cnt.v_wire_count, 1);
851		m->wire_count = 1;
852	} else
853		m->wire_count = 0;
854	m->hold_count = 0;
855	m->act_count = 0;
856	m->busy = 0;
857	m->valid = 0;
858	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
859	mtx_unlock_spin(&vm_page_queue_free_mtx);
860
861	/*
862	 * vm_page_insert() is safe prior to the splx().  Note also that
863	 * inserting a page here does not insert it into the pmap (which
864	 * could cause us to block allocating memory).  We cannot block
865	 * anywhere.
866	 */
867	if ((req & VM_ALLOC_NOOBJ) == 0)
868		vm_page_insert(m, object, pindex);
869	else
870		m->pindex = pindex;
871
872	/*
873	 * Don't wakeup too often - wakeup the pageout daemon when
874	 * we would be nearly out of memory.
875	 */
876	if (vm_paging_needed())
877		pagedaemon_wakeup();
878
879	splx(s);
880	return (m);
881}
882
883/*
884 *	vm_wait:	(also see VM_WAIT macro)
885 *
886 *	Block until free pages are available for allocation
887 *	- Called in various places before memory allocations.
888 */
889void
890vm_wait(void)
891{
892	int s;
893
894	s = splvm();
895	vm_page_lock_queues();
896	if (curproc == pageproc) {
897		vm_pageout_pages_needed = 1;
898		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
899		    PDROP | PSWP, "VMWait", 0);
900	} else {
901		if (!vm_pages_needed) {
902			vm_pages_needed = 1;
903			wakeup(&vm_pages_needed);
904		}
905		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
906		    "vmwait", 0);
907	}
908	splx(s);
909}
910
911/*
912 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
913 *
914 *	Block until free pages are available for allocation
915 *	- Called only in vm_fault so that processes page faulting
916 *	  can be easily tracked.
917 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
918 *	  processes will be able to grab memory first.  Do not change
919 *	  this balance without careful testing first.
920 */
921void
922vm_waitpfault(void)
923{
924	int s;
925
926	s = splvm();
927	vm_page_lock_queues();
928	if (!vm_pages_needed) {
929		vm_pages_needed = 1;
930		wakeup(&vm_pages_needed);
931	}
932	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
933	    "pfault", 0);
934	splx(s);
935}
936
937/*
938 *	vm_page_activate:
939 *
940 *	Put the specified page on the active list (if appropriate).
941 *	Ensure that act_count is at least ACT_INIT but do not otherwise
942 *	mess with it.
943 *
944 *	The page queues must be locked.
945 *	This routine may not block.
946 */
947void
948vm_page_activate(vm_page_t m)
949{
950	int s;
951
952	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
953	s = splvm();
954	if (m->queue != PQ_ACTIVE) {
955		if ((m->queue - m->pc) == PQ_CACHE)
956			cnt.v_reactivated++;
957		vm_pageq_remove(m);
958		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
959			if (m->act_count < ACT_INIT)
960				m->act_count = ACT_INIT;
961			vm_pageq_enqueue(PQ_ACTIVE, m);
962		}
963	} else {
964		if (m->act_count < ACT_INIT)
965			m->act_count = ACT_INIT;
966	}
967	splx(s);
968}
969
970/*
971 *	vm_page_free_wakeup:
972 *
973 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
974 *	routine is called when a page has been added to the cache or free
975 *	queues.
976 *
977 *	This routine may not block.
978 *	This routine must be called at splvm()
979 */
980static __inline void
981vm_page_free_wakeup(void)
982{
983
984	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
985	/*
986	 * if pageout daemon needs pages, then tell it that there are
987	 * some free.
988	 */
989	if (vm_pageout_pages_needed &&
990	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
991		wakeup(&vm_pageout_pages_needed);
992		vm_pageout_pages_needed = 0;
993	}
994	/*
995	 * wakeup processes that are waiting on memory if we hit a
996	 * high water mark. And wakeup scheduler process if we have
997	 * lots of memory. this process will swapin processes.
998	 */
999	if (vm_pages_needed && !vm_page_count_min()) {
1000		vm_pages_needed = 0;
1001		wakeup(&cnt.v_free_count);
1002	}
1003}
1004
1005/*
1006 *	vm_page_free_toq:
1007 *
1008 *	Returns the given page to the PQ_FREE list,
1009 *	disassociating it with any VM object.
1010 *
1011 *	Object and page must be locked prior to entry.
1012 *	This routine may not block.
1013 */
1014
1015void
1016vm_page_free_toq(vm_page_t m)
1017{
1018	int s;
1019	struct vpgqueues *pq;
1020	vm_object_t object = m->object;
1021
1022	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1023	s = splvm();
1024	cnt.v_tfree++;
1025
1026	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1027		printf(
1028		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1029		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1030		    m->hold_count);
1031		if ((m->queue - m->pc) == PQ_FREE)
1032			panic("vm_page_free: freeing free page");
1033		else
1034			panic("vm_page_free: freeing busy page");
1035	}
1036
1037	/*
1038	 * unqueue, then remove page.  Note that we cannot destroy
1039	 * the page here because we do not want to call the pager's
1040	 * callback routine until after we've put the page on the
1041	 * appropriate free queue.
1042	 */
1043	vm_pageq_remove_nowakeup(m);
1044	vm_page_remove(m);
1045
1046	/*
1047	 * If fictitious remove object association and
1048	 * return, otherwise delay object association removal.
1049	 */
1050	if ((m->flags & PG_FICTITIOUS) != 0) {
1051		splx(s);
1052		return;
1053	}
1054
1055	m->valid = 0;
1056	vm_page_undirty(m);
1057
1058	if (m->wire_count != 0) {
1059		if (m->wire_count > 1) {
1060			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1061				m->wire_count, (long)m->pindex);
1062		}
1063		panic("vm_page_free: freeing wired page\n");
1064	}
1065
1066	/*
1067	 * If we've exhausted the object's resident pages we want to free
1068	 * it up.
1069	 */
1070	if (object &&
1071	    (object->type == OBJT_VNODE) &&
1072	    ((object->flags & OBJ_DEAD) == 0)
1073	) {
1074		struct vnode *vp = (struct vnode *)object->handle;
1075
1076		if (vp) {
1077			VI_LOCK(vp);
1078			if (VSHOULDFREE(vp))
1079				vfree(vp);
1080			VI_UNLOCK(vp);
1081		}
1082	}
1083
1084	/*
1085	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1086	 */
1087	if (m->flags & PG_UNMANAGED) {
1088		m->flags &= ~PG_UNMANAGED;
1089	}
1090
1091	if (m->hold_count != 0) {
1092		m->flags &= ~PG_ZERO;
1093		m->queue = PQ_HOLD;
1094	} else
1095		m->queue = PQ_FREE + m->pc;
1096	pq = &vm_page_queues[m->queue];
1097	mtx_lock_spin(&vm_page_queue_free_mtx);
1098	pq->lcnt++;
1099	++(*pq->cnt);
1100
1101	/*
1102	 * Put zero'd pages on the end ( where we look for zero'd pages
1103	 * first ) and non-zerod pages at the head.
1104	 */
1105	if (m->flags & PG_ZERO) {
1106		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1107		++vm_page_zero_count;
1108	} else {
1109		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1110	}
1111	mtx_unlock_spin(&vm_page_queue_free_mtx);
1112	vm_page_free_wakeup();
1113	splx(s);
1114}
1115
1116/*
1117 *	vm_page_unmanage:
1118 *
1119 * 	Prevent PV management from being done on the page.  The page is
1120 *	removed from the paging queues as if it were wired, and as a
1121 *	consequence of no longer being managed the pageout daemon will not
1122 *	touch it (since there is no way to locate the pte mappings for the
1123 *	page).  madvise() calls that mess with the pmap will also no longer
1124 *	operate on the page.
1125 *
1126 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1127 *	will clear the flag.
1128 *
1129 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1130 *	physical memory as backing store rather then swap-backed memory and
1131 *	will eventually be extended to support 4MB unmanaged physical
1132 *	mappings.
1133 */
1134void
1135vm_page_unmanage(vm_page_t m)
1136{
1137	int s;
1138
1139	s = splvm();
1140	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1141	if ((m->flags & PG_UNMANAGED) == 0) {
1142		if (m->wire_count == 0)
1143			vm_pageq_remove(m);
1144	}
1145	vm_page_flag_set(m, PG_UNMANAGED);
1146	splx(s);
1147}
1148
1149/*
1150 *	vm_page_wire:
1151 *
1152 *	Mark this page as wired down by yet
1153 *	another map, removing it from paging queues
1154 *	as necessary.
1155 *
1156 *	The page queues must be locked.
1157 *	This routine may not block.
1158 */
1159void
1160vm_page_wire(vm_page_t m)
1161{
1162	int s;
1163
1164	/*
1165	 * Only bump the wire statistics if the page is not already wired,
1166	 * and only unqueue the page if it is on some queue (if it is unmanaged
1167	 * it is already off the queues).
1168	 */
1169	s = splvm();
1170	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1171	if (m->wire_count == 0) {
1172		if ((m->flags & PG_UNMANAGED) == 0)
1173			vm_pageq_remove(m);
1174		atomic_add_int(&cnt.v_wire_count, 1);
1175	}
1176	m->wire_count++;
1177	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1178	splx(s);
1179}
1180
1181/*
1182 *	vm_page_unwire:
1183 *
1184 *	Release one wiring of this page, potentially
1185 *	enabling it to be paged again.
1186 *
1187 *	Many pages placed on the inactive queue should actually go
1188 *	into the cache, but it is difficult to figure out which.  What
1189 *	we do instead, if the inactive target is well met, is to put
1190 *	clean pages at the head of the inactive queue instead of the tail.
1191 *	This will cause them to be moved to the cache more quickly and
1192 *	if not actively re-referenced, freed more quickly.  If we just
1193 *	stick these pages at the end of the inactive queue, heavy filesystem
1194 *	meta-data accesses can cause an unnecessary paging load on memory bound
1195 *	processes.  This optimization causes one-time-use metadata to be
1196 *	reused more quickly.
1197 *
1198 *	BUT, if we are in a low-memory situation we have no choice but to
1199 *	put clean pages on the cache queue.
1200 *
1201 *	A number of routines use vm_page_unwire() to guarantee that the page
1202 *	will go into either the inactive or active queues, and will NEVER
1203 *	be placed in the cache - for example, just after dirtying a page.
1204 *	dirty pages in the cache are not allowed.
1205 *
1206 *	The page queues must be locked.
1207 *	This routine may not block.
1208 */
1209void
1210vm_page_unwire(vm_page_t m, int activate)
1211{
1212	int s;
1213
1214	s = splvm();
1215	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1216	if (m->wire_count > 0) {
1217		m->wire_count--;
1218		if (m->wire_count == 0) {
1219			atomic_subtract_int(&cnt.v_wire_count, 1);
1220			if (m->flags & PG_UNMANAGED) {
1221				;
1222			} else if (activate)
1223				vm_pageq_enqueue(PQ_ACTIVE, m);
1224			else {
1225				vm_page_flag_clear(m, PG_WINATCFLS);
1226				vm_pageq_enqueue(PQ_INACTIVE, m);
1227			}
1228		}
1229	} else {
1230		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1231	}
1232	splx(s);
1233}
1234
1235
1236/*
1237 * Move the specified page to the inactive queue.  If the page has
1238 * any associated swap, the swap is deallocated.
1239 *
1240 * Normally athead is 0 resulting in LRU operation.  athead is set
1241 * to 1 if we want this page to be 'as if it were placed in the cache',
1242 * except without unmapping it from the process address space.
1243 *
1244 * This routine may not block.
1245 */
1246static __inline void
1247_vm_page_deactivate(vm_page_t m, int athead)
1248{
1249	int s;
1250
1251	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1252	/*
1253	 * Ignore if already inactive.
1254	 */
1255	if (m->queue == PQ_INACTIVE)
1256		return;
1257
1258	s = splvm();
1259	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1260		if ((m->queue - m->pc) == PQ_CACHE)
1261			cnt.v_reactivated++;
1262		vm_page_flag_clear(m, PG_WINATCFLS);
1263		vm_pageq_remove(m);
1264		if (athead)
1265			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1266		else
1267			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1268		m->queue = PQ_INACTIVE;
1269		vm_page_queues[PQ_INACTIVE].lcnt++;
1270		cnt.v_inactive_count++;
1271	}
1272	splx(s);
1273}
1274
1275void
1276vm_page_deactivate(vm_page_t m)
1277{
1278    _vm_page_deactivate(m, 0);
1279}
1280
1281/*
1282 * vm_page_try_to_cache:
1283 *
1284 * Returns 0 on failure, 1 on success
1285 */
1286int
1287vm_page_try_to_cache(vm_page_t m)
1288{
1289
1290	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1291	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1292	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1293		return (0);
1294	}
1295	pmap_remove_all(m);
1296	if (m->dirty)
1297		return (0);
1298	vm_page_cache(m);
1299	return (1);
1300}
1301
1302/*
1303 * vm_page_try_to_free()
1304 *
1305 *	Attempt to free the page.  If we cannot free it, we do nothing.
1306 *	1 is returned on success, 0 on failure.
1307 */
1308int
1309vm_page_try_to_free(vm_page_t m)
1310{
1311
1312	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1313	if (m->object != NULL)
1314		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1315	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1316	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1317		return (0);
1318	}
1319	vm_page_test_dirty(m);
1320	if (m->dirty)
1321		return (0);
1322	vm_page_busy(m);
1323	pmap_remove_all(m);
1324	vm_page_free(m);
1325	return (1);
1326}
1327
1328/*
1329 * vm_page_cache
1330 *
1331 * Put the specified page onto the page cache queue (if appropriate).
1332 *
1333 * This routine may not block.
1334 */
1335void
1336vm_page_cache(vm_page_t m)
1337{
1338	int s;
1339
1340	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1341	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1342	    m->hold_count || m->wire_count) {
1343		printf("vm_page_cache: attempting to cache busy page\n");
1344		return;
1345	}
1346	if ((m->queue - m->pc) == PQ_CACHE)
1347		return;
1348
1349	/*
1350	 * Remove all pmaps and indicate that the page is not
1351	 * writeable or mapped.
1352	 */
1353	pmap_remove_all(m);
1354	if (m->dirty != 0) {
1355		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1356			(long)m->pindex);
1357	}
1358	s = splvm();
1359	vm_pageq_remove_nowakeup(m);
1360	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1361	vm_page_free_wakeup();
1362	splx(s);
1363}
1364
1365/*
1366 * vm_page_dontneed
1367 *
1368 *	Cache, deactivate, or do nothing as appropriate.  This routine
1369 *	is typically used by madvise() MADV_DONTNEED.
1370 *
1371 *	Generally speaking we want to move the page into the cache so
1372 *	it gets reused quickly.  However, this can result in a silly syndrome
1373 *	due to the page recycling too quickly.  Small objects will not be
1374 *	fully cached.  On the otherhand, if we move the page to the inactive
1375 *	queue we wind up with a problem whereby very large objects
1376 *	unnecessarily blow away our inactive and cache queues.
1377 *
1378 *	The solution is to move the pages based on a fixed weighting.  We
1379 *	either leave them alone, deactivate them, or move them to the cache,
1380 *	where moving them to the cache has the highest weighting.
1381 *	By forcing some pages into other queues we eventually force the
1382 *	system to balance the queues, potentially recovering other unrelated
1383 *	space from active.  The idea is to not force this to happen too
1384 *	often.
1385 */
1386void
1387vm_page_dontneed(vm_page_t m)
1388{
1389	static int dnweight;
1390	int dnw;
1391	int head;
1392
1393	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1394	dnw = ++dnweight;
1395
1396	/*
1397	 * occassionally leave the page alone
1398	 */
1399	if ((dnw & 0x01F0) == 0 ||
1400	    m->queue == PQ_INACTIVE ||
1401	    m->queue - m->pc == PQ_CACHE
1402	) {
1403		if (m->act_count >= ACT_INIT)
1404			--m->act_count;
1405		return;
1406	}
1407
1408	if (m->dirty == 0)
1409		vm_page_test_dirty(m);
1410
1411	if (m->dirty || (dnw & 0x0070) == 0) {
1412		/*
1413		 * Deactivate the page 3 times out of 32.
1414		 */
1415		head = 0;
1416	} else {
1417		/*
1418		 * Cache the page 28 times out of every 32.  Note that
1419		 * the page is deactivated instead of cached, but placed
1420		 * at the head of the queue instead of the tail.
1421		 */
1422		head = 1;
1423	}
1424	_vm_page_deactivate(m, head);
1425}
1426
1427/*
1428 * Grab a page, waiting until we are waken up due to the page
1429 * changing state.  We keep on waiting, if the page continues
1430 * to be in the object.  If the page doesn't exist, allocate it.
1431 *
1432 * This routine may block.
1433 */
1434vm_page_t
1435vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1436{
1437	vm_page_t m;
1438
1439	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1440retrylookup:
1441	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1442		vm_page_lock_queues();
1443		if (m->busy || (m->flags & PG_BUSY)) {
1444			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1445			VM_OBJECT_UNLOCK(object);
1446			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1447			VM_OBJECT_LOCK(object);
1448			if ((allocflags & VM_ALLOC_RETRY) == 0)
1449				return (NULL);
1450			goto retrylookup;
1451		} else {
1452			if (allocflags & VM_ALLOC_WIRED)
1453				vm_page_wire(m);
1454			vm_page_busy(m);
1455			vm_page_unlock_queues();
1456			return m;
1457		}
1458	}
1459
1460	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1461	if (m == NULL) {
1462		VM_OBJECT_UNLOCK(object);
1463		VM_WAIT;
1464		VM_OBJECT_LOCK(object);
1465		if ((allocflags & VM_ALLOC_RETRY) == 0)
1466			return NULL;
1467		goto retrylookup;
1468	}
1469
1470	return m;
1471}
1472
1473/*
1474 * Mapping function for valid bits or for dirty bits in
1475 * a page.  May not block.
1476 *
1477 * Inputs are required to range within a page.
1478 */
1479__inline int
1480vm_page_bits(int base, int size)
1481{
1482	int first_bit;
1483	int last_bit;
1484
1485	KASSERT(
1486	    base + size <= PAGE_SIZE,
1487	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1488	);
1489
1490	if (size == 0)		/* handle degenerate case */
1491		return (0);
1492
1493	first_bit = base >> DEV_BSHIFT;
1494	last_bit = (base + size - 1) >> DEV_BSHIFT;
1495
1496	return ((2 << last_bit) - (1 << first_bit));
1497}
1498
1499/*
1500 *	vm_page_set_validclean:
1501 *
1502 *	Sets portions of a page valid and clean.  The arguments are expected
1503 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1504 *	of any partial chunks touched by the range.  The invalid portion of
1505 *	such chunks will be zero'd.
1506 *
1507 *	This routine may not block.
1508 *
1509 *	(base + size) must be less then or equal to PAGE_SIZE.
1510 */
1511void
1512vm_page_set_validclean(vm_page_t m, int base, int size)
1513{
1514	int pagebits;
1515	int frag;
1516	int endoff;
1517
1518	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1519	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1520	if (size == 0)	/* handle degenerate case */
1521		return;
1522
1523	/*
1524	 * If the base is not DEV_BSIZE aligned and the valid
1525	 * bit is clear, we have to zero out a portion of the
1526	 * first block.
1527	 */
1528	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1529	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1530		pmap_zero_page_area(m, frag, base - frag);
1531
1532	/*
1533	 * If the ending offset is not DEV_BSIZE aligned and the
1534	 * valid bit is clear, we have to zero out a portion of
1535	 * the last block.
1536	 */
1537	endoff = base + size;
1538	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1539	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1540		pmap_zero_page_area(m, endoff,
1541		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1542
1543	/*
1544	 * Set valid, clear dirty bits.  If validating the entire
1545	 * page we can safely clear the pmap modify bit.  We also
1546	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1547	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1548	 * be set again.
1549	 *
1550	 * We set valid bits inclusive of any overlap, but we can only
1551	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1552	 * the range.
1553	 */
1554	pagebits = vm_page_bits(base, size);
1555	m->valid |= pagebits;
1556#if 0	/* NOT YET */
1557	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1558		frag = DEV_BSIZE - frag;
1559		base += frag;
1560		size -= frag;
1561		if (size < 0)
1562			size = 0;
1563	}
1564	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1565#endif
1566	m->dirty &= ~pagebits;
1567	if (base == 0 && size == PAGE_SIZE) {
1568		pmap_clear_modify(m);
1569		vm_page_flag_clear(m, PG_NOSYNC);
1570	}
1571}
1572
1573void
1574vm_page_clear_dirty(vm_page_t m, int base, int size)
1575{
1576
1577	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1578	m->dirty &= ~vm_page_bits(base, size);
1579}
1580
1581/*
1582 *	vm_page_set_invalid:
1583 *
1584 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1585 *	valid and dirty bits for the effected areas are cleared.
1586 *
1587 *	May not block.
1588 */
1589void
1590vm_page_set_invalid(vm_page_t m, int base, int size)
1591{
1592	int bits;
1593
1594	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1595	bits = vm_page_bits(base, size);
1596	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1597	m->valid &= ~bits;
1598	m->dirty &= ~bits;
1599	m->object->generation++;
1600}
1601
1602/*
1603 * vm_page_zero_invalid()
1604 *
1605 *	The kernel assumes that the invalid portions of a page contain
1606 *	garbage, but such pages can be mapped into memory by user code.
1607 *	When this occurs, we must zero out the non-valid portions of the
1608 *	page so user code sees what it expects.
1609 *
1610 *	Pages are most often semi-valid when the end of a file is mapped
1611 *	into memory and the file's size is not page aligned.
1612 */
1613void
1614vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1615{
1616	int b;
1617	int i;
1618
1619	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1620	/*
1621	 * Scan the valid bits looking for invalid sections that
1622	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1623	 * valid bit may be set ) have already been zerod by
1624	 * vm_page_set_validclean().
1625	 */
1626	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1627		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1628		    (m->valid & (1 << i))
1629		) {
1630			if (i > b) {
1631				pmap_zero_page_area(m,
1632				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1633			}
1634			b = i + 1;
1635		}
1636	}
1637
1638	/*
1639	 * setvalid is TRUE when we can safely set the zero'd areas
1640	 * as being valid.  We can do this if there are no cache consistancy
1641	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1642	 */
1643	if (setvalid)
1644		m->valid = VM_PAGE_BITS_ALL;
1645}
1646
1647/*
1648 *	vm_page_is_valid:
1649 *
1650 *	Is (partial) page valid?  Note that the case where size == 0
1651 *	will return FALSE in the degenerate case where the page is
1652 *	entirely invalid, and TRUE otherwise.
1653 *
1654 *	May not block.
1655 */
1656int
1657vm_page_is_valid(vm_page_t m, int base, int size)
1658{
1659	int bits = vm_page_bits(base, size);
1660
1661	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1662	if (m->valid && ((m->valid & bits) == bits))
1663		return 1;
1664	else
1665		return 0;
1666}
1667
1668/*
1669 * update dirty bits from pmap/mmu.  May not block.
1670 */
1671void
1672vm_page_test_dirty(vm_page_t m)
1673{
1674	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1675		vm_page_dirty(m);
1676	}
1677}
1678
1679int so_zerocp_fullpage = 0;
1680
1681void
1682vm_page_cowfault(vm_page_t m)
1683{
1684	vm_page_t mnew;
1685	vm_object_t object;
1686	vm_pindex_t pindex;
1687
1688	object = m->object;
1689	pindex = m->pindex;
1690	vm_page_busy(m);
1691
1692 retry_alloc:
1693	vm_page_remove(m);
1694	/*
1695	 * An interrupt allocation is requested because the page
1696	 * queues lock is held.
1697	 */
1698	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1699	if (mnew == NULL) {
1700		vm_page_insert(m, object, pindex);
1701		vm_page_unlock_queues();
1702		VM_OBJECT_UNLOCK(object);
1703		VM_WAIT;
1704		VM_OBJECT_LOCK(object);
1705		vm_page_lock_queues();
1706		goto retry_alloc;
1707	}
1708
1709	if (m->cow == 0) {
1710		/*
1711		 * check to see if we raced with an xmit complete when
1712		 * waiting to allocate a page.  If so, put things back
1713		 * the way they were
1714		 */
1715		vm_page_busy(mnew);
1716		vm_page_free(mnew);
1717		vm_page_insert(m, object, pindex);
1718	} else { /* clear COW & copy page */
1719		if (!so_zerocp_fullpage)
1720			pmap_copy_page(m, mnew);
1721		mnew->valid = VM_PAGE_BITS_ALL;
1722		vm_page_dirty(mnew);
1723		vm_page_flag_clear(mnew, PG_BUSY);
1724	}
1725}
1726
1727void
1728vm_page_cowclear(vm_page_t m)
1729{
1730
1731	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1732	if (m->cow) {
1733		m->cow--;
1734		/*
1735		 * let vm_fault add back write permission  lazily
1736		 */
1737	}
1738	/*
1739	 *  sf_buf_free() will free the page, so we needn't do it here
1740	 */
1741}
1742
1743void
1744vm_page_cowsetup(vm_page_t m)
1745{
1746
1747	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1748	m->cow++;
1749	pmap_page_protect(m, VM_PROT_READ);
1750}
1751
1752#include "opt_ddb.h"
1753#ifdef DDB
1754#include <sys/kernel.h>
1755
1756#include <ddb/ddb.h>
1757
1758DB_SHOW_COMMAND(page, vm_page_print_page_info)
1759{
1760	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1761	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1762	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1763	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1764	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1765	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1766	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1767	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1768	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1769	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1770}
1771
1772DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1773{
1774	int i;
1775	db_printf("PQ_FREE:");
1776	for (i = 0; i < PQ_L2_SIZE; i++) {
1777		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1778	}
1779	db_printf("\n");
1780
1781	db_printf("PQ_CACHE:");
1782	for (i = 0; i < PQ_L2_SIZE; i++) {
1783		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1784	}
1785	db_printf("\n");
1786
1787	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1788		vm_page_queues[PQ_ACTIVE].lcnt,
1789		vm_page_queues[PQ_INACTIVE].lcnt);
1790}
1791#endif /* DDB */
1792