vm_page.c revision 119373
1130389Sle/*
2190507Slulf * Copyright (c) 1991 Regents of the University of California.
3130389Sle * All rights reserved.
4130389Sle *
5130389Sle * This code is derived from software contributed to Berkeley by
6130389Sle * The Mach Operating System project at Carnegie-Mellon University.
7130389Sle *
8130389Sle * Redistribution and use in source and binary forms, with or without
9130389Sle * modification, are permitted provided that the following conditions
10130389Sle * are met:
11130389Sle * 1. Redistributions of source code must retain the above copyright
12130389Sle *    notice, this list of conditions and the following disclaimer.
13130389Sle * 2. Redistributions in binary form must reproduce the above copyright
14130389Sle *    notice, this list of conditions and the following disclaimer in the
15130389Sle *    documentation and/or other materials provided with the distribution.
16130389Sle * 3. All advertising materials mentioning features or use of this software
17130389Sle *    must display the following acknowledgement:
18130389Sle *	This product includes software developed by the University of
19130389Sle *	California, Berkeley and its contributors.
20130389Sle * 4. Neither the name of the University nor the names of its contributors
21130389Sle *    may be used to endorse or promote products derived from this software
22130389Sle *    without specific prior written permission.
23130389Sle *
24130389Sle * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25130389Sle * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26130389Sle * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27130389Sle * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28130389Sle * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29130389Sle * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30130389Sle * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31130389Sle * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32130389Sle * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33130389Sle * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34130389Sle * SUCH DAMAGE.
35130389Sle *
36130389Sle *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37130389Sle */
38138112Sle
39138112Sle/*
40138112Sle * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41138112Sle * All rights reserved.
42138112Sle *
43138112Sle * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44190507Slulf *
45190507Slulf * Permission to use, copy, modify and distribute this software and
46138112Sle * its documentation is hereby granted, provided that both the copyright
47190507Slulf * notice and this permission notice appear in all copies of the
48138112Sle * software, derivative works or modified versions, and any portions
49138112Sle * thereof, and that both notices appear in supporting documentation.
50138112Sle *
51138112Sle * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
52138112Sle * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
53138112Sle * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54138112Sle *
55138112Sle * Carnegie Mellon requests users of this software to return to
56138112Sle *
57138112Sle *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
58138112Sle *  School of Computer Science
59138112Sle *  Carnegie Mellon University
60138112Sle *  Pittsburgh PA 15213-3890
61138112Sle *
62138112Sle * any improvements or extensions that they make and grant Carnegie the
63138112Sle * rights to redistribute these changes.
64138112Sle */
65138112Sle
66138112Sle/*
67138112Sle *			GENERAL RULES ON VM_PAGE MANIPULATION
68138112Sle *
69138112Sle *	- a pageq mutex is required when adding or removing a page from a
70138112Sle *	  page queue (vm_page_queue[]), regardless of other mutexes or the
71138112Sle *	  busy state of a page.
72138112Sle *
73138112Sle *	- a hash chain mutex is required when associating or disassociating
74138112Sle *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
75190507Slulf *	  regardless of other mutexes or the busy state of a page.
76190507Slulf *
77190507Slulf *	- either a hash chain mutex OR a busied page is required in order
78190507Slulf *	  to modify the page flags.  A hash chain mutex must be obtained in
79190507Slulf *	  order to busy a page.  A page's flags cannot be modified by a
80190507Slulf *	  hash chain mutex if the page is marked busy.
81190507Slulf *
82190507Slulf *	- The object memq mutex is held when inserting or removing
83190507Slulf *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
84138112Sle *	  is different from the object's main mutex.
85190507Slulf *
86190507Slulf *	Generally speaking, you have to be aware of side effects when running
87190507Slulf *	vm_page ops.  A vm_page_lookup() will return with the hash chain
88190507Slulf *	locked, whether it was able to lookup the page or not.  vm_page_free(),
89190507Slulf *	vm_page_cache(), vm_page_activate(), and a number of other routines
90190507Slulf *	will release the hash chain mutex for you.  Intermediate manipulation
91190507Slulf *	routines such as vm_page_flag_set() expect the hash chain to be held
92138112Sle *	on entry and the hash chain will remain held on return.
93138112Sle *
94138112Sle *	pageq scanning can only occur with the pageq in question locked.
95190507Slulf *	We have a known bottleneck with the active queue, but the cache
96138112Sle *	and free queues are actually arrays already.
97138112Sle */
98138112Sle
99138112Sle/*
100190507Slulf *	Resident memory management module.
101190507Slulf */
102138112Sle
103138112Sle#include <sys/cdefs.h>
104138112Sle__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 119373 2003-08-23 20:29:29Z alc $");
105190507Slulf
106138112Sle#include <sys/param.h>
107138112Sle#include <sys/systm.h>
108138112Sle#include <sys/lock.h>
109138112Sle#include <sys/malloc.h>
110190507Slulf#include <sys/mutex.h>
111190507Slulf#include <sys/proc.h>
112138112Sle#include <sys/vmmeter.h>
113138112Sle#include <sys/vnode.h>
114138112Sle
115138112Sle#include <vm/vm.h>
116138112Sle#include <vm/vm_param.h>
117138112Sle#include <vm/vm_kern.h>
118138112Sle#include <vm/vm_object.h>
119138112Sle#include <vm/vm_page.h>
120190507Slulf#include <vm/vm_pageout.h>
121130389Sle#include <vm/vm_pager.h>
122130389Sle#include <vm/vm_extern.h>
123130389Sle#include <vm/uma.h>
124130389Sle#include <vm/uma_int.h>
125130389Sle
126130389Sle/*
127130389Sle *	Associated with page of user-allocatable memory is a
128130389Sle *	page structure.
129130389Sle */
130130389Sle
131130389Slestruct mtx vm_page_queue_mtx;
132138112Slestruct mtx vm_page_queue_free_mtx;
133130389Sle
134130389Slevm_page_t vm_page_array = 0;
135190507Slulfint vm_page_array_size = 0;
136130389Slelong first_page = 0;
137190507Slulfint vm_page_zero_count = 0;
138130389Sle
139130389Sle/*
140130389Sle *	vm_set_page_size:
141130389Sle *
142130389Sle *	Sets the page size, perhaps based upon the memory
143130389Sle *	size.  Must be called before any use of page-size
144130389Sle *	dependent functions.
145130389Sle */
146135162Slevoid
147135162Slevm_set_page_size(void)
148190507Slulf{
149135162Sle	if (cnt.v_page_size == 0)
150138112Sle		cnt.v_page_size = PAGE_SIZE;
151130389Sle	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
152130389Sle		panic("vm_set_page_size: page size not a power of two");
153130389Sle}
154130389Sle
155130389Sle/*
156130389Sle *	vm_page_startup:
157130389Sle *
158130389Sle *	Initializes the resident memory module.
159130389Sle *
160130389Sle *	Allocates memory for the page cells, and
161130389Sle *	for the object/offset-to-page hash table headers.
162130389Sle *	Each page cell is initialized and placed on the free list.
163130389Sle */
164130389Slevm_offset_t
165130389Slevm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166130389Sle{
167130389Sle	vm_offset_t mapped;
168130389Sle	vm_size_t npages;
169130389Sle	vm_paddr_t page_range;
170130389Sle	vm_paddr_t new_end;
171130389Sle	int i;
172130389Sle	vm_paddr_t pa;
173130389Sle	int nblocks;
174130389Sle	vm_paddr_t last_pa;
175130389Sle
176130389Sle	/* the biggest memory array is the second group of pages */
177190507Slulf	vm_paddr_t end;
178130389Sle	vm_paddr_t biggestsize;
179130389Sle	int biggestone;
180190507Slulf
181190507Slulf	vm_paddr_t total;
182190507Slulf	vm_size_t bootpages;
183190507Slulf
184190507Slulf	total = 0;
185190507Slulf	biggestsize = 0;
186190507Slulf	biggestone = 0;
187190507Slulf	nblocks = 0;
188190507Slulf	vaddr = round_page(vaddr);
189190507Slulf
190130389Sle	for (i = 0; phys_avail[i + 1]; i += 2) {
191130389Sle		phys_avail[i] = round_page(phys_avail[i]);
192130389Sle		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
193130389Sle	}
194190507Slulf
195130389Sle	for (i = 0; phys_avail[i + 1]; i += 2) {
196130389Sle		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
197130389Sle
198130389Sle		if (size > biggestsize) {
199130389Sle			biggestone = i;
200130389Sle			biggestsize = size;
201130389Sle		}
202130389Sle		++nblocks;
203130389Sle		total += size;
204130389Sle	}
205130389Sle
206130389Sle	end = phys_avail[biggestone+1];
207130389Sle
208130389Sle	/*
209130389Sle	 * Initialize the locks.
210130389Sle	 */
211130389Sle	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
212130389Sle	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
213130389Sle	   MTX_SPIN);
214130389Sle
215130389Sle	/*
216130389Sle	 * Initialize the queue headers for the free queue, the active queue
217130389Sle	 * and the inactive queue.
218130389Sle	 */
219130389Sle	vm_pageq_init();
220130389Sle
221130389Sle	/*
222130389Sle	 * Allocate memory for use when boot strapping the kernel memory
223190507Slulf	 * allocator.
224190507Slulf	 */
225138112Sle	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
226190507Slulf	new_end = end - bootpages;
227190507Slulf	new_end = trunc_page(new_end);
228130389Sle	mapped = pmap_map(&vaddr, new_end, end,
229130389Sle	    VM_PROT_READ | VM_PROT_WRITE);
230130389Sle	bzero((caddr_t) mapped, end - new_end);
231190507Slulf	uma_startup((caddr_t)mapped);
232130389Sle
233130389Sle	/*
234130389Sle	 * Compute the number of pages of memory that will be available for
235130389Sle	 * use (taking into account the overhead of a page structure per
236135434Sle	 * page).
237135434Sle	 */
238135434Sle	first_page = phys_avail[0] / PAGE_SIZE;
239135434Sle	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
240135434Sle	npages = (total - (page_range * sizeof(struct vm_page)) -
241130389Sle	    (end - new_end)) / PAGE_SIZE;
242135434Sle	end = new_end;
243138112Sle
244135434Sle	/*
245135434Sle	 * Initialize the mem entry structures now, and put them in the free
246190507Slulf	 * queue.
247190507Slulf	 */
248190507Slulf	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
249190507Slulf	mapped = pmap_map(&vaddr, new_end, end,
250190507Slulf	    VM_PROT_READ | VM_PROT_WRITE);
251135434Sle	vm_page_array = (vm_page_t) mapped;
252135434Sle	phys_avail[biggestone + 1] = new_end;
253190507Slulf
254135434Sle	/*
255130389Sle	 * Clear all of the page structures
256190507Slulf	 */
257130389Sle	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
258130389Sle	vm_page_array_size = page_range;
259130389Sle
260130389Sle	/*
261130389Sle	 * Construct the free queue(s) in descending order (by physical
262130389Sle	 * address) so that the first 16MB of physical memory is allocated
263190507Slulf	 * last rather than first.  On large-memory machines, this avoids
264130389Sle	 * the exhaustion of low physical memory before isa_dmainit has run.
265130389Sle	 */
266130389Sle	cnt.v_page_count = 0;
267130389Sle	cnt.v_free_count = 0;
268130389Sle	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
269130389Sle		pa = phys_avail[i];
270130389Sle		last_pa = phys_avail[i + 1];
271130389Sle		while (pa < last_pa && npages-- > 0) {
272130389Sle			vm_pageq_add_new_page(pa);
273130389Sle			pa += PAGE_SIZE;
274130389Sle		}
275130389Sle	}
276190507Slulf	return (vaddr);
277130389Sle}
278130389Sle
279130389Slevoid
280130389Slevm_page_flag_set(vm_page_t m, unsigned short bits)
281190507Slulf{
282190507Slulf
283190507Slulf	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
284190507Slulf	m->flags |= bits;
285190507Slulf}
286130389Sle
287190507Slulfvoid
288190507Slulfvm_page_flag_clear(vm_page_t m, unsigned short bits)
289190507Slulf{
290190507Slulf
291190507Slulf	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
292190507Slulf	m->flags &= ~bits;
293190507Slulf}
294190507Slulf
295190507Slulfvoid
296190507Slulfvm_page_busy(vm_page_t m)
297190507Slulf{
298190507Slulf	KASSERT((m->flags & PG_BUSY) == 0,
299190507Slulf	    ("vm_page_busy: page already busy!!!"));
300190507Slulf	vm_page_flag_set(m, PG_BUSY);
301190507Slulf}
302190507Slulf
303190507Slulf/*
304190507Slulf *      vm_page_flash:
305190507Slulf *
306190507Slulf *      wakeup anyone waiting for the page.
307190507Slulf */
308190507Slulfvoid
309190507Slulfvm_page_flash(vm_page_t m)
310190507Slulf{
311190507Slulf	if (m->flags & PG_WANTED) {
312190507Slulf		vm_page_flag_clear(m, PG_WANTED);
313190507Slulf		wakeup(m);
314190507Slulf	}
315190507Slulf}
316190507Slulf
317190507Slulf/*
318190507Slulf *      vm_page_wakeup:
319190507Slulf *
320190507Slulf *      clear the PG_BUSY flag and wakeup anyone waiting for the
321190507Slulf *      page.
322190507Slulf *
323190507Slulf */
324190507Slulfvoid
325190507Slulfvm_page_wakeup(vm_page_t m)
326190507Slulf{
327190507Slulf	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
328190507Slulf	vm_page_flag_clear(m, PG_BUSY);
329190507Slulf	vm_page_flash(m);
330190507Slulf}
331190507Slulf
332190507Slulfvoid
333190507Slulfvm_page_io_start(vm_page_t m)
334190507Slulf{
335190507Slulf
336190507Slulf	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
337190507Slulf	m->busy++;
338190507Slulf}
339190507Slulf
340190507Slulfvoid
341190507Slulfvm_page_io_finish(vm_page_t m)
342190507Slulf{
343190507Slulf
344190507Slulf	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
345190507Slulf	m->busy--;
346190507Slulf	if (m->busy == 0)
347190507Slulf		vm_page_flash(m);
348190507Slulf}
349190507Slulf
350190507Slulf/*
351190507Slulf * Keep page from being freed by the page daemon
352190507Slulf * much of the same effect as wiring, except much lower
353190507Slulf * overhead and should be used only for *very* temporary
354190507Slulf * holding ("wiring").
355190507Slulf */
356190507Slulfvoid
357190507Slulfvm_page_hold(vm_page_t mem)
358190507Slulf{
359190507Slulf
360190507Slulf	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
361190507Slulf        mem->hold_count++;
362190507Slulf}
363190507Slulf
364190507Slulfvoid
365190507Slulfvm_page_unhold(vm_page_t mem)
366190507Slulf{
367190507Slulf
368190507Slulf	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
369190507Slulf	--mem->hold_count;
370190507Slulf	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
371190507Slulf	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
372190507Slulf		vm_page_free_toq(mem);
373130389Sle}
374130389Sle
375130389Sle/*
376130389Sle *	vm_page_copy:
377130389Sle *
378140591Sle *	Copy one page to another
379130389Sle */
380130389Slevoid
381130389Slevm_page_copy(vm_page_t src_m, vm_page_t dest_m)
382130389Sle{
383140591Sle	pmap_copy_page(src_m, dest_m);
384140591Sle	dest_m->valid = VM_PAGE_BITS_ALL;
385130389Sle}
386130389Sle
387190507Slulf/*
388130389Sle *	vm_page_free:
389130389Sle *
390190507Slulf *	Free a page
391130389Sle *
392130389Sle *	The clearing of PG_ZERO is a temporary safety until the code can be
393190507Slulf *	reviewed to determine that PG_ZERO is being properly cleared on
394190507Slulf *	write faults or maps.  PG_ZERO was previously cleared in
395190507Slulf *	vm_page_alloc().
396190507Slulf */
397190507Slulfvoid
398190507Slulfvm_page_free(vm_page_t m)
399190507Slulf{
400130389Sle	vm_page_flag_clear(m, PG_ZERO);
401130389Sle	vm_page_free_toq(m);
402140591Sle	vm_page_zero_idle_wakeup();
403184292Slulf}
404184292Slulf
405140591Sle/*
406130389Sle *	vm_page_free_zero:
407130389Sle *
408130389Sle *	Free a page to the zerod-pages queue
409130389Sle */
410130389Slevoid
411130389Slevm_page_free_zero(vm_page_t m)
412130389Sle{
413130389Sle	vm_page_flag_set(m, PG_ZERO);
414130389Sle	vm_page_free_toq(m);
415190507Slulf}
416130389Sle
417140591Sle/*
418130389Sle *	vm_page_sleep_if_busy:
419130389Sle *
420130389Sle *	Sleep and release the page queues lock if PG_BUSY is set or,
421140591Sle *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
422140591Sle *	thread slept and the page queues lock was released.
423130389Sle *	Otherwise, retains the page queues lock and returns FALSE.
424130389Sle */
425130389Sleint
426130389Slevm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
427130389Sle{
428130389Sle	int is_object_locked;
429130389Sle
430130389Sle	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
431130389Sle	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
432130389Sle		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
433130389Sle		/*
434130389Sle		 * Remove mtx_owned() after vm_object locking is finished.
435130389Sle		 */
436130389Sle		if ((is_object_locked = m->object != NULL &&
437130389Sle		     mtx_owned(&m->object->mtx)))
438130389Sle			mtx_unlock(&m->object->mtx);
439130389Sle		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
440190507Slulf		if (is_object_locked)
441190507Slulf			mtx_lock(&m->object->mtx);
442190507Slulf		return (TRUE);
443130389Sle	}
444130389Sle	return (FALSE);
445130389Sle}
446130389Sle
447130389Sle/*
448130389Sle *	vm_page_dirty:
449190507Slulf *
450190507Slulf *	make page all dirty
451190507Slulf */
452190507Slulfvoid
453190507Slulfvm_page_dirty(vm_page_t m)
454190507Slulf{
455190507Slulf	KASSERT(m->queue - m->pc != PQ_CACHE,
456190507Slulf	    ("vm_page_dirty: page in cache!"));
457190507Slulf	KASSERT(m->queue - m->pc != PQ_FREE,
458140591Sle	    ("vm_page_dirty: page is free!"));
459184292Slulf	m->dirty = VM_PAGE_BITS_ALL;
460140591Sle}
461140591Sle
462130389Sle/*
463130389Sle *	vm_page_splay:
464130389Sle *
465130389Sle *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
466130389Sle *	the vm_page containing the given pindex.  If, however, that
467130389Sle *	pindex is not found in the vm_object, returns a vm_page that is
468130389Sle *	adjacent to the pindex, coming before or after it.
469130389Sle */
470130389Slevm_page_t
471130389Slevm_page_splay(vm_pindex_t pindex, vm_page_t root)
472130389Sle{
473130389Sle	struct vm_page dummy;
474134014Sle	vm_page_t lefttreemax, righttreemin, y;
475157292Sle
476157292Sle	if (root == NULL)
477157292Sle		return (root);
478157292Sle	lefttreemax = righttreemin = &dummy;
479157292Sle	for (;; root = y) {
480157292Sle		if (pindex < root->pindex) {
481130389Sle			if ((y = root->left) == NULL)
482130389Sle				break;
483130389Sle			if (pindex < y->pindex) {
484130389Sle				/* Rotate right. */
485130389Sle				root->left = y->right;
486134014Sle				y->right = root;
487134014Sle				root = y;
488134014Sle				if ((y = root->left) == NULL)
489134014Sle					break;
490134014Sle			}
491134014Sle			/* Link into the new root's right tree. */
492130389Sle			righttreemin->left = root;
493130389Sle			righttreemin = root;
494130389Sle		} else if (pindex > root->pindex) {
495130389Sle			if ((y = root->right) == NULL)
496130389Sle				break;
497130389Sle			if (pindex > y->pindex) {
498130389Sle				/* Rotate left. */
499130389Sle				root->right = y->left;
500130389Sle				y->left = root;
501130389Sle				root = y;
502130389Sle				if ((y = root->right) == NULL)
503130389Sle					break;
504130389Sle			}
505130389Sle			/* Link into the new root's left tree. */
506130389Sle			lefttreemax->right = root;
507130389Sle			lefttreemax = root;
508130389Sle		} else
509130389Sle			break;
510130389Sle	}
511130389Sle	/* Assemble the new root. */
512130389Sle	lefttreemax->right = root->left;
513130389Sle	righttreemin->left = root->right;
514130389Sle	root->left = dummy.right;
515130389Sle	root->right = dummy.left;
516130389Sle	return (root);
517130389Sle}
518130389Sle
519130389Sle/*
520130389Sle *	vm_page_insert:		[ internal use only ]
521130389Sle *
522130389Sle *	Inserts the given mem entry into the object and object list.
523130389Sle *
524130389Sle *	The pagetables are not updated but will presumably fault the page
525130389Sle *	in if necessary, or if a kernel page the caller will at some point
526130389Sle *	enter the page into the kernel's pmap.  We are not allowed to block
527130389Sle *	here so we *can't* do this anyway.
528130389Sle *
529130389Sle *	The object and page must be locked, and must be splhigh.
530130389Sle *	This routine may not block.
531130389Sle */
532130389Slevoid
533130389Slevm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
534130389Sle{
535	vm_page_t root;
536
537	if (!VM_OBJECT_LOCKED(object))
538		GIANT_REQUIRED;
539	if (m->object != NULL)
540		panic("vm_page_insert: already inserted");
541
542	/*
543	 * Record the object/offset pair in this page
544	 */
545	m->object = object;
546	m->pindex = pindex;
547
548	/*
549	 * Now link into the object's ordered list of backed pages.
550	 */
551	root = object->root;
552	if (root == NULL) {
553		m->left = NULL;
554		m->right = NULL;
555		TAILQ_INSERT_TAIL(&object->memq, m, listq);
556	} else {
557		root = vm_page_splay(pindex, root);
558		if (pindex < root->pindex) {
559			m->left = root->left;
560			m->right = root;
561			root->left = NULL;
562			TAILQ_INSERT_BEFORE(root, m, listq);
563		} else {
564			m->right = root->right;
565			m->left = root;
566			root->right = NULL;
567			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
568		}
569	}
570	object->root = m;
571	object->generation++;
572
573	/*
574	 * show that the object has one more resident page.
575	 */
576	object->resident_page_count++;
577
578	/*
579	 * Since we are inserting a new and possibly dirty page,
580	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
581	 */
582	if (m->flags & PG_WRITEABLE)
583		vm_object_set_writeable_dirty(object);
584}
585
586/*
587 *	vm_page_remove:
588 *				NOTE: used by device pager as well -wfj
589 *
590 *	Removes the given mem entry from the object/offset-page
591 *	table and the object page list, but do not invalidate/terminate
592 *	the backing store.
593 *
594 *	The object and page must be locked, and at splhigh.
595 *	The underlying pmap entry (if any) is NOT removed here.
596 *	This routine may not block.
597 */
598void
599vm_page_remove(vm_page_t m)
600{
601	vm_object_t object;
602	vm_page_t root;
603
604	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
605	if (m->object == NULL)
606		return;
607	if (!VM_OBJECT_LOCKED(m->object))
608		GIANT_REQUIRED;
609	if ((m->flags & PG_BUSY) == 0) {
610		panic("vm_page_remove: page not busy");
611	}
612
613	/*
614	 * Basically destroy the page.
615	 */
616	vm_page_wakeup(m);
617
618	object = m->object;
619
620	/*
621	 * Now remove from the object's list of backed pages.
622	 */
623	if (m != object->root)
624		vm_page_splay(m->pindex, object->root);
625	if (m->left == NULL)
626		root = m->right;
627	else {
628		root = vm_page_splay(m->pindex, m->left);
629		root->right = m->right;
630	}
631	object->root = root;
632	TAILQ_REMOVE(&object->memq, m, listq);
633
634	/*
635	 * And show that the object has one fewer resident page.
636	 */
637	object->resident_page_count--;
638	object->generation++;
639
640	m->object = NULL;
641}
642
643/*
644 *	vm_page_lookup:
645 *
646 *	Returns the page associated with the object/offset
647 *	pair specified; if none is found, NULL is returned.
648 *
649 *	The object must be locked.
650 *	This routine may not block.
651 *	This is a critical path routine
652 */
653vm_page_t
654vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
655{
656	vm_page_t m;
657
658	if (!VM_OBJECT_LOCKED(object))
659		GIANT_REQUIRED;
660	m = vm_page_splay(pindex, object->root);
661	if ((object->root = m) != NULL && m->pindex != pindex)
662		m = NULL;
663	return (m);
664}
665
666/*
667 *	vm_page_rename:
668 *
669 *	Move the given memory entry from its
670 *	current object to the specified target object/offset.
671 *
672 *	The object must be locked.
673 *	This routine may not block.
674 *
675 *	Note: this routine will raise itself to splvm(), the caller need not.
676 *
677 *	Note: swap associated with the page must be invalidated by the move.  We
678 *	      have to do this for several reasons:  (1) we aren't freeing the
679 *	      page, (2) we are dirtying the page, (3) the VM system is probably
680 *	      moving the page from object A to B, and will then later move
681 *	      the backing store from A to B and we can't have a conflict.
682 *
683 *	Note: we *always* dirty the page.  It is necessary both for the
684 *	      fact that we moved it, and because we may be invalidating
685 *	      swap.  If the page is on the cache, we have to deactivate it
686 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
687 *	      on the cache.
688 */
689void
690vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
691{
692	int s;
693
694	s = splvm();
695	vm_page_remove(m);
696	vm_page_insert(m, new_object, new_pindex);
697	if (m->queue - m->pc == PQ_CACHE)
698		vm_page_deactivate(m);
699	vm_page_dirty(m);
700	splx(s);
701}
702
703/*
704 *	vm_page_select_cache:
705 *
706 *	Find a page on the cache queue with color optimization.  As pages
707 *	might be found, but not applicable, they are deactivated.  This
708 *	keeps us from using potentially busy cached pages.
709 *
710 *	This routine must be called at splvm().
711 *	This routine may not block.
712 */
713static vm_page_t
714vm_page_select_cache(int color)
715{
716	vm_page_t m;
717
718	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
719	while (TRUE) {
720		m = vm_pageq_find(PQ_CACHE, color, FALSE);
721		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
722			       m->hold_count || m->wire_count ||
723			  (!VM_OBJECT_TRYLOCK(m->object) &&
724			   !VM_OBJECT_LOCKED(m->object)))) {
725			vm_page_deactivate(m);
726			continue;
727		}
728		return m;
729	}
730}
731
732/*
733 *	vm_page_alloc:
734 *
735 *	Allocate and return a memory cell associated
736 *	with this VM object/offset pair.
737 *
738 *	page_req classes:
739 *	VM_ALLOC_NORMAL		normal process request
740 *	VM_ALLOC_SYSTEM		system *really* needs a page
741 *	VM_ALLOC_INTERRUPT	interrupt time request
742 *	VM_ALLOC_ZERO		zero page
743 *
744 *	This routine may not block.
745 *
746 *	Additional special handling is required when called from an
747 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
748 *	the page cache in this case.
749 */
750vm_page_t
751vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
752{
753	vm_object_t m_object;
754	vm_page_t m = NULL;
755	int color, flags, page_req, s;
756
757	page_req = req & VM_ALLOC_CLASS_MASK;
758
759	if ((req & VM_ALLOC_NOOBJ) == 0) {
760		KASSERT(object != NULL,
761		    ("vm_page_alloc: NULL object."));
762		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
763		KASSERT(!vm_page_lookup(object, pindex),
764		    ("vm_page_alloc: page already allocated"));
765		color = (pindex + object->pg_color) & PQ_L2_MASK;
766	} else
767		color = pindex & PQ_L2_MASK;
768
769	/*
770	 * The pager is allowed to eat deeper into the free page list.
771	 */
772	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
773		page_req = VM_ALLOC_SYSTEM;
774	};
775
776	s = splvm();
777loop:
778	mtx_lock_spin(&vm_page_queue_free_mtx);
779	if (cnt.v_free_count > cnt.v_free_reserved ||
780	    (page_req == VM_ALLOC_SYSTEM &&
781	     cnt.v_cache_count == 0 &&
782	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
783	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
784		/*
785		 * Allocate from the free queue if the number of free pages
786		 * exceeds the minimum for the request class.
787		 */
788		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
789	} else if (page_req != VM_ALLOC_INTERRUPT) {
790		mtx_unlock_spin(&vm_page_queue_free_mtx);
791		/*
792		 * Allocatable from cache (non-interrupt only).  On success,
793		 * we must free the page and try again, thus ensuring that
794		 * cnt.v_*_free_min counters are replenished.
795		 */
796		vm_page_lock_queues();
797		if ((m = vm_page_select_cache(color)) == NULL) {
798			vm_page_unlock_queues();
799			splx(s);
800#if defined(DIAGNOSTIC)
801			if (cnt.v_cache_count > 0)
802				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
803#endif
804			atomic_add_int(&vm_pageout_deficit, 1);
805			pagedaemon_wakeup();
806			return (NULL);
807		}
808		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
809		m_object = m->object;
810		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
811		vm_page_busy(m);
812		pmap_remove_all(m);
813		vm_page_free(m);
814		vm_page_unlock_queues();
815		if (m_object != object)
816			VM_OBJECT_UNLOCK(m_object);
817		goto loop;
818	} else {
819		/*
820		 * Not allocatable from cache from interrupt, give up.
821		 */
822		mtx_unlock_spin(&vm_page_queue_free_mtx);
823		splx(s);
824		atomic_add_int(&vm_pageout_deficit, 1);
825		pagedaemon_wakeup();
826		return (NULL);
827	}
828
829	/*
830	 *  At this point we had better have found a good page.
831	 */
832
833	KASSERT(
834	    m != NULL,
835	    ("vm_page_alloc(): missing page on free queue\n")
836	);
837
838	/*
839	 * Remove from free queue
840	 */
841
842	vm_pageq_remove_nowakeup(m);
843
844	/*
845	 * Initialize structure.  Only the PG_ZERO flag is inherited.
846	 */
847	flags = PG_BUSY;
848	if (m->flags & PG_ZERO) {
849		vm_page_zero_count--;
850		if (req & VM_ALLOC_ZERO)
851			flags = PG_ZERO | PG_BUSY;
852	}
853	m->flags = flags;
854	if (req & VM_ALLOC_WIRED) {
855		atomic_add_int(&cnt.v_wire_count, 1);
856		m->wire_count = 1;
857	} else
858		m->wire_count = 0;
859	m->hold_count = 0;
860	m->act_count = 0;
861	m->busy = 0;
862	m->valid = 0;
863	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
864	mtx_unlock_spin(&vm_page_queue_free_mtx);
865
866	/*
867	 * vm_page_insert() is safe prior to the splx().  Note also that
868	 * inserting a page here does not insert it into the pmap (which
869	 * could cause us to block allocating memory).  We cannot block
870	 * anywhere.
871	 */
872	if ((req & VM_ALLOC_NOOBJ) == 0)
873		vm_page_insert(m, object, pindex);
874
875	/*
876	 * Don't wakeup too often - wakeup the pageout daemon when
877	 * we would be nearly out of memory.
878	 */
879	if (vm_paging_needed())
880		pagedaemon_wakeup();
881
882	splx(s);
883	return (m);
884}
885
886/*
887 *	vm_wait:	(also see VM_WAIT macro)
888 *
889 *	Block until free pages are available for allocation
890 *	- Called in various places before memory allocations.
891 */
892void
893vm_wait(void)
894{
895	int s;
896
897	s = splvm();
898	vm_page_lock_queues();
899	if (curproc == pageproc) {
900		vm_pageout_pages_needed = 1;
901		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
902		    PDROP | PSWP, "VMWait", 0);
903	} else {
904		if (!vm_pages_needed) {
905			vm_pages_needed = 1;
906			wakeup(&vm_pages_needed);
907		}
908		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
909		    "vmwait", 0);
910	}
911	splx(s);
912}
913
914/*
915 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
916 *
917 *	Block until free pages are available for allocation
918 *	- Called only in vm_fault so that processes page faulting
919 *	  can be easily tracked.
920 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
921 *	  processes will be able to grab memory first.  Do not change
922 *	  this balance without careful testing first.
923 */
924void
925vm_waitpfault(void)
926{
927	int s;
928
929	s = splvm();
930	vm_page_lock_queues();
931	if (!vm_pages_needed) {
932		vm_pages_needed = 1;
933		wakeup(&vm_pages_needed);
934	}
935	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
936	    "pfault", 0);
937	splx(s);
938}
939
940/*
941 *	vm_page_activate:
942 *
943 *	Put the specified page on the active list (if appropriate).
944 *	Ensure that act_count is at least ACT_INIT but do not otherwise
945 *	mess with it.
946 *
947 *	The page queues must be locked.
948 *	This routine may not block.
949 */
950void
951vm_page_activate(vm_page_t m)
952{
953	int s;
954
955	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
956	s = splvm();
957	if (m->queue != PQ_ACTIVE) {
958		if ((m->queue - m->pc) == PQ_CACHE)
959			cnt.v_reactivated++;
960		vm_pageq_remove(m);
961		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
962			if (m->act_count < ACT_INIT)
963				m->act_count = ACT_INIT;
964			vm_pageq_enqueue(PQ_ACTIVE, m);
965		}
966	} else {
967		if (m->act_count < ACT_INIT)
968			m->act_count = ACT_INIT;
969	}
970	splx(s);
971}
972
973/*
974 *	vm_page_free_wakeup:
975 *
976 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
977 *	routine is called when a page has been added to the cache or free
978 *	queues.
979 *
980 *	This routine may not block.
981 *	This routine must be called at splvm()
982 */
983static __inline void
984vm_page_free_wakeup(void)
985{
986
987	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
988	/*
989	 * if pageout daemon needs pages, then tell it that there are
990	 * some free.
991	 */
992	if (vm_pageout_pages_needed &&
993	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
994		wakeup(&vm_pageout_pages_needed);
995		vm_pageout_pages_needed = 0;
996	}
997	/*
998	 * wakeup processes that are waiting on memory if we hit a
999	 * high water mark. And wakeup scheduler process if we have
1000	 * lots of memory. this process will swapin processes.
1001	 */
1002	if (vm_pages_needed && !vm_page_count_min()) {
1003		vm_pages_needed = 0;
1004		wakeup(&cnt.v_free_count);
1005	}
1006}
1007
1008/*
1009 *	vm_page_free_toq:
1010 *
1011 *	Returns the given page to the PQ_FREE list,
1012 *	disassociating it with any VM object.
1013 *
1014 *	Object and page must be locked prior to entry.
1015 *	This routine may not block.
1016 */
1017
1018void
1019vm_page_free_toq(vm_page_t m)
1020{
1021	int s;
1022	struct vpgqueues *pq;
1023	vm_object_t object = m->object;
1024
1025	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1026	s = splvm();
1027	cnt.v_tfree++;
1028
1029	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1030		printf(
1031		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1032		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1033		    m->hold_count);
1034		if ((m->queue - m->pc) == PQ_FREE)
1035			panic("vm_page_free: freeing free page");
1036		else
1037			panic("vm_page_free: freeing busy page");
1038	}
1039
1040	/*
1041	 * unqueue, then remove page.  Note that we cannot destroy
1042	 * the page here because we do not want to call the pager's
1043	 * callback routine until after we've put the page on the
1044	 * appropriate free queue.
1045	 */
1046	vm_pageq_remove_nowakeup(m);
1047	vm_page_remove(m);
1048
1049	/*
1050	 * If fictitious remove object association and
1051	 * return, otherwise delay object association removal.
1052	 */
1053	if ((m->flags & PG_FICTITIOUS) != 0) {
1054		splx(s);
1055		return;
1056	}
1057
1058	m->valid = 0;
1059	vm_page_undirty(m);
1060
1061	if (m->wire_count != 0) {
1062		if (m->wire_count > 1) {
1063			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1064				m->wire_count, (long)m->pindex);
1065		}
1066		panic("vm_page_free: freeing wired page\n");
1067	}
1068
1069	/*
1070	 * If we've exhausted the object's resident pages we want to free
1071	 * it up.
1072	 */
1073	if (object &&
1074	    (object->type == OBJT_VNODE) &&
1075	    ((object->flags & OBJ_DEAD) == 0)
1076	) {
1077		struct vnode *vp = (struct vnode *)object->handle;
1078
1079		if (vp) {
1080			VI_LOCK(vp);
1081			if (VSHOULDFREE(vp))
1082				vfree(vp);
1083			VI_UNLOCK(vp);
1084		}
1085	}
1086
1087	/*
1088	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1089	 */
1090	if (m->flags & PG_UNMANAGED) {
1091		m->flags &= ~PG_UNMANAGED;
1092	}
1093
1094	if (m->hold_count != 0) {
1095		m->flags &= ~PG_ZERO;
1096		m->queue = PQ_HOLD;
1097	} else
1098		m->queue = PQ_FREE + m->pc;
1099	pq = &vm_page_queues[m->queue];
1100	mtx_lock_spin(&vm_page_queue_free_mtx);
1101	pq->lcnt++;
1102	++(*pq->cnt);
1103
1104	/*
1105	 * Put zero'd pages on the end ( where we look for zero'd pages
1106	 * first ) and non-zerod pages at the head.
1107	 */
1108	if (m->flags & PG_ZERO) {
1109		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1110		++vm_page_zero_count;
1111	} else {
1112		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1113	}
1114	mtx_unlock_spin(&vm_page_queue_free_mtx);
1115	vm_page_free_wakeup();
1116	splx(s);
1117}
1118
1119/*
1120 *	vm_page_unmanage:
1121 *
1122 * 	Prevent PV management from being done on the page.  The page is
1123 *	removed from the paging queues as if it were wired, and as a
1124 *	consequence of no longer being managed the pageout daemon will not
1125 *	touch it (since there is no way to locate the pte mappings for the
1126 *	page).  madvise() calls that mess with the pmap will also no longer
1127 *	operate on the page.
1128 *
1129 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1130 *	will clear the flag.
1131 *
1132 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1133 *	physical memory as backing store rather then swap-backed memory and
1134 *	will eventually be extended to support 4MB unmanaged physical
1135 *	mappings.
1136 */
1137void
1138vm_page_unmanage(vm_page_t m)
1139{
1140	int s;
1141
1142	s = splvm();
1143	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1144	if ((m->flags & PG_UNMANAGED) == 0) {
1145		if (m->wire_count == 0)
1146			vm_pageq_remove(m);
1147	}
1148	vm_page_flag_set(m, PG_UNMANAGED);
1149	splx(s);
1150}
1151
1152/*
1153 *	vm_page_wire:
1154 *
1155 *	Mark this page as wired down by yet
1156 *	another map, removing it from paging queues
1157 *	as necessary.
1158 *
1159 *	The page queues must be locked.
1160 *	This routine may not block.
1161 */
1162void
1163vm_page_wire(vm_page_t m)
1164{
1165	int s;
1166
1167	/*
1168	 * Only bump the wire statistics if the page is not already wired,
1169	 * and only unqueue the page if it is on some queue (if it is unmanaged
1170	 * it is already off the queues).
1171	 */
1172	s = splvm();
1173	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1174	if (m->wire_count == 0) {
1175		if ((m->flags & PG_UNMANAGED) == 0)
1176			vm_pageq_remove(m);
1177		atomic_add_int(&cnt.v_wire_count, 1);
1178	}
1179	m->wire_count++;
1180	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1181	splx(s);
1182}
1183
1184/*
1185 *	vm_page_unwire:
1186 *
1187 *	Release one wiring of this page, potentially
1188 *	enabling it to be paged again.
1189 *
1190 *	Many pages placed on the inactive queue should actually go
1191 *	into the cache, but it is difficult to figure out which.  What
1192 *	we do instead, if the inactive target is well met, is to put
1193 *	clean pages at the head of the inactive queue instead of the tail.
1194 *	This will cause them to be moved to the cache more quickly and
1195 *	if not actively re-referenced, freed more quickly.  If we just
1196 *	stick these pages at the end of the inactive queue, heavy filesystem
1197 *	meta-data accesses can cause an unnecessary paging load on memory bound
1198 *	processes.  This optimization causes one-time-use metadata to be
1199 *	reused more quickly.
1200 *
1201 *	BUT, if we are in a low-memory situation we have no choice but to
1202 *	put clean pages on the cache queue.
1203 *
1204 *	A number of routines use vm_page_unwire() to guarantee that the page
1205 *	will go into either the inactive or active queues, and will NEVER
1206 *	be placed in the cache - for example, just after dirtying a page.
1207 *	dirty pages in the cache are not allowed.
1208 *
1209 *	The page queues must be locked.
1210 *	This routine may not block.
1211 */
1212void
1213vm_page_unwire(vm_page_t m, int activate)
1214{
1215	int s;
1216
1217	s = splvm();
1218	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1219	if (m->wire_count > 0) {
1220		m->wire_count--;
1221		if (m->wire_count == 0) {
1222			atomic_subtract_int(&cnt.v_wire_count, 1);
1223			if (m->flags & PG_UNMANAGED) {
1224				;
1225			} else if (activate)
1226				vm_pageq_enqueue(PQ_ACTIVE, m);
1227			else {
1228				vm_page_flag_clear(m, PG_WINATCFLS);
1229				vm_pageq_enqueue(PQ_INACTIVE, m);
1230			}
1231		}
1232	} else {
1233		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1234	}
1235	splx(s);
1236}
1237
1238
1239/*
1240 * Move the specified page to the inactive queue.  If the page has
1241 * any associated swap, the swap is deallocated.
1242 *
1243 * Normally athead is 0 resulting in LRU operation.  athead is set
1244 * to 1 if we want this page to be 'as if it were placed in the cache',
1245 * except without unmapping it from the process address space.
1246 *
1247 * This routine may not block.
1248 */
1249static __inline void
1250_vm_page_deactivate(vm_page_t m, int athead)
1251{
1252	int s;
1253
1254	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1255	/*
1256	 * Ignore if already inactive.
1257	 */
1258	if (m->queue == PQ_INACTIVE)
1259		return;
1260
1261	s = splvm();
1262	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1263		if ((m->queue - m->pc) == PQ_CACHE)
1264			cnt.v_reactivated++;
1265		vm_page_flag_clear(m, PG_WINATCFLS);
1266		vm_pageq_remove(m);
1267		if (athead)
1268			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1269		else
1270			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1271		m->queue = PQ_INACTIVE;
1272		vm_page_queues[PQ_INACTIVE].lcnt++;
1273		cnt.v_inactive_count++;
1274	}
1275	splx(s);
1276}
1277
1278void
1279vm_page_deactivate(vm_page_t m)
1280{
1281    _vm_page_deactivate(m, 0);
1282}
1283
1284/*
1285 * vm_page_try_to_cache:
1286 *
1287 * Returns 0 on failure, 1 on success
1288 */
1289int
1290vm_page_try_to_cache(vm_page_t m)
1291{
1292
1293	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1294	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1295	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1296		return (0);
1297	}
1298	vm_page_test_dirty(m);
1299	if (m->dirty)
1300		return (0);
1301	vm_page_cache(m);
1302	return (1);
1303}
1304
1305/*
1306 * vm_page_try_to_free()
1307 *
1308 *	Attempt to free the page.  If we cannot free it, we do nothing.
1309 *	1 is returned on success, 0 on failure.
1310 */
1311int
1312vm_page_try_to_free(vm_page_t m)
1313{
1314
1315	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1316	if (m->object != NULL)
1317		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1318	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1319	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1320		return (0);
1321	}
1322	vm_page_test_dirty(m);
1323	if (m->dirty)
1324		return (0);
1325	vm_page_busy(m);
1326	pmap_remove_all(m);
1327	vm_page_free(m);
1328	return (1);
1329}
1330
1331/*
1332 * vm_page_cache
1333 *
1334 * Put the specified page onto the page cache queue (if appropriate).
1335 *
1336 * This routine may not block.
1337 */
1338void
1339vm_page_cache(vm_page_t m)
1340{
1341	int s;
1342
1343	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1344	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1345	    m->hold_count || m->wire_count) {
1346		printf("vm_page_cache: attempting to cache busy page\n");
1347		return;
1348	}
1349	if ((m->queue - m->pc) == PQ_CACHE)
1350		return;
1351
1352	/*
1353	 * Remove all pmaps and indicate that the page is not
1354	 * writeable or mapped.
1355	 */
1356	pmap_remove_all(m);
1357	if (m->dirty != 0) {
1358		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1359			(long)m->pindex);
1360	}
1361	s = splvm();
1362	vm_pageq_remove_nowakeup(m);
1363	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1364	vm_page_free_wakeup();
1365	splx(s);
1366}
1367
1368/*
1369 * vm_page_dontneed
1370 *
1371 *	Cache, deactivate, or do nothing as appropriate.  This routine
1372 *	is typically used by madvise() MADV_DONTNEED.
1373 *
1374 *	Generally speaking we want to move the page into the cache so
1375 *	it gets reused quickly.  However, this can result in a silly syndrome
1376 *	due to the page recycling too quickly.  Small objects will not be
1377 *	fully cached.  On the otherhand, if we move the page to the inactive
1378 *	queue we wind up with a problem whereby very large objects
1379 *	unnecessarily blow away our inactive and cache queues.
1380 *
1381 *	The solution is to move the pages based on a fixed weighting.  We
1382 *	either leave them alone, deactivate them, or move them to the cache,
1383 *	where moving them to the cache has the highest weighting.
1384 *	By forcing some pages into other queues we eventually force the
1385 *	system to balance the queues, potentially recovering other unrelated
1386 *	space from active.  The idea is to not force this to happen too
1387 *	often.
1388 */
1389void
1390vm_page_dontneed(vm_page_t m)
1391{
1392	static int dnweight;
1393	int dnw;
1394	int head;
1395
1396	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1397	dnw = ++dnweight;
1398
1399	/*
1400	 * occassionally leave the page alone
1401	 */
1402	if ((dnw & 0x01F0) == 0 ||
1403	    m->queue == PQ_INACTIVE ||
1404	    m->queue - m->pc == PQ_CACHE
1405	) {
1406		if (m->act_count >= ACT_INIT)
1407			--m->act_count;
1408		return;
1409	}
1410
1411	if (m->dirty == 0)
1412		vm_page_test_dirty(m);
1413
1414	if (m->dirty || (dnw & 0x0070) == 0) {
1415		/*
1416		 * Deactivate the page 3 times out of 32.
1417		 */
1418		head = 0;
1419	} else {
1420		/*
1421		 * Cache the page 28 times out of every 32.  Note that
1422		 * the page is deactivated instead of cached, but placed
1423		 * at the head of the queue instead of the tail.
1424		 */
1425		head = 1;
1426	}
1427	_vm_page_deactivate(m, head);
1428}
1429
1430/*
1431 * Grab a page, waiting until we are waken up due to the page
1432 * changing state.  We keep on waiting, if the page continues
1433 * to be in the object.  If the page doesn't exist, allocate it.
1434 *
1435 * This routine may block.
1436 */
1437vm_page_t
1438vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1439{
1440	vm_page_t m;
1441	int s, generation;
1442
1443	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1444retrylookup:
1445	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1446		vm_page_lock_queues();
1447		if (m->busy || (m->flags & PG_BUSY)) {
1448			generation = object->generation;
1449
1450			s = splvm();
1451			while ((object->generation == generation) &&
1452					(m->busy || (m->flags & PG_BUSY))) {
1453				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1454				VM_OBJECT_UNLOCK(object);
1455				msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1456				VM_OBJECT_LOCK(object);
1457				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1458					splx(s);
1459					return NULL;
1460				}
1461				vm_page_lock_queues();
1462			}
1463			vm_page_unlock_queues();
1464			splx(s);
1465			goto retrylookup;
1466		} else {
1467			if (allocflags & VM_ALLOC_WIRED)
1468				vm_page_wire(m);
1469			vm_page_busy(m);
1470			vm_page_unlock_queues();
1471			return m;
1472		}
1473	}
1474
1475	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1476	if (m == NULL) {
1477		VM_OBJECT_UNLOCK(object);
1478		VM_WAIT;
1479		VM_OBJECT_LOCK(object);
1480		if ((allocflags & VM_ALLOC_RETRY) == 0)
1481			return NULL;
1482		goto retrylookup;
1483	}
1484
1485	return m;
1486}
1487
1488/*
1489 * Mapping function for valid bits or for dirty bits in
1490 * a page.  May not block.
1491 *
1492 * Inputs are required to range within a page.
1493 */
1494__inline int
1495vm_page_bits(int base, int size)
1496{
1497	int first_bit;
1498	int last_bit;
1499
1500	KASSERT(
1501	    base + size <= PAGE_SIZE,
1502	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1503	);
1504
1505	if (size == 0)		/* handle degenerate case */
1506		return (0);
1507
1508	first_bit = base >> DEV_BSHIFT;
1509	last_bit = (base + size - 1) >> DEV_BSHIFT;
1510
1511	return ((2 << last_bit) - (1 << first_bit));
1512}
1513
1514/*
1515 *	vm_page_set_validclean:
1516 *
1517 *	Sets portions of a page valid and clean.  The arguments are expected
1518 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1519 *	of any partial chunks touched by the range.  The invalid portion of
1520 *	such chunks will be zero'd.
1521 *
1522 *	This routine may not block.
1523 *
1524 *	(base + size) must be less then or equal to PAGE_SIZE.
1525 */
1526void
1527vm_page_set_validclean(vm_page_t m, int base, int size)
1528{
1529	int pagebits;
1530	int frag;
1531	int endoff;
1532
1533	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1534	if (size == 0)	/* handle degenerate case */
1535		return;
1536
1537	/*
1538	 * If the base is not DEV_BSIZE aligned and the valid
1539	 * bit is clear, we have to zero out a portion of the
1540	 * first block.
1541	 */
1542	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1543	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1544		pmap_zero_page_area(m, frag, base - frag);
1545
1546	/*
1547	 * If the ending offset is not DEV_BSIZE aligned and the
1548	 * valid bit is clear, we have to zero out a portion of
1549	 * the last block.
1550	 */
1551	endoff = base + size;
1552	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1553	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1554		pmap_zero_page_area(m, endoff,
1555		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1556
1557	/*
1558	 * Set valid, clear dirty bits.  If validating the entire
1559	 * page we can safely clear the pmap modify bit.  We also
1560	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1561	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1562	 * be set again.
1563	 *
1564	 * We set valid bits inclusive of any overlap, but we can only
1565	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1566	 * the range.
1567	 */
1568	pagebits = vm_page_bits(base, size);
1569	m->valid |= pagebits;
1570#if 0	/* NOT YET */
1571	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1572		frag = DEV_BSIZE - frag;
1573		base += frag;
1574		size -= frag;
1575		if (size < 0)
1576			size = 0;
1577	}
1578	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1579#endif
1580	m->dirty &= ~pagebits;
1581	if (base == 0 && size == PAGE_SIZE) {
1582		pmap_clear_modify(m);
1583		vm_page_flag_clear(m, PG_NOSYNC);
1584	}
1585}
1586
1587#if 0
1588
1589void
1590vm_page_set_dirty(vm_page_t m, int base, int size)
1591{
1592	m->dirty |= vm_page_bits(base, size);
1593}
1594
1595#endif
1596
1597void
1598vm_page_clear_dirty(vm_page_t m, int base, int size)
1599{
1600
1601	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1602	m->dirty &= ~vm_page_bits(base, size);
1603}
1604
1605/*
1606 *	vm_page_set_invalid:
1607 *
1608 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1609 *	valid and dirty bits for the effected areas are cleared.
1610 *
1611 *	May not block.
1612 */
1613void
1614vm_page_set_invalid(vm_page_t m, int base, int size)
1615{
1616	int bits;
1617
1618	bits = vm_page_bits(base, size);
1619	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1620	m->valid &= ~bits;
1621	m->dirty &= ~bits;
1622	m->object->generation++;
1623}
1624
1625/*
1626 * vm_page_zero_invalid()
1627 *
1628 *	The kernel assumes that the invalid portions of a page contain
1629 *	garbage, but such pages can be mapped into memory by user code.
1630 *	When this occurs, we must zero out the non-valid portions of the
1631 *	page so user code sees what it expects.
1632 *
1633 *	Pages are most often semi-valid when the end of a file is mapped
1634 *	into memory and the file's size is not page aligned.
1635 */
1636void
1637vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1638{
1639	int b;
1640	int i;
1641
1642	/*
1643	 * Scan the valid bits looking for invalid sections that
1644	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1645	 * valid bit may be set ) have already been zerod by
1646	 * vm_page_set_validclean().
1647	 */
1648	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1649		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1650		    (m->valid & (1 << i))
1651		) {
1652			if (i > b) {
1653				pmap_zero_page_area(m,
1654				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1655			}
1656			b = i + 1;
1657		}
1658	}
1659
1660	/*
1661	 * setvalid is TRUE when we can safely set the zero'd areas
1662	 * as being valid.  We can do this if there are no cache consistancy
1663	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1664	 */
1665	if (setvalid)
1666		m->valid = VM_PAGE_BITS_ALL;
1667}
1668
1669/*
1670 *	vm_page_is_valid:
1671 *
1672 *	Is (partial) page valid?  Note that the case where size == 0
1673 *	will return FALSE in the degenerate case where the page is
1674 *	entirely invalid, and TRUE otherwise.
1675 *
1676 *	May not block.
1677 */
1678int
1679vm_page_is_valid(vm_page_t m, int base, int size)
1680{
1681	int bits = vm_page_bits(base, size);
1682
1683	if (m->valid && ((m->valid & bits) == bits))
1684		return 1;
1685	else
1686		return 0;
1687}
1688
1689/*
1690 * update dirty bits from pmap/mmu.  May not block.
1691 */
1692void
1693vm_page_test_dirty(vm_page_t m)
1694{
1695	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1696		vm_page_dirty(m);
1697	}
1698}
1699
1700int so_zerocp_fullpage = 0;
1701
1702void
1703vm_page_cowfault(vm_page_t m)
1704{
1705	vm_page_t mnew;
1706	vm_object_t object;
1707	vm_pindex_t pindex;
1708
1709	object = m->object;
1710	pindex = m->pindex;
1711	vm_page_busy(m);
1712
1713 retry_alloc:
1714	vm_page_remove(m);
1715	/*
1716	 * An interrupt allocation is requested because the page
1717	 * queues lock is held.
1718	 */
1719	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1720	if (mnew == NULL) {
1721		vm_page_insert(m, object, pindex);
1722		vm_page_unlock_queues();
1723		VM_OBJECT_UNLOCK(object);
1724		VM_WAIT;
1725		VM_OBJECT_LOCK(object);
1726		vm_page_lock_queues();
1727		goto retry_alloc;
1728	}
1729
1730	if (m->cow == 0) {
1731		/*
1732		 * check to see if we raced with an xmit complete when
1733		 * waiting to allocate a page.  If so, put things back
1734		 * the way they were
1735		 */
1736		vm_page_busy(mnew);
1737		vm_page_free(mnew);
1738		vm_page_insert(m, object, pindex);
1739	} else { /* clear COW & copy page */
1740		if (so_zerocp_fullpage) {
1741			mnew->valid = VM_PAGE_BITS_ALL;
1742		} else {
1743			vm_page_copy(m, mnew);
1744		}
1745		vm_page_dirty(mnew);
1746		vm_page_flag_clear(mnew, PG_BUSY);
1747	}
1748}
1749
1750void
1751vm_page_cowclear(vm_page_t m)
1752{
1753
1754	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1755	if (m->cow) {
1756		m->cow--;
1757		/*
1758		 * let vm_fault add back write permission  lazily
1759		 */
1760	}
1761	/*
1762	 *  sf_buf_free() will free the page, so we needn't do it here
1763	 */
1764}
1765
1766void
1767vm_page_cowsetup(vm_page_t m)
1768{
1769
1770	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1771	m->cow++;
1772	pmap_page_protect(m, VM_PROT_READ);
1773}
1774
1775#include "opt_ddb.h"
1776#ifdef DDB
1777#include <sys/kernel.h>
1778
1779#include <ddb/ddb.h>
1780
1781DB_SHOW_COMMAND(page, vm_page_print_page_info)
1782{
1783	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1784	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1785	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1786	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1787	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1788	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1789	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1790	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1791	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1792	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1793}
1794
1795DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1796{
1797	int i;
1798	db_printf("PQ_FREE:");
1799	for (i = 0; i < PQ_L2_SIZE; i++) {
1800		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1801	}
1802	db_printf("\n");
1803
1804	db_printf("PQ_CACHE:");
1805	for (i = 0; i < PQ_L2_SIZE; i++) {
1806		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1807	}
1808	db_printf("\n");
1809
1810	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1811		vm_page_queues[PQ_ACTIVE].lcnt,
1812		vm_page_queues[PQ_INACTIVE].lcnt);
1813}
1814#endif /* DDB */
1815