1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD$");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/file.h>
81#include <sys/sysctl.h>
82#include <sys/sysent.h>
83#include <sys/shm.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/pmap.h>
88#include <vm/vm_map.h>
89#include <vm/vm_page.h>
90#include <vm/vm_object.h>
91#include <vm/vm_pager.h>
92#include <vm/vm_kern.h>
93#include <vm/vm_extern.h>
94#include <vm/vnode_pager.h>
95#include <vm/swap_pager.h>
96#include <vm/uma.h>
97
98/*
99 *	Virtual memory maps provide for the mapping, protection,
100 *	and sharing of virtual memory objects.  In addition,
101 *	this module provides for an efficient virtual copy of
102 *	memory from one map to another.
103 *
104 *	Synchronization is required prior to most operations.
105 *
106 *	Maps consist of an ordered doubly-linked list of simple
107 *	entries; a self-adjusting binary search tree of these
108 *	entries is used to speed up lookups.
109 *
110 *	Since portions of maps are specified by start/end addresses,
111 *	which may not align with existing map entries, all
112 *	routines merely "clip" entries to these start/end values.
113 *	[That is, an entry is split into two, bordering at a
114 *	start or end value.]  Note that these clippings may not
115 *	always be necessary (as the two resulting entries are then
116 *	not changed); however, the clipping is done for convenience.
117 *
118 *	As mentioned above, virtual copy operations are performed
119 *	by copying VM object references from one map to
120 *	another, and then marking both regions as copy-on-write.
121 */
122
123static struct mtx map_sleep_mtx;
124static uma_zone_t mapentzone;
125static uma_zone_t kmapentzone;
126static uma_zone_t mapzone;
127static uma_zone_t vmspace_zone;
128static struct vm_object kmapentobj;
129static int vmspace_zinit(void *mem, int size, int flags);
130static void vmspace_zfini(void *mem, int size);
131static int vm_map_zinit(void *mem, int ize, int flags);
132static void vm_map_zfini(void *mem, int size);
133static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134    vm_offset_t max);
135static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137#ifdef INVARIANTS
138static void vm_map_zdtor(void *mem, int size, void *arg);
139static void vmspace_zdtor(void *mem, int size, void *arg);
140#endif
141
142#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
143    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
144     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
145
146/*
147 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
148 * stable.
149 */
150#define PROC_VMSPACE_LOCK(p) do { } while (0)
151#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
152
153/*
154 *	VM_MAP_RANGE_CHECK:	[ internal use only ]
155 *
156 *	Asserts that the starting and ending region
157 *	addresses fall within the valid range of the map.
158 */
159#define	VM_MAP_RANGE_CHECK(map, start, end)		\
160		{					\
161		if (start < vm_map_min(map))		\
162			start = vm_map_min(map);	\
163		if (end > vm_map_max(map))		\
164			end = vm_map_max(map);		\
165		if (start > end)			\
166			start = end;			\
167		}
168
169/*
170 *	vm_map_startup:
171 *
172 *	Initialize the vm_map module.  Must be called before
173 *	any other vm_map routines.
174 *
175 *	Map and entry structures are allocated from the general
176 *	purpose memory pool with some exceptions:
177 *
178 *	- The kernel map and kmem submap are allocated statically.
179 *	- Kernel map entries are allocated out of a static pool.
180 *
181 *	These restrictions are necessary since malloc() uses the
182 *	maps and requires map entries.
183 */
184
185void
186vm_map_startup(void)
187{
188	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
189	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
190#ifdef INVARIANTS
191	    vm_map_zdtor,
192#else
193	    NULL,
194#endif
195	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
196	uma_prealloc(mapzone, MAX_KMAP);
197	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
198	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
199	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
200	uma_prealloc(kmapentzone, MAX_KMAPENT);
201	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
202	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
203}
204
205static void
206vmspace_zfini(void *mem, int size)
207{
208	struct vmspace *vm;
209
210	vm = (struct vmspace *)mem;
211	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
212}
213
214static int
215vmspace_zinit(void *mem, int size, int flags)
216{
217	struct vmspace *vm;
218
219	vm = (struct vmspace *)mem;
220
221	vm->vm_map.pmap = NULL;
222	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
223	return (0);
224}
225
226static void
227vm_map_zfini(void *mem, int size)
228{
229	vm_map_t map;
230
231	map = (vm_map_t)mem;
232	mtx_destroy(&map->system_mtx);
233	sx_destroy(&map->lock);
234}
235
236static int
237vm_map_zinit(void *mem, int size, int flags)
238{
239	vm_map_t map;
240
241	map = (vm_map_t)mem;
242	map->nentries = 0;
243	map->size = 0;
244	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245	sx_init(&map->lock, "vm map (user)");
246	return (0);
247}
248
249#ifdef INVARIANTS
250static void
251vmspace_zdtor(void *mem, int size, void *arg)
252{
253	struct vmspace *vm;
254
255	vm = (struct vmspace *)mem;
256
257	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258}
259static void
260vm_map_zdtor(void *mem, int size, void *arg)
261{
262	vm_map_t map;
263
264	map = (vm_map_t)mem;
265	KASSERT(map->nentries == 0,
266	    ("map %p nentries == %d on free.",
267	    map, map->nentries));
268	KASSERT(map->size == 0,
269	    ("map %p size == %lu on free.",
270	    map, (unsigned long)map->size));
271}
272#endif	/* INVARIANTS */
273
274/*
275 * Allocate a vmspace structure, including a vm_map and pmap,
276 * and initialize those structures.  The refcnt is set to 1.
277 */
278struct vmspace *
279vmspace_alloc(min, max)
280	vm_offset_t min, max;
281{
282	struct vmspace *vm;
283
284	vm = uma_zalloc(vmspace_zone, M_WAITOK);
285	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
286		uma_zfree(vmspace_zone, vm);
287		return (NULL);
288	}
289	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291	vm->vm_refcnt = 1;
292	vm->vm_shm = NULL;
293	vm->vm_swrss = 0;
294	vm->vm_tsize = 0;
295	vm->vm_dsize = 0;
296	vm->vm_ssize = 0;
297	vm->vm_taddr = 0;
298	vm->vm_daddr = 0;
299	vm->vm_maxsaddr = 0;
300	return (vm);
301}
302
303void
304vm_init2(void)
305{
306	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
307	    (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
308	     maxproc * 2 + maxfiles);
309	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
310#ifdef INVARIANTS
311	    vmspace_zdtor,
312#else
313	    NULL,
314#endif
315	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
316}
317
318static void
319vmspace_container_reset(struct proc *p)
320{
321
322#ifdef RACCT
323	PROC_LOCK(p);
324	racct_set(p, RACCT_DATA, 0);
325	racct_set(p, RACCT_STACK, 0);
326	racct_set(p, RACCT_RSS, 0);
327	racct_set(p, RACCT_MEMLOCK, 0);
328	racct_set(p, RACCT_VMEM, 0);
329	PROC_UNLOCK(p);
330#endif
331}
332
333static inline void
334vmspace_dofree(struct vmspace *vm)
335{
336
337	CTR1(KTR_VM, "vmspace_free: %p", vm);
338
339	/*
340	 * Make sure any SysV shm is freed, it might not have been in
341	 * exit1().
342	 */
343	shmexit(vm);
344
345	/*
346	 * Lock the map, to wait out all other references to it.
347	 * Delete all of the mappings and pages they hold, then call
348	 * the pmap module to reclaim anything left.
349	 */
350	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
351	    vm->vm_map.max_offset);
352
353	pmap_release(vmspace_pmap(vm));
354	vm->vm_map.pmap = NULL;
355	uma_zfree(vmspace_zone, vm);
356}
357
358void
359vmspace_free(struct vmspace *vm)
360{
361
362	if (vm->vm_refcnt == 0)
363		panic("vmspace_free: attempt to free already freed vmspace");
364
365	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
366		vmspace_dofree(vm);
367}
368
369void
370vmspace_exitfree(struct proc *p)
371{
372	struct vmspace *vm;
373
374	PROC_VMSPACE_LOCK(p);
375	vm = p->p_vmspace;
376	p->p_vmspace = NULL;
377	PROC_VMSPACE_UNLOCK(p);
378	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
379	vmspace_free(vm);
380}
381
382void
383vmspace_exit(struct thread *td)
384{
385	int refcnt;
386	struct vmspace *vm;
387	struct proc *p;
388
389	/*
390	 * Release user portion of address space.
391	 * This releases references to vnodes,
392	 * which could cause I/O if the file has been unlinked.
393	 * Need to do this early enough that we can still sleep.
394	 *
395	 * The last exiting process to reach this point releases as
396	 * much of the environment as it can. vmspace_dofree() is the
397	 * slower fallback in case another process had a temporary
398	 * reference to the vmspace.
399	 */
400
401	p = td->td_proc;
402	vm = p->p_vmspace;
403	atomic_add_int(&vmspace0.vm_refcnt, 1);
404	do {
405		refcnt = vm->vm_refcnt;
406		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
407			/* Switch now since other proc might free vmspace */
408			PROC_VMSPACE_LOCK(p);
409			p->p_vmspace = &vmspace0;
410			PROC_VMSPACE_UNLOCK(p);
411			pmap_activate(td);
412		}
413	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
414	if (refcnt == 1) {
415		if (p->p_vmspace != vm) {
416			/* vmspace not yet freed, switch back */
417			PROC_VMSPACE_LOCK(p);
418			p->p_vmspace = vm;
419			PROC_VMSPACE_UNLOCK(p);
420			pmap_activate(td);
421		}
422		pmap_remove_pages(vmspace_pmap(vm));
423		/* Switch now since this proc will free vmspace */
424		PROC_VMSPACE_LOCK(p);
425		p->p_vmspace = &vmspace0;
426		PROC_VMSPACE_UNLOCK(p);
427		pmap_activate(td);
428		vmspace_dofree(vm);
429	}
430	vmspace_container_reset(p);
431}
432
433/* Acquire reference to vmspace owned by another process. */
434
435struct vmspace *
436vmspace_acquire_ref(struct proc *p)
437{
438	struct vmspace *vm;
439	int refcnt;
440
441	PROC_VMSPACE_LOCK(p);
442	vm = p->p_vmspace;
443	if (vm == NULL) {
444		PROC_VMSPACE_UNLOCK(p);
445		return (NULL);
446	}
447	do {
448		refcnt = vm->vm_refcnt;
449		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
450			PROC_VMSPACE_UNLOCK(p);
451			return (NULL);
452		}
453	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
454	if (vm != p->p_vmspace) {
455		PROC_VMSPACE_UNLOCK(p);
456		vmspace_free(vm);
457		return (NULL);
458	}
459	PROC_VMSPACE_UNLOCK(p);
460	return (vm);
461}
462
463void
464_vm_map_lock(vm_map_t map, const char *file, int line)
465{
466
467	if (map->system_map)
468		mtx_lock_flags_(&map->system_mtx, 0, file, line);
469	else
470		sx_xlock_(&map->lock, file, line);
471	map->timestamp++;
472}
473
474static void
475vm_map_process_deferred(void)
476{
477	struct thread *td;
478	vm_map_entry_t entry, next;
479	vm_object_t object;
480
481	td = curthread;
482	entry = td->td_map_def_user;
483	td->td_map_def_user = NULL;
484	while (entry != NULL) {
485		next = entry->next;
486		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
487			/*
488			 * Decrement the object's writemappings and
489			 * possibly the vnode's v_writecount.
490			 */
491			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
492			    ("Submap with writecount"));
493			object = entry->object.vm_object;
494			KASSERT(object != NULL, ("No object for writecount"));
495			vnode_pager_release_writecount(object, entry->start,
496			    entry->end);
497		}
498		vm_map_entry_deallocate(entry, FALSE);
499		entry = next;
500	}
501}
502
503void
504_vm_map_unlock(vm_map_t map, const char *file, int line)
505{
506
507	if (map->system_map)
508		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
509	else {
510		sx_xunlock_(&map->lock, file, line);
511		vm_map_process_deferred();
512	}
513}
514
515void
516_vm_map_lock_read(vm_map_t map, const char *file, int line)
517{
518
519	if (map->system_map)
520		mtx_lock_flags_(&map->system_mtx, 0, file, line);
521	else
522		sx_slock_(&map->lock, file, line);
523}
524
525void
526_vm_map_unlock_read(vm_map_t map, const char *file, int line)
527{
528
529	if (map->system_map)
530		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
531	else {
532		sx_sunlock_(&map->lock, file, line);
533		vm_map_process_deferred();
534	}
535}
536
537int
538_vm_map_trylock(vm_map_t map, const char *file, int line)
539{
540	int error;
541
542	error = map->system_map ?
543	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
544	    !sx_try_xlock_(&map->lock, file, line);
545	if (error == 0)
546		map->timestamp++;
547	return (error == 0);
548}
549
550int
551_vm_map_trylock_read(vm_map_t map, const char *file, int line)
552{
553	int error;
554
555	error = map->system_map ?
556	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
557	    !sx_try_slock_(&map->lock, file, line);
558	return (error == 0);
559}
560
561/*
562 *	_vm_map_lock_upgrade:	[ internal use only ]
563 *
564 *	Tries to upgrade a read (shared) lock on the specified map to a write
565 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
566 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
567 *	returned without a read or write lock held.
568 *
569 *	Requires that the map be read locked.
570 */
571int
572_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
573{
574	unsigned int last_timestamp;
575
576	if (map->system_map) {
577		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
578	} else {
579		if (!sx_try_upgrade_(&map->lock, file, line)) {
580			last_timestamp = map->timestamp;
581			sx_sunlock_(&map->lock, file, line);
582			vm_map_process_deferred();
583			/*
584			 * If the map's timestamp does not change while the
585			 * map is unlocked, then the upgrade succeeds.
586			 */
587			sx_xlock_(&map->lock, file, line);
588			if (last_timestamp != map->timestamp) {
589				sx_xunlock_(&map->lock, file, line);
590				return (1);
591			}
592		}
593	}
594	map->timestamp++;
595	return (0);
596}
597
598void
599_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
600{
601
602	if (map->system_map) {
603		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
604	} else
605		sx_downgrade_(&map->lock, file, line);
606}
607
608/*
609 *	vm_map_locked:
610 *
611 *	Returns a non-zero value if the caller holds a write (exclusive) lock
612 *	on the specified map and the value "0" otherwise.
613 */
614int
615vm_map_locked(vm_map_t map)
616{
617
618	if (map->system_map)
619		return (mtx_owned(&map->system_mtx));
620	else
621		return (sx_xlocked(&map->lock));
622}
623
624#ifdef INVARIANTS
625static void
626_vm_map_assert_locked(vm_map_t map, const char *file, int line)
627{
628
629	if (map->system_map)
630		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
631	else
632		sx_assert_(&map->lock, SA_XLOCKED, file, line);
633}
634
635#define	VM_MAP_ASSERT_LOCKED(map) \
636    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
637#else
638#define	VM_MAP_ASSERT_LOCKED(map)
639#endif
640
641/*
642 *	_vm_map_unlock_and_wait:
643 *
644 *	Atomically releases the lock on the specified map and puts the calling
645 *	thread to sleep.  The calling thread will remain asleep until either
646 *	vm_map_wakeup() is performed on the map or the specified timeout is
647 *	exceeded.
648 *
649 *	WARNING!  This function does not perform deferred deallocations of
650 *	objects and map	entries.  Therefore, the calling thread is expected to
651 *	reacquire the map lock after reawakening and later perform an ordinary
652 *	unlock operation, such as vm_map_unlock(), before completing its
653 *	operation on the map.
654 */
655int
656_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
657{
658
659	mtx_lock(&map_sleep_mtx);
660	if (map->system_map)
661		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
662	else
663		sx_xunlock_(&map->lock, file, line);
664	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
665	    timo));
666}
667
668/*
669 *	vm_map_wakeup:
670 *
671 *	Awaken any threads that have slept on the map using
672 *	vm_map_unlock_and_wait().
673 */
674void
675vm_map_wakeup(vm_map_t map)
676{
677
678	/*
679	 * Acquire and release map_sleep_mtx to prevent a wakeup()
680	 * from being performed (and lost) between the map unlock
681	 * and the msleep() in _vm_map_unlock_and_wait().
682	 */
683	mtx_lock(&map_sleep_mtx);
684	mtx_unlock(&map_sleep_mtx);
685	wakeup(&map->root);
686}
687
688void
689vm_map_busy(vm_map_t map)
690{
691
692	VM_MAP_ASSERT_LOCKED(map);
693	map->busy++;
694}
695
696void
697vm_map_unbusy(vm_map_t map)
698{
699
700	VM_MAP_ASSERT_LOCKED(map);
701	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
702	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
703		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
704		wakeup(&map->busy);
705	}
706}
707
708void
709vm_map_wait_busy(vm_map_t map)
710{
711
712	VM_MAP_ASSERT_LOCKED(map);
713	while (map->busy) {
714		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
715		if (map->system_map)
716			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
717		else
718			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
719	}
720	map->timestamp++;
721}
722
723long
724vmspace_resident_count(struct vmspace *vmspace)
725{
726	return pmap_resident_count(vmspace_pmap(vmspace));
727}
728
729/*
730 *	vm_map_create:
731 *
732 *	Creates and returns a new empty VM map with
733 *	the given physical map structure, and having
734 *	the given lower and upper address bounds.
735 */
736vm_map_t
737vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
738{
739	vm_map_t result;
740
741	result = uma_zalloc(mapzone, M_WAITOK);
742	CTR1(KTR_VM, "vm_map_create: %p", result);
743	_vm_map_init(result, pmap, min, max);
744	return (result);
745}
746
747/*
748 * Initialize an existing vm_map structure
749 * such as that in the vmspace structure.
750 */
751static void
752_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
753{
754
755	map->header.next = map->header.prev = &map->header;
756	map->needs_wakeup = FALSE;
757	map->system_map = 0;
758	map->pmap = pmap;
759	map->min_offset = min;
760	map->max_offset = max;
761	map->flags = 0;
762	map->root = NULL;
763	map->timestamp = 0;
764	map->busy = 0;
765}
766
767void
768vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
769{
770
771	_vm_map_init(map, pmap, min, max);
772	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
773	sx_init(&map->lock, "user map");
774}
775
776/*
777 *	vm_map_entry_dispose:	[ internal use only ]
778 *
779 *	Inverse of vm_map_entry_create.
780 */
781static void
782vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
783{
784	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
785}
786
787/*
788 *	vm_map_entry_create:	[ internal use only ]
789 *
790 *	Allocates a VM map entry for insertion.
791 *	No entry fields are filled in.
792 */
793static vm_map_entry_t
794vm_map_entry_create(vm_map_t map)
795{
796	vm_map_entry_t new_entry;
797
798	if (map->system_map)
799		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
800	else
801		new_entry = uma_zalloc(mapentzone, M_WAITOK);
802	if (new_entry == NULL)
803		panic("vm_map_entry_create: kernel resources exhausted");
804	return (new_entry);
805}
806
807/*
808 *	vm_map_entry_set_behavior:
809 *
810 *	Set the expected access behavior, either normal, random, or
811 *	sequential.
812 */
813static inline void
814vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
815{
816	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
817	    (behavior & MAP_ENTRY_BEHAV_MASK);
818}
819
820/*
821 *	vm_map_entry_set_max_free:
822 *
823 *	Set the max_free field in a vm_map_entry.
824 */
825static inline void
826vm_map_entry_set_max_free(vm_map_entry_t entry)
827{
828
829	entry->max_free = entry->adj_free;
830	if (entry->left != NULL && entry->left->max_free > entry->max_free)
831		entry->max_free = entry->left->max_free;
832	if (entry->right != NULL && entry->right->max_free > entry->max_free)
833		entry->max_free = entry->right->max_free;
834}
835
836/*
837 *	vm_map_entry_splay:
838 *
839 *	The Sleator and Tarjan top-down splay algorithm with the
840 *	following variation.  Max_free must be computed bottom-up, so
841 *	on the downward pass, maintain the left and right spines in
842 *	reverse order.  Then, make a second pass up each side to fix
843 *	the pointers and compute max_free.  The time bound is O(log n)
844 *	amortized.
845 *
846 *	The new root is the vm_map_entry containing "addr", or else an
847 *	adjacent entry (lower or higher) if addr is not in the tree.
848 *
849 *	The map must be locked, and leaves it so.
850 *
851 *	Returns: the new root.
852 */
853static vm_map_entry_t
854vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
855{
856	vm_map_entry_t llist, rlist;
857	vm_map_entry_t ltree, rtree;
858	vm_map_entry_t y;
859
860	/* Special case of empty tree. */
861	if (root == NULL)
862		return (root);
863
864	/*
865	 * Pass One: Splay down the tree until we find addr or a NULL
866	 * pointer where addr would go.  llist and rlist are the two
867	 * sides in reverse order (bottom-up), with llist linked by
868	 * the right pointer and rlist linked by the left pointer in
869	 * the vm_map_entry.  Wait until Pass Two to set max_free on
870	 * the two spines.
871	 */
872	llist = NULL;
873	rlist = NULL;
874	for (;;) {
875		/* root is never NULL in here. */
876		if (addr < root->start) {
877			y = root->left;
878			if (y == NULL)
879				break;
880			if (addr < y->start && y->left != NULL) {
881				/* Rotate right and put y on rlist. */
882				root->left = y->right;
883				y->right = root;
884				vm_map_entry_set_max_free(root);
885				root = y->left;
886				y->left = rlist;
887				rlist = y;
888			} else {
889				/* Put root on rlist. */
890				root->left = rlist;
891				rlist = root;
892				root = y;
893			}
894		} else if (addr >= root->end) {
895			y = root->right;
896			if (y == NULL)
897				break;
898			if (addr >= y->end && y->right != NULL) {
899				/* Rotate left and put y on llist. */
900				root->right = y->left;
901				y->left = root;
902				vm_map_entry_set_max_free(root);
903				root = y->right;
904				y->right = llist;
905				llist = y;
906			} else {
907				/* Put root on llist. */
908				root->right = llist;
909				llist = root;
910				root = y;
911			}
912		} else
913			break;
914	}
915
916	/*
917	 * Pass Two: Walk back up the two spines, flip the pointers
918	 * and set max_free.  The subtrees of the root go at the
919	 * bottom of llist and rlist.
920	 */
921	ltree = root->left;
922	while (llist != NULL) {
923		y = llist->right;
924		llist->right = ltree;
925		vm_map_entry_set_max_free(llist);
926		ltree = llist;
927		llist = y;
928	}
929	rtree = root->right;
930	while (rlist != NULL) {
931		y = rlist->left;
932		rlist->left = rtree;
933		vm_map_entry_set_max_free(rlist);
934		rtree = rlist;
935		rlist = y;
936	}
937
938	/*
939	 * Final assembly: add ltree and rtree as subtrees of root.
940	 */
941	root->left = ltree;
942	root->right = rtree;
943	vm_map_entry_set_max_free(root);
944
945	return (root);
946}
947
948/*
949 *	vm_map_entry_{un,}link:
950 *
951 *	Insert/remove entries from maps.
952 */
953static void
954vm_map_entry_link(vm_map_t map,
955		  vm_map_entry_t after_where,
956		  vm_map_entry_t entry)
957{
958
959	CTR4(KTR_VM,
960	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
961	    map->nentries, entry, after_where);
962	VM_MAP_ASSERT_LOCKED(map);
963	map->nentries++;
964	entry->prev = after_where;
965	entry->next = after_where->next;
966	entry->next->prev = entry;
967	after_where->next = entry;
968
969	if (after_where != &map->header) {
970		if (after_where != map->root)
971			vm_map_entry_splay(after_where->start, map->root);
972		entry->right = after_where->right;
973		entry->left = after_where;
974		after_where->right = NULL;
975		after_where->adj_free = entry->start - after_where->end;
976		vm_map_entry_set_max_free(after_where);
977	} else {
978		entry->right = map->root;
979		entry->left = NULL;
980	}
981	entry->adj_free = (entry->next == &map->header ? map->max_offset :
982	    entry->next->start) - entry->end;
983	vm_map_entry_set_max_free(entry);
984	map->root = entry;
985}
986
987static void
988vm_map_entry_unlink(vm_map_t map,
989		    vm_map_entry_t entry)
990{
991	vm_map_entry_t next, prev, root;
992
993	VM_MAP_ASSERT_LOCKED(map);
994	if (entry != map->root)
995		vm_map_entry_splay(entry->start, map->root);
996	if (entry->left == NULL)
997		root = entry->right;
998	else {
999		root = vm_map_entry_splay(entry->start, entry->left);
1000		root->right = entry->right;
1001		root->adj_free = (entry->next == &map->header ? map->max_offset :
1002		    entry->next->start) - root->end;
1003		vm_map_entry_set_max_free(root);
1004	}
1005	map->root = root;
1006
1007	prev = entry->prev;
1008	next = entry->next;
1009	next->prev = prev;
1010	prev->next = next;
1011	map->nentries--;
1012	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1013	    map->nentries, entry);
1014}
1015
1016/*
1017 *	vm_map_entry_resize_free:
1018 *
1019 *	Recompute the amount of free space following a vm_map_entry
1020 *	and propagate that value up the tree.  Call this function after
1021 *	resizing a map entry in-place, that is, without a call to
1022 *	vm_map_entry_link() or _unlink().
1023 *
1024 *	The map must be locked, and leaves it so.
1025 */
1026static void
1027vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1028{
1029
1030	/*
1031	 * Using splay trees without parent pointers, propagating
1032	 * max_free up the tree is done by moving the entry to the
1033	 * root and making the change there.
1034	 */
1035	if (entry != map->root)
1036		map->root = vm_map_entry_splay(entry->start, map->root);
1037
1038	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1039	    entry->next->start) - entry->end;
1040	vm_map_entry_set_max_free(entry);
1041}
1042
1043/*
1044 *	vm_map_lookup_entry:	[ internal use only ]
1045 *
1046 *	Finds the map entry containing (or
1047 *	immediately preceding) the specified address
1048 *	in the given map; the entry is returned
1049 *	in the "entry" parameter.  The boolean
1050 *	result indicates whether the address is
1051 *	actually contained in the map.
1052 */
1053boolean_t
1054vm_map_lookup_entry(
1055	vm_map_t map,
1056	vm_offset_t address,
1057	vm_map_entry_t *entry)	/* OUT */
1058{
1059	vm_map_entry_t cur;
1060	boolean_t locked;
1061
1062	/*
1063	 * If the map is empty, then the map entry immediately preceding
1064	 * "address" is the map's header.
1065	 */
1066	cur = map->root;
1067	if (cur == NULL)
1068		*entry = &map->header;
1069	else if (address >= cur->start && cur->end > address) {
1070		*entry = cur;
1071		return (TRUE);
1072	} else if ((locked = vm_map_locked(map)) ||
1073	    sx_try_upgrade(&map->lock)) {
1074		/*
1075		 * Splay requires a write lock on the map.  However, it only
1076		 * restructures the binary search tree; it does not otherwise
1077		 * change the map.  Thus, the map's timestamp need not change
1078		 * on a temporary upgrade.
1079		 */
1080		map->root = cur = vm_map_entry_splay(address, cur);
1081		if (!locked)
1082			sx_downgrade(&map->lock);
1083
1084		/*
1085		 * If "address" is contained within a map entry, the new root
1086		 * is that map entry.  Otherwise, the new root is a map entry
1087		 * immediately before or after "address".
1088		 */
1089		if (address >= cur->start) {
1090			*entry = cur;
1091			if (cur->end > address)
1092				return (TRUE);
1093		} else
1094			*entry = cur->prev;
1095	} else
1096		/*
1097		 * Since the map is only locked for read access, perform a
1098		 * standard binary search tree lookup for "address".
1099		 */
1100		for (;;) {
1101			if (address < cur->start) {
1102				if (cur->left == NULL) {
1103					*entry = cur->prev;
1104					break;
1105				}
1106				cur = cur->left;
1107			} else if (cur->end > address) {
1108				*entry = cur;
1109				return (TRUE);
1110			} else {
1111				if (cur->right == NULL) {
1112					*entry = cur;
1113					break;
1114				}
1115				cur = cur->right;
1116			}
1117		}
1118	return (FALSE);
1119}
1120
1121/*
1122 *	vm_map_insert:
1123 *
1124 *	Inserts the given whole VM object into the target
1125 *	map at the specified address range.  The object's
1126 *	size should match that of the address range.
1127 *
1128 *	Requires that the map be locked, and leaves it so.
1129 *
1130 *	If object is non-NULL, ref count must be bumped by caller
1131 *	prior to making call to account for the new entry.
1132 */
1133int
1134vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1135	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1136	      int cow)
1137{
1138	vm_map_entry_t new_entry;
1139	vm_map_entry_t prev_entry;
1140	vm_map_entry_t temp_entry;
1141	vm_eflags_t protoeflags;
1142	struct ucred *cred;
1143	vm_inherit_t inheritance;
1144	boolean_t charge_prev_obj;
1145
1146	VM_MAP_ASSERT_LOCKED(map);
1147
1148	/*
1149	 * Check that the start and end points are not bogus.
1150	 */
1151	if ((start < map->min_offset) || (end > map->max_offset) ||
1152	    (start >= end))
1153		return (KERN_INVALID_ADDRESS);
1154
1155	/*
1156	 * Find the entry prior to the proposed starting address; if it's part
1157	 * of an existing entry, this range is bogus.
1158	 */
1159	if (vm_map_lookup_entry(map, start, &temp_entry))
1160		return (KERN_NO_SPACE);
1161
1162	prev_entry = temp_entry;
1163
1164	/*
1165	 * Assert that the next entry doesn't overlap the end point.
1166	 */
1167	if ((prev_entry->next != &map->header) &&
1168	    (prev_entry->next->start < end))
1169		return (KERN_NO_SPACE);
1170
1171	protoeflags = 0;
1172	charge_prev_obj = FALSE;
1173
1174	if (cow & MAP_COPY_ON_WRITE)
1175		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1176
1177	if (cow & MAP_NOFAULT) {
1178		protoeflags |= MAP_ENTRY_NOFAULT;
1179
1180		KASSERT(object == NULL,
1181			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1182	}
1183	if (cow & MAP_DISABLE_SYNCER)
1184		protoeflags |= MAP_ENTRY_NOSYNC;
1185	if (cow & MAP_DISABLE_COREDUMP)
1186		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1187	if (cow & MAP_VN_WRITECOUNT)
1188		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1189	if (cow & MAP_INHERIT_SHARE)
1190		inheritance = VM_INHERIT_SHARE;
1191	else
1192		inheritance = VM_INHERIT_DEFAULT;
1193
1194	cred = NULL;
1195	KASSERT((object != kmem_object && object != kernel_object) ||
1196	    ((object == kmem_object || object == kernel_object) &&
1197		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1198	    ("kmem or kernel object and cow"));
1199	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1200		goto charged;
1201	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1202	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1203		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1204			return (KERN_RESOURCE_SHORTAGE);
1205		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1206		    object->cred == NULL,
1207		    ("OVERCOMMIT: vm_map_insert o %p", object));
1208		cred = curthread->td_ucred;
1209		crhold(cred);
1210		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1211			charge_prev_obj = TRUE;
1212	}
1213
1214charged:
1215	/* Expand the kernel pmap, if necessary. */
1216	if (map == kernel_map && end > kernel_vm_end)
1217		pmap_growkernel(end);
1218	if (object != NULL) {
1219		/*
1220		 * OBJ_ONEMAPPING must be cleared unless this mapping
1221		 * is trivially proven to be the only mapping for any
1222		 * of the object's pages.  (Object granularity
1223		 * reference counting is insufficient to recognize
1224		 * aliases with precision.)
1225		 */
1226		VM_OBJECT_LOCK(object);
1227		if (object->ref_count > 1 || object->shadow_count != 0)
1228			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1229		VM_OBJECT_UNLOCK(object);
1230	}
1231	else if ((prev_entry != &map->header) &&
1232		 (prev_entry->eflags == protoeflags) &&
1233		 (cow & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) == 0 &&
1234		 (prev_entry->end == start) &&
1235		 (prev_entry->wired_count == 0) &&
1236		 (prev_entry->cred == cred ||
1237		  (prev_entry->object.vm_object != NULL &&
1238		   (prev_entry->object.vm_object->cred == cred))) &&
1239		   vm_object_coalesce(prev_entry->object.vm_object,
1240		       prev_entry->offset,
1241		       (vm_size_t)(prev_entry->end - prev_entry->start),
1242		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1243		/*
1244		 * We were able to extend the object.  Determine if we
1245		 * can extend the previous map entry to include the
1246		 * new range as well.
1247		 */
1248		if ((prev_entry->inheritance == inheritance) &&
1249		    (prev_entry->protection == prot) &&
1250		    (prev_entry->max_protection == max)) {
1251			map->size += (end - prev_entry->end);
1252			prev_entry->end = end;
1253			vm_map_entry_resize_free(map, prev_entry);
1254			vm_map_simplify_entry(map, prev_entry);
1255			if (cred != NULL)
1256				crfree(cred);
1257			return (KERN_SUCCESS);
1258		}
1259
1260		/*
1261		 * If we can extend the object but cannot extend the
1262		 * map entry, we have to create a new map entry.  We
1263		 * must bump the ref count on the extended object to
1264		 * account for it.  object may be NULL.
1265		 */
1266		object = prev_entry->object.vm_object;
1267		offset = prev_entry->offset +
1268			(prev_entry->end - prev_entry->start);
1269		vm_object_reference(object);
1270		if (cred != NULL && object != NULL && object->cred != NULL &&
1271		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1272			/* Object already accounts for this uid. */
1273			crfree(cred);
1274			cred = NULL;
1275		}
1276	}
1277
1278	/*
1279	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1280	 * in things like the buffer map where we manage kva but do not manage
1281	 * backing objects.
1282	 */
1283
1284	/*
1285	 * Create a new entry
1286	 */
1287	new_entry = vm_map_entry_create(map);
1288	new_entry->start = start;
1289	new_entry->end = end;
1290	new_entry->cred = NULL;
1291
1292	new_entry->eflags = protoeflags;
1293	new_entry->object.vm_object = object;
1294	new_entry->offset = offset;
1295	new_entry->avail_ssize = 0;
1296
1297	new_entry->inheritance = inheritance;
1298	new_entry->protection = prot;
1299	new_entry->max_protection = max;
1300	new_entry->wired_count = 0;
1301	new_entry->wiring_thread = NULL;
1302	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1303	new_entry->next_read = OFF_TO_IDX(offset);
1304
1305	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1306	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1307	new_entry->cred = cred;
1308
1309	/*
1310	 * Insert the new entry into the list
1311	 */
1312	vm_map_entry_link(map, prev_entry, new_entry);
1313	map->size += new_entry->end - new_entry->start;
1314
1315	/*
1316	 * It may be possible to merge the new entry with the next and/or
1317	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1318	 * panic can result from merging such entries.
1319	 */
1320	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1321		vm_map_simplify_entry(map, new_entry);
1322
1323	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1324		vm_map_pmap_enter(map, start, prot,
1325				    object, OFF_TO_IDX(offset), end - start,
1326				    cow & MAP_PREFAULT_PARTIAL);
1327	}
1328
1329	return (KERN_SUCCESS);
1330}
1331
1332/*
1333 *	vm_map_findspace:
1334 *
1335 *	Find the first fit (lowest VM address) for "length" free bytes
1336 *	beginning at address >= start in the given map.
1337 *
1338 *	In a vm_map_entry, "adj_free" is the amount of free space
1339 *	adjacent (higher address) to this entry, and "max_free" is the
1340 *	maximum amount of contiguous free space in its subtree.  This
1341 *	allows finding a free region in one path down the tree, so
1342 *	O(log n) amortized with splay trees.
1343 *
1344 *	The map must be locked, and leaves it so.
1345 *
1346 *	Returns: 0 on success, and starting address in *addr,
1347 *		 1 if insufficient space.
1348 */
1349int
1350vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1351    vm_offset_t *addr)	/* OUT */
1352{
1353	vm_map_entry_t entry;
1354	vm_offset_t st;
1355
1356	/*
1357	 * Request must fit within min/max VM address and must avoid
1358	 * address wrap.
1359	 */
1360	if (start < map->min_offset)
1361		start = map->min_offset;
1362	if (start + length > map->max_offset || start + length < start)
1363		return (1);
1364
1365	/* Empty tree means wide open address space. */
1366	if (map->root == NULL) {
1367		*addr = start;
1368		return (0);
1369	}
1370
1371	/*
1372	 * After splay, if start comes before root node, then there
1373	 * must be a gap from start to the root.
1374	 */
1375	map->root = vm_map_entry_splay(start, map->root);
1376	if (start + length <= map->root->start) {
1377		*addr = start;
1378		return (0);
1379	}
1380
1381	/*
1382	 * Root is the last node that might begin its gap before
1383	 * start, and this is the last comparison where address
1384	 * wrap might be a problem.
1385	 */
1386	st = (start > map->root->end) ? start : map->root->end;
1387	if (length <= map->root->end + map->root->adj_free - st) {
1388		*addr = st;
1389		return (0);
1390	}
1391
1392	/* With max_free, can immediately tell if no solution. */
1393	entry = map->root->right;
1394	if (entry == NULL || length > entry->max_free)
1395		return (1);
1396
1397	/*
1398	 * Search the right subtree in the order: left subtree, root,
1399	 * right subtree (first fit).  The previous splay implies that
1400	 * all regions in the right subtree have addresses > start.
1401	 */
1402	while (entry != NULL) {
1403		if (entry->left != NULL && entry->left->max_free >= length)
1404			entry = entry->left;
1405		else if (entry->adj_free >= length) {
1406			*addr = entry->end;
1407			return (0);
1408		} else
1409			entry = entry->right;
1410	}
1411
1412	/* Can't get here, so panic if we do. */
1413	panic("vm_map_findspace: max_free corrupt");
1414}
1415
1416int
1417vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1418    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1419    vm_prot_t max, int cow)
1420{
1421	vm_offset_t end;
1422	int result;
1423
1424	end = start + length;
1425	vm_map_lock(map);
1426	VM_MAP_RANGE_CHECK(map, start, end);
1427	(void) vm_map_delete(map, start, end);
1428	result = vm_map_insert(map, object, offset, start, end, prot,
1429	    max, cow);
1430	vm_map_unlock(map);
1431	return (result);
1432}
1433
1434/*
1435 *	vm_map_find finds an unallocated region in the target address
1436 *	map with the given length.  The search is defined to be
1437 *	first-fit from the specified address; the region found is
1438 *	returned in the same parameter.
1439 *
1440 *	If object is non-NULL, ref count must be bumped by caller
1441 *	prior to making call to account for the new entry.
1442 */
1443int
1444vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1445	    vm_offset_t *addr,	/* IN/OUT */
1446	    vm_size_t length, int find_space, vm_prot_t prot,
1447	    vm_prot_t max, int cow)
1448{
1449	vm_offset_t alignment, initial_addr, start;
1450	int result;
1451
1452	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1453	    (object->flags & OBJ_COLORED) == 0))
1454		find_space = VMFS_ANY_SPACE;
1455	if (find_space >> 8 != 0) {
1456		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1457		alignment = (vm_offset_t)1 << (find_space >> 8);
1458	} else
1459		alignment = 0;
1460	initial_addr = *addr;
1461again:
1462	start = initial_addr;
1463	vm_map_lock(map);
1464	do {
1465		if (find_space != VMFS_NO_SPACE) {
1466			if (vm_map_findspace(map, start, length, addr)) {
1467				vm_map_unlock(map);
1468				if (find_space == VMFS_OPTIMAL_SPACE) {
1469					find_space = VMFS_ANY_SPACE;
1470					goto again;
1471				}
1472				return (KERN_NO_SPACE);
1473			}
1474			switch (find_space) {
1475			case VMFS_SUPER_SPACE:
1476			case VMFS_OPTIMAL_SPACE:
1477				pmap_align_superpage(object, offset, addr,
1478				    length);
1479				break;
1480#ifdef VMFS_TLB_ALIGNED_SPACE
1481			case VMFS_TLB_ALIGNED_SPACE:
1482				pmap_align_tlb(addr);
1483				break;
1484#endif
1485			case VMFS_ANY_SPACE:
1486				break;
1487			default:
1488				if ((*addr & (alignment - 1)) != 0) {
1489					*addr &= ~(alignment - 1);
1490					*addr += alignment;
1491				}
1492				break;
1493			}
1494
1495			start = *addr;
1496		}
1497		result = vm_map_insert(map, object, offset, start, start +
1498		    length, prot, max, cow);
1499	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1500	    find_space != VMFS_ANY_SPACE);
1501	vm_map_unlock(map);
1502	return (result);
1503}
1504
1505/*
1506 *	vm_map_simplify_entry:
1507 *
1508 *	Simplify the given map entry by merging with either neighbor.  This
1509 *	routine also has the ability to merge with both neighbors.
1510 *
1511 *	The map must be locked.
1512 *
1513 *	This routine guarentees that the passed entry remains valid (though
1514 *	possibly extended).  When merging, this routine may delete one or
1515 *	both neighbors.
1516 */
1517void
1518vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1519{
1520	vm_map_entry_t next, prev;
1521	vm_size_t prevsize, esize;
1522
1523	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1524		return;
1525
1526	prev = entry->prev;
1527	if (prev != &map->header) {
1528		prevsize = prev->end - prev->start;
1529		if ( (prev->end == entry->start) &&
1530		     (prev->object.vm_object == entry->object.vm_object) &&
1531		     (!prev->object.vm_object ||
1532			(prev->offset + prevsize == entry->offset)) &&
1533		     (prev->eflags == entry->eflags) &&
1534		     (prev->protection == entry->protection) &&
1535		     (prev->max_protection == entry->max_protection) &&
1536		     (prev->inheritance == entry->inheritance) &&
1537		     (prev->wired_count == entry->wired_count) &&
1538		     (prev->cred == entry->cred)) {
1539			vm_map_entry_unlink(map, prev);
1540			entry->start = prev->start;
1541			entry->offset = prev->offset;
1542			if (entry->prev != &map->header)
1543				vm_map_entry_resize_free(map, entry->prev);
1544
1545			/*
1546			 * If the backing object is a vnode object,
1547			 * vm_object_deallocate() calls vrele().
1548			 * However, vrele() does not lock the vnode
1549			 * because the vnode has additional
1550			 * references.  Thus, the map lock can be kept
1551			 * without causing a lock-order reversal with
1552			 * the vnode lock.
1553			 *
1554			 * Since we count the number of virtual page
1555			 * mappings in object->un_pager.vnp.writemappings,
1556			 * the writemappings value should not be adjusted
1557			 * when the entry is disposed of.
1558			 */
1559			if (prev->object.vm_object)
1560				vm_object_deallocate(prev->object.vm_object);
1561			if (prev->cred != NULL)
1562				crfree(prev->cred);
1563			vm_map_entry_dispose(map, prev);
1564		}
1565	}
1566
1567	next = entry->next;
1568	if (next != &map->header) {
1569		esize = entry->end - entry->start;
1570		if ((entry->end == next->start) &&
1571		    (next->object.vm_object == entry->object.vm_object) &&
1572		     (!entry->object.vm_object ||
1573			(entry->offset + esize == next->offset)) &&
1574		    (next->eflags == entry->eflags) &&
1575		    (next->protection == entry->protection) &&
1576		    (next->max_protection == entry->max_protection) &&
1577		    (next->inheritance == entry->inheritance) &&
1578		    (next->wired_count == entry->wired_count) &&
1579		    (next->cred == entry->cred)) {
1580			vm_map_entry_unlink(map, next);
1581			entry->end = next->end;
1582			vm_map_entry_resize_free(map, entry);
1583
1584			/*
1585			 * See comment above.
1586			 */
1587			if (next->object.vm_object)
1588				vm_object_deallocate(next->object.vm_object);
1589			if (next->cred != NULL)
1590				crfree(next->cred);
1591			vm_map_entry_dispose(map, next);
1592		}
1593	}
1594}
1595/*
1596 *	vm_map_clip_start:	[ internal use only ]
1597 *
1598 *	Asserts that the given entry begins at or after
1599 *	the specified address; if necessary,
1600 *	it splits the entry into two.
1601 */
1602#define vm_map_clip_start(map, entry, startaddr) \
1603{ \
1604	if (startaddr > entry->start) \
1605		_vm_map_clip_start(map, entry, startaddr); \
1606}
1607
1608/*
1609 *	This routine is called only when it is known that
1610 *	the entry must be split.
1611 */
1612static void
1613_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1614{
1615	vm_map_entry_t new_entry;
1616
1617	VM_MAP_ASSERT_LOCKED(map);
1618
1619	/*
1620	 * Split off the front portion -- note that we must insert the new
1621	 * entry BEFORE this one, so that this entry has the specified
1622	 * starting address.
1623	 */
1624	vm_map_simplify_entry(map, entry);
1625
1626	/*
1627	 * If there is no object backing this entry, we might as well create
1628	 * one now.  If we defer it, an object can get created after the map
1629	 * is clipped, and individual objects will be created for the split-up
1630	 * map.  This is a bit of a hack, but is also about the best place to
1631	 * put this improvement.
1632	 */
1633	if (entry->object.vm_object == NULL && !map->system_map) {
1634		vm_object_t object;
1635		object = vm_object_allocate(OBJT_DEFAULT,
1636				atop(entry->end - entry->start));
1637		entry->object.vm_object = object;
1638		entry->offset = 0;
1639		if (entry->cred != NULL) {
1640			object->cred = entry->cred;
1641			object->charge = entry->end - entry->start;
1642			entry->cred = NULL;
1643		}
1644	} else if (entry->object.vm_object != NULL &&
1645		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1646		   entry->cred != NULL) {
1647		VM_OBJECT_LOCK(entry->object.vm_object);
1648		KASSERT(entry->object.vm_object->cred == NULL,
1649		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1650		entry->object.vm_object->cred = entry->cred;
1651		entry->object.vm_object->charge = entry->end - entry->start;
1652		VM_OBJECT_UNLOCK(entry->object.vm_object);
1653		entry->cred = NULL;
1654	}
1655
1656	new_entry = vm_map_entry_create(map);
1657	*new_entry = *entry;
1658
1659	new_entry->end = start;
1660	entry->offset += (start - entry->start);
1661	entry->start = start;
1662	if (new_entry->cred != NULL)
1663		crhold(entry->cred);
1664
1665	vm_map_entry_link(map, entry->prev, new_entry);
1666
1667	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1668		vm_object_reference(new_entry->object.vm_object);
1669		/*
1670		 * The object->un_pager.vnp.writemappings for the
1671		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1672		 * kept as is here.  The virtual pages are
1673		 * re-distributed among the clipped entries, so the sum is
1674		 * left the same.
1675		 */
1676	}
1677}
1678
1679/*
1680 *	vm_map_clip_end:	[ internal use only ]
1681 *
1682 *	Asserts that the given entry ends at or before
1683 *	the specified address; if necessary,
1684 *	it splits the entry into two.
1685 */
1686#define vm_map_clip_end(map, entry, endaddr) \
1687{ \
1688	if ((endaddr) < (entry->end)) \
1689		_vm_map_clip_end((map), (entry), (endaddr)); \
1690}
1691
1692/*
1693 *	This routine is called only when it is known that
1694 *	the entry must be split.
1695 */
1696static void
1697_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1698{
1699	vm_map_entry_t new_entry;
1700
1701	VM_MAP_ASSERT_LOCKED(map);
1702
1703	/*
1704	 * If there is no object backing this entry, we might as well create
1705	 * one now.  If we defer it, an object can get created after the map
1706	 * is clipped, and individual objects will be created for the split-up
1707	 * map.  This is a bit of a hack, but is also about the best place to
1708	 * put this improvement.
1709	 */
1710	if (entry->object.vm_object == NULL && !map->system_map) {
1711		vm_object_t object;
1712		object = vm_object_allocate(OBJT_DEFAULT,
1713				atop(entry->end - entry->start));
1714		entry->object.vm_object = object;
1715		entry->offset = 0;
1716		if (entry->cred != NULL) {
1717			object->cred = entry->cred;
1718			object->charge = entry->end - entry->start;
1719			entry->cred = NULL;
1720		}
1721	} else if (entry->object.vm_object != NULL &&
1722		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1723		   entry->cred != NULL) {
1724		VM_OBJECT_LOCK(entry->object.vm_object);
1725		KASSERT(entry->object.vm_object->cred == NULL,
1726		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1727		entry->object.vm_object->cred = entry->cred;
1728		entry->object.vm_object->charge = entry->end - entry->start;
1729		VM_OBJECT_UNLOCK(entry->object.vm_object);
1730		entry->cred = NULL;
1731	}
1732
1733	/*
1734	 * Create a new entry and insert it AFTER the specified entry
1735	 */
1736	new_entry = vm_map_entry_create(map);
1737	*new_entry = *entry;
1738
1739	new_entry->start = entry->end = end;
1740	new_entry->offset += (end - entry->start);
1741	if (new_entry->cred != NULL)
1742		crhold(entry->cred);
1743
1744	vm_map_entry_link(map, entry, new_entry);
1745
1746	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1747		vm_object_reference(new_entry->object.vm_object);
1748	}
1749}
1750
1751/*
1752 *	vm_map_submap:		[ kernel use only ]
1753 *
1754 *	Mark the given range as handled by a subordinate map.
1755 *
1756 *	This range must have been created with vm_map_find,
1757 *	and no other operations may have been performed on this
1758 *	range prior to calling vm_map_submap.
1759 *
1760 *	Only a limited number of operations can be performed
1761 *	within this rage after calling vm_map_submap:
1762 *		vm_fault
1763 *	[Don't try vm_map_copy!]
1764 *
1765 *	To remove a submapping, one must first remove the
1766 *	range from the superior map, and then destroy the
1767 *	submap (if desired).  [Better yet, don't try it.]
1768 */
1769int
1770vm_map_submap(
1771	vm_map_t map,
1772	vm_offset_t start,
1773	vm_offset_t end,
1774	vm_map_t submap)
1775{
1776	vm_map_entry_t entry;
1777	int result = KERN_INVALID_ARGUMENT;
1778
1779	vm_map_lock(map);
1780
1781	VM_MAP_RANGE_CHECK(map, start, end);
1782
1783	if (vm_map_lookup_entry(map, start, &entry)) {
1784		vm_map_clip_start(map, entry, start);
1785	} else
1786		entry = entry->next;
1787
1788	vm_map_clip_end(map, entry, end);
1789
1790	if ((entry->start == start) && (entry->end == end) &&
1791	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1792	    (entry->object.vm_object == NULL)) {
1793		entry->object.sub_map = submap;
1794		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1795		result = KERN_SUCCESS;
1796	}
1797	vm_map_unlock(map);
1798
1799	return (result);
1800}
1801
1802/*
1803 * The maximum number of pages to map
1804 */
1805#define	MAX_INIT_PT	96
1806
1807/*
1808 *	vm_map_pmap_enter:
1809 *
1810 *	Preload read-only mappings for the given object's resident pages into
1811 *	the given map.  This eliminates the soft faults on process startup and
1812 *	immediately after an mmap(2).  Because these are speculative mappings,
1813 *	cached pages are not reactivated and mapped.
1814 */
1815void
1816vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1817    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1818{
1819	vm_offset_t start;
1820	vm_page_t p, p_start;
1821	vm_pindex_t psize, tmpidx;
1822
1823	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1824		return;
1825	VM_OBJECT_LOCK(object);
1826	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1827		pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1828		goto unlock_return;
1829	}
1830
1831	psize = atop(size);
1832
1833	if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT &&
1834	    object->resident_page_count > MAX_INIT_PT)
1835		goto unlock_return;
1836
1837	if (psize + pindex > object->size) {
1838		if (object->size < pindex)
1839			goto unlock_return;
1840		psize = object->size - pindex;
1841	}
1842
1843	start = 0;
1844	p_start = NULL;
1845
1846	p = vm_page_find_least(object, pindex);
1847	/*
1848	 * Assert: the variable p is either (1) the page with the
1849	 * least pindex greater than or equal to the parameter pindex
1850	 * or (2) NULL.
1851	 */
1852	for (;
1853	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1854	     p = TAILQ_NEXT(p, listq)) {
1855		/*
1856		 * don't allow an madvise to blow away our really
1857		 * free pages allocating pv entries.
1858		 */
1859		if ((flags & MAP_PREFAULT_MADVISE) &&
1860		    cnt.v_free_count < cnt.v_free_reserved) {
1861			psize = tmpidx;
1862			break;
1863		}
1864		if (p->valid == VM_PAGE_BITS_ALL) {
1865			if (p_start == NULL) {
1866				start = addr + ptoa(tmpidx);
1867				p_start = p;
1868			}
1869		} else if (p_start != NULL) {
1870			pmap_enter_object(map->pmap, start, addr +
1871			    ptoa(tmpidx), p_start, prot);
1872			p_start = NULL;
1873		}
1874	}
1875	if (p_start != NULL)
1876		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1877		    p_start, prot);
1878unlock_return:
1879	VM_OBJECT_UNLOCK(object);
1880}
1881
1882/*
1883 *	vm_map_protect:
1884 *
1885 *	Sets the protection of the specified address
1886 *	region in the target map.  If "set_max" is
1887 *	specified, the maximum protection is to be set;
1888 *	otherwise, only the current protection is affected.
1889 */
1890int
1891vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1892	       vm_prot_t new_prot, boolean_t set_max)
1893{
1894	vm_map_entry_t current, entry;
1895	vm_object_t obj;
1896	struct ucred *cred;
1897	vm_prot_t old_prot;
1898
1899	if (start == end)
1900		return (KERN_SUCCESS);
1901
1902	vm_map_lock(map);
1903
1904	VM_MAP_RANGE_CHECK(map, start, end);
1905
1906	if (vm_map_lookup_entry(map, start, &entry)) {
1907		vm_map_clip_start(map, entry, start);
1908	} else {
1909		entry = entry->next;
1910	}
1911
1912	/*
1913	 * Make a first pass to check for protection violations.
1914	 */
1915	current = entry;
1916	while ((current != &map->header) && (current->start < end)) {
1917		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1918			vm_map_unlock(map);
1919			return (KERN_INVALID_ARGUMENT);
1920		}
1921		if ((new_prot & current->max_protection) != new_prot) {
1922			vm_map_unlock(map);
1923			return (KERN_PROTECTION_FAILURE);
1924		}
1925		current = current->next;
1926	}
1927
1928
1929	/*
1930	 * Do an accounting pass for private read-only mappings that
1931	 * now will do cow due to allowed write (e.g. debugger sets
1932	 * breakpoint on text segment)
1933	 */
1934	for (current = entry; (current != &map->header) &&
1935	     (current->start < end); current = current->next) {
1936
1937		vm_map_clip_end(map, current, end);
1938
1939		if (set_max ||
1940		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1941		    ENTRY_CHARGED(current)) {
1942			continue;
1943		}
1944
1945		cred = curthread->td_ucred;
1946		obj = current->object.vm_object;
1947
1948		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1949			if (!swap_reserve(current->end - current->start)) {
1950				vm_map_unlock(map);
1951				return (KERN_RESOURCE_SHORTAGE);
1952			}
1953			crhold(cred);
1954			current->cred = cred;
1955			continue;
1956		}
1957
1958		VM_OBJECT_LOCK(obj);
1959		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1960			VM_OBJECT_UNLOCK(obj);
1961			continue;
1962		}
1963
1964		/*
1965		 * Charge for the whole object allocation now, since
1966		 * we cannot distinguish between non-charged and
1967		 * charged clipped mapping of the same object later.
1968		 */
1969		KASSERT(obj->charge == 0,
1970		    ("vm_map_protect: object %p overcharged (entry %p)",
1971		    obj, current));
1972		if (!swap_reserve(ptoa(obj->size))) {
1973			VM_OBJECT_UNLOCK(obj);
1974			vm_map_unlock(map);
1975			return (KERN_RESOURCE_SHORTAGE);
1976		}
1977
1978		crhold(cred);
1979		obj->cred = cred;
1980		obj->charge = ptoa(obj->size);
1981		VM_OBJECT_UNLOCK(obj);
1982	}
1983
1984	/*
1985	 * Go back and fix up protections. [Note that clipping is not
1986	 * necessary the second time.]
1987	 */
1988	current = entry;
1989	while ((current != &map->header) && (current->start < end)) {
1990		old_prot = current->protection;
1991
1992		if (set_max)
1993			current->protection =
1994			    (current->max_protection = new_prot) &
1995			    old_prot;
1996		else
1997			current->protection = new_prot;
1998
1999		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
2000		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
2001		    (current->protection & VM_PROT_WRITE) != 0 &&
2002		    (old_prot & VM_PROT_WRITE) == 0) {
2003			vm_fault_copy_entry(map, map, current, current, NULL);
2004		}
2005
2006		/*
2007		 * When restricting access, update the physical map.  Worry
2008		 * about copy-on-write here.
2009		 */
2010		if ((old_prot & ~current->protection) != 0) {
2011#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2012							VM_PROT_ALL)
2013			pmap_protect(map->pmap, current->start,
2014			    current->end,
2015			    current->protection & MASK(current));
2016#undef	MASK
2017		}
2018		vm_map_simplify_entry(map, current);
2019		current = current->next;
2020	}
2021	vm_map_unlock(map);
2022	return (KERN_SUCCESS);
2023}
2024
2025/*
2026 *	vm_map_madvise:
2027 *
2028 *	This routine traverses a processes map handling the madvise
2029 *	system call.  Advisories are classified as either those effecting
2030 *	the vm_map_entry structure, or those effecting the underlying
2031 *	objects.
2032 */
2033int
2034vm_map_madvise(
2035	vm_map_t map,
2036	vm_offset_t start,
2037	vm_offset_t end,
2038	int behav)
2039{
2040	vm_map_entry_t current, entry;
2041	int modify_map = 0;
2042
2043	/*
2044	 * Some madvise calls directly modify the vm_map_entry, in which case
2045	 * we need to use an exclusive lock on the map and we need to perform
2046	 * various clipping operations.  Otherwise we only need a read-lock
2047	 * on the map.
2048	 */
2049	switch(behav) {
2050	case MADV_NORMAL:
2051	case MADV_SEQUENTIAL:
2052	case MADV_RANDOM:
2053	case MADV_NOSYNC:
2054	case MADV_AUTOSYNC:
2055	case MADV_NOCORE:
2056	case MADV_CORE:
2057		if (start == end)
2058			return (KERN_SUCCESS);
2059		modify_map = 1;
2060		vm_map_lock(map);
2061		break;
2062	case MADV_WILLNEED:
2063	case MADV_DONTNEED:
2064	case MADV_FREE:
2065		if (start == end)
2066			return (KERN_SUCCESS);
2067		vm_map_lock_read(map);
2068		break;
2069	default:
2070		return (KERN_INVALID_ARGUMENT);
2071	}
2072
2073	/*
2074	 * Locate starting entry and clip if necessary.
2075	 */
2076	VM_MAP_RANGE_CHECK(map, start, end);
2077
2078	if (vm_map_lookup_entry(map, start, &entry)) {
2079		if (modify_map)
2080			vm_map_clip_start(map, entry, start);
2081	} else {
2082		entry = entry->next;
2083	}
2084
2085	if (modify_map) {
2086		/*
2087		 * madvise behaviors that are implemented in the vm_map_entry.
2088		 *
2089		 * We clip the vm_map_entry so that behavioral changes are
2090		 * limited to the specified address range.
2091		 */
2092		for (current = entry;
2093		     (current != &map->header) && (current->start < end);
2094		     current = current->next
2095		) {
2096			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2097				continue;
2098
2099			vm_map_clip_end(map, current, end);
2100
2101			switch (behav) {
2102			case MADV_NORMAL:
2103				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2104				break;
2105			case MADV_SEQUENTIAL:
2106				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2107				break;
2108			case MADV_RANDOM:
2109				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2110				break;
2111			case MADV_NOSYNC:
2112				current->eflags |= MAP_ENTRY_NOSYNC;
2113				break;
2114			case MADV_AUTOSYNC:
2115				current->eflags &= ~MAP_ENTRY_NOSYNC;
2116				break;
2117			case MADV_NOCORE:
2118				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2119				break;
2120			case MADV_CORE:
2121				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2122				break;
2123			default:
2124				break;
2125			}
2126			vm_map_simplify_entry(map, current);
2127		}
2128		vm_map_unlock(map);
2129	} else {
2130		vm_pindex_t pstart, pend;
2131
2132		/*
2133		 * madvise behaviors that are implemented in the underlying
2134		 * vm_object.
2135		 *
2136		 * Since we don't clip the vm_map_entry, we have to clip
2137		 * the vm_object pindex and count.
2138		 */
2139		for (current = entry;
2140		     (current != &map->header) && (current->start < end);
2141		     current = current->next
2142		) {
2143			vm_offset_t useStart;
2144
2145			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2146				continue;
2147
2148			pstart = OFF_TO_IDX(current->offset);
2149			pend = pstart + atop(current->end - current->start);
2150			useStart = current->start;
2151
2152			if (current->start < start) {
2153				pstart += atop(start - current->start);
2154				useStart = start;
2155			}
2156			if (current->end > end)
2157				pend -= atop(current->end - end);
2158
2159			if (pstart >= pend)
2160				continue;
2161
2162			vm_object_madvise(current->object.vm_object, pstart,
2163			    pend, behav);
2164			if (behav == MADV_WILLNEED) {
2165				vm_map_pmap_enter(map,
2166				    useStart,
2167				    current->protection,
2168				    current->object.vm_object,
2169				    pstart,
2170				    ptoa(pend - pstart),
2171				    MAP_PREFAULT_MADVISE
2172				);
2173			}
2174		}
2175		vm_map_unlock_read(map);
2176	}
2177	return (0);
2178}
2179
2180
2181/*
2182 *	vm_map_inherit:
2183 *
2184 *	Sets the inheritance of the specified address
2185 *	range in the target map.  Inheritance
2186 *	affects how the map will be shared with
2187 *	child maps at the time of vmspace_fork.
2188 */
2189int
2190vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2191	       vm_inherit_t new_inheritance)
2192{
2193	vm_map_entry_t entry;
2194	vm_map_entry_t temp_entry;
2195
2196	switch (new_inheritance) {
2197	case VM_INHERIT_NONE:
2198	case VM_INHERIT_COPY:
2199	case VM_INHERIT_SHARE:
2200		break;
2201	default:
2202		return (KERN_INVALID_ARGUMENT);
2203	}
2204	if (start == end)
2205		return (KERN_SUCCESS);
2206	vm_map_lock(map);
2207	VM_MAP_RANGE_CHECK(map, start, end);
2208	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2209		entry = temp_entry;
2210		vm_map_clip_start(map, entry, start);
2211	} else
2212		entry = temp_entry->next;
2213	while ((entry != &map->header) && (entry->start < end)) {
2214		vm_map_clip_end(map, entry, end);
2215		entry->inheritance = new_inheritance;
2216		vm_map_simplify_entry(map, entry);
2217		entry = entry->next;
2218	}
2219	vm_map_unlock(map);
2220	return (KERN_SUCCESS);
2221}
2222
2223/*
2224 *	vm_map_unwire:
2225 *
2226 *	Implements both kernel and user unwiring.
2227 */
2228int
2229vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2230    int flags)
2231{
2232	vm_map_entry_t entry, first_entry, tmp_entry;
2233	vm_offset_t saved_start;
2234	unsigned int last_timestamp;
2235	int rv;
2236	boolean_t need_wakeup, result, user_unwire;
2237
2238	if (start == end)
2239		return (KERN_SUCCESS);
2240	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2241	vm_map_lock(map);
2242	VM_MAP_RANGE_CHECK(map, start, end);
2243	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2244		if (flags & VM_MAP_WIRE_HOLESOK)
2245			first_entry = first_entry->next;
2246		else {
2247			vm_map_unlock(map);
2248			return (KERN_INVALID_ADDRESS);
2249		}
2250	}
2251	last_timestamp = map->timestamp;
2252	entry = first_entry;
2253	while (entry != &map->header && entry->start < end) {
2254		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2255			/*
2256			 * We have not yet clipped the entry.
2257			 */
2258			saved_start = (start >= entry->start) ? start :
2259			    entry->start;
2260			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2261			if (vm_map_unlock_and_wait(map, 0)) {
2262				/*
2263				 * Allow interruption of user unwiring?
2264				 */
2265			}
2266			vm_map_lock(map);
2267			if (last_timestamp+1 != map->timestamp) {
2268				/*
2269				 * Look again for the entry because the map was
2270				 * modified while it was unlocked.
2271				 * Specifically, the entry may have been
2272				 * clipped, merged, or deleted.
2273				 */
2274				if (!vm_map_lookup_entry(map, saved_start,
2275				    &tmp_entry)) {
2276					if (flags & VM_MAP_WIRE_HOLESOK)
2277						tmp_entry = tmp_entry->next;
2278					else {
2279						if (saved_start == start) {
2280							/*
2281							 * First_entry has been deleted.
2282							 */
2283							vm_map_unlock(map);
2284							return (KERN_INVALID_ADDRESS);
2285						}
2286						end = saved_start;
2287						rv = KERN_INVALID_ADDRESS;
2288						goto done;
2289					}
2290				}
2291				if (entry == first_entry)
2292					first_entry = tmp_entry;
2293				else
2294					first_entry = NULL;
2295				entry = tmp_entry;
2296			}
2297			last_timestamp = map->timestamp;
2298			continue;
2299		}
2300		vm_map_clip_start(map, entry, start);
2301		vm_map_clip_end(map, entry, end);
2302		/*
2303		 * Mark the entry in case the map lock is released.  (See
2304		 * above.)
2305		 */
2306		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2307		    entry->wiring_thread == NULL,
2308		    ("owned map entry %p", entry));
2309		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2310		entry->wiring_thread = curthread;
2311		/*
2312		 * Check the map for holes in the specified region.
2313		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2314		 */
2315		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2316		    (entry->end < end && (entry->next == &map->header ||
2317		    entry->next->start > entry->end))) {
2318			end = entry->end;
2319			rv = KERN_INVALID_ADDRESS;
2320			goto done;
2321		}
2322		/*
2323		 * If system unwiring, require that the entry is system wired.
2324		 */
2325		if (!user_unwire &&
2326		    vm_map_entry_system_wired_count(entry) == 0) {
2327			end = entry->end;
2328			rv = KERN_INVALID_ARGUMENT;
2329			goto done;
2330		}
2331		entry = entry->next;
2332	}
2333	rv = KERN_SUCCESS;
2334done:
2335	need_wakeup = FALSE;
2336	if (first_entry == NULL) {
2337		result = vm_map_lookup_entry(map, start, &first_entry);
2338		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2339			first_entry = first_entry->next;
2340		else
2341			KASSERT(result, ("vm_map_unwire: lookup failed"));
2342	}
2343	for (entry = first_entry; entry != &map->header && entry->start < end;
2344	    entry = entry->next) {
2345		/*
2346		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2347		 * space in the unwired region could have been mapped
2348		 * while the map lock was dropped for draining
2349		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2350		 * could be simultaneously wiring this new mapping
2351		 * entry.  Detect these cases and skip any entries
2352		 * marked as in transition by us.
2353		 */
2354		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2355		    entry->wiring_thread != curthread) {
2356			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2357			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2358			continue;
2359		}
2360
2361		if (rv == KERN_SUCCESS && (!user_unwire ||
2362		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2363			if (user_unwire)
2364				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2365			entry->wired_count--;
2366			if (entry->wired_count == 0) {
2367				/*
2368				 * Retain the map lock.
2369				 */
2370				vm_fault_unwire(map, entry->start, entry->end,
2371				    entry->object.vm_object != NULL &&
2372				    (entry->object.vm_object->type == OBJT_DEVICE ||
2373				    entry->object.vm_object->type == OBJT_SG));
2374			}
2375		}
2376		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2377		    ("vm_map_unwire: in-transition flag missing %p", entry));
2378		KASSERT(entry->wiring_thread == curthread,
2379		    ("vm_map_unwire: alien wire %p", entry));
2380		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2381		entry->wiring_thread = NULL;
2382		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2383			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2384			need_wakeup = TRUE;
2385		}
2386		vm_map_simplify_entry(map, entry);
2387	}
2388	vm_map_unlock(map);
2389	if (need_wakeup)
2390		vm_map_wakeup(map);
2391	return (rv);
2392}
2393
2394/*
2395 *	vm_map_wire:
2396 *
2397 *	Implements both kernel and user wiring.
2398 */
2399int
2400vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2401    int flags)
2402{
2403	vm_map_entry_t entry, first_entry, tmp_entry;
2404	vm_offset_t saved_end, saved_start;
2405	unsigned int last_timestamp;
2406	int rv;
2407	boolean_t fictitious, need_wakeup, result, user_wire;
2408	vm_prot_t prot;
2409
2410	if (start == end)
2411		return (KERN_SUCCESS);
2412	prot = 0;
2413	if (flags & VM_MAP_WIRE_WRITE)
2414		prot |= VM_PROT_WRITE;
2415	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2416	vm_map_lock(map);
2417	VM_MAP_RANGE_CHECK(map, start, end);
2418	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2419		if (flags & VM_MAP_WIRE_HOLESOK)
2420			first_entry = first_entry->next;
2421		else {
2422			vm_map_unlock(map);
2423			return (KERN_INVALID_ADDRESS);
2424		}
2425	}
2426	last_timestamp = map->timestamp;
2427	entry = first_entry;
2428	while (entry != &map->header && entry->start < end) {
2429		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2430			/*
2431			 * We have not yet clipped the entry.
2432			 */
2433			saved_start = (start >= entry->start) ? start :
2434			    entry->start;
2435			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2436			if (vm_map_unlock_and_wait(map, 0)) {
2437				/*
2438				 * Allow interruption of user wiring?
2439				 */
2440			}
2441			vm_map_lock(map);
2442			if (last_timestamp + 1 != map->timestamp) {
2443				/*
2444				 * Look again for the entry because the map was
2445				 * modified while it was unlocked.
2446				 * Specifically, the entry may have been
2447				 * clipped, merged, or deleted.
2448				 */
2449				if (!vm_map_lookup_entry(map, saved_start,
2450				    &tmp_entry)) {
2451					if (flags & VM_MAP_WIRE_HOLESOK)
2452						tmp_entry = tmp_entry->next;
2453					else {
2454						if (saved_start == start) {
2455							/*
2456							 * first_entry has been deleted.
2457							 */
2458							vm_map_unlock(map);
2459							return (KERN_INVALID_ADDRESS);
2460						}
2461						end = saved_start;
2462						rv = KERN_INVALID_ADDRESS;
2463						goto done;
2464					}
2465				}
2466				if (entry == first_entry)
2467					first_entry = tmp_entry;
2468				else
2469					first_entry = NULL;
2470				entry = tmp_entry;
2471			}
2472			last_timestamp = map->timestamp;
2473			continue;
2474		}
2475		vm_map_clip_start(map, entry, start);
2476		vm_map_clip_end(map, entry, end);
2477		/*
2478		 * Mark the entry in case the map lock is released.  (See
2479		 * above.)
2480		 */
2481		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2482		    entry->wiring_thread == NULL,
2483		    ("owned map entry %p", entry));
2484		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2485		entry->wiring_thread = curthread;
2486		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2487		    || (entry->protection & prot) != prot) {
2488			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2489			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2490				end = entry->end;
2491				rv = KERN_INVALID_ADDRESS;
2492				goto done;
2493			}
2494			goto next_entry;
2495		}
2496		if (entry->wired_count == 0) {
2497			entry->wired_count++;
2498			saved_start = entry->start;
2499			saved_end = entry->end;
2500			fictitious = entry->object.vm_object != NULL &&
2501			    (entry->object.vm_object->type == OBJT_DEVICE ||
2502			    entry->object.vm_object->type == OBJT_SG);
2503			/*
2504			 * Release the map lock, relying on the in-transition
2505			 * mark.  Mark the map busy for fork.
2506			 */
2507			vm_map_busy(map);
2508			vm_map_unlock(map);
2509			rv = vm_fault_wire(map, saved_start, saved_end,
2510			    fictitious);
2511			vm_map_lock(map);
2512			vm_map_unbusy(map);
2513			if (last_timestamp + 1 != map->timestamp) {
2514				/*
2515				 * Look again for the entry because the map was
2516				 * modified while it was unlocked.  The entry
2517				 * may have been clipped, but NOT merged or
2518				 * deleted.
2519				 */
2520				result = vm_map_lookup_entry(map, saved_start,
2521				    &tmp_entry);
2522				KASSERT(result, ("vm_map_wire: lookup failed"));
2523				if (entry == first_entry)
2524					first_entry = tmp_entry;
2525				else
2526					first_entry = NULL;
2527				entry = tmp_entry;
2528				while (entry->end < saved_end) {
2529					if (rv != KERN_SUCCESS) {
2530						KASSERT(entry->wired_count == 1,
2531						    ("vm_map_wire: bad count"));
2532						entry->wired_count = -1;
2533					}
2534					entry = entry->next;
2535				}
2536			}
2537			last_timestamp = map->timestamp;
2538			if (rv != KERN_SUCCESS) {
2539				KASSERT(entry->wired_count == 1,
2540				    ("vm_map_wire: bad count"));
2541				/*
2542				 * Assign an out-of-range value to represent
2543				 * the failure to wire this entry.
2544				 */
2545				entry->wired_count = -1;
2546				end = entry->end;
2547				goto done;
2548			}
2549		} else if (!user_wire ||
2550			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2551			entry->wired_count++;
2552		}
2553		/*
2554		 * Check the map for holes in the specified region.
2555		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2556		 */
2557	next_entry:
2558		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2559		    (entry->end < end && (entry->next == &map->header ||
2560		    entry->next->start > entry->end))) {
2561			end = entry->end;
2562			rv = KERN_INVALID_ADDRESS;
2563			goto done;
2564		}
2565		entry = entry->next;
2566	}
2567	rv = KERN_SUCCESS;
2568done:
2569	need_wakeup = FALSE;
2570	if (first_entry == NULL) {
2571		result = vm_map_lookup_entry(map, start, &first_entry);
2572		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2573			first_entry = first_entry->next;
2574		else
2575			KASSERT(result, ("vm_map_wire: lookup failed"));
2576	}
2577	for (entry = first_entry; entry != &map->header && entry->start < end;
2578	    entry = entry->next) {
2579		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2580			goto next_entry_done;
2581
2582		/*
2583		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2584		 * space in the unwired region could have been mapped
2585		 * while the map lock was dropped for faulting in the
2586		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2587		 * Moreover, another thread could be simultaneously
2588		 * wiring this new mapping entry.  Detect these cases
2589		 * and skip any entries marked as in transition by us.
2590		 */
2591		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2592		    entry->wiring_thread != curthread) {
2593			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2594			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2595			continue;
2596		}
2597
2598		if (rv == KERN_SUCCESS) {
2599			if (user_wire)
2600				entry->eflags |= MAP_ENTRY_USER_WIRED;
2601		} else if (entry->wired_count == -1) {
2602			/*
2603			 * Wiring failed on this entry.  Thus, unwiring is
2604			 * unnecessary.
2605			 */
2606			entry->wired_count = 0;
2607		} else {
2608			if (!user_wire ||
2609			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2610				entry->wired_count--;
2611			if (entry->wired_count == 0) {
2612				/*
2613				 * Retain the map lock.
2614				 */
2615				vm_fault_unwire(map, entry->start, entry->end,
2616				    entry->object.vm_object != NULL &&
2617				    (entry->object.vm_object->type == OBJT_DEVICE ||
2618				    entry->object.vm_object->type == OBJT_SG));
2619			}
2620		}
2621	next_entry_done:
2622		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2623		    ("vm_map_wire: in-transition flag missing %p", entry));
2624		KASSERT(entry->wiring_thread == curthread,
2625		    ("vm_map_wire: alien wire %p", entry));
2626		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2627		    MAP_ENTRY_WIRE_SKIPPED);
2628		entry->wiring_thread = NULL;
2629		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2630			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2631			need_wakeup = TRUE;
2632		}
2633		vm_map_simplify_entry(map, entry);
2634	}
2635	vm_map_unlock(map);
2636	if (need_wakeup)
2637		vm_map_wakeup(map);
2638	return (rv);
2639}
2640
2641/*
2642 * vm_map_sync
2643 *
2644 * Push any dirty cached pages in the address range to their pager.
2645 * If syncio is TRUE, dirty pages are written synchronously.
2646 * If invalidate is TRUE, any cached pages are freed as well.
2647 *
2648 * If the size of the region from start to end is zero, we are
2649 * supposed to flush all modified pages within the region containing
2650 * start.  Unfortunately, a region can be split or coalesced with
2651 * neighboring regions, making it difficult to determine what the
2652 * original region was.  Therefore, we approximate this requirement by
2653 * flushing the current region containing start.
2654 *
2655 * Returns an error if any part of the specified range is not mapped.
2656 */
2657int
2658vm_map_sync(
2659	vm_map_t map,
2660	vm_offset_t start,
2661	vm_offset_t end,
2662	boolean_t syncio,
2663	boolean_t invalidate)
2664{
2665	vm_map_entry_t current;
2666	vm_map_entry_t entry;
2667	vm_size_t size;
2668	vm_object_t object;
2669	vm_ooffset_t offset;
2670	unsigned int last_timestamp;
2671	boolean_t failed;
2672
2673	vm_map_lock_read(map);
2674	VM_MAP_RANGE_CHECK(map, start, end);
2675	if (!vm_map_lookup_entry(map, start, &entry)) {
2676		vm_map_unlock_read(map);
2677		return (KERN_INVALID_ADDRESS);
2678	} else if (start == end) {
2679		start = entry->start;
2680		end = entry->end;
2681	}
2682	/*
2683	 * Make a first pass to check for user-wired memory and holes.
2684	 */
2685	for (current = entry; current != &map->header && current->start < end;
2686	    current = current->next) {
2687		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2688			vm_map_unlock_read(map);
2689			return (KERN_INVALID_ARGUMENT);
2690		}
2691		if (end > current->end &&
2692		    (current->next == &map->header ||
2693			current->end != current->next->start)) {
2694			vm_map_unlock_read(map);
2695			return (KERN_INVALID_ADDRESS);
2696		}
2697	}
2698
2699	if (invalidate)
2700		pmap_remove(map->pmap, start, end);
2701	failed = FALSE;
2702
2703	/*
2704	 * Make a second pass, cleaning/uncaching pages from the indicated
2705	 * objects as we go.
2706	 */
2707	for (current = entry; current != &map->header && current->start < end;) {
2708		offset = current->offset + (start - current->start);
2709		size = (end <= current->end ? end : current->end) - start;
2710		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2711			vm_map_t smap;
2712			vm_map_entry_t tentry;
2713			vm_size_t tsize;
2714
2715			smap = current->object.sub_map;
2716			vm_map_lock_read(smap);
2717			(void) vm_map_lookup_entry(smap, offset, &tentry);
2718			tsize = tentry->end - offset;
2719			if (tsize < size)
2720				size = tsize;
2721			object = tentry->object.vm_object;
2722			offset = tentry->offset + (offset - tentry->start);
2723			vm_map_unlock_read(smap);
2724		} else {
2725			object = current->object.vm_object;
2726		}
2727		vm_object_reference(object);
2728		last_timestamp = map->timestamp;
2729		vm_map_unlock_read(map);
2730		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2731			failed = TRUE;
2732		start += size;
2733		vm_object_deallocate(object);
2734		vm_map_lock_read(map);
2735		if (last_timestamp == map->timestamp ||
2736		    !vm_map_lookup_entry(map, start, &current))
2737			current = current->next;
2738	}
2739
2740	vm_map_unlock_read(map);
2741	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2742}
2743
2744/*
2745 *	vm_map_entry_unwire:	[ internal use only ]
2746 *
2747 *	Make the region specified by this entry pageable.
2748 *
2749 *	The map in question should be locked.
2750 *	[This is the reason for this routine's existence.]
2751 */
2752static void
2753vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2754{
2755	vm_fault_unwire(map, entry->start, entry->end,
2756	    entry->object.vm_object != NULL &&
2757	    (entry->object.vm_object->type == OBJT_DEVICE ||
2758	    entry->object.vm_object->type == OBJT_SG));
2759	entry->wired_count = 0;
2760}
2761
2762static void
2763vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2764{
2765
2766	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2767		vm_object_deallocate(entry->object.vm_object);
2768	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2769}
2770
2771/*
2772 *	vm_map_entry_delete:	[ internal use only ]
2773 *
2774 *	Deallocate the given entry from the target map.
2775 */
2776static void
2777vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2778{
2779	vm_object_t object;
2780	vm_pindex_t offidxstart, offidxend, count, size1;
2781	vm_ooffset_t size;
2782
2783	vm_map_entry_unlink(map, entry);
2784	object = entry->object.vm_object;
2785	size = entry->end - entry->start;
2786	map->size -= size;
2787
2788	if (entry->cred != NULL) {
2789		swap_release_by_cred(size, entry->cred);
2790		crfree(entry->cred);
2791	}
2792
2793	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2794	    (object != NULL)) {
2795		KASSERT(entry->cred == NULL || object->cred == NULL ||
2796		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2797		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2798		count = OFF_TO_IDX(size);
2799		offidxstart = OFF_TO_IDX(entry->offset);
2800		offidxend = offidxstart + count;
2801		VM_OBJECT_LOCK(object);
2802		if (object->ref_count != 1 &&
2803		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2804		    object == kernel_object || object == kmem_object)) {
2805			vm_object_collapse(object);
2806
2807			/*
2808			 * The option OBJPR_NOTMAPPED can be passed here
2809			 * because vm_map_delete() already performed
2810			 * pmap_remove() on the only mapping to this range
2811			 * of pages.
2812			 */
2813			vm_object_page_remove(object, offidxstart, offidxend,
2814			    OBJPR_NOTMAPPED);
2815			if (object->type == OBJT_SWAP)
2816				swap_pager_freespace(object, offidxstart, count);
2817			if (offidxend >= object->size &&
2818			    offidxstart < object->size) {
2819				size1 = object->size;
2820				object->size = offidxstart;
2821				if (object->cred != NULL) {
2822					size1 -= object->size;
2823					KASSERT(object->charge >= ptoa(size1),
2824					    ("vm_map_entry_delete: object->charge < 0"));
2825					swap_release_by_cred(ptoa(size1), object->cred);
2826					object->charge -= ptoa(size1);
2827				}
2828			}
2829		}
2830		VM_OBJECT_UNLOCK(object);
2831	} else
2832		entry->object.vm_object = NULL;
2833	if (map->system_map)
2834		vm_map_entry_deallocate(entry, TRUE);
2835	else {
2836		entry->next = curthread->td_map_def_user;
2837		curthread->td_map_def_user = entry;
2838	}
2839}
2840
2841/*
2842 *	vm_map_delete:	[ internal use only ]
2843 *
2844 *	Deallocates the given address range from the target
2845 *	map.
2846 */
2847int
2848vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2849{
2850	vm_map_entry_t entry;
2851	vm_map_entry_t first_entry;
2852
2853	VM_MAP_ASSERT_LOCKED(map);
2854	if (start == end)
2855		return (KERN_SUCCESS);
2856
2857	/*
2858	 * Find the start of the region, and clip it
2859	 */
2860	if (!vm_map_lookup_entry(map, start, &first_entry))
2861		entry = first_entry->next;
2862	else {
2863		entry = first_entry;
2864		vm_map_clip_start(map, entry, start);
2865	}
2866
2867	/*
2868	 * Step through all entries in this region
2869	 */
2870	while ((entry != &map->header) && (entry->start < end)) {
2871		vm_map_entry_t next;
2872
2873		/*
2874		 * Wait for wiring or unwiring of an entry to complete.
2875		 * Also wait for any system wirings to disappear on
2876		 * user maps.
2877		 */
2878		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2879		    (vm_map_pmap(map) != kernel_pmap &&
2880		    vm_map_entry_system_wired_count(entry) != 0)) {
2881			unsigned int last_timestamp;
2882			vm_offset_t saved_start;
2883			vm_map_entry_t tmp_entry;
2884
2885			saved_start = entry->start;
2886			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2887			last_timestamp = map->timestamp;
2888			(void) vm_map_unlock_and_wait(map, 0);
2889			vm_map_lock(map);
2890			if (last_timestamp + 1 != map->timestamp) {
2891				/*
2892				 * Look again for the entry because the map was
2893				 * modified while it was unlocked.
2894				 * Specifically, the entry may have been
2895				 * clipped, merged, or deleted.
2896				 */
2897				if (!vm_map_lookup_entry(map, saved_start,
2898							 &tmp_entry))
2899					entry = tmp_entry->next;
2900				else {
2901					entry = tmp_entry;
2902					vm_map_clip_start(map, entry,
2903							  saved_start);
2904				}
2905			}
2906			continue;
2907		}
2908		vm_map_clip_end(map, entry, end);
2909
2910		next = entry->next;
2911
2912		/*
2913		 * Unwire before removing addresses from the pmap; otherwise,
2914		 * unwiring will put the entries back in the pmap.
2915		 */
2916		if (entry->wired_count != 0) {
2917			vm_map_entry_unwire(map, entry);
2918		}
2919
2920		pmap_remove(map->pmap, entry->start, entry->end);
2921
2922		/*
2923		 * Delete the entry only after removing all pmap
2924		 * entries pointing to its pages.  (Otherwise, its
2925		 * page frames may be reallocated, and any modify bits
2926		 * will be set in the wrong object!)
2927		 */
2928		vm_map_entry_delete(map, entry);
2929		entry = next;
2930	}
2931	return (KERN_SUCCESS);
2932}
2933
2934/*
2935 *	vm_map_remove:
2936 *
2937 *	Remove the given address range from the target map.
2938 *	This is the exported form of vm_map_delete.
2939 */
2940int
2941vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2942{
2943	int result;
2944
2945	vm_map_lock(map);
2946	VM_MAP_RANGE_CHECK(map, start, end);
2947	result = vm_map_delete(map, start, end);
2948	vm_map_unlock(map);
2949	return (result);
2950}
2951
2952/*
2953 *	vm_map_check_protection:
2954 *
2955 *	Assert that the target map allows the specified privilege on the
2956 *	entire address region given.  The entire region must be allocated.
2957 *
2958 *	WARNING!  This code does not and should not check whether the
2959 *	contents of the region is accessible.  For example a smaller file
2960 *	might be mapped into a larger address space.
2961 *
2962 *	NOTE!  This code is also called by munmap().
2963 *
2964 *	The map must be locked.  A read lock is sufficient.
2965 */
2966boolean_t
2967vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2968			vm_prot_t protection)
2969{
2970	vm_map_entry_t entry;
2971	vm_map_entry_t tmp_entry;
2972
2973	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2974		return (FALSE);
2975	entry = tmp_entry;
2976
2977	while (start < end) {
2978		if (entry == &map->header)
2979			return (FALSE);
2980		/*
2981		 * No holes allowed!
2982		 */
2983		if (start < entry->start)
2984			return (FALSE);
2985		/*
2986		 * Check protection associated with entry.
2987		 */
2988		if ((entry->protection & protection) != protection)
2989			return (FALSE);
2990		/* go to next entry */
2991		start = entry->end;
2992		entry = entry->next;
2993	}
2994	return (TRUE);
2995}
2996
2997/*
2998 *	vm_map_copy_entry:
2999 *
3000 *	Copies the contents of the source entry to the destination
3001 *	entry.  The entries *must* be aligned properly.
3002 */
3003static void
3004vm_map_copy_entry(
3005	vm_map_t src_map,
3006	vm_map_t dst_map,
3007	vm_map_entry_t src_entry,
3008	vm_map_entry_t dst_entry,
3009	vm_ooffset_t *fork_charge)
3010{
3011	vm_object_t src_object;
3012	vm_map_entry_t fake_entry;
3013	vm_offset_t size;
3014	struct ucred *cred;
3015	int charged;
3016
3017	VM_MAP_ASSERT_LOCKED(dst_map);
3018
3019	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3020		return;
3021
3022	if (src_entry->wired_count == 0) {
3023
3024		/*
3025		 * If the source entry is marked needs_copy, it is already
3026		 * write-protected.
3027		 */
3028		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3029			pmap_protect(src_map->pmap,
3030			    src_entry->start,
3031			    src_entry->end,
3032			    src_entry->protection & ~VM_PROT_WRITE);
3033		}
3034
3035		/*
3036		 * Make a copy of the object.
3037		 */
3038		size = src_entry->end - src_entry->start;
3039		if ((src_object = src_entry->object.vm_object) != NULL) {
3040			VM_OBJECT_LOCK(src_object);
3041			charged = ENTRY_CHARGED(src_entry);
3042			if ((src_object->handle == NULL) &&
3043				(src_object->type == OBJT_DEFAULT ||
3044				 src_object->type == OBJT_SWAP)) {
3045				vm_object_collapse(src_object);
3046				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3047					vm_object_split(src_entry);
3048					src_object = src_entry->object.vm_object;
3049				}
3050			}
3051			vm_object_reference_locked(src_object);
3052			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3053			if (src_entry->cred != NULL &&
3054			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3055				KASSERT(src_object->cred == NULL,
3056				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3057				     src_object));
3058				src_object->cred = src_entry->cred;
3059				src_object->charge = size;
3060			}
3061			VM_OBJECT_UNLOCK(src_object);
3062			dst_entry->object.vm_object = src_object;
3063			if (charged) {
3064				cred = curthread->td_ucred;
3065				crhold(cred);
3066				dst_entry->cred = cred;
3067				*fork_charge += size;
3068				if (!(src_entry->eflags &
3069				      MAP_ENTRY_NEEDS_COPY)) {
3070					crhold(cred);
3071					src_entry->cred = cred;
3072					*fork_charge += size;
3073				}
3074			}
3075			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3076			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3077			dst_entry->offset = src_entry->offset;
3078			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3079				/*
3080				 * MAP_ENTRY_VN_WRITECNT cannot
3081				 * indicate write reference from
3082				 * src_entry, since the entry is
3083				 * marked as needs copy.  Allocate a
3084				 * fake entry that is used to
3085				 * decrement object->un_pager.vnp.writecount
3086				 * at the appropriate time.  Attach
3087				 * fake_entry to the deferred list.
3088				 */
3089				fake_entry = vm_map_entry_create(dst_map);
3090				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3091				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3092				vm_object_reference(src_object);
3093				fake_entry->object.vm_object = src_object;
3094				fake_entry->start = src_entry->start;
3095				fake_entry->end = src_entry->end;
3096				fake_entry->next = curthread->td_map_def_user;
3097				curthread->td_map_def_user = fake_entry;
3098			}
3099		} else {
3100			dst_entry->object.vm_object = NULL;
3101			dst_entry->offset = 0;
3102			if (src_entry->cred != NULL) {
3103				dst_entry->cred = curthread->td_ucred;
3104				crhold(dst_entry->cred);
3105				*fork_charge += size;
3106			}
3107		}
3108
3109		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3110		    dst_entry->end - dst_entry->start, src_entry->start);
3111	} else {
3112		/*
3113		 * Of course, wired down pages can't be set copy-on-write.
3114		 * Cause wired pages to be copied into the new map by
3115		 * simulating faults (the new pages are pageable)
3116		 */
3117		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3118		    fork_charge);
3119	}
3120}
3121
3122/*
3123 * vmspace_map_entry_forked:
3124 * Update the newly-forked vmspace each time a map entry is inherited
3125 * or copied.  The values for vm_dsize and vm_tsize are approximate
3126 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3127 */
3128static void
3129vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3130    vm_map_entry_t entry)
3131{
3132	vm_size_t entrysize;
3133	vm_offset_t newend;
3134
3135	entrysize = entry->end - entry->start;
3136	vm2->vm_map.size += entrysize;
3137	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3138		vm2->vm_ssize += btoc(entrysize);
3139	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3140	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3141		newend = MIN(entry->end,
3142		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3143		vm2->vm_dsize += btoc(newend - entry->start);
3144	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3145	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3146		newend = MIN(entry->end,
3147		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3148		vm2->vm_tsize += btoc(newend - entry->start);
3149	}
3150}
3151
3152/*
3153 * vmspace_fork:
3154 * Create a new process vmspace structure and vm_map
3155 * based on those of an existing process.  The new map
3156 * is based on the old map, according to the inheritance
3157 * values on the regions in that map.
3158 *
3159 * XXX It might be worth coalescing the entries added to the new vmspace.
3160 *
3161 * The source map must not be locked.
3162 */
3163struct vmspace *
3164vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3165{
3166	struct vmspace *vm2;
3167	vm_map_t new_map, old_map;
3168	vm_map_entry_t new_entry, old_entry;
3169	vm_object_t object;
3170	int locked;
3171
3172	old_map = &vm1->vm_map;
3173	/* Copy immutable fields of vm1 to vm2. */
3174	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3175	if (vm2 == NULL)
3176		return (NULL);
3177	vm2->vm_taddr = vm1->vm_taddr;
3178	vm2->vm_daddr = vm1->vm_daddr;
3179	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3180	vm_map_lock(old_map);
3181	if (old_map->busy)
3182		vm_map_wait_busy(old_map);
3183	new_map = &vm2->vm_map;
3184	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3185	KASSERT(locked, ("vmspace_fork: lock failed"));
3186
3187	old_entry = old_map->header.next;
3188
3189	while (old_entry != &old_map->header) {
3190		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3191			panic("vm_map_fork: encountered a submap");
3192
3193		switch (old_entry->inheritance) {
3194		case VM_INHERIT_NONE:
3195			break;
3196
3197		case VM_INHERIT_SHARE:
3198			/*
3199			 * Clone the entry, creating the shared object if necessary.
3200			 */
3201			object = old_entry->object.vm_object;
3202			if (object == NULL) {
3203				object = vm_object_allocate(OBJT_DEFAULT,
3204					atop(old_entry->end - old_entry->start));
3205				old_entry->object.vm_object = object;
3206				old_entry->offset = 0;
3207				if (old_entry->cred != NULL) {
3208					object->cred = old_entry->cred;
3209					object->charge = old_entry->end -
3210					    old_entry->start;
3211					old_entry->cred = NULL;
3212				}
3213			}
3214
3215			/*
3216			 * Add the reference before calling vm_object_shadow
3217			 * to insure that a shadow object is created.
3218			 */
3219			vm_object_reference(object);
3220			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3221				vm_object_shadow(&old_entry->object.vm_object,
3222				    &old_entry->offset,
3223				    old_entry->end - old_entry->start);
3224				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3225				/* Transfer the second reference too. */
3226				vm_object_reference(
3227				    old_entry->object.vm_object);
3228
3229				/*
3230				 * As in vm_map_simplify_entry(), the
3231				 * vnode lock will not be acquired in
3232				 * this call to vm_object_deallocate().
3233				 */
3234				vm_object_deallocate(object);
3235				object = old_entry->object.vm_object;
3236			}
3237			VM_OBJECT_LOCK(object);
3238			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3239			if (old_entry->cred != NULL) {
3240				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3241				object->cred = old_entry->cred;
3242				object->charge = old_entry->end - old_entry->start;
3243				old_entry->cred = NULL;
3244			}
3245
3246			/*
3247			 * Assert the correct state of the vnode
3248			 * v_writecount while the object is locked, to
3249			 * not relock it later for the assertion
3250			 * correctness.
3251			 */
3252			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3253			    object->type == OBJT_VNODE) {
3254				KASSERT(((struct vnode *)object->handle)->
3255				    v_writecount > 0,
3256				    ("vmspace_fork: v_writecount %p", object));
3257				KASSERT(object->un_pager.vnp.writemappings > 0,
3258				    ("vmspace_fork: vnp.writecount %p",
3259				    object));
3260			}
3261			VM_OBJECT_UNLOCK(object);
3262
3263			/*
3264			 * Clone the entry, referencing the shared object.
3265			 */
3266			new_entry = vm_map_entry_create(new_map);
3267			*new_entry = *old_entry;
3268			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3269			    MAP_ENTRY_IN_TRANSITION);
3270			new_entry->wiring_thread = NULL;
3271			new_entry->wired_count = 0;
3272			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3273				vnode_pager_update_writecount(object,
3274				    new_entry->start, new_entry->end);
3275			}
3276
3277			/*
3278			 * Insert the entry into the new map -- we know we're
3279			 * inserting at the end of the new map.
3280			 */
3281			vm_map_entry_link(new_map, new_map->header.prev,
3282			    new_entry);
3283			vmspace_map_entry_forked(vm1, vm2, new_entry);
3284
3285			/*
3286			 * Update the physical map
3287			 */
3288			pmap_copy(new_map->pmap, old_map->pmap,
3289			    new_entry->start,
3290			    (old_entry->end - old_entry->start),
3291			    old_entry->start);
3292			break;
3293
3294		case VM_INHERIT_COPY:
3295			/*
3296			 * Clone the entry and link into the map.
3297			 */
3298			new_entry = vm_map_entry_create(new_map);
3299			*new_entry = *old_entry;
3300			/*
3301			 * Copied entry is COW over the old object.
3302			 */
3303			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3304			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3305			new_entry->wiring_thread = NULL;
3306			new_entry->wired_count = 0;
3307			new_entry->object.vm_object = NULL;
3308			new_entry->cred = NULL;
3309			vm_map_entry_link(new_map, new_map->header.prev,
3310			    new_entry);
3311			vmspace_map_entry_forked(vm1, vm2, new_entry);
3312			vm_map_copy_entry(old_map, new_map, old_entry,
3313			    new_entry, fork_charge);
3314			break;
3315		}
3316		old_entry = old_entry->next;
3317	}
3318	/*
3319	 * Use inlined vm_map_unlock() to postpone handling the deferred
3320	 * map entries, which cannot be done until both old_map and
3321	 * new_map locks are released.
3322	 */
3323	sx_xunlock(&old_map->lock);
3324	sx_xunlock(&new_map->lock);
3325	vm_map_process_deferred();
3326
3327	return (vm2);
3328}
3329
3330int
3331vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3332    vm_prot_t prot, vm_prot_t max, int cow)
3333{
3334	vm_map_entry_t new_entry, prev_entry;
3335	vm_offset_t bot, top;
3336	vm_size_t growsize, init_ssize;
3337	int orient, rv;
3338	rlim_t lmemlim, vmemlim;
3339
3340	/*
3341	 * The stack orientation is piggybacked with the cow argument.
3342	 * Extract it into orient and mask the cow argument so that we
3343	 * don't pass it around further.
3344	 * NOTE: We explicitly allow bi-directional stacks.
3345	 */
3346	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3347	KASSERT(orient != 0, ("No stack grow direction"));
3348
3349	if (addrbos < vm_map_min(map) ||
3350	    addrbos > vm_map_max(map) ||
3351	    addrbos + max_ssize < addrbos)
3352		return (KERN_NO_SPACE);
3353
3354	growsize = sgrowsiz;
3355	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3356
3357	PROC_LOCK(curproc);
3358	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3359	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3360	PROC_UNLOCK(curproc);
3361
3362	vm_map_lock(map);
3363
3364	/* If addr is already mapped, no go */
3365	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3366		vm_map_unlock(map);
3367		return (KERN_NO_SPACE);
3368	}
3369
3370	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3371		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3372			vm_map_unlock(map);
3373			return (KERN_NO_SPACE);
3374		}
3375	}
3376
3377	/* If we would blow our VMEM resource limit, no go */
3378	if (map->size + init_ssize > vmemlim) {
3379		vm_map_unlock(map);
3380		return (KERN_NO_SPACE);
3381	}
3382
3383	/*
3384	 * If we can't accomodate max_ssize in the current mapping, no go.
3385	 * However, we need to be aware that subsequent user mappings might
3386	 * map into the space we have reserved for stack, and currently this
3387	 * space is not protected.
3388	 *
3389	 * Hopefully we will at least detect this condition when we try to
3390	 * grow the stack.
3391	 */
3392	if ((prev_entry->next != &map->header) &&
3393	    (prev_entry->next->start < addrbos + max_ssize)) {
3394		vm_map_unlock(map);
3395		return (KERN_NO_SPACE);
3396	}
3397
3398	/*
3399	 * We initially map a stack of only init_ssize.  We will grow as
3400	 * needed later.  Depending on the orientation of the stack (i.e.
3401	 * the grow direction) we either map at the top of the range, the
3402	 * bottom of the range or in the middle.
3403	 *
3404	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3405	 * and cow to be 0.  Possibly we should eliminate these as input
3406	 * parameters, and just pass these values here in the insert call.
3407	 */
3408	if (orient == MAP_STACK_GROWS_DOWN)
3409		bot = addrbos + max_ssize - init_ssize;
3410	else if (orient == MAP_STACK_GROWS_UP)
3411		bot = addrbos;
3412	else
3413		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3414	top = bot + init_ssize;
3415	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3416
3417	/* Now set the avail_ssize amount. */
3418	if (rv == KERN_SUCCESS) {
3419		if (prev_entry != &map->header)
3420			vm_map_clip_end(map, prev_entry, bot);
3421		new_entry = prev_entry->next;
3422		if (new_entry->end != top || new_entry->start != bot)
3423			panic("Bad entry start/end for new stack entry");
3424
3425		new_entry->avail_ssize = max_ssize - init_ssize;
3426		if (orient & MAP_STACK_GROWS_DOWN)
3427			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3428		if (orient & MAP_STACK_GROWS_UP)
3429			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3430	}
3431
3432	vm_map_unlock(map);
3433	return (rv);
3434}
3435
3436static int stack_guard_page = 0;
3437TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3438SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3439    &stack_guard_page, 0,
3440    "Insert stack guard page ahead of the growable segments.");
3441
3442/* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3443 * desired address is already mapped, or if we successfully grow
3444 * the stack.  Also returns KERN_SUCCESS if addr is outside the
3445 * stack range (this is strange, but preserves compatibility with
3446 * the grow function in vm_machdep.c).
3447 */
3448int
3449vm_map_growstack(struct proc *p, vm_offset_t addr)
3450{
3451	vm_map_entry_t next_entry, prev_entry;
3452	vm_map_entry_t new_entry, stack_entry;
3453	struct vmspace *vm = p->p_vmspace;
3454	vm_map_t map = &vm->vm_map;
3455	vm_offset_t end;
3456	vm_size_t growsize;
3457	size_t grow_amount, max_grow;
3458	rlim_t lmemlim, stacklim, vmemlim;
3459	int is_procstack, rv;
3460	struct ucred *cred;
3461#ifdef notyet
3462	uint64_t limit;
3463#endif
3464#ifdef RACCT
3465	int error;
3466#endif
3467
3468Retry:
3469	PROC_LOCK(p);
3470	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3471	stacklim = lim_cur(p, RLIMIT_STACK);
3472	vmemlim = lim_cur(p, RLIMIT_VMEM);
3473	PROC_UNLOCK(p);
3474
3475	vm_map_lock_read(map);
3476
3477	/* If addr is already in the entry range, no need to grow.*/
3478	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3479		vm_map_unlock_read(map);
3480		return (KERN_SUCCESS);
3481	}
3482
3483	next_entry = prev_entry->next;
3484	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3485		/*
3486		 * This entry does not grow upwards. Since the address lies
3487		 * beyond this entry, the next entry (if one exists) has to
3488		 * be a downward growable entry. The entry list header is
3489		 * never a growable entry, so it suffices to check the flags.
3490		 */
3491		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3492			vm_map_unlock_read(map);
3493			return (KERN_SUCCESS);
3494		}
3495		stack_entry = next_entry;
3496	} else {
3497		/*
3498		 * This entry grows upward. If the next entry does not at
3499		 * least grow downwards, this is the entry we need to grow.
3500		 * otherwise we have two possible choices and we have to
3501		 * select one.
3502		 */
3503		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3504			/*
3505			 * We have two choices; grow the entry closest to
3506			 * the address to minimize the amount of growth.
3507			 */
3508			if (addr - prev_entry->end <= next_entry->start - addr)
3509				stack_entry = prev_entry;
3510			else
3511				stack_entry = next_entry;
3512		} else
3513			stack_entry = prev_entry;
3514	}
3515
3516	if (stack_entry == next_entry) {
3517		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3518		KASSERT(addr < stack_entry->start, ("foo"));
3519		end = (prev_entry != &map->header) ? prev_entry->end :
3520		    stack_entry->start - stack_entry->avail_ssize;
3521		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3522		max_grow = stack_entry->start - end;
3523	} else {
3524		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3525		KASSERT(addr >= stack_entry->end, ("foo"));
3526		end = (next_entry != &map->header) ? next_entry->start :
3527		    stack_entry->end + stack_entry->avail_ssize;
3528		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3529		max_grow = end - stack_entry->end;
3530	}
3531
3532	if (grow_amount > stack_entry->avail_ssize) {
3533		vm_map_unlock_read(map);
3534		return (KERN_NO_SPACE);
3535	}
3536
3537	/*
3538	 * If there is no longer enough space between the entries nogo, and
3539	 * adjust the available space.  Note: this  should only happen if the
3540	 * user has mapped into the stack area after the stack was created,
3541	 * and is probably an error.
3542	 *
3543	 * This also effectively destroys any guard page the user might have
3544	 * intended by limiting the stack size.
3545	 */
3546	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3547		if (vm_map_lock_upgrade(map))
3548			goto Retry;
3549
3550		stack_entry->avail_ssize = max_grow;
3551
3552		vm_map_unlock(map);
3553		return (KERN_NO_SPACE);
3554	}
3555
3556	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3557
3558	/*
3559	 * If this is the main process stack, see if we're over the stack
3560	 * limit.
3561	 */
3562	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3563		vm_map_unlock_read(map);
3564		return (KERN_NO_SPACE);
3565	}
3566#ifdef RACCT
3567	PROC_LOCK(p);
3568	if (is_procstack &&
3569	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3570		PROC_UNLOCK(p);
3571		vm_map_unlock_read(map);
3572		return (KERN_NO_SPACE);
3573	}
3574	PROC_UNLOCK(p);
3575#endif
3576
3577	/* Round up the grow amount modulo sgrowsiz */
3578	growsize = sgrowsiz;
3579	grow_amount = roundup(grow_amount, growsize);
3580	if (grow_amount > stack_entry->avail_ssize)
3581		grow_amount = stack_entry->avail_ssize;
3582	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3583		grow_amount = trunc_page((vm_size_t)stacklim) -
3584		    ctob(vm->vm_ssize);
3585	}
3586#ifdef notyet
3587	PROC_LOCK(p);
3588	limit = racct_get_available(p, RACCT_STACK);
3589	PROC_UNLOCK(p);
3590	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3591		grow_amount = limit - ctob(vm->vm_ssize);
3592#endif
3593	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3594		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3595			vm_map_unlock_read(map);
3596			rv = KERN_NO_SPACE;
3597			goto out;
3598		}
3599#ifdef RACCT
3600		PROC_LOCK(p);
3601		if (racct_set(p, RACCT_MEMLOCK,
3602		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3603			PROC_UNLOCK(p);
3604			vm_map_unlock_read(map);
3605			rv = KERN_NO_SPACE;
3606			goto out;
3607		}
3608		PROC_UNLOCK(p);
3609#endif
3610	}
3611	/* If we would blow our VMEM resource limit, no go */
3612	if (map->size + grow_amount > vmemlim) {
3613		vm_map_unlock_read(map);
3614		rv = KERN_NO_SPACE;
3615		goto out;
3616	}
3617#ifdef RACCT
3618	PROC_LOCK(p);
3619	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3620		PROC_UNLOCK(p);
3621		vm_map_unlock_read(map);
3622		rv = KERN_NO_SPACE;
3623		goto out;
3624	}
3625	PROC_UNLOCK(p);
3626#endif
3627
3628	if (vm_map_lock_upgrade(map))
3629		goto Retry;
3630
3631	if (stack_entry == next_entry) {
3632		/*
3633		 * Growing downward.
3634		 */
3635		/* Get the preliminary new entry start value */
3636		addr = stack_entry->start - grow_amount;
3637
3638		/*
3639		 * If this puts us into the previous entry, cut back our
3640		 * growth to the available space. Also, see the note above.
3641		 */
3642		if (addr < end) {
3643			stack_entry->avail_ssize = max_grow;
3644			addr = end;
3645			if (stack_guard_page)
3646				addr += PAGE_SIZE;
3647		}
3648
3649		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3650		    next_entry->protection, next_entry->max_protection, 0);
3651
3652		/* Adjust the available stack space by the amount we grew. */
3653		if (rv == KERN_SUCCESS) {
3654			if (prev_entry != &map->header)
3655				vm_map_clip_end(map, prev_entry, addr);
3656			new_entry = prev_entry->next;
3657			KASSERT(new_entry == stack_entry->prev, ("foo"));
3658			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3659			KASSERT(new_entry->start == addr, ("foo"));
3660			grow_amount = new_entry->end - new_entry->start;
3661			new_entry->avail_ssize = stack_entry->avail_ssize -
3662			    grow_amount;
3663			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3664			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3665		}
3666	} else {
3667		/*
3668		 * Growing upward.
3669		 */
3670		addr = stack_entry->end + grow_amount;
3671
3672		/*
3673		 * If this puts us into the next entry, cut back our growth
3674		 * to the available space. Also, see the note above.
3675		 */
3676		if (addr > end) {
3677			stack_entry->avail_ssize = end - stack_entry->end;
3678			addr = end;
3679			if (stack_guard_page)
3680				addr -= PAGE_SIZE;
3681		}
3682
3683		grow_amount = addr - stack_entry->end;
3684		cred = stack_entry->cred;
3685		if (cred == NULL && stack_entry->object.vm_object != NULL)
3686			cred = stack_entry->object.vm_object->cred;
3687		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3688			rv = KERN_NO_SPACE;
3689		/* Grow the underlying object if applicable. */
3690		else if (stack_entry->object.vm_object == NULL ||
3691			 vm_object_coalesce(stack_entry->object.vm_object,
3692			 stack_entry->offset,
3693			 (vm_size_t)(stack_entry->end - stack_entry->start),
3694			 (vm_size_t)grow_amount, cred != NULL)) {
3695			map->size += (addr - stack_entry->end);
3696			/* Update the current entry. */
3697			stack_entry->end = addr;
3698			stack_entry->avail_ssize -= grow_amount;
3699			vm_map_entry_resize_free(map, stack_entry);
3700			rv = KERN_SUCCESS;
3701
3702			if (next_entry != &map->header)
3703				vm_map_clip_start(map, next_entry, addr);
3704		} else
3705			rv = KERN_FAILURE;
3706	}
3707
3708	if (rv == KERN_SUCCESS && is_procstack)
3709		vm->vm_ssize += btoc(grow_amount);
3710
3711	vm_map_unlock(map);
3712
3713	/*
3714	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3715	 */
3716	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3717		vm_map_wire(map,
3718		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3719		    (stack_entry == next_entry) ? stack_entry->start : addr,
3720		    (p->p_flag & P_SYSTEM)
3721		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3722		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3723	}
3724
3725out:
3726#ifdef RACCT
3727	if (rv != KERN_SUCCESS) {
3728		PROC_LOCK(p);
3729		error = racct_set(p, RACCT_VMEM, map->size);
3730		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3731		if (!old_mlock) {
3732			error = racct_set(p, RACCT_MEMLOCK,
3733			    ptoa(pmap_wired_count(map->pmap)));
3734			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3735		}
3736	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3737		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3738		PROC_UNLOCK(p);
3739	}
3740#endif
3741
3742	return (rv);
3743}
3744
3745/*
3746 * Unshare the specified VM space for exec.  If other processes are
3747 * mapped to it, then create a new one.  The new vmspace is null.
3748 */
3749int
3750vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3751{
3752	struct vmspace *oldvmspace = p->p_vmspace;
3753	struct vmspace *newvmspace;
3754
3755	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3756	    ("vmspace_exec recursed"));
3757	newvmspace = vmspace_alloc(minuser, maxuser);
3758	if (newvmspace == NULL)
3759		return (ENOMEM);
3760	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3761	/*
3762	 * This code is written like this for prototype purposes.  The
3763	 * goal is to avoid running down the vmspace here, but let the
3764	 * other process's that are still using the vmspace to finally
3765	 * run it down.  Even though there is little or no chance of blocking
3766	 * here, it is a good idea to keep this form for future mods.
3767	 */
3768	PROC_VMSPACE_LOCK(p);
3769	p->p_vmspace = newvmspace;
3770	PROC_VMSPACE_UNLOCK(p);
3771	if (p == curthread->td_proc)
3772		pmap_activate(curthread);
3773	curthread->td_pflags |= TDP_EXECVMSPC;
3774	return (0);
3775}
3776
3777/*
3778 * Unshare the specified VM space for forcing COW.  This
3779 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3780 */
3781int
3782vmspace_unshare(struct proc *p)
3783{
3784	struct vmspace *oldvmspace = p->p_vmspace;
3785	struct vmspace *newvmspace;
3786	vm_ooffset_t fork_charge;
3787
3788	if (oldvmspace->vm_refcnt == 1)
3789		return (0);
3790	fork_charge = 0;
3791	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3792	if (newvmspace == NULL)
3793		return (ENOMEM);
3794	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3795		vmspace_free(newvmspace);
3796		return (ENOMEM);
3797	}
3798	PROC_VMSPACE_LOCK(p);
3799	p->p_vmspace = newvmspace;
3800	PROC_VMSPACE_UNLOCK(p);
3801	if (p == curthread->td_proc)
3802		pmap_activate(curthread);
3803	vmspace_free(oldvmspace);
3804	return (0);
3805}
3806
3807/*
3808 *	vm_map_lookup:
3809 *
3810 *	Finds the VM object, offset, and
3811 *	protection for a given virtual address in the
3812 *	specified map, assuming a page fault of the
3813 *	type specified.
3814 *
3815 *	Leaves the map in question locked for read; return
3816 *	values are guaranteed until a vm_map_lookup_done
3817 *	call is performed.  Note that the map argument
3818 *	is in/out; the returned map must be used in
3819 *	the call to vm_map_lookup_done.
3820 *
3821 *	A handle (out_entry) is returned for use in
3822 *	vm_map_lookup_done, to make that fast.
3823 *
3824 *	If a lookup is requested with "write protection"
3825 *	specified, the map may be changed to perform virtual
3826 *	copying operations, although the data referenced will
3827 *	remain the same.
3828 */
3829int
3830vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3831	      vm_offset_t vaddr,
3832	      vm_prot_t fault_typea,
3833	      vm_map_entry_t *out_entry,	/* OUT */
3834	      vm_object_t *object,		/* OUT */
3835	      vm_pindex_t *pindex,		/* OUT */
3836	      vm_prot_t *out_prot,		/* OUT */
3837	      boolean_t *wired)			/* OUT */
3838{
3839	vm_map_entry_t entry;
3840	vm_map_t map = *var_map;
3841	vm_prot_t prot;
3842	vm_prot_t fault_type = fault_typea;
3843	vm_object_t eobject;
3844	vm_size_t size;
3845	struct ucred *cred;
3846
3847RetryLookup:;
3848
3849	vm_map_lock_read(map);
3850
3851	/*
3852	 * Lookup the faulting address.
3853	 */
3854	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3855		vm_map_unlock_read(map);
3856		return (KERN_INVALID_ADDRESS);
3857	}
3858
3859	entry = *out_entry;
3860
3861	/*
3862	 * Handle submaps.
3863	 */
3864	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3865		vm_map_t old_map = map;
3866
3867		*var_map = map = entry->object.sub_map;
3868		vm_map_unlock_read(old_map);
3869		goto RetryLookup;
3870	}
3871
3872	/*
3873	 * Check whether this task is allowed to have this page.
3874	 */
3875	prot = entry->protection;
3876	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3877	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3878		vm_map_unlock_read(map);
3879		return (KERN_PROTECTION_FAILURE);
3880	}
3881	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
3882	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
3883	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
3884	    ("entry %p flags %x", entry, entry->eflags));
3885	if ((fault_typea & VM_PROT_COPY) != 0 &&
3886	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3887	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3888		vm_map_unlock_read(map);
3889		return (KERN_PROTECTION_FAILURE);
3890	}
3891
3892	/*
3893	 * If this page is not pageable, we have to get it for all possible
3894	 * accesses.
3895	 */
3896	*wired = (entry->wired_count != 0);
3897	if (*wired)
3898		fault_type = entry->protection;
3899	size = entry->end - entry->start;
3900	/*
3901	 * If the entry was copy-on-write, we either ...
3902	 */
3903	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3904		/*
3905		 * If we want to write the page, we may as well handle that
3906		 * now since we've got the map locked.
3907		 *
3908		 * If we don't need to write the page, we just demote the
3909		 * permissions allowed.
3910		 */
3911		if ((fault_type & VM_PROT_WRITE) != 0 ||
3912		    (fault_typea & VM_PROT_COPY) != 0) {
3913			/*
3914			 * Make a new object, and place it in the object
3915			 * chain.  Note that no new references have appeared
3916			 * -- one just moved from the map to the new
3917			 * object.
3918			 */
3919			if (vm_map_lock_upgrade(map))
3920				goto RetryLookup;
3921
3922			if (entry->cred == NULL) {
3923				/*
3924				 * The debugger owner is charged for
3925				 * the memory.
3926				 */
3927				cred = curthread->td_ucred;
3928				crhold(cred);
3929				if (!swap_reserve_by_cred(size, cred)) {
3930					crfree(cred);
3931					vm_map_unlock(map);
3932					return (KERN_RESOURCE_SHORTAGE);
3933				}
3934				entry->cred = cred;
3935			}
3936			vm_object_shadow(&entry->object.vm_object,
3937			    &entry->offset, size);
3938			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3939			eobject = entry->object.vm_object;
3940			if (eobject->cred != NULL) {
3941				/*
3942				 * The object was not shadowed.
3943				 */
3944				swap_release_by_cred(size, entry->cred);
3945				crfree(entry->cred);
3946				entry->cred = NULL;
3947			} else if (entry->cred != NULL) {
3948				VM_OBJECT_LOCK(eobject);
3949				eobject->cred = entry->cred;
3950				eobject->charge = size;
3951				VM_OBJECT_UNLOCK(eobject);
3952				entry->cred = NULL;
3953			}
3954
3955			vm_map_lock_downgrade(map);
3956		} else {
3957			/*
3958			 * We're attempting to read a copy-on-write page --
3959			 * don't allow writes.
3960			 */
3961			prot &= ~VM_PROT_WRITE;
3962		}
3963	}
3964
3965	/*
3966	 * Create an object if necessary.
3967	 */
3968	if (entry->object.vm_object == NULL &&
3969	    !map->system_map) {
3970		if (vm_map_lock_upgrade(map))
3971			goto RetryLookup;
3972		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3973		    atop(size));
3974		entry->offset = 0;
3975		if (entry->cred != NULL) {
3976			VM_OBJECT_LOCK(entry->object.vm_object);
3977			entry->object.vm_object->cred = entry->cred;
3978			entry->object.vm_object->charge = size;
3979			VM_OBJECT_UNLOCK(entry->object.vm_object);
3980			entry->cred = NULL;
3981		}
3982		vm_map_lock_downgrade(map);
3983	}
3984
3985	/*
3986	 * Return the object/offset from this entry.  If the entry was
3987	 * copy-on-write or empty, it has been fixed up.
3988	 */
3989	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3990	*object = entry->object.vm_object;
3991
3992	*out_prot = prot;
3993	return (KERN_SUCCESS);
3994}
3995
3996/*
3997 *	vm_map_lookup_locked:
3998 *
3999 *	Lookup the faulting address.  A version of vm_map_lookup that returns
4000 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4001 */
4002int
4003vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4004		     vm_offset_t vaddr,
4005		     vm_prot_t fault_typea,
4006		     vm_map_entry_t *out_entry,	/* OUT */
4007		     vm_object_t *object,	/* OUT */
4008		     vm_pindex_t *pindex,	/* OUT */
4009		     vm_prot_t *out_prot,	/* OUT */
4010		     boolean_t *wired)		/* OUT */
4011{
4012	vm_map_entry_t entry;
4013	vm_map_t map = *var_map;
4014	vm_prot_t prot;
4015	vm_prot_t fault_type = fault_typea;
4016
4017	/*
4018	 * Lookup the faulting address.
4019	 */
4020	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4021		return (KERN_INVALID_ADDRESS);
4022
4023	entry = *out_entry;
4024
4025	/*
4026	 * Fail if the entry refers to a submap.
4027	 */
4028	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4029		return (KERN_FAILURE);
4030
4031	/*
4032	 * Check whether this task is allowed to have this page.
4033	 */
4034	prot = entry->protection;
4035	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4036	if ((fault_type & prot) != fault_type)
4037		return (KERN_PROTECTION_FAILURE);
4038
4039	/*
4040	 * If this page is not pageable, we have to get it for all possible
4041	 * accesses.
4042	 */
4043	*wired = (entry->wired_count != 0);
4044	if (*wired)
4045		fault_type = entry->protection;
4046
4047	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4048		/*
4049		 * Fail if the entry was copy-on-write for a write fault.
4050		 */
4051		if (fault_type & VM_PROT_WRITE)
4052			return (KERN_FAILURE);
4053		/*
4054		 * We're attempting to read a copy-on-write page --
4055		 * don't allow writes.
4056		 */
4057		prot &= ~VM_PROT_WRITE;
4058	}
4059
4060	/*
4061	 * Fail if an object should be created.
4062	 */
4063	if (entry->object.vm_object == NULL && !map->system_map)
4064		return (KERN_FAILURE);
4065
4066	/*
4067	 * Return the object/offset from this entry.  If the entry was
4068	 * copy-on-write or empty, it has been fixed up.
4069	 */
4070	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4071	*object = entry->object.vm_object;
4072
4073	*out_prot = prot;
4074	return (KERN_SUCCESS);
4075}
4076
4077/*
4078 *	vm_map_lookup_done:
4079 *
4080 *	Releases locks acquired by a vm_map_lookup
4081 *	(according to the handle returned by that lookup).
4082 */
4083void
4084vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4085{
4086	/*
4087	 * Unlock the main-level map
4088	 */
4089	vm_map_unlock_read(map);
4090}
4091
4092#include "opt_ddb.h"
4093#ifdef DDB
4094#include <sys/kernel.h>
4095
4096#include <ddb/ddb.h>
4097
4098/*
4099 *	vm_map_print:	[ debug ]
4100 */
4101DB_SHOW_COMMAND(map, vm_map_print)
4102{
4103	static int nlines;
4104	/* XXX convert args. */
4105	vm_map_t map = (vm_map_t)addr;
4106	boolean_t full = have_addr;
4107
4108	vm_map_entry_t entry;
4109
4110	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4111	    (void *)map,
4112	    (void *)map->pmap, map->nentries, map->timestamp);
4113	nlines++;
4114
4115	if (!full && db_indent)
4116		return;
4117
4118	db_indent += 2;
4119	for (entry = map->header.next; entry != &map->header;
4120	    entry = entry->next) {
4121		db_iprintf("map entry %p: start=%p, end=%p\n",
4122		    (void *)entry, (void *)entry->start, (void *)entry->end);
4123		nlines++;
4124		{
4125			static char *inheritance_name[4] =
4126			{"share", "copy", "none", "donate_copy"};
4127
4128			db_iprintf(" prot=%x/%x/%s",
4129			    entry->protection,
4130			    entry->max_protection,
4131			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4132			if (entry->wired_count != 0)
4133				db_printf(", wired");
4134		}
4135		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4136			db_printf(", share=%p, offset=0x%jx\n",
4137			    (void *)entry->object.sub_map,
4138			    (uintmax_t)entry->offset);
4139			nlines++;
4140			if ((entry->prev == &map->header) ||
4141			    (entry->prev->object.sub_map !=
4142				entry->object.sub_map)) {
4143				db_indent += 2;
4144				vm_map_print((db_expr_t)(intptr_t)
4145					     entry->object.sub_map,
4146					     full, 0, (char *)0);
4147				db_indent -= 2;
4148			}
4149		} else {
4150			if (entry->cred != NULL)
4151				db_printf(", ruid %d", entry->cred->cr_ruid);
4152			db_printf(", object=%p, offset=0x%jx",
4153			    (void *)entry->object.vm_object,
4154			    (uintmax_t)entry->offset);
4155			if (entry->object.vm_object && entry->object.vm_object->cred)
4156				db_printf(", obj ruid %d charge %jx",
4157				    entry->object.vm_object->cred->cr_ruid,
4158				    (uintmax_t)entry->object.vm_object->charge);
4159			if (entry->eflags & MAP_ENTRY_COW)
4160				db_printf(", copy (%s)",
4161				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4162			db_printf("\n");
4163			nlines++;
4164
4165			if ((entry->prev == &map->header) ||
4166			    (entry->prev->object.vm_object !=
4167				entry->object.vm_object)) {
4168				db_indent += 2;
4169				vm_object_print((db_expr_t)(intptr_t)
4170						entry->object.vm_object,
4171						full, 0, (char *)0);
4172				nlines += 4;
4173				db_indent -= 2;
4174			}
4175		}
4176	}
4177	db_indent -= 2;
4178	if (db_indent == 0)
4179		nlines = 0;
4180}
4181
4182
4183DB_SHOW_COMMAND(procvm, procvm)
4184{
4185	struct proc *p;
4186
4187	if (have_addr) {
4188		p = (struct proc *) addr;
4189	} else {
4190		p = curproc;
4191	}
4192
4193	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4194	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4195	    (void *)vmspace_pmap(p->p_vmspace));
4196
4197	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4198}
4199
4200#endif /* DDB */
4201