1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 *	Page fault handling module.
72 */
73
74#include <sys/cdefs.h>
75__FBSDID("$FreeBSD$");
76
77#include "opt_ktrace.h"
78#include "opt_vm.h"
79
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/resourcevar.h>
87#include <sys/sysctl.h>
88#include <sys/vmmeter.h>
89#include <sys/vnode.h>
90#ifdef KTRACE
91#include <sys/ktrace.h>
92#endif
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/pmap.h>
97#include <vm/vm_map.h>
98#include <vm/vm_object.h>
99#include <vm/vm_page.h>
100#include <vm/vm_pageout.h>
101#include <vm/vm_kern.h>
102#include <vm/vm_pager.h>
103#include <vm/vm_extern.h>
104
105#include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
106
107#define PFBAK 4
108#define PFFOR 4
109#define PAGEORDER_SIZE (PFBAK+PFFOR)
110
111static int prefault_pageorder[] = {
112	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
113	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
114	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
115	-4 * PAGE_SIZE, 4 * PAGE_SIZE
116};
117
118static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
119static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
120
121#define	VM_FAULT_READ_BEHIND	8
122#define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
123#define	VM_FAULT_NINCR		(VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
124#define	VM_FAULT_SUM		(VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
125#define	VM_FAULT_CACHE_BEHIND	(VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
126
127struct faultstate {
128	vm_page_t m;
129	vm_object_t object;
130	vm_pindex_t pindex;
131	vm_page_t first_m;
132	vm_object_t	first_object;
133	vm_pindex_t first_pindex;
134	vm_map_t map;
135	vm_map_entry_t entry;
136	int lookup_still_valid;
137	struct vnode *vp;
138	int vfslocked;
139};
140
141static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
142
143static inline void
144release_page(struct faultstate *fs)
145{
146
147	vm_page_wakeup(fs->m);
148	vm_page_lock(fs->m);
149	vm_page_deactivate(fs->m);
150	vm_page_unlock(fs->m);
151	fs->m = NULL;
152}
153
154static inline void
155unlock_map(struct faultstate *fs)
156{
157
158	if (fs->lookup_still_valid) {
159		vm_map_lookup_done(fs->map, fs->entry);
160		fs->lookup_still_valid = FALSE;
161	}
162}
163
164static void
165unlock_and_deallocate(struct faultstate *fs)
166{
167
168	vm_object_pip_wakeup(fs->object);
169	VM_OBJECT_UNLOCK(fs->object);
170	if (fs->object != fs->first_object) {
171		VM_OBJECT_LOCK(fs->first_object);
172		vm_page_lock(fs->first_m);
173		vm_page_free(fs->first_m);
174		vm_page_unlock(fs->first_m);
175		vm_object_pip_wakeup(fs->first_object);
176		VM_OBJECT_UNLOCK(fs->first_object);
177		fs->first_m = NULL;
178	}
179	vm_object_deallocate(fs->first_object);
180	unlock_map(fs);
181	if (fs->vp != NULL) {
182		vput(fs->vp);
183		fs->vp = NULL;
184	}
185	VFS_UNLOCK_GIANT(fs->vfslocked);
186	fs->vfslocked = 0;
187}
188
189/*
190 * TRYPAGER - used by vm_fault to calculate whether the pager for the
191 *	      current object *might* contain the page.
192 *
193 *	      default objects are zero-fill, there is no real pager.
194 */
195#define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
196			((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
197
198/*
199 *	vm_fault:
200 *
201 *	Handle a page fault occurring at the given address,
202 *	requiring the given permissions, in the map specified.
203 *	If successful, the page is inserted into the
204 *	associated physical map.
205 *
206 *	NOTE: the given address should be truncated to the
207 *	proper page address.
208 *
209 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
210 *	a standard error specifying why the fault is fatal is returned.
211 *
212 *	The map in question must be referenced, and remains so.
213 *	Caller may hold no locks.
214 */
215int
216vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
217    int fault_flags)
218{
219	struct thread *td;
220	int result;
221
222	td = curthread;
223	if ((td->td_pflags & TDP_NOFAULTING) != 0)
224		return (KERN_PROTECTION_FAILURE);
225#ifdef KTRACE
226	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
227		ktrfault(vaddr, fault_type);
228#endif
229	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
230	    NULL);
231#ifdef KTRACE
232	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
233		ktrfaultend(result);
234#endif
235	return (result);
236}
237
238int
239vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
240    int fault_flags, vm_page_t *m_hold)
241{
242	vm_prot_t prot;
243	long ahead, behind;
244	int alloc_req, era, faultcount, nera, reqpage, result;
245	boolean_t growstack, is_first_object_locked, wired;
246	int map_generation;
247	vm_object_t next_object;
248	vm_page_t marray[VM_FAULT_READ_MAX];
249	int hardfault;
250	struct faultstate fs;
251	struct vnode *vp;
252	int locked, error;
253
254	hardfault = 0;
255	growstack = TRUE;
256	PCPU_INC(cnt.v_vm_faults);
257	fs.vp = NULL;
258	fs.vfslocked = 0;
259	faultcount = reqpage = 0;
260
261RetryFault:;
262
263	/*
264	 * Find the backing store object and offset into it to begin the
265	 * search.
266	 */
267	fs.map = map;
268	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
269	    &fs.first_object, &fs.first_pindex, &prot, &wired);
270	if (result != KERN_SUCCESS) {
271		if (growstack && result == KERN_INVALID_ADDRESS &&
272		    map != kernel_map) {
273			result = vm_map_growstack(curproc, vaddr);
274			if (result != KERN_SUCCESS)
275				return (KERN_FAILURE);
276			growstack = FALSE;
277			goto RetryFault;
278		}
279		return (result);
280	}
281
282	map_generation = fs.map->timestamp;
283
284	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
285		if ((curthread->td_pflags & TDP_DEVMEMIO) != 0) {
286			vm_map_unlock_read(fs.map);
287			return (KERN_FAILURE);
288		}
289		panic("vm_fault: fault on nofault entry, addr: %lx",
290		    (u_long)vaddr);
291	}
292
293	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
294	    fs.entry->wiring_thread != curthread) {
295		vm_map_unlock_read(fs.map);
296		vm_map_lock(fs.map);
297		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
298		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
299			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
300			vm_map_unlock_and_wait(fs.map, 0);
301		} else
302			vm_map_unlock(fs.map);
303		goto RetryFault;
304	}
305
306	/*
307	 * Make a reference to this object to prevent its disposal while we
308	 * are messing with it.  Once we have the reference, the map is free
309	 * to be diddled.  Since objects reference their shadows (and copies),
310	 * they will stay around as well.
311	 *
312	 * Bump the paging-in-progress count to prevent size changes (e.g.
313	 * truncation operations) during I/O.  This must be done after
314	 * obtaining the vnode lock in order to avoid possible deadlocks.
315	 */
316	VM_OBJECT_LOCK(fs.first_object);
317	vm_object_reference_locked(fs.first_object);
318	vm_object_pip_add(fs.first_object, 1);
319
320	fs.lookup_still_valid = TRUE;
321
322	if (wired)
323		fault_type = prot | (fault_type & VM_PROT_COPY);
324
325	fs.first_m = NULL;
326
327	/*
328	 * Search for the page at object/offset.
329	 */
330	fs.object = fs.first_object;
331	fs.pindex = fs.first_pindex;
332	while (TRUE) {
333		/*
334		 * If the object is dead, we stop here
335		 */
336		if (fs.object->flags & OBJ_DEAD) {
337			unlock_and_deallocate(&fs);
338			return (KERN_PROTECTION_FAILURE);
339		}
340
341		/*
342		 * See if page is resident
343		 */
344		fs.m = vm_page_lookup(fs.object, fs.pindex);
345		if (fs.m != NULL) {
346			/*
347			 * check for page-based copy on write.
348			 * We check fs.object == fs.first_object so
349			 * as to ensure the legacy COW mechanism is
350			 * used when the page in question is part of
351			 * a shadow object.  Otherwise, vm_page_cowfault()
352			 * removes the page from the backing object,
353			 * which is not what we want.
354			 */
355			vm_page_lock(fs.m);
356			if ((fs.m->cow) &&
357			    (fault_type & VM_PROT_WRITE) &&
358			    (fs.object == fs.first_object)) {
359				vm_page_cowfault(fs.m);
360				unlock_and_deallocate(&fs);
361				goto RetryFault;
362			}
363
364			/*
365			 * Wait/Retry if the page is busy.  We have to do this
366			 * if the page is busy via either VPO_BUSY or
367			 * vm_page_t->busy because the vm_pager may be using
368			 * vm_page_t->busy for pageouts ( and even pageins if
369			 * it is the vnode pager ), and we could end up trying
370			 * to pagein and pageout the same page simultaneously.
371			 *
372			 * We can theoretically allow the busy case on a read
373			 * fault if the page is marked valid, but since such
374			 * pages are typically already pmap'd, putting that
375			 * special case in might be more effort then it is
376			 * worth.  We cannot under any circumstances mess
377			 * around with a vm_page_t->busy page except, perhaps,
378			 * to pmap it.
379			 */
380			if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
381				/*
382				 * Reference the page before unlocking and
383				 * sleeping so that the page daemon is less
384				 * likely to reclaim it.
385				 */
386				vm_page_aflag_set(fs.m, PGA_REFERENCED);
387				vm_page_unlock(fs.m);
388				if (fs.object != fs.first_object) {
389					if (!VM_OBJECT_TRYLOCK(
390					    fs.first_object)) {
391						VM_OBJECT_UNLOCK(fs.object);
392						VM_OBJECT_LOCK(fs.first_object);
393						VM_OBJECT_LOCK(fs.object);
394					}
395					vm_page_lock(fs.first_m);
396					vm_page_free(fs.first_m);
397					vm_page_unlock(fs.first_m);
398					vm_object_pip_wakeup(fs.first_object);
399					VM_OBJECT_UNLOCK(fs.first_object);
400					fs.first_m = NULL;
401				}
402				unlock_map(&fs);
403				if (fs.m == vm_page_lookup(fs.object,
404				    fs.pindex)) {
405					vm_page_sleep_if_busy(fs.m, TRUE,
406					    "vmpfw");
407				}
408				vm_object_pip_wakeup(fs.object);
409				VM_OBJECT_UNLOCK(fs.object);
410				PCPU_INC(cnt.v_intrans);
411				vm_object_deallocate(fs.first_object);
412				goto RetryFault;
413			}
414			vm_pageq_remove(fs.m);
415			vm_page_unlock(fs.m);
416
417			/*
418			 * Mark page busy for other processes, and the
419			 * pagedaemon.  If it still isn't completely valid
420			 * (readable), jump to readrest, else break-out ( we
421			 * found the page ).
422			 */
423			vm_page_busy(fs.m);
424			if (fs.m->valid != VM_PAGE_BITS_ALL)
425				goto readrest;
426			break;
427		}
428
429		/*
430		 * Page is not resident, If this is the search termination
431		 * or the pager might contain the page, allocate a new page.
432		 */
433		if (TRYPAGER || fs.object == fs.first_object) {
434			if (fs.pindex >= fs.object->size) {
435				unlock_and_deallocate(&fs);
436				return (KERN_PROTECTION_FAILURE);
437			}
438
439			/*
440			 * Allocate a new page for this object/offset pair.
441			 *
442			 * Unlocked read of the p_flag is harmless. At
443			 * worst, the P_KILLED might be not observed
444			 * there, and allocation can fail, causing
445			 * restart and new reading of the p_flag.
446			 */
447			fs.m = NULL;
448			if (!vm_page_count_severe() || P_KILLED(curproc)) {
449#if VM_NRESERVLEVEL > 0
450				if ((fs.object->flags & OBJ_COLORED) == 0) {
451					fs.object->flags |= OBJ_COLORED;
452					fs.object->pg_color = atop(vaddr) -
453					    fs.pindex;
454				}
455#endif
456				alloc_req = P_KILLED(curproc) ?
457				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
458				if (fs.object->type != OBJT_VNODE &&
459				    fs.object->backing_object == NULL)
460					alloc_req |= VM_ALLOC_ZERO;
461				fs.m = vm_page_alloc(fs.object, fs.pindex,
462				    alloc_req);
463			}
464			if (fs.m == NULL) {
465				unlock_and_deallocate(&fs);
466				VM_WAITPFAULT;
467				goto RetryFault;
468			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
469				break;
470		}
471
472readrest:
473		/*
474		 * We have found a valid page or we have allocated a new page.
475		 * The page thus may not be valid or may not be entirely
476		 * valid.
477		 *
478		 * Attempt to fault-in the page if there is a chance that the
479		 * pager has it, and potentially fault in additional pages
480		 * at the same time.
481		 */
482		if (TRYPAGER) {
483			int rv;
484			u_char behavior = vm_map_entry_behavior(fs.entry);
485
486			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
487			    P_KILLED(curproc)) {
488				behind = 0;
489				ahead = 0;
490			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
491				behind = 0;
492				ahead = atop(fs.entry->end - vaddr) - 1;
493				if (ahead > VM_FAULT_READ_AHEAD_MAX)
494					ahead = VM_FAULT_READ_AHEAD_MAX;
495				if (fs.pindex == fs.entry->next_read)
496					vm_fault_cache_behind(&fs,
497					    VM_FAULT_READ_MAX);
498			} else {
499				/*
500				 * If this is a sequential page fault, then
501				 * arithmetically increase the number of pages
502				 * in the read-ahead window.  Otherwise, reset
503				 * the read-ahead window to its smallest size.
504				 */
505				behind = atop(vaddr - fs.entry->start);
506				if (behind > VM_FAULT_READ_BEHIND)
507					behind = VM_FAULT_READ_BEHIND;
508				ahead = atop(fs.entry->end - vaddr) - 1;
509				era = fs.entry->read_ahead;
510				if (fs.pindex == fs.entry->next_read) {
511					nera = era + behind;
512					if (nera > VM_FAULT_READ_AHEAD_MAX)
513						nera = VM_FAULT_READ_AHEAD_MAX;
514					behind = 0;
515					if (ahead > nera)
516						ahead = nera;
517					if (era == VM_FAULT_READ_AHEAD_MAX)
518						vm_fault_cache_behind(&fs,
519						    VM_FAULT_CACHE_BEHIND);
520				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
521					ahead = VM_FAULT_READ_AHEAD_MIN;
522				if (era != ahead)
523					fs.entry->read_ahead = ahead;
524			}
525
526			/*
527			 * Call the pager to retrieve the data, if any, after
528			 * releasing the lock on the map.  We hold a ref on
529			 * fs.object and the pages are VPO_BUSY'd.
530			 */
531			unlock_map(&fs);
532
533vnode_lock:
534			if (fs.object->type == OBJT_VNODE) {
535				vp = fs.object->handle;
536				if (vp == fs.vp)
537					goto vnode_locked;
538				else if (fs.vp != NULL) {
539					vput(fs.vp);
540					fs.vp = NULL;
541				}
542				locked = VOP_ISLOCKED(vp);
543
544				if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
545					fs.vfslocked = 1;
546					if (!mtx_trylock(&Giant)) {
547						VM_OBJECT_UNLOCK(fs.object);
548						mtx_lock(&Giant);
549						VM_OBJECT_LOCK(fs.object);
550						goto vnode_lock;
551					}
552				}
553				if (locked != LK_EXCLUSIVE)
554					locked = LK_SHARED;
555				/* Do not sleep for vnode lock while fs.m is busy */
556				error = vget(vp, locked | LK_CANRECURSE |
557				    LK_NOWAIT, curthread);
558				if (error != 0) {
559					int vfslocked;
560
561					vfslocked = fs.vfslocked;
562					fs.vfslocked = 0; /* Keep Giant */
563					vhold(vp);
564					release_page(&fs);
565					unlock_and_deallocate(&fs);
566					error = vget(vp, locked | LK_RETRY |
567					    LK_CANRECURSE, curthread);
568					vdrop(vp);
569					fs.vp = vp;
570					fs.vfslocked = vfslocked;
571					KASSERT(error == 0,
572					    ("vm_fault: vget failed"));
573					goto RetryFault;
574				}
575				fs.vp = vp;
576			}
577vnode_locked:
578			KASSERT(fs.vp == NULL || !fs.map->system_map,
579			    ("vm_fault: vnode-backed object mapped by system map"));
580
581			/*
582			 * now we find out if any other pages should be paged
583			 * in at this time this routine checks to see if the
584			 * pages surrounding this fault reside in the same
585			 * object as the page for this fault.  If they do,
586			 * then they are faulted in also into the object.  The
587			 * array "marray" returned contains an array of
588			 * vm_page_t structs where one of them is the
589			 * vm_page_t passed to the routine.  The reqpage
590			 * return value is the index into the marray for the
591			 * vm_page_t passed to the routine.
592			 *
593			 * fs.m plus the additional pages are VPO_BUSY'd.
594			 */
595			faultcount = vm_fault_additional_pages(
596			    fs.m, behind, ahead, marray, &reqpage);
597
598			rv = faultcount ?
599			    vm_pager_get_pages(fs.object, marray, faultcount,
600				reqpage) : VM_PAGER_FAIL;
601
602			if (rv == VM_PAGER_OK) {
603				/*
604				 * Found the page. Leave it busy while we play
605				 * with it.
606				 */
607
608				/*
609				 * Relookup in case pager changed page. Pager
610				 * is responsible for disposition of old page
611				 * if moved.
612				 */
613				fs.m = vm_page_lookup(fs.object, fs.pindex);
614				if (!fs.m) {
615					unlock_and_deallocate(&fs);
616					goto RetryFault;
617				}
618
619				hardfault++;
620				break; /* break to PAGE HAS BEEN FOUND */
621			}
622			/*
623			 * Remove the bogus page (which does not exist at this
624			 * object/offset); before doing so, we must get back
625			 * our object lock to preserve our invariant.
626			 *
627			 * Also wake up any other process that may want to bring
628			 * in this page.
629			 *
630			 * If this is the top-level object, we must leave the
631			 * busy page to prevent another process from rushing
632			 * past us, and inserting the page in that object at
633			 * the same time that we are.
634			 */
635			if (rv == VM_PAGER_ERROR)
636				printf("vm_fault: pager read error, pid %d (%s)\n",
637				    curproc->p_pid, curproc->p_comm);
638			/*
639			 * Data outside the range of the pager or an I/O error
640			 */
641			/*
642			 * XXX - the check for kernel_map is a kludge to work
643			 * around having the machine panic on a kernel space
644			 * fault w/ I/O error.
645			 */
646			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
647				(rv == VM_PAGER_BAD)) {
648				vm_page_lock(fs.m);
649				vm_page_free(fs.m);
650				vm_page_unlock(fs.m);
651				fs.m = NULL;
652				unlock_and_deallocate(&fs);
653				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
654			}
655			if (fs.object != fs.first_object) {
656				vm_page_lock(fs.m);
657				vm_page_free(fs.m);
658				vm_page_unlock(fs.m);
659				fs.m = NULL;
660				/*
661				 * XXX - we cannot just fall out at this
662				 * point, m has been freed and is invalid!
663				 */
664			}
665		}
666
667		/*
668		 * We get here if the object has default pager (or unwiring)
669		 * or the pager doesn't have the page.
670		 */
671		if (fs.object == fs.first_object)
672			fs.first_m = fs.m;
673
674		/*
675		 * Move on to the next object.  Lock the next object before
676		 * unlocking the current one.
677		 */
678		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
679		next_object = fs.object->backing_object;
680		if (next_object == NULL) {
681			/*
682			 * If there's no object left, fill the page in the top
683			 * object with zeros.
684			 */
685			if (fs.object != fs.first_object) {
686				vm_object_pip_wakeup(fs.object);
687				VM_OBJECT_UNLOCK(fs.object);
688
689				fs.object = fs.first_object;
690				fs.pindex = fs.first_pindex;
691				fs.m = fs.first_m;
692				VM_OBJECT_LOCK(fs.object);
693			}
694			fs.first_m = NULL;
695
696			/*
697			 * Zero the page if necessary and mark it valid.
698			 */
699			if ((fs.m->flags & PG_ZERO) == 0) {
700				pmap_zero_page(fs.m);
701			} else {
702				PCPU_INC(cnt.v_ozfod);
703			}
704			PCPU_INC(cnt.v_zfod);
705			fs.m->valid = VM_PAGE_BITS_ALL;
706			break;	/* break to PAGE HAS BEEN FOUND */
707		} else {
708			KASSERT(fs.object != next_object,
709			    ("object loop %p", next_object));
710			VM_OBJECT_LOCK(next_object);
711			vm_object_pip_add(next_object, 1);
712			if (fs.object != fs.first_object)
713				vm_object_pip_wakeup(fs.object);
714			VM_OBJECT_UNLOCK(fs.object);
715			fs.object = next_object;
716		}
717	}
718
719	KASSERT((fs.m->oflags & VPO_BUSY) != 0,
720	    ("vm_fault: not busy after main loop"));
721
722	/*
723	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
724	 * is held.]
725	 */
726
727	/*
728	 * If the page is being written, but isn't already owned by the
729	 * top-level object, we have to copy it into a new page owned by the
730	 * top-level object.
731	 */
732	if (fs.object != fs.first_object) {
733		/*
734		 * We only really need to copy if we want to write it.
735		 */
736		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
737			/*
738			 * This allows pages to be virtually copied from a
739			 * backing_object into the first_object, where the
740			 * backing object has no other refs to it, and cannot
741			 * gain any more refs.  Instead of a bcopy, we just
742			 * move the page from the backing object to the
743			 * first object.  Note that we must mark the page
744			 * dirty in the first object so that it will go out
745			 * to swap when needed.
746			 */
747			is_first_object_locked = FALSE;
748			if (
749				/*
750				 * Only one shadow object
751				 */
752				(fs.object->shadow_count == 1) &&
753				/*
754				 * No COW refs, except us
755				 */
756				(fs.object->ref_count == 1) &&
757				/*
758				 * No one else can look this object up
759				 */
760				(fs.object->handle == NULL) &&
761				/*
762				 * No other ways to look the object up
763				 */
764				((fs.object->type == OBJT_DEFAULT) ||
765				 (fs.object->type == OBJT_SWAP)) &&
766			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
767				/*
768				 * We don't chase down the shadow chain
769				 */
770			    fs.object == fs.first_object->backing_object) {
771				/*
772				 * get rid of the unnecessary page
773				 */
774				vm_page_lock(fs.first_m);
775				vm_page_free(fs.first_m);
776				vm_page_unlock(fs.first_m);
777				/*
778				 * grab the page and put it into the
779				 * process'es object.  The page is
780				 * automatically made dirty.
781				 */
782				vm_page_lock(fs.m);
783				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
784				vm_page_unlock(fs.m);
785				vm_page_busy(fs.m);
786				fs.first_m = fs.m;
787				fs.m = NULL;
788				PCPU_INC(cnt.v_cow_optim);
789			} else {
790				/*
791				 * Oh, well, lets copy it.
792				 */
793				pmap_copy_page(fs.m, fs.first_m);
794				fs.first_m->valid = VM_PAGE_BITS_ALL;
795				if (wired && (fault_flags &
796				    VM_FAULT_CHANGE_WIRING) == 0) {
797					vm_page_lock(fs.first_m);
798					vm_page_wire(fs.first_m);
799					vm_page_unlock(fs.first_m);
800
801					vm_page_lock(fs.m);
802					vm_page_unwire(fs.m, FALSE);
803					vm_page_unlock(fs.m);
804				}
805				/*
806				 * We no longer need the old page or object.
807				 */
808				release_page(&fs);
809			}
810			/*
811			 * fs.object != fs.first_object due to above
812			 * conditional
813			 */
814			vm_object_pip_wakeup(fs.object);
815			VM_OBJECT_UNLOCK(fs.object);
816			/*
817			 * Only use the new page below...
818			 */
819			fs.object = fs.first_object;
820			fs.pindex = fs.first_pindex;
821			fs.m = fs.first_m;
822			if (!is_first_object_locked)
823				VM_OBJECT_LOCK(fs.object);
824			PCPU_INC(cnt.v_cow_faults);
825			curthread->td_cow++;
826		} else {
827			prot &= ~VM_PROT_WRITE;
828		}
829	}
830
831	/*
832	 * We must verify that the maps have not changed since our last
833	 * lookup.
834	 */
835	if (!fs.lookup_still_valid) {
836		vm_object_t retry_object;
837		vm_pindex_t retry_pindex;
838		vm_prot_t retry_prot;
839
840		if (!vm_map_trylock_read(fs.map)) {
841			release_page(&fs);
842			unlock_and_deallocate(&fs);
843			goto RetryFault;
844		}
845		fs.lookup_still_valid = TRUE;
846		if (fs.map->timestamp != map_generation) {
847			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
848			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
849
850			/*
851			 * If we don't need the page any longer, put it on the inactive
852			 * list (the easiest thing to do here).  If no one needs it,
853			 * pageout will grab it eventually.
854			 */
855			if (result != KERN_SUCCESS) {
856				release_page(&fs);
857				unlock_and_deallocate(&fs);
858
859				/*
860				 * If retry of map lookup would have blocked then
861				 * retry fault from start.
862				 */
863				if (result == KERN_FAILURE)
864					goto RetryFault;
865				return (result);
866			}
867			if ((retry_object != fs.first_object) ||
868			    (retry_pindex != fs.first_pindex)) {
869				release_page(&fs);
870				unlock_and_deallocate(&fs);
871				goto RetryFault;
872			}
873
874			/*
875			 * Check whether the protection has changed or the object has
876			 * been copied while we left the map unlocked. Changing from
877			 * read to write permission is OK - we leave the page
878			 * write-protected, and catch the write fault. Changing from
879			 * write to read permission means that we can't mark the page
880			 * write-enabled after all.
881			 */
882			prot &= retry_prot;
883		}
884	}
885	/*
886	 * If the page was filled by a pager, update the map entry's
887	 * last read offset.  Since the pager does not return the
888	 * actual set of pages that it read, this update is based on
889	 * the requested set.  Typically, the requested and actual
890	 * sets are the same.
891	 *
892	 * XXX The following assignment modifies the map
893	 * without holding a write lock on it.
894	 */
895	if (hardfault)
896		fs.entry->next_read = fs.pindex + faultcount - reqpage;
897
898	if ((prot & VM_PROT_WRITE) != 0 ||
899	    (fault_flags & VM_FAULT_DIRTY) != 0) {
900		vm_object_set_writeable_dirty(fs.object);
901
902		/*
903		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
904		 * if the page is already dirty to prevent data written with
905		 * the expectation of being synced from not being synced.
906		 * Likewise if this entry does not request NOSYNC then make
907		 * sure the page isn't marked NOSYNC.  Applications sharing
908		 * data should use the same flags to avoid ping ponging.
909		 */
910		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
911			if (fs.m->dirty == 0)
912				fs.m->oflags |= VPO_NOSYNC;
913		} else {
914			fs.m->oflags &= ~VPO_NOSYNC;
915		}
916
917		/*
918		 * If the fault is a write, we know that this page is being
919		 * written NOW so dirty it explicitly to save on
920		 * pmap_is_modified() calls later.
921		 *
922		 * Also tell the backing pager, if any, that it should remove
923		 * any swap backing since the page is now dirty.
924		 */
925		if (((fault_type & VM_PROT_WRITE) != 0 &&
926		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
927		    (fault_flags & VM_FAULT_DIRTY) != 0) {
928			vm_page_dirty(fs.m);
929			vm_pager_page_unswapped(fs.m);
930		}
931	}
932
933	/*
934	 * Page had better still be busy
935	 */
936	KASSERT(fs.m->oflags & VPO_BUSY,
937		("vm_fault: page %p not busy!", fs.m));
938	/*
939	 * Page must be completely valid or it is not fit to
940	 * map into user space.  vm_pager_get_pages() ensures this.
941	 */
942	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
943	    ("vm_fault: page %p partially invalid", fs.m));
944	VM_OBJECT_UNLOCK(fs.object);
945
946	/*
947	 * Put this page into the physical map.  We had to do the unlock above
948	 * because pmap_enter() may sleep.  We don't put the page
949	 * back on the active queue until later so that the pageout daemon
950	 * won't find it (yet).
951	 */
952	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
953	if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
954		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
955	VM_OBJECT_LOCK(fs.object);
956	vm_page_lock(fs.m);
957
958	/*
959	 * If the page is not wired down, then put it where the pageout daemon
960	 * can find it.
961	 */
962	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
963		if (wired)
964			vm_page_wire(fs.m);
965		else
966			vm_page_unwire(fs.m, 1);
967	} else
968		vm_page_activate(fs.m);
969	if (m_hold != NULL) {
970		*m_hold = fs.m;
971		vm_page_hold(fs.m);
972	}
973	vm_page_unlock(fs.m);
974	vm_page_wakeup(fs.m);
975
976	/*
977	 * Unlock everything, and return
978	 */
979	unlock_and_deallocate(&fs);
980	if (hardfault)
981		curthread->td_ru.ru_majflt++;
982	else
983		curthread->td_ru.ru_minflt++;
984
985	return (KERN_SUCCESS);
986}
987
988/*
989 * Speed up the reclamation of up to "distance" pages that precede the
990 * faulting pindex within the first object of the shadow chain.
991 */
992static void
993vm_fault_cache_behind(const struct faultstate *fs, int distance)
994{
995	vm_object_t first_object, object;
996	vm_page_t m, m_prev;
997	vm_pindex_t pindex;
998
999	object = fs->object;
1000	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1001	first_object = fs->first_object;
1002	if (first_object != object) {
1003		if (!VM_OBJECT_TRYLOCK(first_object)) {
1004			VM_OBJECT_UNLOCK(object);
1005			VM_OBJECT_LOCK(first_object);
1006			VM_OBJECT_LOCK(object);
1007		}
1008	}
1009	if (first_object->type != OBJT_DEVICE &&
1010	    first_object->type != OBJT_PHYS && first_object->type != OBJT_SG) {
1011		if (fs->first_pindex < distance)
1012			pindex = 0;
1013		else
1014			pindex = fs->first_pindex - distance;
1015		if (pindex < OFF_TO_IDX(fs->entry->offset))
1016			pindex = OFF_TO_IDX(fs->entry->offset);
1017		m = first_object != object ? fs->first_m : fs->m;
1018		KASSERT((m->oflags & VPO_BUSY) != 0,
1019		    ("vm_fault_cache_behind: page %p is not busy", m));
1020		m_prev = vm_page_prev(m);
1021		while ((m = m_prev) != NULL && m->pindex >= pindex &&
1022		    m->valid == VM_PAGE_BITS_ALL) {
1023			m_prev = vm_page_prev(m);
1024			if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0)
1025				continue;
1026			vm_page_lock(m);
1027			if (m->hold_count == 0 && m->wire_count == 0) {
1028				pmap_remove_all(m);
1029				vm_page_aflag_clear(m, PGA_REFERENCED);
1030				if (m->dirty != 0)
1031					vm_page_deactivate(m);
1032				else
1033					vm_page_cache(m);
1034			}
1035			vm_page_unlock(m);
1036		}
1037	}
1038	if (first_object != object)
1039		VM_OBJECT_UNLOCK(first_object);
1040}
1041
1042/*
1043 * vm_fault_prefault provides a quick way of clustering
1044 * pagefaults into a processes address space.  It is a "cousin"
1045 * of vm_map_pmap_enter, except it runs at page fault time instead
1046 * of mmap time.
1047 */
1048static void
1049vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
1050{
1051	int i;
1052	vm_offset_t addr, starta;
1053	vm_pindex_t pindex;
1054	vm_page_t m;
1055	vm_object_t object;
1056
1057	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1058		return;
1059
1060	object = entry->object.vm_object;
1061
1062	starta = addra - PFBAK * PAGE_SIZE;
1063	if (starta < entry->start) {
1064		starta = entry->start;
1065	} else if (starta > addra) {
1066		starta = 0;
1067	}
1068
1069	for (i = 0; i < PAGEORDER_SIZE; i++) {
1070		vm_object_t backing_object, lobject;
1071
1072		addr = addra + prefault_pageorder[i];
1073		if (addr > addra + (PFFOR * PAGE_SIZE))
1074			addr = 0;
1075
1076		if (addr < starta || addr >= entry->end)
1077			continue;
1078
1079		if (!pmap_is_prefaultable(pmap, addr))
1080			continue;
1081
1082		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1083		lobject = object;
1084		VM_OBJECT_LOCK(lobject);
1085		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1086		    lobject->type == OBJT_DEFAULT &&
1087		    (backing_object = lobject->backing_object) != NULL) {
1088			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1089			    0, ("vm_fault_prefault: unaligned object offset"));
1090			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1091			VM_OBJECT_LOCK(backing_object);
1092			VM_OBJECT_UNLOCK(lobject);
1093			lobject = backing_object;
1094		}
1095		/*
1096		 * give-up when a page is not in memory
1097		 */
1098		if (m == NULL) {
1099			VM_OBJECT_UNLOCK(lobject);
1100			break;
1101		}
1102		if (m->valid == VM_PAGE_BITS_ALL &&
1103		    (m->flags & PG_FICTITIOUS) == 0)
1104			pmap_enter_quick(pmap, addr, m, entry->protection);
1105		VM_OBJECT_UNLOCK(lobject);
1106	}
1107}
1108
1109/*
1110 * Hold each of the physical pages that are mapped by the specified range of
1111 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1112 * and allow the specified types of access, "prot".  If all of the implied
1113 * pages are successfully held, then the number of held pages is returned
1114 * together with pointers to those pages in the array "ma".  However, if any
1115 * of the pages cannot be held, -1 is returned.
1116 */
1117int
1118vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1119    vm_prot_t prot, vm_page_t *ma, int max_count)
1120{
1121	vm_offset_t end, va;
1122	vm_page_t *mp;
1123	int count;
1124	boolean_t pmap_failed;
1125
1126	if (len == 0)
1127		return (0);
1128	end = round_page(addr + len);
1129	addr = trunc_page(addr);
1130
1131	/*
1132	 * Check for illegal addresses.
1133	 */
1134	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1135		return (-1);
1136
1137	if (atop(end - addr) > max_count)
1138		panic("vm_fault_quick_hold_pages: count > max_count");
1139	count = atop(end - addr);
1140
1141	/*
1142	 * Most likely, the physical pages are resident in the pmap, so it is
1143	 * faster to try pmap_extract_and_hold() first.
1144	 */
1145	pmap_failed = FALSE;
1146	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1147		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1148		if (*mp == NULL)
1149			pmap_failed = TRUE;
1150		else if ((prot & VM_PROT_WRITE) != 0 &&
1151		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1152			/*
1153			 * Explicitly dirty the physical page.  Otherwise, the
1154			 * caller's changes may go unnoticed because they are
1155			 * performed through an unmanaged mapping or by a DMA
1156			 * operation.
1157			 *
1158			 * The object lock is not held here.
1159			 * See vm_page_clear_dirty_mask().
1160			 */
1161			vm_page_dirty(*mp);
1162		}
1163	}
1164	if (pmap_failed) {
1165		/*
1166		 * One or more pages could not be held by the pmap.  Either no
1167		 * page was mapped at the specified virtual address or that
1168		 * mapping had insufficient permissions.  Attempt to fault in
1169		 * and hold these pages.
1170		 */
1171		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1172			if (*mp == NULL && vm_fault_hold(map, va, prot,
1173			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1174				goto error;
1175	}
1176	return (count);
1177error:
1178	for (mp = ma; mp < ma + count; mp++)
1179		if (*mp != NULL) {
1180			vm_page_lock(*mp);
1181			vm_page_unhold(*mp);
1182			vm_page_unlock(*mp);
1183		}
1184	return (-1);
1185}
1186
1187/*
1188 *	vm_fault_wire:
1189 *
1190 *	Wire down a range of virtual addresses in a map.
1191 */
1192int
1193vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1194    boolean_t fictitious)
1195{
1196	vm_offset_t va;
1197	int rv;
1198
1199	/*
1200	 * We simulate a fault to get the page and enter it in the physical
1201	 * map.  For user wiring, we only ask for read access on currently
1202	 * read-only sections.
1203	 */
1204	for (va = start; va < end; va += PAGE_SIZE) {
1205		rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1206		if (rv) {
1207			if (va != start)
1208				vm_fault_unwire(map, start, va, fictitious);
1209			return (rv);
1210		}
1211	}
1212	return (KERN_SUCCESS);
1213}
1214
1215/*
1216 *	vm_fault_unwire:
1217 *
1218 *	Unwire a range of virtual addresses in a map.
1219 */
1220void
1221vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1222    boolean_t fictitious)
1223{
1224	vm_paddr_t pa;
1225	vm_offset_t va;
1226	vm_page_t m;
1227	pmap_t pmap;
1228
1229	pmap = vm_map_pmap(map);
1230
1231	/*
1232	 * Since the pages are wired down, we must be able to get their
1233	 * mappings from the physical map system.
1234	 */
1235	for (va = start; va < end; va += PAGE_SIZE) {
1236		pa = pmap_extract(pmap, va);
1237		if (pa != 0) {
1238			pmap_change_wiring(pmap, va, FALSE);
1239			if (!fictitious) {
1240				m = PHYS_TO_VM_PAGE(pa);
1241				vm_page_lock(m);
1242				vm_page_unwire(m, TRUE);
1243				vm_page_unlock(m);
1244			}
1245		}
1246	}
1247}
1248
1249/*
1250 *	Routine:
1251 *		vm_fault_copy_entry
1252 *	Function:
1253 *		Create new shadow object backing dst_entry with private copy of
1254 *		all underlying pages. When src_entry is equal to dst_entry,
1255 *		function implements COW for wired-down map entry. Otherwise,
1256 *		it forks wired entry into dst_map.
1257 *
1258 *	In/out conditions:
1259 *		The source and destination maps must be locked for write.
1260 *		The source map entry must be wired down (or be a sharing map
1261 *		entry corresponding to a main map entry that is wired down).
1262 */
1263void
1264vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1265    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1266    vm_ooffset_t *fork_charge)
1267{
1268	vm_object_t backing_object, dst_object, object, src_object;
1269	vm_pindex_t dst_pindex, pindex, src_pindex;
1270	vm_prot_t access, prot;
1271	vm_offset_t vaddr;
1272	vm_page_t dst_m;
1273	vm_page_t src_m;
1274	boolean_t upgrade;
1275
1276#ifdef	lint
1277	src_map++;
1278#endif	/* lint */
1279
1280	upgrade = src_entry == dst_entry;
1281
1282	src_object = src_entry->object.vm_object;
1283	src_pindex = OFF_TO_IDX(src_entry->offset);
1284
1285	/*
1286	 * Create the top-level object for the destination entry. (Doesn't
1287	 * actually shadow anything - we copy the pages directly.)
1288	 */
1289	dst_object = vm_object_allocate(OBJT_DEFAULT,
1290	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1291#if VM_NRESERVLEVEL > 0
1292	dst_object->flags |= OBJ_COLORED;
1293	dst_object->pg_color = atop(dst_entry->start);
1294#endif
1295
1296	VM_OBJECT_LOCK(dst_object);
1297	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1298	    ("vm_fault_copy_entry: vm_object not NULL"));
1299	dst_entry->object.vm_object = dst_object;
1300	dst_entry->offset = 0;
1301	dst_object->charge = dst_entry->end - dst_entry->start;
1302	if (fork_charge != NULL) {
1303		KASSERT(dst_entry->cred == NULL,
1304		    ("vm_fault_copy_entry: leaked swp charge"));
1305		dst_object->cred = curthread->td_ucred;
1306		crhold(dst_object->cred);
1307		*fork_charge += dst_object->charge;
1308	} else {
1309		dst_object->cred = dst_entry->cred;
1310		dst_entry->cred = NULL;
1311	}
1312	access = prot = dst_entry->protection;
1313	/*
1314	 * If not an upgrade, then enter the mappings in the pmap as
1315	 * read and/or execute accesses.  Otherwise, enter them as
1316	 * write accesses.
1317	 *
1318	 * A writeable large page mapping is only created if all of
1319	 * the constituent small page mappings are modified. Marking
1320	 * PTEs as modified on inception allows promotion to happen
1321	 * without taking potentially large number of soft faults.
1322	 */
1323	if (!upgrade)
1324		access &= ~VM_PROT_WRITE;
1325
1326	/*
1327	 * Loop through all of the virtual pages within the entry's
1328	 * range, copying each page from the source object to the
1329	 * destination object.  Since the source is wired, those pages
1330	 * must exist.  In contrast, the destination is pageable.
1331	 * Since the destination object does share any backing storage
1332	 * with the source object, all of its pages must be dirtied,
1333	 * regardless of whether they can be written.
1334	 */
1335	for (vaddr = dst_entry->start, dst_pindex = 0;
1336	    vaddr < dst_entry->end;
1337	    vaddr += PAGE_SIZE, dst_pindex++) {
1338
1339		/*
1340		 * Allocate a page in the destination object.
1341		 */
1342		do {
1343			dst_m = vm_page_alloc(dst_object, dst_pindex,
1344			    VM_ALLOC_NORMAL);
1345			if (dst_m == NULL) {
1346				VM_OBJECT_UNLOCK(dst_object);
1347				VM_WAIT;
1348				VM_OBJECT_LOCK(dst_object);
1349			}
1350		} while (dst_m == NULL);
1351
1352		/*
1353		 * Find the page in the source object, and copy it in.
1354		 * Because the source is wired down, the page will be
1355		 * in memory.
1356		 */
1357		VM_OBJECT_LOCK(src_object);
1358		object = src_object;
1359		pindex = src_pindex + dst_pindex;
1360		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1361		    (backing_object = object->backing_object) != NULL) {
1362			/*
1363			 * Unless the source mapping is read-only or
1364			 * it is presently being upgraded from
1365			 * read-only, the first object in the shadow
1366			 * chain should provide all of the pages.  In
1367			 * other words, this loop body should never be
1368			 * executed when the source mapping is already
1369			 * read/write.
1370			 */
1371			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1372			    upgrade,
1373			    ("vm_fault_copy_entry: main object missing page"));
1374
1375			VM_OBJECT_LOCK(backing_object);
1376			pindex += OFF_TO_IDX(object->backing_object_offset);
1377			VM_OBJECT_UNLOCK(object);
1378			object = backing_object;
1379		}
1380		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1381		pmap_copy_page(src_m, dst_m);
1382		VM_OBJECT_UNLOCK(object);
1383		dst_m->valid = VM_PAGE_BITS_ALL;
1384		dst_m->dirty = VM_PAGE_BITS_ALL;
1385		VM_OBJECT_UNLOCK(dst_object);
1386
1387		/*
1388		 * Enter it in the pmap. If a wired, copy-on-write
1389		 * mapping is being replaced by a write-enabled
1390		 * mapping, then wire that new mapping.
1391		 */
1392		pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1393
1394		/*
1395		 * Mark it no longer busy, and put it on the active list.
1396		 */
1397		VM_OBJECT_LOCK(dst_object);
1398
1399		if (upgrade) {
1400			vm_page_lock(src_m);
1401			vm_page_unwire(src_m, 0);
1402			vm_page_unlock(src_m);
1403
1404			vm_page_lock(dst_m);
1405			vm_page_wire(dst_m);
1406			vm_page_unlock(dst_m);
1407		} else {
1408			vm_page_lock(dst_m);
1409			vm_page_activate(dst_m);
1410			vm_page_unlock(dst_m);
1411		}
1412		vm_page_wakeup(dst_m);
1413	}
1414	VM_OBJECT_UNLOCK(dst_object);
1415	if (upgrade) {
1416		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1417		vm_object_deallocate(src_object);
1418	}
1419}
1420
1421
1422/*
1423 * This routine checks around the requested page for other pages that
1424 * might be able to be faulted in.  This routine brackets the viable
1425 * pages for the pages to be paged in.
1426 *
1427 * Inputs:
1428 *	m, rbehind, rahead
1429 *
1430 * Outputs:
1431 *  marray (array of vm_page_t), reqpage (index of requested page)
1432 *
1433 * Return value:
1434 *  number of pages in marray
1435 */
1436static int
1437vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1438	vm_page_t m;
1439	int rbehind;
1440	int rahead;
1441	vm_page_t *marray;
1442	int *reqpage;
1443{
1444	int i,j;
1445	vm_object_t object;
1446	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1447	vm_page_t rtm;
1448	int cbehind, cahead;
1449
1450	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1451
1452	object = m->object;
1453	pindex = m->pindex;
1454	cbehind = cahead = 0;
1455
1456	/*
1457	 * if the requested page is not available, then give up now
1458	 */
1459	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1460		return 0;
1461	}
1462
1463	if ((cbehind == 0) && (cahead == 0)) {
1464		*reqpage = 0;
1465		marray[0] = m;
1466		return 1;
1467	}
1468
1469	if (rahead > cahead) {
1470		rahead = cahead;
1471	}
1472
1473	if (rbehind > cbehind) {
1474		rbehind = cbehind;
1475	}
1476
1477	/*
1478	 * scan backward for the read behind pages -- in memory
1479	 */
1480	if (pindex > 0) {
1481		if (rbehind > pindex) {
1482			rbehind = pindex;
1483			startpindex = 0;
1484		} else {
1485			startpindex = pindex - rbehind;
1486		}
1487
1488		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1489		    rtm->pindex >= startpindex)
1490			startpindex = rtm->pindex + 1;
1491
1492		/* tpindex is unsigned; beware of numeric underflow. */
1493		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1494		    tpindex < pindex; i++, tpindex--) {
1495
1496			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1497			    VM_ALLOC_IFNOTCACHED);
1498			if (rtm == NULL) {
1499				/*
1500				 * Shift the allocated pages to the
1501				 * beginning of the array.
1502				 */
1503				for (j = 0; j < i; j++) {
1504					marray[j] = marray[j + tpindex + 1 -
1505					    startpindex];
1506				}
1507				break;
1508			}
1509
1510			marray[tpindex - startpindex] = rtm;
1511		}
1512	} else {
1513		startpindex = 0;
1514		i = 0;
1515	}
1516
1517	marray[i] = m;
1518	/* page offset of the required page */
1519	*reqpage = i;
1520
1521	tpindex = pindex + 1;
1522	i++;
1523
1524	/*
1525	 * scan forward for the read ahead pages
1526	 */
1527	endpindex = tpindex + rahead;
1528	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1529		endpindex = rtm->pindex;
1530	if (endpindex > object->size)
1531		endpindex = object->size;
1532
1533	for (; tpindex < endpindex; i++, tpindex++) {
1534
1535		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1536		    VM_ALLOC_IFNOTCACHED);
1537		if (rtm == NULL) {
1538			break;
1539		}
1540
1541		marray[i] = rtm;
1542	}
1543
1544	/* return number of pages */
1545	return i;
1546}
1547
1548/*
1549 * Block entry into the machine-independent layer's page fault handler by
1550 * the calling thread.  Subsequent calls to vm_fault() by that thread will
1551 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1552 * spurious page faults.
1553 */
1554int
1555vm_fault_disable_pagefaults(void)
1556{
1557
1558	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1559}
1560
1561void
1562vm_fault_enable_pagefaults(int save)
1563{
1564
1565	curthread_pflags_restore(save);
1566}
1567