1/*-
2 * Copyright (c) 1998 Matthew Dillon,
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1990 University of Utah.
5 * Copyright (c) 1982, 1986, 1989, 1993
6 *	The Regents of the University of California.  All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *				New Swap System
41 *				Matthew Dillon
42 *
43 * Radix Bitmap 'blists'.
44 *
45 *	- The new swapper uses the new radix bitmap code.  This should scale
46 *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47 *	  arbitrary degree of fragmentation.
48 *
49 * Features:
50 *
51 *	- on the fly reallocation of swap during putpages.  The new system
52 *	  does not try to keep previously allocated swap blocks for dirty
53 *	  pages.
54 *
55 *	- on the fly deallocation of swap
56 *
57 *	- No more garbage collection required.  Unnecessarily allocated swap
58 *	  blocks only exist for dirty vm_page_t's now and these are already
59 *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60 *	  removal of invalidated swap blocks when a page is destroyed
61 *	  or renamed.
62 *
63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64 *
65 *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66 *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD$");
71
72#include "opt_swap.h"
73#include "opt_vm.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/conf.h>
78#include <sys/kernel.h>
79#include <sys/priv.h>
80#include <sys/proc.h>
81#include <sys/bio.h>
82#include <sys/buf.h>
83#include <sys/disk.h>
84#include <sys/fcntl.h>
85#include <sys/mount.h>
86#include <sys/namei.h>
87#include <sys/vnode.h>
88#include <sys/malloc.h>
89#include <sys/racct.h>
90#include <sys/resource.h>
91#include <sys/resourcevar.h>
92#include <sys/sysctl.h>
93#include <sys/sysproto.h>
94#include <sys/blist.h>
95#include <sys/lock.h>
96#include <sys/sx.h>
97#include <sys/vmmeter.h>
98
99#include <security/mac/mac_framework.h>
100
101#include <vm/vm.h>
102#include <vm/pmap.h>
103#include <vm/vm_map.h>
104#include <vm/vm_kern.h>
105#include <vm/vm_object.h>
106#include <vm/vm_page.h>
107#include <vm/vm_pager.h>
108#include <vm/vm_pageout.h>
109#include <vm/vm_param.h>
110#include <vm/swap_pager.h>
111#include <vm/vm_extern.h>
112#include <vm/uma.h>
113
114#include <geom/geom.h>
115
116/*
117 * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
118 * or 32 pages per allocation.
119 * The 32-page limit is due to the radix code (kern/subr_blist.c).
120 */
121#ifndef MAX_PAGEOUT_CLUSTER
122#define MAX_PAGEOUT_CLUSTER 16
123#endif
124
125#if !defined(SWB_NPAGES)
126#define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
127#endif
128
129/*
130 * The swblock structure maps an object and a small, fixed-size range
131 * of page indices to disk addresses within a swap area.
132 * The collection of these mappings is implemented as a hash table.
133 * Unused disk addresses within a swap area are allocated and managed
134 * using a blist.
135 */
136#define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
137#define SWAP_META_PAGES		(SWB_NPAGES * 2)
138#define SWAP_META_MASK		(SWAP_META_PAGES - 1)
139
140struct swblock {
141	struct swblock	*swb_hnext;
142	vm_object_t	swb_object;
143	vm_pindex_t	swb_index;
144	int		swb_count;
145	daddr_t		swb_pages[SWAP_META_PAGES];
146};
147
148static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
149static struct mtx sw_dev_mtx;
150static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
151static struct swdevt *swdevhd;	/* Allocate from here next */
152static int nswapdev;		/* Number of swap devices */
153int swap_pager_avail;
154static int swdev_syscall_active = 0; /* serialize swap(on|off) */
155
156static vm_ooffset_t swap_total;
157SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
158    "Total amount of available swap storage.");
159static vm_ooffset_t swap_reserved;
160SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
161    "Amount of swap storage needed to back all allocated anonymous memory.");
162static int overcommit = 0;
163SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
164    "Configure virtual memory overcommit behavior. See tuning(7) "
165    "for details.");
166
167/* bits from overcommit */
168#define	SWAP_RESERVE_FORCE_ON		(1 << 0)
169#define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
170#define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
171
172int
173swap_reserve(vm_ooffset_t incr)
174{
175
176	return (swap_reserve_by_cred(incr, curthread->td_ucred));
177}
178
179int
180swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
181{
182	vm_ooffset_t r, s;
183	int res, error;
184	static int curfail;
185	static struct timeval lastfail;
186	struct uidinfo *uip;
187
188	uip = cred->cr_ruidinfo;
189
190	if (incr & PAGE_MASK)
191		panic("swap_reserve: & PAGE_MASK");
192
193#ifdef RACCT
194	PROC_LOCK(curproc);
195	error = racct_add(curproc, RACCT_SWAP, incr);
196	PROC_UNLOCK(curproc);
197	if (error != 0)
198		return (0);
199#endif
200
201	res = 0;
202	mtx_lock(&sw_dev_mtx);
203	r = swap_reserved + incr;
204	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
205		s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
206		s *= PAGE_SIZE;
207	} else
208		s = 0;
209	s += swap_total;
210	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
211	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
212		res = 1;
213		swap_reserved = r;
214	}
215	mtx_unlock(&sw_dev_mtx);
216
217	if (res) {
218		PROC_LOCK(curproc);
219		UIDINFO_VMSIZE_LOCK(uip);
220		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
221		    uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
222		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
223			res = 0;
224		else
225			uip->ui_vmsize += incr;
226		UIDINFO_VMSIZE_UNLOCK(uip);
227		PROC_UNLOCK(curproc);
228		if (!res) {
229			mtx_lock(&sw_dev_mtx);
230			swap_reserved -= incr;
231			mtx_unlock(&sw_dev_mtx);
232		}
233	}
234	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
235		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
236		    uip->ui_uid, curproc->p_pid, incr);
237	}
238
239#ifdef RACCT
240	if (!res) {
241		PROC_LOCK(curproc);
242		racct_sub(curproc, RACCT_SWAP, incr);
243		PROC_UNLOCK(curproc);
244	}
245#endif
246
247	return (res);
248}
249
250void
251swap_reserve_force(vm_ooffset_t incr)
252{
253	struct uidinfo *uip;
254
255	mtx_lock(&sw_dev_mtx);
256	swap_reserved += incr;
257	mtx_unlock(&sw_dev_mtx);
258
259#ifdef RACCT
260	PROC_LOCK(curproc);
261	racct_add_force(curproc, RACCT_SWAP, incr);
262	PROC_UNLOCK(curproc);
263#endif
264
265	uip = curthread->td_ucred->cr_ruidinfo;
266	PROC_LOCK(curproc);
267	UIDINFO_VMSIZE_LOCK(uip);
268	uip->ui_vmsize += incr;
269	UIDINFO_VMSIZE_UNLOCK(uip);
270	PROC_UNLOCK(curproc);
271}
272
273void
274swap_release(vm_ooffset_t decr)
275{
276	struct ucred *cred;
277
278	PROC_LOCK(curproc);
279	cred = curthread->td_ucred;
280	swap_release_by_cred(decr, cred);
281	PROC_UNLOCK(curproc);
282}
283
284void
285swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
286{
287 	struct uidinfo *uip;
288
289	uip = cred->cr_ruidinfo;
290
291	if (decr & PAGE_MASK)
292		panic("swap_release: & PAGE_MASK");
293
294	mtx_lock(&sw_dev_mtx);
295	if (swap_reserved < decr)
296		panic("swap_reserved < decr");
297	swap_reserved -= decr;
298	mtx_unlock(&sw_dev_mtx);
299
300	UIDINFO_VMSIZE_LOCK(uip);
301	if (uip->ui_vmsize < decr)
302		printf("negative vmsize for uid = %d\n", uip->ui_uid);
303	uip->ui_vmsize -= decr;
304	UIDINFO_VMSIZE_UNLOCK(uip);
305
306	racct_sub_cred(cred, RACCT_SWAP, decr);
307}
308
309static void swapdev_strategy(struct buf *, struct swdevt *sw);
310
311#define SWM_FREE	0x02	/* free, period			*/
312#define SWM_POP		0x04	/* pop out			*/
313
314int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
315static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
316static int nsw_rcount;		/* free read buffers			*/
317static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
318static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
319static int nsw_wcount_async_max;/* assigned maximum			*/
320static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
321
322static struct swblock **swhash;
323static int swhash_mask;
324static struct mtx swhash_mtx;
325
326static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
327static struct sx sw_alloc_sx;
328
329
330SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
331        CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
332
333/*
334 * "named" and "unnamed" anon region objects.  Try to reduce the overhead
335 * of searching a named list by hashing it just a little.
336 */
337
338#define NOBJLISTS		8
339
340#define NOBJLIST(handle)	\
341	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
342
343static struct mtx sw_alloc_mtx;	/* protect list manipulation */
344static struct pagerlst	swap_pager_object_list[NOBJLISTS];
345static uma_zone_t	swap_zone;
346static struct vm_object	swap_zone_obj;
347
348/*
349 * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
350 * calls hooked from other parts of the VM system and do not appear here.
351 * (see vm/swap_pager.h).
352 */
353static vm_object_t
354		swap_pager_alloc(void *handle, vm_ooffset_t size,
355		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
356static void	swap_pager_dealloc(vm_object_t object);
357static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
358static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
359static boolean_t
360		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
361static void	swap_pager_init(void);
362static void	swap_pager_unswapped(vm_page_t);
363static void	swap_pager_swapoff(struct swdevt *sp);
364
365struct pagerops swappagerops = {
366	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
367	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
368	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
369	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
370	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
371	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
372	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
373};
374
375/*
376 * dmmax is in page-sized chunks with the new swap system.  It was
377 * dev-bsized chunks in the old.  dmmax is always a power of 2.
378 *
379 * swap_*() routines are externally accessible.  swp_*() routines are
380 * internal.
381 */
382static int dmmax;
383static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
384static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
385
386SYSCTL_INT(_vm, OID_AUTO, dmmax,
387	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
388
389static void	swp_sizecheck(void);
390static void	swp_pager_async_iodone(struct buf *bp);
391static int	swapongeom(struct thread *, struct vnode *);
392static int	swaponvp(struct thread *, struct vnode *, u_long);
393static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
394
395/*
396 * Swap bitmap functions
397 */
398static void	swp_pager_freeswapspace(daddr_t blk, int npages);
399static daddr_t	swp_pager_getswapspace(int npages);
400
401/*
402 * Metadata functions
403 */
404static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
405static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
406static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
407static void swp_pager_meta_free_all(vm_object_t);
408static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
409
410static void
411swp_pager_free_nrpage(vm_page_t m)
412{
413
414	vm_page_lock(m);
415	if (m->wire_count == 0)
416		vm_page_free(m);
417	vm_page_unlock(m);
418}
419
420/*
421 * SWP_SIZECHECK() -	update swap_pager_full indication
422 *
423 *	update the swap_pager_almost_full indication and warn when we are
424 *	about to run out of swap space, using lowat/hiwat hysteresis.
425 *
426 *	Clear swap_pager_full ( task killing ) indication when lowat is met.
427 *
428 *	No restrictions on call
429 *	This routine may not block.
430 */
431static void
432swp_sizecheck(void)
433{
434
435	if (swap_pager_avail < nswap_lowat) {
436		if (swap_pager_almost_full == 0) {
437			printf("swap_pager: out of swap space\n");
438			swap_pager_almost_full = 1;
439		}
440	} else {
441		swap_pager_full = 0;
442		if (swap_pager_avail > nswap_hiwat)
443			swap_pager_almost_full = 0;
444	}
445}
446
447/*
448 * SWP_PAGER_HASH() -	hash swap meta data
449 *
450 *	This is an helper function which hashes the swapblk given
451 *	the object and page index.  It returns a pointer to a pointer
452 *	to the object, or a pointer to a NULL pointer if it could not
453 *	find a swapblk.
454 */
455static struct swblock **
456swp_pager_hash(vm_object_t object, vm_pindex_t index)
457{
458	struct swblock **pswap;
459	struct swblock *swap;
460
461	index &= ~(vm_pindex_t)SWAP_META_MASK;
462	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
463	while ((swap = *pswap) != NULL) {
464		if (swap->swb_object == object &&
465		    swap->swb_index == index
466		) {
467			break;
468		}
469		pswap = &swap->swb_hnext;
470	}
471	return (pswap);
472}
473
474/*
475 * SWAP_PAGER_INIT() -	initialize the swap pager!
476 *
477 *	Expected to be started from system init.  NOTE:  This code is run
478 *	before much else so be careful what you depend on.  Most of the VM
479 *	system has yet to be initialized at this point.
480 */
481static void
482swap_pager_init(void)
483{
484	/*
485	 * Initialize object lists
486	 */
487	int i;
488
489	for (i = 0; i < NOBJLISTS; ++i)
490		TAILQ_INIT(&swap_pager_object_list[i]);
491	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
492	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
493
494	/*
495	 * Device Stripe, in PAGE_SIZE'd blocks
496	 */
497	dmmax = SWB_NPAGES * 2;
498}
499
500/*
501 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
502 *
503 *	Expected to be started from pageout process once, prior to entering
504 *	its main loop.
505 */
506void
507swap_pager_swap_init(void)
508{
509	int n, n2;
510
511	/*
512	 * Number of in-transit swap bp operations.  Don't
513	 * exhaust the pbufs completely.  Make sure we
514	 * initialize workable values (0 will work for hysteresis
515	 * but it isn't very efficient).
516	 *
517	 * The nsw_cluster_max is constrained by the bp->b_pages[]
518	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
519	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
520	 * constrained by the swap device interleave stripe size.
521	 *
522	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
523	 * designed to prevent other I/O from having high latencies due to
524	 * our pageout I/O.  The value 4 works well for one or two active swap
525	 * devices but is probably a little low if you have more.  Even so,
526	 * a higher value would probably generate only a limited improvement
527	 * with three or four active swap devices since the system does not
528	 * typically have to pageout at extreme bandwidths.   We will want
529	 * at least 2 per swap devices, and 4 is a pretty good value if you
530	 * have one NFS swap device due to the command/ack latency over NFS.
531	 * So it all works out pretty well.
532	 */
533	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
534
535	mtx_lock(&pbuf_mtx);
536	nsw_rcount = (nswbuf + 1) / 2;
537	nsw_wcount_sync = (nswbuf + 3) / 4;
538	nsw_wcount_async = 4;
539	nsw_wcount_async_max = nsw_wcount_async;
540	mtx_unlock(&pbuf_mtx);
541
542	/*
543	 * Initialize our zone.  Right now I'm just guessing on the number
544	 * we need based on the number of pages in the system.  Each swblock
545	 * can hold 16 pages, so this is probably overkill.  This reservation
546	 * is typically limited to around 32MB by default.
547	 */
548	n = cnt.v_page_count / 2;
549	if (maxswzone && n > maxswzone / sizeof(struct swblock))
550		n = maxswzone / sizeof(struct swblock);
551	n2 = n;
552	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
553	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
554	if (swap_zone == NULL)
555		panic("failed to create swap_zone.");
556	do {
557		if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
558			break;
559		/*
560		 * if the allocation failed, try a zone two thirds the
561		 * size of the previous attempt.
562		 */
563		n -= ((n + 2) / 3);
564	} while (n > 0);
565	if (n2 != n)
566		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
567	n2 = n;
568
569	/*
570	 * Initialize our meta-data hash table.  The swapper does not need to
571	 * be quite as efficient as the VM system, so we do not use an
572	 * oversized hash table.
573	 *
574	 * 	n: 		size of hash table, must be power of 2
575	 *	swhash_mask:	hash table index mask
576	 */
577	for (n = 1; n < n2 / 8; n *= 2)
578		;
579	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
580	swhash_mask = n - 1;
581	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
582}
583
584/*
585 * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
586 *			its metadata structures.
587 *
588 *	This routine is called from the mmap and fork code to create a new
589 *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
590 *	and then converting it with swp_pager_meta_build().
591 *
592 *	This routine may block in vm_object_allocate() and create a named
593 *	object lookup race, so we must interlock.
594 *
595 * MPSAFE
596 */
597static vm_object_t
598swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
599    vm_ooffset_t offset, struct ucred *cred)
600{
601	vm_object_t object;
602	vm_pindex_t pindex;
603
604	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
605	if (handle) {
606		mtx_lock(&Giant);
607		/*
608		 * Reference existing named region or allocate new one.  There
609		 * should not be a race here against swp_pager_meta_build()
610		 * as called from vm_page_remove() in regards to the lookup
611		 * of the handle.
612		 */
613		sx_xlock(&sw_alloc_sx);
614		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
615		if (object == NULL) {
616			if (cred != NULL) {
617				if (!swap_reserve_by_cred(size, cred)) {
618					sx_xunlock(&sw_alloc_sx);
619					mtx_unlock(&Giant);
620					return (NULL);
621				}
622				crhold(cred);
623			}
624			object = vm_object_allocate(OBJT_DEFAULT, pindex);
625			VM_OBJECT_LOCK(object);
626			object->handle = handle;
627			if (cred != NULL) {
628				object->cred = cred;
629				object->charge = size;
630			}
631			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
632			VM_OBJECT_UNLOCK(object);
633		}
634		sx_xunlock(&sw_alloc_sx);
635		mtx_unlock(&Giant);
636	} else {
637		if (cred != NULL) {
638			if (!swap_reserve_by_cred(size, cred))
639				return (NULL);
640			crhold(cred);
641		}
642		object = vm_object_allocate(OBJT_DEFAULT, pindex);
643		VM_OBJECT_LOCK(object);
644		if (cred != NULL) {
645			object->cred = cred;
646			object->charge = size;
647		}
648		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
649		VM_OBJECT_UNLOCK(object);
650	}
651	return (object);
652}
653
654/*
655 * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
656 *
657 *	The swap backing for the object is destroyed.  The code is
658 *	designed such that we can reinstantiate it later, but this
659 *	routine is typically called only when the entire object is
660 *	about to be destroyed.
661 *
662 *	The object must be locked.
663 */
664static void
665swap_pager_dealloc(vm_object_t object)
666{
667
668	/*
669	 * Remove from list right away so lookups will fail if we block for
670	 * pageout completion.
671	 */
672	if (object->handle != NULL) {
673		mtx_lock(&sw_alloc_mtx);
674		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
675		mtx_unlock(&sw_alloc_mtx);
676	}
677
678	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
679	vm_object_pip_wait(object, "swpdea");
680
681	/*
682	 * Free all remaining metadata.  We only bother to free it from
683	 * the swap meta data.  We do not attempt to free swapblk's still
684	 * associated with vm_page_t's for this object.  We do not care
685	 * if paging is still in progress on some objects.
686	 */
687	swp_pager_meta_free_all(object);
688}
689
690/************************************************************************
691 *			SWAP PAGER BITMAP ROUTINES			*
692 ************************************************************************/
693
694/*
695 * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
696 *
697 *	Allocate swap for the requested number of pages.  The starting
698 *	swap block number (a page index) is returned or SWAPBLK_NONE
699 *	if the allocation failed.
700 *
701 *	Also has the side effect of advising that somebody made a mistake
702 *	when they configured swap and didn't configure enough.
703 *
704 *	This routine may not sleep.
705 *
706 *	We allocate in round-robin fashion from the configured devices.
707 */
708static daddr_t
709swp_pager_getswapspace(int npages)
710{
711	daddr_t blk;
712	struct swdevt *sp;
713	int i;
714
715	blk = SWAPBLK_NONE;
716	mtx_lock(&sw_dev_mtx);
717	sp = swdevhd;
718	for (i = 0; i < nswapdev; i++) {
719		if (sp == NULL)
720			sp = TAILQ_FIRST(&swtailq);
721		if (!(sp->sw_flags & SW_CLOSING)) {
722			blk = blist_alloc(sp->sw_blist, npages);
723			if (blk != SWAPBLK_NONE) {
724				blk += sp->sw_first;
725				sp->sw_used += npages;
726				swap_pager_avail -= npages;
727				swp_sizecheck();
728				swdevhd = TAILQ_NEXT(sp, sw_list);
729				goto done;
730			}
731		}
732		sp = TAILQ_NEXT(sp, sw_list);
733	}
734	if (swap_pager_full != 2) {
735		printf("swap_pager_getswapspace(%d): failed\n", npages);
736		swap_pager_full = 2;
737		swap_pager_almost_full = 1;
738	}
739	swdevhd = NULL;
740done:
741	mtx_unlock(&sw_dev_mtx);
742	return (blk);
743}
744
745static int
746swp_pager_isondev(daddr_t blk, struct swdevt *sp)
747{
748
749	return (blk >= sp->sw_first && blk < sp->sw_end);
750}
751
752static void
753swp_pager_strategy(struct buf *bp)
754{
755	struct swdevt *sp;
756
757	mtx_lock(&sw_dev_mtx);
758	TAILQ_FOREACH(sp, &swtailq, sw_list) {
759		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
760			mtx_unlock(&sw_dev_mtx);
761			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
762			    unmapped_buf_allowed) {
763				bp->b_kvaalloc = bp->b_data;
764				bp->b_data = unmapped_buf;
765				bp->b_kvabase = unmapped_buf;
766				bp->b_offset = 0;
767				bp->b_flags |= B_UNMAPPED;
768			} else {
769				pmap_qenter((vm_offset_t)bp->b_data,
770				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
771			}
772			sp->sw_strategy(bp, sp);
773			return;
774		}
775	}
776	panic("Swapdev not found");
777}
778
779
780/*
781 * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
782 *
783 *	This routine returns the specified swap blocks back to the bitmap.
784 *
785 *	This routine may not sleep.
786 */
787static void
788swp_pager_freeswapspace(daddr_t blk, int npages)
789{
790	struct swdevt *sp;
791
792	mtx_lock(&sw_dev_mtx);
793	TAILQ_FOREACH(sp, &swtailq, sw_list) {
794		if (blk >= sp->sw_first && blk < sp->sw_end) {
795			sp->sw_used -= npages;
796			/*
797			 * If we are attempting to stop swapping on
798			 * this device, we don't want to mark any
799			 * blocks free lest they be reused.
800			 */
801			if ((sp->sw_flags & SW_CLOSING) == 0) {
802				blist_free(sp->sw_blist, blk - sp->sw_first,
803				    npages);
804				swap_pager_avail += npages;
805				swp_sizecheck();
806			}
807			mtx_unlock(&sw_dev_mtx);
808			return;
809		}
810	}
811	panic("Swapdev not found");
812}
813
814/*
815 * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
816 *				range within an object.
817 *
818 *	This is a globally accessible routine.
819 *
820 *	This routine removes swapblk assignments from swap metadata.
821 *
822 *	The external callers of this routine typically have already destroyed
823 *	or renamed vm_page_t's associated with this range in the object so
824 *	we should be ok.
825 */
826void
827swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
828{
829
830	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
831	swp_pager_meta_free(object, start, size);
832}
833
834/*
835 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
836 *
837 *	Assigns swap blocks to the specified range within the object.  The
838 *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
839 *
840 *	Returns 0 on success, -1 on failure.
841 */
842int
843swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
844{
845	int n = 0;
846	daddr_t blk = SWAPBLK_NONE;
847	vm_pindex_t beg = start;	/* save start index */
848
849	VM_OBJECT_LOCK(object);
850	while (size) {
851		if (n == 0) {
852			n = BLIST_MAX_ALLOC;
853			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
854				n >>= 1;
855				if (n == 0) {
856					swp_pager_meta_free(object, beg, start - beg);
857					VM_OBJECT_UNLOCK(object);
858					return (-1);
859				}
860			}
861		}
862		swp_pager_meta_build(object, start, blk);
863		--size;
864		++start;
865		++blk;
866		--n;
867	}
868	swp_pager_meta_free(object, start, n);
869	VM_OBJECT_UNLOCK(object);
870	return (0);
871}
872
873/*
874 * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
875 *			and destroy the source.
876 *
877 *	Copy any valid swapblks from the source to the destination.  In
878 *	cases where both the source and destination have a valid swapblk,
879 *	we keep the destination's.
880 *
881 *	This routine is allowed to sleep.  It may sleep allocating metadata
882 *	indirectly through swp_pager_meta_build() or if paging is still in
883 *	progress on the source.
884 *
885 *	The source object contains no vm_page_t's (which is just as well)
886 *
887 *	The source object is of type OBJT_SWAP.
888 *
889 *	The source and destination objects must be locked.
890 *	Both object locks may temporarily be released.
891 */
892void
893swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
894    vm_pindex_t offset, int destroysource)
895{
896	vm_pindex_t i;
897
898	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
899	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
900
901	/*
902	 * If destroysource is set, we remove the source object from the
903	 * swap_pager internal queue now.
904	 */
905	if (destroysource) {
906		if (srcobject->handle != NULL) {
907			mtx_lock(&sw_alloc_mtx);
908			TAILQ_REMOVE(
909			    NOBJLIST(srcobject->handle),
910			    srcobject,
911			    pager_object_list
912			);
913			mtx_unlock(&sw_alloc_mtx);
914		}
915	}
916
917	/*
918	 * transfer source to destination.
919	 */
920	for (i = 0; i < dstobject->size; ++i) {
921		daddr_t dstaddr;
922
923		/*
924		 * Locate (without changing) the swapblk on the destination,
925		 * unless it is invalid in which case free it silently, or
926		 * if the destination is a resident page, in which case the
927		 * source is thrown away.
928		 */
929		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
930
931		if (dstaddr == SWAPBLK_NONE) {
932			/*
933			 * Destination has no swapblk and is not resident,
934			 * copy source.
935			 */
936			daddr_t srcaddr;
937
938			srcaddr = swp_pager_meta_ctl(
939			    srcobject,
940			    i + offset,
941			    SWM_POP
942			);
943
944			if (srcaddr != SWAPBLK_NONE) {
945				/*
946				 * swp_pager_meta_build() can sleep.
947				 */
948				vm_object_pip_add(srcobject, 1);
949				VM_OBJECT_UNLOCK(srcobject);
950				vm_object_pip_add(dstobject, 1);
951				swp_pager_meta_build(dstobject, i, srcaddr);
952				vm_object_pip_wakeup(dstobject);
953				VM_OBJECT_LOCK(srcobject);
954				vm_object_pip_wakeup(srcobject);
955			}
956		} else {
957			/*
958			 * Destination has valid swapblk or it is represented
959			 * by a resident page.  We destroy the sourceblock.
960			 */
961
962			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
963		}
964	}
965
966	/*
967	 * Free left over swap blocks in source.
968	 *
969	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
970	 * double-remove the object from the swap queues.
971	 */
972	if (destroysource) {
973		swp_pager_meta_free_all(srcobject);
974		/*
975		 * Reverting the type is not necessary, the caller is going
976		 * to destroy srcobject directly, but I'm doing it here
977		 * for consistency since we've removed the object from its
978		 * queues.
979		 */
980		srcobject->type = OBJT_DEFAULT;
981	}
982}
983
984/*
985 * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
986 *				the requested page.
987 *
988 *	We determine whether good backing store exists for the requested
989 *	page and return TRUE if it does, FALSE if it doesn't.
990 *
991 *	If TRUE, we also try to determine how much valid, contiguous backing
992 *	store exists before and after the requested page within a reasonable
993 *	distance.  We do not try to restrict it to the swap device stripe
994 *	(that is handled in getpages/putpages).  It probably isn't worth
995 *	doing here.
996 */
997static boolean_t
998swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
999{
1000	daddr_t blk0;
1001
1002	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1003	/*
1004	 * do we have good backing store at the requested index ?
1005	 */
1006	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1007
1008	if (blk0 == SWAPBLK_NONE) {
1009		if (before)
1010			*before = 0;
1011		if (after)
1012			*after = 0;
1013		return (FALSE);
1014	}
1015
1016	/*
1017	 * find backwards-looking contiguous good backing store
1018	 */
1019	if (before != NULL) {
1020		int i;
1021
1022		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1023			daddr_t blk;
1024
1025			if (i > pindex)
1026				break;
1027			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1028			if (blk != blk0 - i)
1029				break;
1030		}
1031		*before = (i - 1);
1032	}
1033
1034	/*
1035	 * find forward-looking contiguous good backing store
1036	 */
1037	if (after != NULL) {
1038		int i;
1039
1040		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1041			daddr_t blk;
1042
1043			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1044			if (blk != blk0 + i)
1045				break;
1046		}
1047		*after = (i - 1);
1048	}
1049	return (TRUE);
1050}
1051
1052/*
1053 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1054 *
1055 *	This removes any associated swap backing store, whether valid or
1056 *	not, from the page.
1057 *
1058 *	This routine is typically called when a page is made dirty, at
1059 *	which point any associated swap can be freed.  MADV_FREE also
1060 *	calls us in a special-case situation
1061 *
1062 *	NOTE!!!  If the page is clean and the swap was valid, the caller
1063 *	should make the page dirty before calling this routine.  This routine
1064 *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1065 *	depends on it.
1066 *
1067 *	This routine may not sleep.
1068 */
1069static void
1070swap_pager_unswapped(vm_page_t m)
1071{
1072
1073	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1074	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1075}
1076
1077/*
1078 * SWAP_PAGER_GETPAGES() - bring pages in from swap
1079 *
1080 *	Attempt to retrieve (m, count) pages from backing store, but make
1081 *	sure we retrieve at least m[reqpage].  We try to load in as large
1082 *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1083 *	belongs to the same object.
1084 *
1085 *	The code is designed for asynchronous operation and
1086 *	immediate-notification of 'reqpage' but tends not to be
1087 *	used that way.  Please do not optimize-out this algorithmic
1088 *	feature, I intend to improve on it in the future.
1089 *
1090 *	The parent has a single vm_object_pip_add() reference prior to
1091 *	calling us and we should return with the same.
1092 *
1093 *	The parent has BUSY'd the pages.  We should return with 'm'
1094 *	left busy, but the others adjusted.
1095 */
1096static int
1097swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1098{
1099	struct buf *bp;
1100	vm_page_t mreq;
1101	int i;
1102	int j;
1103	daddr_t blk;
1104
1105	mreq = m[reqpage];
1106
1107	KASSERT(mreq->object == object,
1108	    ("swap_pager_getpages: object mismatch %p/%p",
1109	    object, mreq->object));
1110
1111	/*
1112	 * Calculate range to retrieve.  The pages have already been assigned
1113	 * their swapblks.  We require a *contiguous* range but we know it to
1114	 * not span devices.   If we do not supply it, bad things
1115	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1116	 * loops are set up such that the case(s) are handled implicitly.
1117	 *
1118	 * The swp_*() calls must be made with the object locked.
1119	 */
1120	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1121
1122	for (i = reqpage - 1; i >= 0; --i) {
1123		daddr_t iblk;
1124
1125		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1126		if (blk != iblk + (reqpage - i))
1127			break;
1128	}
1129	++i;
1130
1131	for (j = reqpage + 1; j < count; ++j) {
1132		daddr_t jblk;
1133
1134		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1135		if (blk != jblk - (j - reqpage))
1136			break;
1137	}
1138
1139	/*
1140	 * free pages outside our collection range.   Note: we never free
1141	 * mreq, it must remain busy throughout.
1142	 */
1143	if (0 < i || j < count) {
1144		int k;
1145
1146		for (k = 0; k < i; ++k)
1147			swp_pager_free_nrpage(m[k]);
1148		for (k = j; k < count; ++k)
1149			swp_pager_free_nrpage(m[k]);
1150	}
1151
1152	/*
1153	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1154	 * still busy, but the others unbusied.
1155	 */
1156	if (blk == SWAPBLK_NONE)
1157		return (VM_PAGER_FAIL);
1158
1159	/*
1160	 * Getpbuf() can sleep.
1161	 */
1162	VM_OBJECT_UNLOCK(object);
1163	/*
1164	 * Get a swap buffer header to perform the IO
1165	 */
1166	bp = getpbuf(&nsw_rcount);
1167	bp->b_flags |= B_PAGING;
1168
1169	bp->b_iocmd = BIO_READ;
1170	bp->b_iodone = swp_pager_async_iodone;
1171	bp->b_rcred = crhold(thread0.td_ucred);
1172	bp->b_wcred = crhold(thread0.td_ucred);
1173	bp->b_blkno = blk - (reqpage - i);
1174	bp->b_bcount = PAGE_SIZE * (j - i);
1175	bp->b_bufsize = PAGE_SIZE * (j - i);
1176	bp->b_pager.pg_reqpage = reqpage - i;
1177
1178	VM_OBJECT_LOCK(object);
1179	{
1180		int k;
1181
1182		for (k = i; k < j; ++k) {
1183			bp->b_pages[k - i] = m[k];
1184			m[k]->oflags |= VPO_SWAPINPROG;
1185		}
1186	}
1187	bp->b_npages = j - i;
1188
1189	PCPU_INC(cnt.v_swapin);
1190	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1191
1192	/*
1193	 * We still hold the lock on mreq, and our automatic completion routine
1194	 * does not remove it.
1195	 */
1196	vm_object_pip_add(object, bp->b_npages);
1197	VM_OBJECT_UNLOCK(object);
1198
1199	/*
1200	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1201	 * this point because we automatically release it on completion.
1202	 * Instead, we look at the one page we are interested in which we
1203	 * still hold a lock on even through the I/O completion.
1204	 *
1205	 * The other pages in our m[] array are also released on completion,
1206	 * so we cannot assume they are valid anymore either.
1207	 *
1208	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1209	 */
1210	BUF_KERNPROC(bp);
1211	swp_pager_strategy(bp);
1212
1213	/*
1214	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1215	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1216	 * is set in the meta-data.
1217	 */
1218	VM_OBJECT_LOCK(object);
1219	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1220		mreq->oflags |= VPO_WANTED;
1221		PCPU_INC(cnt.v_intrans);
1222		if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
1223			printf(
1224"swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1225			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1226		}
1227	}
1228
1229	/*
1230	 * mreq is left busied after completion, but all the other pages
1231	 * are freed.  If we had an unrecoverable read error the page will
1232	 * not be valid.
1233	 */
1234	if (mreq->valid != VM_PAGE_BITS_ALL) {
1235		return (VM_PAGER_ERROR);
1236	} else {
1237		return (VM_PAGER_OK);
1238	}
1239
1240	/*
1241	 * A final note: in a low swap situation, we cannot deallocate swap
1242	 * and mark a page dirty here because the caller is likely to mark
1243	 * the page clean when we return, causing the page to possibly revert
1244	 * to all-zero's later.
1245	 */
1246}
1247
1248/*
1249 *	swap_pager_putpages:
1250 *
1251 *	Assign swap (if necessary) and initiate I/O on the specified pages.
1252 *
1253 *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1254 *	are automatically converted to SWAP objects.
1255 *
1256 *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1257 *	vm_page reservation system coupled with properly written VFS devices
1258 *	should ensure that no low-memory deadlock occurs.  This is an area
1259 *	which needs work.
1260 *
1261 *	The parent has N vm_object_pip_add() references prior to
1262 *	calling us and will remove references for rtvals[] that are
1263 *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1264 *	completion.
1265 *
1266 *	The parent has soft-busy'd the pages it passes us and will unbusy
1267 *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1268 *	We need to unbusy the rest on I/O completion.
1269 */
1270void
1271swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1272    boolean_t sync, int *rtvals)
1273{
1274	int i;
1275	int n = 0;
1276
1277	if (count && m[0]->object != object) {
1278		panic("swap_pager_putpages: object mismatch %p/%p",
1279		    object,
1280		    m[0]->object
1281		);
1282	}
1283
1284	/*
1285	 * Step 1
1286	 *
1287	 * Turn object into OBJT_SWAP
1288	 * check for bogus sysops
1289	 * force sync if not pageout process
1290	 */
1291	if (object->type != OBJT_SWAP)
1292		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1293	VM_OBJECT_UNLOCK(object);
1294
1295	if (curproc != pageproc)
1296		sync = TRUE;
1297
1298	/*
1299	 * Step 2
1300	 *
1301	 * Update nsw parameters from swap_async_max sysctl values.
1302	 * Do not let the sysop crash the machine with bogus numbers.
1303	 */
1304	mtx_lock(&pbuf_mtx);
1305	if (swap_async_max != nsw_wcount_async_max) {
1306		int n;
1307
1308		/*
1309		 * limit range
1310		 */
1311		if ((n = swap_async_max) > nswbuf / 2)
1312			n = nswbuf / 2;
1313		if (n < 1)
1314			n = 1;
1315		swap_async_max = n;
1316
1317		/*
1318		 * Adjust difference ( if possible ).  If the current async
1319		 * count is too low, we may not be able to make the adjustment
1320		 * at this time.
1321		 */
1322		n -= nsw_wcount_async_max;
1323		if (nsw_wcount_async + n >= 0) {
1324			nsw_wcount_async += n;
1325			nsw_wcount_async_max += n;
1326			wakeup(&nsw_wcount_async);
1327		}
1328	}
1329	mtx_unlock(&pbuf_mtx);
1330
1331	/*
1332	 * Step 3
1333	 *
1334	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1335	 * The page is left dirty until the pageout operation completes
1336	 * successfully.
1337	 */
1338	for (i = 0; i < count; i += n) {
1339		int j;
1340		struct buf *bp;
1341		daddr_t blk;
1342
1343		/*
1344		 * Maximum I/O size is limited by a number of factors.
1345		 */
1346		n = min(BLIST_MAX_ALLOC, count - i);
1347		n = min(n, nsw_cluster_max);
1348
1349		/*
1350		 * Get biggest block of swap we can.  If we fail, fall
1351		 * back and try to allocate a smaller block.  Don't go
1352		 * overboard trying to allocate space if it would overly
1353		 * fragment swap.
1354		 */
1355		while (
1356		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1357		    n > 4
1358		) {
1359			n >>= 1;
1360		}
1361		if (blk == SWAPBLK_NONE) {
1362			for (j = 0; j < n; ++j)
1363				rtvals[i+j] = VM_PAGER_FAIL;
1364			continue;
1365		}
1366
1367		/*
1368		 * All I/O parameters have been satisfied, build the I/O
1369		 * request and assign the swap space.
1370		 */
1371		if (sync == TRUE) {
1372			bp = getpbuf(&nsw_wcount_sync);
1373		} else {
1374			bp = getpbuf(&nsw_wcount_async);
1375			bp->b_flags = B_ASYNC;
1376		}
1377		bp->b_flags |= B_PAGING;
1378		bp->b_iocmd = BIO_WRITE;
1379
1380		bp->b_rcred = crhold(thread0.td_ucred);
1381		bp->b_wcred = crhold(thread0.td_ucred);
1382		bp->b_bcount = PAGE_SIZE * n;
1383		bp->b_bufsize = PAGE_SIZE * n;
1384		bp->b_blkno = blk;
1385
1386		VM_OBJECT_LOCK(object);
1387		for (j = 0; j < n; ++j) {
1388			vm_page_t mreq = m[i+j];
1389
1390			swp_pager_meta_build(
1391			    mreq->object,
1392			    mreq->pindex,
1393			    blk + j
1394			);
1395			vm_page_dirty(mreq);
1396			rtvals[i+j] = VM_PAGER_OK;
1397
1398			mreq->oflags |= VPO_SWAPINPROG;
1399			bp->b_pages[j] = mreq;
1400		}
1401		VM_OBJECT_UNLOCK(object);
1402		bp->b_npages = n;
1403		/*
1404		 * Must set dirty range for NFS to work.
1405		 */
1406		bp->b_dirtyoff = 0;
1407		bp->b_dirtyend = bp->b_bcount;
1408
1409		PCPU_INC(cnt.v_swapout);
1410		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1411
1412		/*
1413		 * asynchronous
1414		 *
1415		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1416		 */
1417		if (sync == FALSE) {
1418			bp->b_iodone = swp_pager_async_iodone;
1419			BUF_KERNPROC(bp);
1420			swp_pager_strategy(bp);
1421
1422			for (j = 0; j < n; ++j)
1423				rtvals[i+j] = VM_PAGER_PEND;
1424			/* restart outter loop */
1425			continue;
1426		}
1427
1428		/*
1429		 * synchronous
1430		 *
1431		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1432		 */
1433		bp->b_iodone = bdone;
1434		swp_pager_strategy(bp);
1435
1436		/*
1437		 * Wait for the sync I/O to complete, then update rtvals.
1438		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1439		 * our async completion routine at the end, thus avoiding a
1440		 * double-free.
1441		 */
1442		bwait(bp, PVM, "swwrt");
1443		for (j = 0; j < n; ++j)
1444			rtvals[i+j] = VM_PAGER_PEND;
1445		/*
1446		 * Now that we are through with the bp, we can call the
1447		 * normal async completion, which frees everything up.
1448		 */
1449		swp_pager_async_iodone(bp);
1450	}
1451	VM_OBJECT_LOCK(object);
1452}
1453
1454/*
1455 *	swp_pager_async_iodone:
1456 *
1457 *	Completion routine for asynchronous reads and writes from/to swap.
1458 *	Also called manually by synchronous code to finish up a bp.
1459 *
1460 *	For READ operations, the pages are VPO_BUSY'd.  For WRITE operations,
1461 *	the pages are vm_page_t->busy'd.  For READ operations, we VPO_BUSY
1462 *	unbusy all pages except the 'main' request page.  For WRITE
1463 *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1464 *	because we marked them all VM_PAGER_PEND on return from putpages ).
1465 *
1466 *	This routine may not sleep.
1467 */
1468static void
1469swp_pager_async_iodone(struct buf *bp)
1470{
1471	int i;
1472	vm_object_t object = NULL;
1473
1474	/*
1475	 * report error
1476	 */
1477	if (bp->b_ioflags & BIO_ERROR) {
1478		printf(
1479		    "swap_pager: I/O error - %s failed; blkno %ld,"
1480			"size %ld, error %d\n",
1481		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1482		    (long)bp->b_blkno,
1483		    (long)bp->b_bcount,
1484		    bp->b_error
1485		);
1486	}
1487
1488	/*
1489	 * remove the mapping for kernel virtual
1490	 */
1491	if ((bp->b_flags & B_UNMAPPED) != 0) {
1492		bp->b_data = bp->b_kvaalloc;
1493		bp->b_kvabase = bp->b_kvaalloc;
1494		bp->b_flags &= ~B_UNMAPPED;
1495	} else
1496		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1497
1498	if (bp->b_npages) {
1499		object = bp->b_pages[0]->object;
1500		VM_OBJECT_LOCK(object);
1501	}
1502
1503	/*
1504	 * cleanup pages.  If an error occurs writing to swap, we are in
1505	 * very serious trouble.  If it happens to be a disk error, though,
1506	 * we may be able to recover by reassigning the swap later on.  So
1507	 * in this case we remove the m->swapblk assignment for the page
1508	 * but do not free it in the rlist.  The errornous block(s) are thus
1509	 * never reallocated as swap.  Redirty the page and continue.
1510	 */
1511	for (i = 0; i < bp->b_npages; ++i) {
1512		vm_page_t m = bp->b_pages[i];
1513
1514		m->oflags &= ~VPO_SWAPINPROG;
1515
1516		if (bp->b_ioflags & BIO_ERROR) {
1517			/*
1518			 * If an error occurs I'd love to throw the swapblk
1519			 * away without freeing it back to swapspace, so it
1520			 * can never be used again.  But I can't from an
1521			 * interrupt.
1522			 */
1523			if (bp->b_iocmd == BIO_READ) {
1524				/*
1525				 * When reading, reqpage needs to stay
1526				 * locked for the parent, but all other
1527				 * pages can be freed.  We still want to
1528				 * wakeup the parent waiting on the page,
1529				 * though.  ( also: pg_reqpage can be -1 and
1530				 * not match anything ).
1531				 *
1532				 * We have to wake specifically requested pages
1533				 * up too because we cleared VPO_SWAPINPROG and
1534				 * someone may be waiting for that.
1535				 *
1536				 * NOTE: for reads, m->dirty will probably
1537				 * be overridden by the original caller of
1538				 * getpages so don't play cute tricks here.
1539				 */
1540				m->valid = 0;
1541				if (i != bp->b_pager.pg_reqpage)
1542					swp_pager_free_nrpage(m);
1543				else
1544					vm_page_flash(m);
1545				/*
1546				 * If i == bp->b_pager.pg_reqpage, do not wake
1547				 * the page up.  The caller needs to.
1548				 */
1549			} else {
1550				/*
1551				 * If a write error occurs, reactivate page
1552				 * so it doesn't clog the inactive list,
1553				 * then finish the I/O.
1554				 */
1555				vm_page_dirty(m);
1556				vm_page_lock(m);
1557				vm_page_activate(m);
1558				vm_page_unlock(m);
1559				vm_page_io_finish(m);
1560			}
1561		} else if (bp->b_iocmd == BIO_READ) {
1562			/*
1563			 * NOTE: for reads, m->dirty will probably be
1564			 * overridden by the original caller of getpages so
1565			 * we cannot set them in order to free the underlying
1566			 * swap in a low-swap situation.  I don't think we'd
1567			 * want to do that anyway, but it was an optimization
1568			 * that existed in the old swapper for a time before
1569			 * it got ripped out due to precisely this problem.
1570			 *
1571			 * If not the requested page then deactivate it.
1572			 *
1573			 * Note that the requested page, reqpage, is left
1574			 * busied, but we still have to wake it up.  The
1575			 * other pages are released (unbusied) by
1576			 * vm_page_wakeup().
1577			 */
1578			KASSERT(!pmap_page_is_mapped(m),
1579			    ("swp_pager_async_iodone: page %p is mapped", m));
1580			m->valid = VM_PAGE_BITS_ALL;
1581			KASSERT(m->dirty == 0,
1582			    ("swp_pager_async_iodone: page %p is dirty", m));
1583
1584			/*
1585			 * We have to wake specifically requested pages
1586			 * up too because we cleared VPO_SWAPINPROG and
1587			 * could be waiting for it in getpages.  However,
1588			 * be sure to not unbusy getpages specifically
1589			 * requested page - getpages expects it to be
1590			 * left busy.
1591			 */
1592			if (i != bp->b_pager.pg_reqpage) {
1593				vm_page_lock(m);
1594				vm_page_deactivate(m);
1595				vm_page_unlock(m);
1596				vm_page_wakeup(m);
1597			} else
1598				vm_page_flash(m);
1599		} else {
1600			/*
1601			 * For write success, clear the dirty
1602			 * status, then finish the I/O ( which decrements the
1603			 * busy count and possibly wakes waiter's up ).
1604			 */
1605			KASSERT(!pmap_page_is_write_mapped(m),
1606			    ("swp_pager_async_iodone: page %p is not write"
1607			    " protected", m));
1608			vm_page_undirty(m);
1609			vm_page_io_finish(m);
1610			if (vm_page_count_severe()) {
1611				vm_page_lock(m);
1612				vm_page_try_to_cache(m);
1613				vm_page_unlock(m);
1614			}
1615		}
1616	}
1617
1618	/*
1619	 * adjust pip.  NOTE: the original parent may still have its own
1620	 * pip refs on the object.
1621	 */
1622	if (object != NULL) {
1623		vm_object_pip_wakeupn(object, bp->b_npages);
1624		VM_OBJECT_UNLOCK(object);
1625	}
1626
1627	/*
1628	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1629	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1630	 * trigger a KASSERT in relpbuf().
1631	 */
1632	if (bp->b_vp) {
1633		    bp->b_vp = NULL;
1634		    bp->b_bufobj = NULL;
1635	}
1636	/*
1637	 * release the physical I/O buffer
1638	 */
1639	relpbuf(
1640	    bp,
1641	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1642		((bp->b_flags & B_ASYNC) ?
1643		    &nsw_wcount_async :
1644		    &nsw_wcount_sync
1645		)
1646	    )
1647	);
1648}
1649
1650/*
1651 *	swap_pager_isswapped:
1652 *
1653 *	Return 1 if at least one page in the given object is paged
1654 *	out to the given swap device.
1655 *
1656 *	This routine may not sleep.
1657 */
1658int
1659swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1660{
1661	daddr_t index = 0;
1662	int bcount;
1663	int i;
1664
1665	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1666	if (object->type != OBJT_SWAP)
1667		return (0);
1668
1669	mtx_lock(&swhash_mtx);
1670	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1671		struct swblock *swap;
1672
1673		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1674			for (i = 0; i < SWAP_META_PAGES; ++i) {
1675				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1676					mtx_unlock(&swhash_mtx);
1677					return (1);
1678				}
1679			}
1680		}
1681		index += SWAP_META_PAGES;
1682	}
1683	mtx_unlock(&swhash_mtx);
1684	return (0);
1685}
1686
1687/*
1688 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1689 *
1690 *	This routine dissociates the page at the given index within a
1691 *	swap block from its backing store, paging it in if necessary.
1692 *	If the page is paged in, it is placed in the inactive queue,
1693 *	since it had its backing store ripped out from under it.
1694 *	We also attempt to swap in all other pages in the swap block,
1695 *	we only guarantee that the one at the specified index is
1696 *	paged in.
1697 *
1698 *	XXX - The code to page the whole block in doesn't work, so we
1699 *	      revert to the one-by-one behavior for now.  Sigh.
1700 */
1701static inline void
1702swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1703{
1704	vm_page_t m;
1705
1706	vm_object_pip_add(object, 1);
1707	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1708	if (m->valid == VM_PAGE_BITS_ALL) {
1709		vm_object_pip_subtract(object, 1);
1710		vm_page_dirty(m);
1711		vm_page_lock(m);
1712		vm_page_activate(m);
1713		vm_page_unlock(m);
1714		vm_page_wakeup(m);
1715		vm_pager_page_unswapped(m);
1716		return;
1717	}
1718
1719	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1720		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1721	vm_object_pip_subtract(object, 1);
1722	vm_page_dirty(m);
1723	vm_page_lock(m);
1724	vm_page_deactivate(m);
1725	vm_page_unlock(m);
1726	vm_page_wakeup(m);
1727	vm_pager_page_unswapped(m);
1728}
1729
1730/*
1731 *	swap_pager_swapoff:
1732 *
1733 *	Page in all of the pages that have been paged out to the
1734 *	given device.  The corresponding blocks in the bitmap must be
1735 *	marked as allocated and the device must be flagged SW_CLOSING.
1736 *	There may be no processes swapped out to the device.
1737 *
1738 *	This routine may block.
1739 */
1740static void
1741swap_pager_swapoff(struct swdevt *sp)
1742{
1743	struct swblock *swap;
1744	int i, j, retries;
1745
1746	GIANT_REQUIRED;
1747
1748	retries = 0;
1749full_rescan:
1750	mtx_lock(&swhash_mtx);
1751	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1752restart:
1753		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1754			vm_object_t object = swap->swb_object;
1755			vm_pindex_t pindex = swap->swb_index;
1756                        for (j = 0; j < SWAP_META_PAGES; ++j) {
1757                                if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1758					/* avoid deadlock */
1759					if (!VM_OBJECT_TRYLOCK(object)) {
1760						break;
1761					} else {
1762						mtx_unlock(&swhash_mtx);
1763						swp_pager_force_pagein(object,
1764						    pindex + j);
1765						VM_OBJECT_UNLOCK(object);
1766						mtx_lock(&swhash_mtx);
1767						goto restart;
1768					}
1769				}
1770                        }
1771		}
1772	}
1773	mtx_unlock(&swhash_mtx);
1774	if (sp->sw_used) {
1775		/*
1776		 * Objects may be locked or paging to the device being
1777		 * removed, so we will miss their pages and need to
1778		 * make another pass.  We have marked this device as
1779		 * SW_CLOSING, so the activity should finish soon.
1780		 */
1781		retries++;
1782		if (retries > 100) {
1783			panic("swapoff: failed to locate %d swap blocks",
1784			    sp->sw_used);
1785		}
1786		pause("swpoff", hz / 20);
1787		goto full_rescan;
1788	}
1789}
1790
1791/************************************************************************
1792 *				SWAP META DATA 				*
1793 ************************************************************************
1794 *
1795 *	These routines manipulate the swap metadata stored in the
1796 *	OBJT_SWAP object.
1797 *
1798 *	Swap metadata is implemented with a global hash and not directly
1799 *	linked into the object.  Instead the object simply contains
1800 *	appropriate tracking counters.
1801 */
1802
1803/*
1804 * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1805 *
1806 *	We first convert the object to a swap object if it is a default
1807 *	object.
1808 *
1809 *	The specified swapblk is added to the object's swap metadata.  If
1810 *	the swapblk is not valid, it is freed instead.  Any previously
1811 *	assigned swapblk is freed.
1812 */
1813static void
1814swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1815{
1816	static volatile int exhausted;
1817	struct swblock *swap;
1818	struct swblock **pswap;
1819	int idx;
1820
1821	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1822	/*
1823	 * Convert default object to swap object if necessary
1824	 */
1825	if (object->type != OBJT_SWAP) {
1826		object->type = OBJT_SWAP;
1827		object->un_pager.swp.swp_bcount = 0;
1828
1829		if (object->handle != NULL) {
1830			mtx_lock(&sw_alloc_mtx);
1831			TAILQ_INSERT_TAIL(
1832			    NOBJLIST(object->handle),
1833			    object,
1834			    pager_object_list
1835			);
1836			mtx_unlock(&sw_alloc_mtx);
1837		}
1838	}
1839
1840	/*
1841	 * Locate hash entry.  If not found create, but if we aren't adding
1842	 * anything just return.  If we run out of space in the map we wait
1843	 * and, since the hash table may have changed, retry.
1844	 */
1845retry:
1846	mtx_lock(&swhash_mtx);
1847	pswap = swp_pager_hash(object, pindex);
1848
1849	if ((swap = *pswap) == NULL) {
1850		int i;
1851
1852		if (swapblk == SWAPBLK_NONE)
1853			goto done;
1854
1855		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1856		if (swap == NULL) {
1857			mtx_unlock(&swhash_mtx);
1858			VM_OBJECT_UNLOCK(object);
1859			if (uma_zone_exhausted(swap_zone)) {
1860				if (atomic_cmpset_rel_int(&exhausted, 0, 1))
1861					printf("swap zone exhausted, "
1862					    "increase kern.maxswzone\n");
1863				vm_pageout_oom(VM_OOM_SWAPZ);
1864				pause("swzonex", 10);
1865			} else
1866				VM_WAIT;
1867			VM_OBJECT_LOCK(object);
1868			goto retry;
1869		}
1870
1871		if (atomic_cmpset_rel_int(&exhausted, 1, 0))
1872			printf("swap zone ok\n");
1873
1874		swap->swb_hnext = NULL;
1875		swap->swb_object = object;
1876		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1877		swap->swb_count = 0;
1878
1879		++object->un_pager.swp.swp_bcount;
1880
1881		for (i = 0; i < SWAP_META_PAGES; ++i)
1882			swap->swb_pages[i] = SWAPBLK_NONE;
1883	}
1884
1885	/*
1886	 * Delete prior contents of metadata
1887	 */
1888	idx = pindex & SWAP_META_MASK;
1889
1890	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1891		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1892		--swap->swb_count;
1893	}
1894
1895	/*
1896	 * Enter block into metadata
1897	 */
1898	swap->swb_pages[idx] = swapblk;
1899	if (swapblk != SWAPBLK_NONE)
1900		++swap->swb_count;
1901done:
1902	mtx_unlock(&swhash_mtx);
1903}
1904
1905/*
1906 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1907 *
1908 *	The requested range of blocks is freed, with any associated swap
1909 *	returned to the swap bitmap.
1910 *
1911 *	This routine will free swap metadata structures as they are cleaned
1912 *	out.  This routine does *NOT* operate on swap metadata associated
1913 *	with resident pages.
1914 */
1915static void
1916swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1917{
1918
1919	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1920	if (object->type != OBJT_SWAP)
1921		return;
1922
1923	while (count > 0) {
1924		struct swblock **pswap;
1925		struct swblock *swap;
1926
1927		mtx_lock(&swhash_mtx);
1928		pswap = swp_pager_hash(object, index);
1929
1930		if ((swap = *pswap) != NULL) {
1931			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1932
1933			if (v != SWAPBLK_NONE) {
1934				swp_pager_freeswapspace(v, 1);
1935				swap->swb_pages[index & SWAP_META_MASK] =
1936					SWAPBLK_NONE;
1937				if (--swap->swb_count == 0) {
1938					*pswap = swap->swb_hnext;
1939					uma_zfree(swap_zone, swap);
1940					--object->un_pager.swp.swp_bcount;
1941				}
1942			}
1943			--count;
1944			++index;
1945		} else {
1946			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1947			count -= n;
1948			index += n;
1949		}
1950		mtx_unlock(&swhash_mtx);
1951	}
1952}
1953
1954/*
1955 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1956 *
1957 *	This routine locates and destroys all swap metadata associated with
1958 *	an object.
1959 */
1960static void
1961swp_pager_meta_free_all(vm_object_t object)
1962{
1963	daddr_t index = 0;
1964
1965	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1966	if (object->type != OBJT_SWAP)
1967		return;
1968
1969	while (object->un_pager.swp.swp_bcount) {
1970		struct swblock **pswap;
1971		struct swblock *swap;
1972
1973		mtx_lock(&swhash_mtx);
1974		pswap = swp_pager_hash(object, index);
1975		if ((swap = *pswap) != NULL) {
1976			int i;
1977
1978			for (i = 0; i < SWAP_META_PAGES; ++i) {
1979				daddr_t v = swap->swb_pages[i];
1980				if (v != SWAPBLK_NONE) {
1981					--swap->swb_count;
1982					swp_pager_freeswapspace(v, 1);
1983				}
1984			}
1985			if (swap->swb_count != 0)
1986				panic("swap_pager_meta_free_all: swb_count != 0");
1987			*pswap = swap->swb_hnext;
1988			uma_zfree(swap_zone, swap);
1989			--object->un_pager.swp.swp_bcount;
1990		}
1991		mtx_unlock(&swhash_mtx);
1992		index += SWAP_META_PAGES;
1993	}
1994}
1995
1996/*
1997 * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1998 *
1999 *	This routine is capable of looking up, popping, or freeing
2000 *	swapblk assignments in the swap meta data or in the vm_page_t.
2001 *	The routine typically returns the swapblk being looked-up, or popped,
2002 *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2003 *	was invalid.  This routine will automatically free any invalid
2004 *	meta-data swapblks.
2005 *
2006 *	It is not possible to store invalid swapblks in the swap meta data
2007 *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2008 *
2009 *	When acting on a busy resident page and paging is in progress, we
2010 *	have to wait until paging is complete but otherwise can act on the
2011 *	busy page.
2012 *
2013 *	SWM_FREE	remove and free swap block from metadata
2014 *	SWM_POP		remove from meta data but do not free.. pop it out
2015 */
2016static daddr_t
2017swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2018{
2019	struct swblock **pswap;
2020	struct swblock *swap;
2021	daddr_t r1;
2022	int idx;
2023
2024	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2025	/*
2026	 * The meta data only exists of the object is OBJT_SWAP
2027	 * and even then might not be allocated yet.
2028	 */
2029	if (object->type != OBJT_SWAP)
2030		return (SWAPBLK_NONE);
2031
2032	r1 = SWAPBLK_NONE;
2033	mtx_lock(&swhash_mtx);
2034	pswap = swp_pager_hash(object, pindex);
2035
2036	if ((swap = *pswap) != NULL) {
2037		idx = pindex & SWAP_META_MASK;
2038		r1 = swap->swb_pages[idx];
2039
2040		if (r1 != SWAPBLK_NONE) {
2041			if (flags & SWM_FREE) {
2042				swp_pager_freeswapspace(r1, 1);
2043				r1 = SWAPBLK_NONE;
2044			}
2045			if (flags & (SWM_FREE|SWM_POP)) {
2046				swap->swb_pages[idx] = SWAPBLK_NONE;
2047				if (--swap->swb_count == 0) {
2048					*pswap = swap->swb_hnext;
2049					uma_zfree(swap_zone, swap);
2050					--object->un_pager.swp.swp_bcount;
2051				}
2052			}
2053		}
2054	}
2055	mtx_unlock(&swhash_mtx);
2056	return (r1);
2057}
2058
2059/*
2060 * System call swapon(name) enables swapping on device name,
2061 * which must be in the swdevsw.  Return EBUSY
2062 * if already swapping on this device.
2063 */
2064#ifndef _SYS_SYSPROTO_H_
2065struct swapon_args {
2066	char *name;
2067};
2068#endif
2069
2070/*
2071 * MPSAFE
2072 */
2073/* ARGSUSED */
2074int
2075sys_swapon(struct thread *td, struct swapon_args *uap)
2076{
2077	struct vattr attr;
2078	struct vnode *vp;
2079	struct nameidata nd;
2080	int error;
2081
2082	error = priv_check(td, PRIV_SWAPON);
2083	if (error)
2084		return (error);
2085
2086	mtx_lock(&Giant);
2087	while (swdev_syscall_active)
2088	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2089	swdev_syscall_active = 1;
2090
2091	/*
2092	 * Swap metadata may not fit in the KVM if we have physical
2093	 * memory of >1GB.
2094	 */
2095	if (swap_zone == NULL) {
2096		error = ENOMEM;
2097		goto done;
2098	}
2099
2100	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2101	    uap->name, td);
2102	error = namei(&nd);
2103	if (error)
2104		goto done;
2105
2106	NDFREE(&nd, NDF_ONLY_PNBUF);
2107	vp = nd.ni_vp;
2108
2109	if (vn_isdisk(vp, &error)) {
2110		error = swapongeom(td, vp);
2111	} else if (vp->v_type == VREG &&
2112	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2113	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2114		/*
2115		 * Allow direct swapping to NFS regular files in the same
2116		 * way that nfs_mountroot() sets up diskless swapping.
2117		 */
2118		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2119	}
2120
2121	if (error)
2122		vrele(vp);
2123done:
2124	swdev_syscall_active = 0;
2125	wakeup_one(&swdev_syscall_active);
2126	mtx_unlock(&Giant);
2127	return (error);
2128}
2129
2130/*
2131 * Check that the total amount of swap currently configured does not
2132 * exceed half the theoretical maximum.  If it does, print a warning
2133 * message and return -1; otherwise, return 0.
2134 */
2135static int
2136swapon_check_swzone(unsigned long npages)
2137{
2138	unsigned long maxpages;
2139
2140	/* absolute maximum we can handle assuming 100% efficiency */
2141	maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
2142
2143	/* recommend using no more than half that amount */
2144	if (npages > maxpages / 2) {
2145		printf("warning: total configured swap (%lu pages) "
2146		    "exceeds maximum recommended amount (%lu pages).\n",
2147		    npages, maxpages / 2);
2148		printf("warning: increase kern.maxswzone "
2149		    "or reduce amount of swap.\n");
2150		return (-1);
2151	}
2152	return (0);
2153}
2154
2155static void
2156swaponsomething(struct vnode *vp, void *id, u_long nblks,
2157    sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2158{
2159	struct swdevt *sp, *tsp;
2160	swblk_t dvbase;
2161	u_long mblocks;
2162
2163	/*
2164	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2165	 * First chop nblks off to page-align it, then convert.
2166	 *
2167	 * sw->sw_nblks is in page-sized chunks now too.
2168	 */
2169	nblks &= ~(ctodb(1) - 1);
2170	nblks = dbtoc(nblks);
2171
2172	/*
2173	 * If we go beyond this, we get overflows in the radix
2174	 * tree bitmap code.
2175	 */
2176	mblocks = 0x40000000 / BLIST_META_RADIX;
2177	if (nblks > mblocks) {
2178		printf(
2179    "WARNING: reducing swap size to maximum of %luMB per unit\n",
2180		    mblocks / 1024 / 1024 * PAGE_SIZE);
2181		nblks = mblocks;
2182	}
2183
2184	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2185	sp->sw_vp = vp;
2186	sp->sw_id = id;
2187	sp->sw_dev = dev;
2188	sp->sw_flags = 0;
2189	sp->sw_nblks = nblks;
2190	sp->sw_used = 0;
2191	sp->sw_strategy = strategy;
2192	sp->sw_close = close;
2193	sp->sw_flags = flags;
2194
2195	sp->sw_blist = blist_create(nblks, M_WAITOK);
2196	/*
2197	 * Do not free the first two block in order to avoid overwriting
2198	 * any bsd label at the front of the partition
2199	 */
2200	blist_free(sp->sw_blist, 2, nblks - 2);
2201
2202	dvbase = 0;
2203	mtx_lock(&sw_dev_mtx);
2204	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2205		if (tsp->sw_end >= dvbase) {
2206			/*
2207			 * We put one uncovered page between the devices
2208			 * in order to definitively prevent any cross-device
2209			 * I/O requests
2210			 */
2211			dvbase = tsp->sw_end + 1;
2212		}
2213	}
2214	sp->sw_first = dvbase;
2215	sp->sw_end = dvbase + nblks;
2216	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2217	nswapdev++;
2218	swap_pager_avail += nblks;
2219	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2220	swapon_check_swzone(swap_total / PAGE_SIZE);
2221	swp_sizecheck();
2222	mtx_unlock(&sw_dev_mtx);
2223}
2224
2225/*
2226 * SYSCALL: swapoff(devname)
2227 *
2228 * Disable swapping on the given device.
2229 *
2230 * XXX: Badly designed system call: it should use a device index
2231 * rather than filename as specification.  We keep sw_vp around
2232 * only to make this work.
2233 */
2234#ifndef _SYS_SYSPROTO_H_
2235struct swapoff_args {
2236	char *name;
2237};
2238#endif
2239
2240/*
2241 * MPSAFE
2242 */
2243/* ARGSUSED */
2244int
2245sys_swapoff(struct thread *td, struct swapoff_args *uap)
2246{
2247	struct vnode *vp;
2248	struct nameidata nd;
2249	struct swdevt *sp;
2250	int error;
2251
2252	error = priv_check(td, PRIV_SWAPOFF);
2253	if (error)
2254		return (error);
2255
2256	mtx_lock(&Giant);
2257	while (swdev_syscall_active)
2258	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2259	swdev_syscall_active = 1;
2260
2261	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2262	    td);
2263	error = namei(&nd);
2264	if (error)
2265		goto done;
2266	NDFREE(&nd, NDF_ONLY_PNBUF);
2267	vp = nd.ni_vp;
2268
2269	mtx_lock(&sw_dev_mtx);
2270	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2271		if (sp->sw_vp == vp)
2272			break;
2273	}
2274	mtx_unlock(&sw_dev_mtx);
2275	if (sp == NULL) {
2276		error = EINVAL;
2277		goto done;
2278	}
2279	error = swapoff_one(sp, td->td_ucred);
2280done:
2281	swdev_syscall_active = 0;
2282	wakeup_one(&swdev_syscall_active);
2283	mtx_unlock(&Giant);
2284	return (error);
2285}
2286
2287static int
2288swapoff_one(struct swdevt *sp, struct ucred *cred)
2289{
2290	u_long nblks, dvbase;
2291#ifdef MAC
2292	int error;
2293#endif
2294
2295	mtx_assert(&Giant, MA_OWNED);
2296#ifdef MAC
2297	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2298	error = mac_system_check_swapoff(cred, sp->sw_vp);
2299	(void) VOP_UNLOCK(sp->sw_vp, 0);
2300	if (error != 0)
2301		return (error);
2302#endif
2303	nblks = sp->sw_nblks;
2304
2305	/*
2306	 * We can turn off this swap device safely only if the
2307	 * available virtual memory in the system will fit the amount
2308	 * of data we will have to page back in, plus an epsilon so
2309	 * the system doesn't become critically low on swap space.
2310	 */
2311	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2312	    nblks + nswap_lowat) {
2313		return (ENOMEM);
2314	}
2315
2316	/*
2317	 * Prevent further allocations on this device.
2318	 */
2319	mtx_lock(&sw_dev_mtx);
2320	sp->sw_flags |= SW_CLOSING;
2321	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2322		swap_pager_avail -= blist_fill(sp->sw_blist,
2323		     dvbase, dmmax);
2324	}
2325	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2326	mtx_unlock(&sw_dev_mtx);
2327
2328	/*
2329	 * Page in the contents of the device and close it.
2330	 */
2331	swap_pager_swapoff(sp);
2332
2333	sp->sw_close(curthread, sp);
2334	sp->sw_id = NULL;
2335	mtx_lock(&sw_dev_mtx);
2336	TAILQ_REMOVE(&swtailq, sp, sw_list);
2337	nswapdev--;
2338	if (nswapdev == 0) {
2339		swap_pager_full = 2;
2340		swap_pager_almost_full = 1;
2341	}
2342	if (swdevhd == sp)
2343		swdevhd = NULL;
2344	mtx_unlock(&sw_dev_mtx);
2345	blist_destroy(sp->sw_blist);
2346	free(sp, M_VMPGDATA);
2347	return (0);
2348}
2349
2350void
2351swapoff_all(void)
2352{
2353	struct swdevt *sp, *spt;
2354	const char *devname;
2355	int error;
2356
2357	mtx_lock(&Giant);
2358	while (swdev_syscall_active)
2359		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2360	swdev_syscall_active = 1;
2361
2362	mtx_lock(&sw_dev_mtx);
2363	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2364		mtx_unlock(&sw_dev_mtx);
2365		if (vn_isdisk(sp->sw_vp, NULL))
2366			devname = devtoname(sp->sw_vp->v_rdev);
2367		else
2368			devname = "[file]";
2369		error = swapoff_one(sp, thread0.td_ucred);
2370		if (error != 0) {
2371			printf("Cannot remove swap device %s (error=%d), "
2372			    "skipping.\n", devname, error);
2373		} else if (bootverbose) {
2374			printf("Swap device %s removed.\n", devname);
2375		}
2376		mtx_lock(&sw_dev_mtx);
2377	}
2378	mtx_unlock(&sw_dev_mtx);
2379
2380	swdev_syscall_active = 0;
2381	wakeup_one(&swdev_syscall_active);
2382	mtx_unlock(&Giant);
2383}
2384
2385void
2386swap_pager_status(int *total, int *used)
2387{
2388	struct swdevt *sp;
2389
2390	*total = 0;
2391	*used = 0;
2392	mtx_lock(&sw_dev_mtx);
2393	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2394		*total += sp->sw_nblks;
2395		*used += sp->sw_used;
2396	}
2397	mtx_unlock(&sw_dev_mtx);
2398}
2399
2400int
2401swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2402{
2403	struct swdevt *sp;
2404	const char *tmp_devname;
2405	int error, n;
2406
2407	n = 0;
2408	error = ENOENT;
2409	mtx_lock(&sw_dev_mtx);
2410	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2411		if (n != name) {
2412			n++;
2413			continue;
2414		}
2415		xs->xsw_version = XSWDEV_VERSION;
2416		xs->xsw_dev = sp->sw_dev;
2417		xs->xsw_flags = sp->sw_flags;
2418		xs->xsw_nblks = sp->sw_nblks;
2419		xs->xsw_used = sp->sw_used;
2420		if (devname != NULL) {
2421			if (vn_isdisk(sp->sw_vp, NULL))
2422				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2423			else
2424				tmp_devname = "[file]";
2425			strncpy(devname, tmp_devname, len);
2426		}
2427		error = 0;
2428		break;
2429	}
2430	mtx_unlock(&sw_dev_mtx);
2431	return (error);
2432}
2433
2434static int
2435sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2436{
2437	struct xswdev xs;
2438	int error;
2439
2440	if (arg2 != 1)			/* name length */
2441		return (EINVAL);
2442	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2443	if (error != 0)
2444		return (error);
2445	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2446	return (error);
2447}
2448
2449SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2450    "Number of swap devices");
2451SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2452    "Swap statistics by device");
2453
2454/*
2455 * vmspace_swap_count() - count the approximate swap usage in pages for a
2456 *			  vmspace.
2457 *
2458 *	The map must be locked.
2459 *
2460 *	Swap usage is determined by taking the proportional swap used by
2461 *	VM objects backing the VM map.  To make up for fractional losses,
2462 *	if the VM object has any swap use at all the associated map entries
2463 *	count for at least 1 swap page.
2464 */
2465long
2466vmspace_swap_count(struct vmspace *vmspace)
2467{
2468	vm_map_t map;
2469	vm_map_entry_t cur;
2470	vm_object_t object;
2471	long count, n;
2472
2473	map = &vmspace->vm_map;
2474	count = 0;
2475
2476	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2477		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2478		    (object = cur->object.vm_object) != NULL) {
2479			VM_OBJECT_LOCK(object);
2480			if (object->type == OBJT_SWAP &&
2481			    object->un_pager.swp.swp_bcount != 0) {
2482				n = (cur->end - cur->start) / PAGE_SIZE;
2483				count += object->un_pager.swp.swp_bcount *
2484				    SWAP_META_PAGES * n / object->size + 1;
2485			}
2486			VM_OBJECT_UNLOCK(object);
2487		}
2488	}
2489	return (count);
2490}
2491
2492/*
2493 * GEOM backend
2494 *
2495 * Swapping onto disk devices.
2496 *
2497 */
2498
2499static g_orphan_t swapgeom_orphan;
2500
2501static struct g_class g_swap_class = {
2502	.name = "SWAP",
2503	.version = G_VERSION,
2504	.orphan = swapgeom_orphan,
2505};
2506
2507DECLARE_GEOM_CLASS(g_swap_class, g_class);
2508
2509
2510static void
2511swapgeom_done(struct bio *bp2)
2512{
2513	struct buf *bp;
2514
2515	bp = bp2->bio_caller2;
2516	bp->b_ioflags = bp2->bio_flags;
2517	if (bp2->bio_error)
2518		bp->b_ioflags |= BIO_ERROR;
2519	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2520	bp->b_error = bp2->bio_error;
2521	bufdone(bp);
2522	g_destroy_bio(bp2);
2523}
2524
2525static void
2526swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2527{
2528	struct bio *bio;
2529	struct g_consumer *cp;
2530
2531	cp = sp->sw_id;
2532	if (cp == NULL) {
2533		bp->b_error = ENXIO;
2534		bp->b_ioflags |= BIO_ERROR;
2535		bufdone(bp);
2536		return;
2537	}
2538	if (bp->b_iocmd == BIO_WRITE)
2539		bio = g_new_bio();
2540	else
2541		bio = g_alloc_bio();
2542	if (bio == NULL) {
2543		bp->b_error = ENOMEM;
2544		bp->b_ioflags |= BIO_ERROR;
2545		bufdone(bp);
2546		return;
2547	}
2548
2549	bio->bio_caller2 = bp;
2550	bio->bio_cmd = bp->b_iocmd;
2551	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2552	bio->bio_length = bp->b_bcount;
2553	bio->bio_done = swapgeom_done;
2554	if ((bp->b_flags & B_UNMAPPED) != 0) {
2555		bio->bio_ma = bp->b_pages;
2556		bio->bio_data = unmapped_buf;
2557		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2558		bio->bio_ma_n = bp->b_npages;
2559		bio->bio_flags |= BIO_UNMAPPED;
2560	} else {
2561		bio->bio_data = bp->b_data;
2562		bio->bio_ma = NULL;
2563	}
2564	g_io_request(bio, cp);
2565	return;
2566}
2567
2568static void
2569swapgeom_orphan(struct g_consumer *cp)
2570{
2571	struct swdevt *sp;
2572
2573	mtx_lock(&sw_dev_mtx);
2574	TAILQ_FOREACH(sp, &swtailq, sw_list)
2575		if (sp->sw_id == cp)
2576			sp->sw_flags |= SW_CLOSING;
2577	mtx_unlock(&sw_dev_mtx);
2578}
2579
2580static void
2581swapgeom_close_ev(void *arg, int flags)
2582{
2583	struct g_consumer *cp;
2584
2585	cp = arg;
2586	g_access(cp, -1, -1, 0);
2587	g_detach(cp);
2588	g_destroy_consumer(cp);
2589}
2590
2591static void
2592swapgeom_close(struct thread *td, struct swdevt *sw)
2593{
2594
2595	/* XXX: direct call when Giant untangled */
2596	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2597}
2598
2599
2600struct swh0h0 {
2601	struct cdev *dev;
2602	struct vnode *vp;
2603	int	error;
2604};
2605
2606static void
2607swapongeom_ev(void *arg, int flags)
2608{
2609	struct swh0h0 *swh;
2610	struct g_provider *pp;
2611	struct g_consumer *cp;
2612	static struct g_geom *gp;
2613	struct swdevt *sp;
2614	u_long nblks;
2615	int error;
2616
2617	swh = arg;
2618	swh->error = 0;
2619	pp = g_dev_getprovider(swh->dev);
2620	if (pp == NULL) {
2621		swh->error = ENODEV;
2622		return;
2623	}
2624	mtx_lock(&sw_dev_mtx);
2625	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2626		cp = sp->sw_id;
2627		if (cp != NULL && cp->provider == pp) {
2628			mtx_unlock(&sw_dev_mtx);
2629			swh->error = EBUSY;
2630			return;
2631		}
2632	}
2633	mtx_unlock(&sw_dev_mtx);
2634	if (gp == NULL)
2635		gp = g_new_geomf(&g_swap_class, "swap");
2636	cp = g_new_consumer(gp);
2637	g_attach(cp, pp);
2638	/*
2639	 * XXX: Everytime you think you can improve the margin for
2640	 * footshooting, somebody depends on the ability to do so:
2641	 * savecore(8) wants to write to our swapdev so we cannot
2642	 * set an exclusive count :-(
2643	 */
2644	error = g_access(cp, 1, 1, 0);
2645	if (error) {
2646		g_detach(cp);
2647		g_destroy_consumer(cp);
2648		swh->error = error;
2649		return;
2650	}
2651	nblks = pp->mediasize / DEV_BSIZE;
2652	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2653	    swapgeom_close, dev2udev(swh->dev),
2654	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2655	swh->error = 0;
2656}
2657
2658static int
2659swapongeom(struct thread *td, struct vnode *vp)
2660{
2661	int error;
2662	struct swh0h0 swh;
2663
2664	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2665
2666	swh.dev = vp->v_rdev;
2667	swh.vp = vp;
2668	swh.error = 0;
2669	/* XXX: direct call when Giant untangled */
2670	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2671	if (!error)
2672		error = swh.error;
2673	VOP_UNLOCK(vp, 0);
2674	return (error);
2675}
2676
2677/*
2678 * VNODE backend
2679 *
2680 * This is used mainly for network filesystem (read: probably only tested
2681 * with NFS) swapfiles.
2682 *
2683 */
2684
2685static void
2686swapdev_strategy(struct buf *bp, struct swdevt *sp)
2687{
2688	struct vnode *vp2;
2689
2690	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2691
2692	vp2 = sp->sw_id;
2693	vhold(vp2);
2694	if (bp->b_iocmd == BIO_WRITE) {
2695		if (bp->b_bufobj)
2696			bufobj_wdrop(bp->b_bufobj);
2697		bufobj_wref(&vp2->v_bufobj);
2698	}
2699	if (bp->b_bufobj != &vp2->v_bufobj)
2700		bp->b_bufobj = &vp2->v_bufobj;
2701	bp->b_vp = vp2;
2702	bp->b_iooffset = dbtob(bp->b_blkno);
2703	bstrategy(bp);
2704	return;
2705}
2706
2707static void
2708swapdev_close(struct thread *td, struct swdevt *sp)
2709{
2710
2711	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2712	vrele(sp->sw_vp);
2713}
2714
2715
2716static int
2717swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2718{
2719	struct swdevt *sp;
2720	int error;
2721
2722	if (nblks == 0)
2723		return (ENXIO);
2724	mtx_lock(&sw_dev_mtx);
2725	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2726		if (sp->sw_id == vp) {
2727			mtx_unlock(&sw_dev_mtx);
2728			return (EBUSY);
2729		}
2730	}
2731	mtx_unlock(&sw_dev_mtx);
2732
2733	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2734#ifdef MAC
2735	error = mac_system_check_swapon(td->td_ucred, vp);
2736	if (error == 0)
2737#endif
2738		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2739	(void) VOP_UNLOCK(vp, 0);
2740	if (error)
2741		return (error);
2742
2743	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2744	    NODEV, 0);
2745	return (0);
2746}
2747