1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD$");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_pcbgroup.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/limits.h>
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/md5.h>
51#include <sys/proc.h>		/* for proc0 declaration */
52#include <sys/random.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/syslog.h>
56#include <sys/ucred.h>
57
58#include <vm/uma.h>
59
60#include <net/if.h>
61#include <net/route.h>
62#include <net/vnet.h>
63
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#include <netinet/in_var.h>
68#include <netinet/in_pcb.h>
69#include <netinet/ip_var.h>
70#include <netinet/ip_options.h>
71#ifdef INET6
72#include <netinet/ip6.h>
73#include <netinet/icmp6.h>
74#include <netinet6/nd6.h>
75#include <netinet6/ip6_var.h>
76#include <netinet6/in6_pcb.h>
77#endif
78#include <netinet/tcp.h>
79#include <netinet/tcp_fsm.h>
80#include <netinet/tcp_seq.h>
81#include <netinet/tcp_timer.h>
82#include <netinet/tcp_var.h>
83#include <netinet/tcp_syncache.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87#ifdef TCP_OFFLOAD
88#include <netinet/toecore.h>
89#endif
90
91#ifdef IPSEC
92#include <netipsec/ipsec.h>
93#ifdef INET6
94#include <netipsec/ipsec6.h>
95#endif
96#include <netipsec/key.h>
97#endif /*IPSEC*/
98
99#include <machine/in_cksum.h>
100
101#include <security/mac/mac_framework.h>
102
103static VNET_DEFINE(int, tcp_syncookies) = 1;
104#define	V_tcp_syncookies		VNET(tcp_syncookies)
105SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
106    &VNET_NAME(tcp_syncookies), 0,
107    "Use TCP SYN cookies if the syncache overflows");
108
109static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
110#define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
111SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
112    &VNET_NAME(tcp_syncookiesonly), 0,
113    "Use only TCP SYN cookies");
114
115#ifdef TCP_OFFLOAD
116#define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
117#endif
118
119static void	 syncache_drop(struct syncache *, struct syncache_head *);
120static void	 syncache_free(struct syncache *);
121static void	 syncache_insert(struct syncache *, struct syncache_head *);
122struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
123static int	 syncache_respond(struct syncache *);
124static struct	 socket *syncache_socket(struct syncache *, struct socket *,
125		    struct mbuf *m);
126static int	 syncache_sysctl_count(SYSCTL_HANDLER_ARGS);
127static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
128		    int docallout);
129static void	 syncache_timer(void *);
130static void	 syncookie_generate(struct syncache_head *, struct syncache *,
131		    u_int32_t *);
132static struct syncache
133		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
134		    struct syncache *, struct tcpopt *, struct tcphdr *,
135		    struct socket *);
136
137/*
138 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
139 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
140 * the odds are that the user has given up attempting to connect by then.
141 */
142#define SYNCACHE_MAXREXMTS		3
143
144/* Arbitrary values */
145#define TCP_SYNCACHE_HASHSIZE		512
146#define TCP_SYNCACHE_BUCKETLIMIT	30
147
148static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
149#define	V_tcp_syncache			VNET(tcp_syncache)
150
151static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
152    "TCP SYN cache");
153
154SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
155    &VNET_NAME(tcp_syncache.bucket_limit), 0,
156    "Per-bucket hash limit for syncache");
157
158SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
159    &VNET_NAME(tcp_syncache.cache_limit), 0,
160    "Overall entry limit for syncache");
161
162SYSCTL_VNET_PROC(_net_inet_tcp_syncache, OID_AUTO, count, (CTLTYPE_UINT|CTLFLAG_RD),
163    NULL, 0, &syncache_sysctl_count, "IU",
164    "Current number of entries in syncache");
165
166SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
167    &VNET_NAME(tcp_syncache.hashsize), 0,
168    "Size of TCP syncache hashtable");
169
170SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
171    &VNET_NAME(tcp_syncache.rexmt_limit), 0,
172    "Limit on SYN/ACK retransmissions");
173
174VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
175SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
176    CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
177    "Send reset on socket allocation failure");
178
179static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
180
181#define SYNCACHE_HASH(inc, mask)					\
182	((V_tcp_syncache.hash_secret ^					\
183	  (inc)->inc_faddr.s_addr ^					\
184	  ((inc)->inc_faddr.s_addr >> 16) ^				\
185	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
186
187#define SYNCACHE_HASH6(inc, mask)					\
188	((V_tcp_syncache.hash_secret ^					\
189	  (inc)->inc6_faddr.s6_addr32[0] ^				\
190	  (inc)->inc6_faddr.s6_addr32[3] ^				\
191	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
192
193#define ENDPTS_EQ(a, b) (						\
194	(a)->ie_fport == (b)->ie_fport &&				\
195	(a)->ie_lport == (b)->ie_lport &&				\
196	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
197	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
198)
199
200#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
201
202#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
203#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
204#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
205
206/*
207 * Requires the syncache entry to be already removed from the bucket list.
208 */
209static void
210syncache_free(struct syncache *sc)
211{
212
213	if (sc->sc_ipopts)
214		(void) m_free(sc->sc_ipopts);
215	if (sc->sc_cred)
216		crfree(sc->sc_cred);
217#ifdef MAC
218	mac_syncache_destroy(&sc->sc_label);
219#endif
220
221	uma_zfree(V_tcp_syncache.zone, sc);
222}
223
224void
225syncache_init(void)
226{
227	int i;
228
229	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
230	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
231	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
232	V_tcp_syncache.hash_secret = arc4random();
233
234	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
235	    &V_tcp_syncache.hashsize);
236	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
237	    &V_tcp_syncache.bucket_limit);
238	if (!powerof2(V_tcp_syncache.hashsize) ||
239	    V_tcp_syncache.hashsize == 0) {
240		printf("WARNING: syncache hash size is not a power of 2.\n");
241		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
242	}
243	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
244
245	/* Set limits. */
246	V_tcp_syncache.cache_limit =
247	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
248	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
249	    &V_tcp_syncache.cache_limit);
250
251	/* Allocate the hash table. */
252	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
253	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
254
255	/* Initialize the hash buckets. */
256	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
257#ifdef VIMAGE
258		V_tcp_syncache.hashbase[i].sch_vnet = curvnet;
259#endif
260		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
261		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
262			 NULL, MTX_DEF);
263		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
264			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
265		V_tcp_syncache.hashbase[i].sch_length = 0;
266	}
267
268	/* Create the syncache entry zone. */
269	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
270	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
271	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
272	    V_tcp_syncache.cache_limit);
273}
274
275#ifdef VIMAGE
276void
277syncache_destroy(void)
278{
279	struct syncache_head *sch;
280	struct syncache *sc, *nsc;
281	int i;
282
283	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
284	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
285
286		sch = &V_tcp_syncache.hashbase[i];
287		callout_drain(&sch->sch_timer);
288
289		SCH_LOCK(sch);
290		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
291			syncache_drop(sc, sch);
292		SCH_UNLOCK(sch);
293		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
294		    ("%s: sch->sch_bucket not empty", __func__));
295		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
296		    __func__, sch->sch_length));
297		mtx_destroy(&sch->sch_mtx);
298	}
299
300	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
301	    ("%s: cache_count not 0", __func__));
302
303	/* Free the allocated global resources. */
304	uma_zdestroy(V_tcp_syncache.zone);
305	free(V_tcp_syncache.hashbase, M_SYNCACHE);
306}
307#endif
308
309static int
310syncache_sysctl_count(SYSCTL_HANDLER_ARGS)
311{
312	int count;
313
314	count = uma_zone_get_cur(V_tcp_syncache.zone);
315	return (sysctl_handle_int(oidp, &count, 0, req));
316}
317
318/*
319 * Inserts a syncache entry into the specified bucket row.
320 * Locks and unlocks the syncache_head autonomously.
321 */
322static void
323syncache_insert(struct syncache *sc, struct syncache_head *sch)
324{
325	struct syncache *sc2;
326
327	SCH_LOCK(sch);
328
329	/*
330	 * Make sure that we don't overflow the per-bucket limit.
331	 * If the bucket is full, toss the oldest element.
332	 */
333	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
334		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
335			("sch->sch_length incorrect"));
336		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
337		syncache_drop(sc2, sch);
338		TCPSTAT_INC(tcps_sc_bucketoverflow);
339	}
340
341	/* Put it into the bucket. */
342	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
343	sch->sch_length++;
344
345#ifdef TCP_OFFLOAD
346	if (ADDED_BY_TOE(sc)) {
347		struct toedev *tod = sc->sc_tod;
348
349		tod->tod_syncache_added(tod, sc->sc_todctx);
350	}
351#endif
352
353	/* Reinitialize the bucket row's timer. */
354	if (sch->sch_length == 1)
355		sch->sch_nextc = ticks + INT_MAX;
356	syncache_timeout(sc, sch, 1);
357
358	SCH_UNLOCK(sch);
359
360	TCPSTAT_INC(tcps_sc_added);
361}
362
363/*
364 * Remove and free entry from syncache bucket row.
365 * Expects locked syncache head.
366 */
367static void
368syncache_drop(struct syncache *sc, struct syncache_head *sch)
369{
370
371	SCH_LOCK_ASSERT(sch);
372
373	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
374	sch->sch_length--;
375
376#ifdef TCP_OFFLOAD
377	if (ADDED_BY_TOE(sc)) {
378		struct toedev *tod = sc->sc_tod;
379
380		tod->tod_syncache_removed(tod, sc->sc_todctx);
381	}
382#endif
383
384	syncache_free(sc);
385}
386
387/*
388 * Engage/reengage time on bucket row.
389 */
390static void
391syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
392{
393	sc->sc_rxttime = ticks +
394		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
395	sc->sc_rxmits++;
396	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
397		sch->sch_nextc = sc->sc_rxttime;
398		if (docallout)
399			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
400			    syncache_timer, (void *)sch);
401	}
402}
403
404/*
405 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
406 * If we have retransmitted an entry the maximum number of times, expire it.
407 * One separate timer for each bucket row.
408 */
409static void
410syncache_timer(void *xsch)
411{
412	struct syncache_head *sch = (struct syncache_head *)xsch;
413	struct syncache *sc, *nsc;
414	int tick = ticks;
415	char *s;
416
417	CURVNET_SET(sch->sch_vnet);
418
419	/* NB: syncache_head has already been locked by the callout. */
420	SCH_LOCK_ASSERT(sch);
421
422	/*
423	 * In the following cycle we may remove some entries and/or
424	 * advance some timeouts, so re-initialize the bucket timer.
425	 */
426	sch->sch_nextc = tick + INT_MAX;
427
428	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
429		/*
430		 * We do not check if the listen socket still exists
431		 * and accept the case where the listen socket may be
432		 * gone by the time we resend the SYN/ACK.  We do
433		 * not expect this to happens often. If it does,
434		 * then the RST will be sent by the time the remote
435		 * host does the SYN/ACK->ACK.
436		 */
437		if (TSTMP_GT(sc->sc_rxttime, tick)) {
438			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
439				sch->sch_nextc = sc->sc_rxttime;
440			continue;
441		}
442		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
443			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
444				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
445				    "giving up and removing syncache entry\n",
446				    s, __func__);
447				free(s, M_TCPLOG);
448			}
449			syncache_drop(sc, sch);
450			TCPSTAT_INC(tcps_sc_stale);
451			continue;
452		}
453		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
454			log(LOG_DEBUG, "%s; %s: Response timeout, "
455			    "retransmitting (%u) SYN|ACK\n",
456			    s, __func__, sc->sc_rxmits);
457			free(s, M_TCPLOG);
458		}
459
460		(void) syncache_respond(sc);
461		TCPSTAT_INC(tcps_sc_retransmitted);
462		syncache_timeout(sc, sch, 0);
463	}
464	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
465		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
466			syncache_timer, (void *)(sch));
467	CURVNET_RESTORE();
468}
469
470/*
471 * Find an entry in the syncache.
472 * Returns always with locked syncache_head plus a matching entry or NULL.
473 */
474struct syncache *
475syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
476{
477	struct syncache *sc;
478	struct syncache_head *sch;
479
480#ifdef INET6
481	if (inc->inc_flags & INC_ISIPV6) {
482		sch = &V_tcp_syncache.hashbase[
483		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
484		*schp = sch;
485
486		SCH_LOCK(sch);
487
488		/* Circle through bucket row to find matching entry. */
489		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
490			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
491				return (sc);
492		}
493	} else
494#endif
495	{
496		sch = &V_tcp_syncache.hashbase[
497		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
498		*schp = sch;
499
500		SCH_LOCK(sch);
501
502		/* Circle through bucket row to find matching entry. */
503		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
504#ifdef INET6
505			if (sc->sc_inc.inc_flags & INC_ISIPV6)
506				continue;
507#endif
508			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
509				return (sc);
510		}
511	}
512	SCH_LOCK_ASSERT(*schp);
513	return (NULL);			/* always returns with locked sch */
514}
515
516/*
517 * This function is called when we get a RST for a
518 * non-existent connection, so that we can see if the
519 * connection is in the syn cache.  If it is, zap it.
520 */
521void
522syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
523{
524	struct syncache *sc;
525	struct syncache_head *sch;
526	char *s = NULL;
527
528	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
529	SCH_LOCK_ASSERT(sch);
530
531	/*
532	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
533	 * See RFC 793 page 65, section SEGMENT ARRIVES.
534	 */
535	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
536		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
537			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
538			    "FIN flag set, segment ignored\n", s, __func__);
539		TCPSTAT_INC(tcps_badrst);
540		goto done;
541	}
542
543	/*
544	 * No corresponding connection was found in syncache.
545	 * If syncookies are enabled and possibly exclusively
546	 * used, or we are under memory pressure, a valid RST
547	 * may not find a syncache entry.  In that case we're
548	 * done and no SYN|ACK retransmissions will happen.
549	 * Otherwise the RST was misdirected or spoofed.
550	 */
551	if (sc == NULL) {
552		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
553			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
554			    "syncache entry (possibly syncookie only), "
555			    "segment ignored\n", s, __func__);
556		TCPSTAT_INC(tcps_badrst);
557		goto done;
558	}
559
560	/*
561	 * If the RST bit is set, check the sequence number to see
562	 * if this is a valid reset segment.
563	 * RFC 793 page 37:
564	 *   In all states except SYN-SENT, all reset (RST) segments
565	 *   are validated by checking their SEQ-fields.  A reset is
566	 *   valid if its sequence number is in the window.
567	 *
568	 *   The sequence number in the reset segment is normally an
569	 *   echo of our outgoing acknowlegement numbers, but some hosts
570	 *   send a reset with the sequence number at the rightmost edge
571	 *   of our receive window, and we have to handle this case.
572	 */
573	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
574	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
575		syncache_drop(sc, sch);
576		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
577			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
578			    "connection attempt aborted by remote endpoint\n",
579			    s, __func__);
580		TCPSTAT_INC(tcps_sc_reset);
581	} else {
582		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
583			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
584			    "IRS %u (+WND %u), segment ignored\n",
585			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
586		TCPSTAT_INC(tcps_badrst);
587	}
588
589done:
590	if (s != NULL)
591		free(s, M_TCPLOG);
592	SCH_UNLOCK(sch);
593}
594
595void
596syncache_badack(struct in_conninfo *inc)
597{
598	struct syncache *sc;
599	struct syncache_head *sch;
600
601	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
602	SCH_LOCK_ASSERT(sch);
603	if (sc != NULL) {
604		syncache_drop(sc, sch);
605		TCPSTAT_INC(tcps_sc_badack);
606	}
607	SCH_UNLOCK(sch);
608}
609
610void
611syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
612{
613	struct syncache *sc;
614	struct syncache_head *sch;
615
616	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
617	SCH_LOCK_ASSERT(sch);
618	if (sc == NULL)
619		goto done;
620
621	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
622	if (ntohl(th->th_seq) != sc->sc_iss)
623		goto done;
624
625	/*
626	 * If we've rertransmitted 3 times and this is our second error,
627	 * we remove the entry.  Otherwise, we allow it to continue on.
628	 * This prevents us from incorrectly nuking an entry during a
629	 * spurious network outage.
630	 *
631	 * See tcp_notify().
632	 */
633	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
634		sc->sc_flags |= SCF_UNREACH;
635		goto done;
636	}
637	syncache_drop(sc, sch);
638	TCPSTAT_INC(tcps_sc_unreach);
639done:
640	SCH_UNLOCK(sch);
641}
642
643/*
644 * Build a new TCP socket structure from a syncache entry.
645 */
646static struct socket *
647syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
648{
649	struct inpcb *inp = NULL;
650	struct socket *so;
651	struct tcpcb *tp;
652	int error;
653	char *s;
654
655	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
656
657	/*
658	 * Ok, create the full blown connection, and set things up
659	 * as they would have been set up if we had created the
660	 * connection when the SYN arrived.  If we can't create
661	 * the connection, abort it.
662	 */
663	so = sonewconn(lso, SS_ISCONNECTED);
664	if (so == NULL) {
665		/*
666		 * Drop the connection; we will either send a RST or
667		 * have the peer retransmit its SYN again after its
668		 * RTO and try again.
669		 */
670		TCPSTAT_INC(tcps_listendrop);
671		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
672			log(LOG_DEBUG, "%s; %s: Socket create failed "
673			    "due to limits or memory shortage\n",
674			    s, __func__);
675			free(s, M_TCPLOG);
676		}
677		goto abort2;
678	}
679#ifdef MAC
680	mac_socketpeer_set_from_mbuf(m, so);
681#endif
682
683	inp = sotoinpcb(so);
684	inp->inp_inc.inc_fibnum = so->so_fibnum;
685	INP_WLOCK(inp);
686	INP_HASH_WLOCK(&V_tcbinfo);
687
688	/* Insert new socket into PCB hash list. */
689	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
690#ifdef INET6
691	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
692		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
693	} else {
694		inp->inp_vflag &= ~INP_IPV6;
695		inp->inp_vflag |= INP_IPV4;
696#endif
697		inp->inp_laddr = sc->sc_inc.inc_laddr;
698#ifdef INET6
699	}
700#endif
701
702	/*
703	 * Install in the reservation hash table for now, but don't yet
704	 * install a connection group since the full 4-tuple isn't yet
705	 * configured.
706	 */
707	inp->inp_lport = sc->sc_inc.inc_lport;
708	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
709		/*
710		 * Undo the assignments above if we failed to
711		 * put the PCB on the hash lists.
712		 */
713#ifdef INET6
714		if (sc->sc_inc.inc_flags & INC_ISIPV6)
715			inp->in6p_laddr = in6addr_any;
716		else
717#endif
718			inp->inp_laddr.s_addr = INADDR_ANY;
719		inp->inp_lport = 0;
720		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
721			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
722			    "with error %i\n",
723			    s, __func__, error);
724			free(s, M_TCPLOG);
725		}
726		INP_HASH_WUNLOCK(&V_tcbinfo);
727		goto abort;
728	}
729#ifdef IPSEC
730	/* Copy old policy into new socket's. */
731	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
732		printf("syncache_socket: could not copy policy\n");
733#endif
734#ifdef INET6
735	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
736		struct inpcb *oinp = sotoinpcb(lso);
737		struct in6_addr laddr6;
738		struct sockaddr_in6 sin6;
739		/*
740		 * Inherit socket options from the listening socket.
741		 * Note that in6p_inputopts are not (and should not be)
742		 * copied, since it stores previously received options and is
743		 * used to detect if each new option is different than the
744		 * previous one and hence should be passed to a user.
745		 * If we copied in6p_inputopts, a user would not be able to
746		 * receive options just after calling the accept system call.
747		 */
748		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
749		if (oinp->in6p_outputopts)
750			inp->in6p_outputopts =
751			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
752
753		sin6.sin6_family = AF_INET6;
754		sin6.sin6_len = sizeof(sin6);
755		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
756		sin6.sin6_port = sc->sc_inc.inc_fport;
757		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
758		laddr6 = inp->in6p_laddr;
759		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
760			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
761		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
762		    thread0.td_ucred, m)) != 0) {
763			inp->in6p_laddr = laddr6;
764			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
765				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
766				    "with error %i\n",
767				    s, __func__, error);
768				free(s, M_TCPLOG);
769			}
770			INP_HASH_WUNLOCK(&V_tcbinfo);
771			goto abort;
772		}
773		/* Override flowlabel from in6_pcbconnect. */
774		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
775		inp->inp_flow |= sc->sc_flowlabel;
776	}
777#endif /* INET6 */
778#if defined(INET) && defined(INET6)
779	else
780#endif
781#ifdef INET
782	{
783		struct in_addr laddr;
784		struct sockaddr_in sin;
785
786		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
787
788		if (inp->inp_options == NULL) {
789			inp->inp_options = sc->sc_ipopts;
790			sc->sc_ipopts = NULL;
791		}
792
793		sin.sin_family = AF_INET;
794		sin.sin_len = sizeof(sin);
795		sin.sin_addr = sc->sc_inc.inc_faddr;
796		sin.sin_port = sc->sc_inc.inc_fport;
797		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
798		laddr = inp->inp_laddr;
799		if (inp->inp_laddr.s_addr == INADDR_ANY)
800			inp->inp_laddr = sc->sc_inc.inc_laddr;
801		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
802		    thread0.td_ucred, m)) != 0) {
803			inp->inp_laddr = laddr;
804			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
805				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
806				    "with error %i\n",
807				    s, __func__, error);
808				free(s, M_TCPLOG);
809			}
810			INP_HASH_WUNLOCK(&V_tcbinfo);
811			goto abort;
812		}
813	}
814#endif /* INET */
815	INP_HASH_WUNLOCK(&V_tcbinfo);
816	tp = intotcpcb(inp);
817	tp->t_state = TCPS_SYN_RECEIVED;
818	tp->iss = sc->sc_iss;
819	tp->irs = sc->sc_irs;
820	tcp_rcvseqinit(tp);
821	tcp_sendseqinit(tp);
822	tp->snd_wl1 = sc->sc_irs;
823	tp->snd_max = tp->iss + 1;
824	tp->snd_nxt = tp->iss + 1;
825	tp->rcv_up = sc->sc_irs + 1;
826	tp->rcv_wnd = sc->sc_wnd;
827	tp->rcv_adv += tp->rcv_wnd;
828	tp->last_ack_sent = tp->rcv_nxt;
829
830	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
831	if (sc->sc_flags & SCF_NOOPT)
832		tp->t_flags |= TF_NOOPT;
833	else {
834		if (sc->sc_flags & SCF_WINSCALE) {
835			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
836			tp->snd_scale = sc->sc_requested_s_scale;
837			tp->request_r_scale = sc->sc_requested_r_scale;
838		}
839		if (sc->sc_flags & SCF_TIMESTAMP) {
840			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
841			tp->ts_recent = sc->sc_tsreflect;
842			tp->ts_recent_age = tcp_ts_getticks();
843			tp->ts_offset = sc->sc_tsoff;
844		}
845#ifdef TCP_SIGNATURE
846		if (sc->sc_flags & SCF_SIGNATURE)
847			tp->t_flags |= TF_SIGNATURE;
848#endif
849		if (sc->sc_flags & SCF_SACK)
850			tp->t_flags |= TF_SACK_PERMIT;
851	}
852
853	if (sc->sc_flags & SCF_ECN)
854		tp->t_flags |= TF_ECN_PERMIT;
855
856	/*
857	 * Set up MSS and get cached values from tcp_hostcache.
858	 * This might overwrite some of the defaults we just set.
859	 */
860	tcp_mss(tp, sc->sc_peer_mss);
861
862	/*
863	 * If the SYN,ACK was retransmitted, indicate that CWND to be
864	 * limited to one segment in cc_conn_init().
865	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
866	 */
867	if (sc->sc_rxmits > 1)
868		tp->snd_cwnd = 1;
869
870#ifdef TCP_OFFLOAD
871	/*
872	 * Allow a TOE driver to install its hooks.  Note that we hold the
873	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
874	 * new connection before the TOE driver has done its thing.
875	 */
876	if (ADDED_BY_TOE(sc)) {
877		struct toedev *tod = sc->sc_tod;
878
879		tod->tod_offload_socket(tod, sc->sc_todctx, so);
880	}
881#endif
882	/*
883	 * Copy and activate timers.
884	 */
885	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
886	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
887	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
888	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
889	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
890
891	INP_WUNLOCK(inp);
892
893	TCPSTAT_INC(tcps_accepts);
894	return (so);
895
896abort:
897	INP_WUNLOCK(inp);
898abort2:
899	if (so != NULL)
900		soabort(so);
901	return (NULL);
902}
903
904/*
905 * This function gets called when we receive an ACK for a
906 * socket in the LISTEN state.  We look up the connection
907 * in the syncache, and if its there, we pull it out of
908 * the cache and turn it into a full-blown connection in
909 * the SYN-RECEIVED state.
910 */
911int
912syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
913    struct socket **lsop, struct mbuf *m)
914{
915	struct syncache *sc;
916	struct syncache_head *sch;
917	struct syncache scs;
918	char *s;
919
920	/*
921	 * Global TCP locks are held because we manipulate the PCB lists
922	 * and create a new socket.
923	 */
924	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
925	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
926	    ("%s: can handle only ACK", __func__));
927
928	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
929	SCH_LOCK_ASSERT(sch);
930	if (sc == NULL) {
931		/*
932		 * There is no syncache entry, so see if this ACK is
933		 * a returning syncookie.  To do this, first:
934		 *  A. See if this socket has had a syncache entry dropped in
935		 *     the past.  We don't want to accept a bogus syncookie
936		 *     if we've never received a SYN.
937		 *  B. check that the syncookie is valid.  If it is, then
938		 *     cobble up a fake syncache entry, and return.
939		 */
940		if (!V_tcp_syncookies) {
941			SCH_UNLOCK(sch);
942			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
943				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
944				    "segment rejected (syncookies disabled)\n",
945				    s, __func__);
946			goto failed;
947		}
948		bzero(&scs, sizeof(scs));
949		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
950		SCH_UNLOCK(sch);
951		if (sc == NULL) {
952			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
953				log(LOG_DEBUG, "%s; %s: Segment failed "
954				    "SYNCOOKIE authentication, segment rejected "
955				    "(probably spoofed)\n", s, __func__);
956			goto failed;
957		}
958	} else {
959		/* Pull out the entry to unlock the bucket row. */
960		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
961		sch->sch_length--;
962#ifdef TCP_OFFLOAD
963		if (ADDED_BY_TOE(sc)) {
964			struct toedev *tod = sc->sc_tod;
965
966			tod->tod_syncache_removed(tod, sc->sc_todctx);
967		}
968#endif
969		SCH_UNLOCK(sch);
970	}
971
972	/*
973	 * Segment validation:
974	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
975	 */
976	if (th->th_ack != sc->sc_iss + 1) {
977		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
978			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
979			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
980		goto failed;
981	}
982
983	/*
984	 * The SEQ must fall in the window starting at the received
985	 * initial receive sequence number + 1 (the SYN).
986	 */
987	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
988	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
989		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
990			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
991			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
992		goto failed;
993	}
994
995	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
996		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
997			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
998			    "segment rejected\n", s, __func__);
999		goto failed;
1000	}
1001	/*
1002	 * If timestamps were negotiated the reflected timestamp
1003	 * must be equal to what we actually sent in the SYN|ACK.
1004	 */
1005	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
1006		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1007			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1008			    "segment rejected\n",
1009			    s, __func__, to->to_tsecr, sc->sc_ts);
1010		goto failed;
1011	}
1012
1013	*lsop = syncache_socket(sc, *lsop, m);
1014
1015	if (*lsop == NULL)
1016		TCPSTAT_INC(tcps_sc_aborted);
1017	else
1018		TCPSTAT_INC(tcps_sc_completed);
1019
1020/* how do we find the inp for the new socket? */
1021	if (sc != &scs)
1022		syncache_free(sc);
1023	return (1);
1024failed:
1025	if (sc != NULL && sc != &scs)
1026		syncache_free(sc);
1027	if (s != NULL)
1028		free(s, M_TCPLOG);
1029	*lsop = NULL;
1030	return (0);
1031}
1032
1033/*
1034 * Given a LISTEN socket and an inbound SYN request, add
1035 * this to the syn cache, and send back a segment:
1036 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1037 * to the source.
1038 *
1039 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1040 * Doing so would require that we hold onto the data and deliver it
1041 * to the application.  However, if we are the target of a SYN-flood
1042 * DoS attack, an attacker could send data which would eventually
1043 * consume all available buffer space if it were ACKed.  By not ACKing
1044 * the data, we avoid this DoS scenario.
1045 */
1046static void
1047_syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1048    struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1049    void *todctx)
1050{
1051	struct tcpcb *tp;
1052	struct socket *so;
1053	struct syncache *sc = NULL;
1054	struct syncache_head *sch;
1055	struct mbuf *ipopts = NULL;
1056	u_int32_t flowtmp;
1057	u_int ltflags;
1058	int win, sb_hiwat, ip_ttl, ip_tos;
1059	char *s;
1060#ifdef INET6
1061	int autoflowlabel = 0;
1062#endif
1063#ifdef MAC
1064	struct label *maclabel;
1065#endif
1066	struct syncache scs;
1067	struct ucred *cred;
1068
1069	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1070	INP_WLOCK_ASSERT(inp);			/* listen socket */
1071	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1072	    ("%s: unexpected tcp flags", __func__));
1073
1074	/*
1075	 * Combine all so/tp operations very early to drop the INP lock as
1076	 * soon as possible.
1077	 */
1078	so = *lsop;
1079	tp = sototcpcb(so);
1080	cred = crhold(so->so_cred);
1081
1082#ifdef INET6
1083	if ((inc->inc_flags & INC_ISIPV6) &&
1084	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1085		autoflowlabel = 1;
1086#endif
1087	ip_ttl = inp->inp_ip_ttl;
1088	ip_tos = inp->inp_ip_tos;
1089	win = sbspace(&so->so_rcv);
1090	sb_hiwat = so->so_rcv.sb_hiwat;
1091	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1092
1093	/* By the time we drop the lock these should no longer be used. */
1094	so = NULL;
1095	tp = NULL;
1096
1097#ifdef MAC
1098	if (mac_syncache_init(&maclabel) != 0) {
1099		INP_WUNLOCK(inp);
1100		INP_INFO_WUNLOCK(&V_tcbinfo);
1101		goto done;
1102	} else
1103		mac_syncache_create(maclabel, inp);
1104#endif
1105	INP_WUNLOCK(inp);
1106	INP_INFO_WUNLOCK(&V_tcbinfo);
1107
1108	/*
1109	 * Remember the IP options, if any.
1110	 */
1111#ifdef INET6
1112	if (!(inc->inc_flags & INC_ISIPV6))
1113#endif
1114#ifdef INET
1115		ipopts = (m) ? ip_srcroute(m) : NULL;
1116#else
1117		ipopts = NULL;
1118#endif
1119
1120	/*
1121	 * See if we already have an entry for this connection.
1122	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1123	 *
1124	 * XXX: should the syncache be re-initialized with the contents
1125	 * of the new SYN here (which may have different options?)
1126	 *
1127	 * XXX: We do not check the sequence number to see if this is a
1128	 * real retransmit or a new connection attempt.  The question is
1129	 * how to handle such a case; either ignore it as spoofed, or
1130	 * drop the current entry and create a new one?
1131	 */
1132	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1133	SCH_LOCK_ASSERT(sch);
1134	if (sc != NULL) {
1135		TCPSTAT_INC(tcps_sc_dupsyn);
1136		if (ipopts) {
1137			/*
1138			 * If we were remembering a previous source route,
1139			 * forget it and use the new one we've been given.
1140			 */
1141			if (sc->sc_ipopts)
1142				(void) m_free(sc->sc_ipopts);
1143			sc->sc_ipopts = ipopts;
1144		}
1145		/*
1146		 * Update timestamp if present.
1147		 */
1148		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1149			sc->sc_tsreflect = to->to_tsval;
1150		else
1151			sc->sc_flags &= ~SCF_TIMESTAMP;
1152#ifdef MAC
1153		/*
1154		 * Since we have already unconditionally allocated label
1155		 * storage, free it up.  The syncache entry will already
1156		 * have an initialized label we can use.
1157		 */
1158		mac_syncache_destroy(&maclabel);
1159#endif
1160		/* Retransmit SYN|ACK and reset retransmit count. */
1161		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1162			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1163			    "resetting timer and retransmitting SYN|ACK\n",
1164			    s, __func__);
1165			free(s, M_TCPLOG);
1166		}
1167		if (syncache_respond(sc) == 0) {
1168			sc->sc_rxmits = 0;
1169			syncache_timeout(sc, sch, 1);
1170			TCPSTAT_INC(tcps_sndacks);
1171			TCPSTAT_INC(tcps_sndtotal);
1172		}
1173		SCH_UNLOCK(sch);
1174		goto done;
1175	}
1176
1177	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1178	if (sc == NULL) {
1179		/*
1180		 * The zone allocator couldn't provide more entries.
1181		 * Treat this as if the cache was full; drop the oldest
1182		 * entry and insert the new one.
1183		 */
1184		TCPSTAT_INC(tcps_sc_zonefail);
1185		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1186			syncache_drop(sc, sch);
1187		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1188		if (sc == NULL) {
1189			if (V_tcp_syncookies) {
1190				bzero(&scs, sizeof(scs));
1191				sc = &scs;
1192			} else {
1193				SCH_UNLOCK(sch);
1194				if (ipopts)
1195					(void) m_free(ipopts);
1196				goto done;
1197			}
1198		}
1199	}
1200
1201	/*
1202	 * Fill in the syncache values.
1203	 */
1204#ifdef MAC
1205	sc->sc_label = maclabel;
1206#endif
1207	sc->sc_cred = cred;
1208	cred = NULL;
1209	sc->sc_ipopts = ipopts;
1210	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1211#ifdef INET6
1212	if (!(inc->inc_flags & INC_ISIPV6))
1213#endif
1214	{
1215		sc->sc_ip_tos = ip_tos;
1216		sc->sc_ip_ttl = ip_ttl;
1217	}
1218#ifdef TCP_OFFLOAD
1219	sc->sc_tod = tod;
1220	sc->sc_todctx = todctx;
1221#endif
1222	sc->sc_irs = th->th_seq;
1223	sc->sc_iss = arc4random();
1224	sc->sc_flags = 0;
1225	sc->sc_flowlabel = 0;
1226
1227	/*
1228	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1229	 * win was derived from socket earlier in the function.
1230	 */
1231	win = imax(win, 0);
1232	win = imin(win, TCP_MAXWIN);
1233	sc->sc_wnd = win;
1234
1235	if (V_tcp_do_rfc1323) {
1236		/*
1237		 * A timestamp received in a SYN makes
1238		 * it ok to send timestamp requests and replies.
1239		 */
1240		if (to->to_flags & TOF_TS) {
1241			sc->sc_tsreflect = to->to_tsval;
1242			sc->sc_ts = tcp_ts_getticks();
1243			sc->sc_flags |= SCF_TIMESTAMP;
1244		}
1245		if (to->to_flags & TOF_SCALE) {
1246			int wscale = 0;
1247
1248			/*
1249			 * Pick the smallest possible scaling factor that
1250			 * will still allow us to scale up to sb_max, aka
1251			 * kern.ipc.maxsockbuf.
1252			 *
1253			 * We do this because there are broken firewalls that
1254			 * will corrupt the window scale option, leading to
1255			 * the other endpoint believing that our advertised
1256			 * window is unscaled.  At scale factors larger than
1257			 * 5 the unscaled window will drop below 1500 bytes,
1258			 * leading to serious problems when traversing these
1259			 * broken firewalls.
1260			 *
1261			 * With the default maxsockbuf of 256K, a scale factor
1262			 * of 3 will be chosen by this algorithm.  Those who
1263			 * choose a larger maxsockbuf should watch out
1264			 * for the compatiblity problems mentioned above.
1265			 *
1266			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1267			 * or <SYN,ACK>) segment itself is never scaled.
1268			 */
1269			while (wscale < TCP_MAX_WINSHIFT &&
1270			    (TCP_MAXWIN << wscale) < sb_max)
1271				wscale++;
1272			sc->sc_requested_r_scale = wscale;
1273			sc->sc_requested_s_scale = to->to_wscale;
1274			sc->sc_flags |= SCF_WINSCALE;
1275		}
1276	}
1277#ifdef TCP_SIGNATURE
1278	/*
1279	 * If listening socket requested TCP digests, and received SYN
1280	 * contains the option, flag this in the syncache so that
1281	 * syncache_respond() will do the right thing with the SYN+ACK.
1282	 * XXX: Currently we always record the option by default and will
1283	 * attempt to use it in syncache_respond().
1284	 */
1285	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1286		sc->sc_flags |= SCF_SIGNATURE;
1287#endif
1288	if (to->to_flags & TOF_SACKPERM)
1289		sc->sc_flags |= SCF_SACK;
1290	if (to->to_flags & TOF_MSS)
1291		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1292	if (ltflags & TF_NOOPT)
1293		sc->sc_flags |= SCF_NOOPT;
1294	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1295		sc->sc_flags |= SCF_ECN;
1296
1297	if (V_tcp_syncookies) {
1298		syncookie_generate(sch, sc, &flowtmp);
1299#ifdef INET6
1300		if (autoflowlabel)
1301			sc->sc_flowlabel = flowtmp;
1302#endif
1303	} else {
1304#ifdef INET6
1305		if (autoflowlabel)
1306			sc->sc_flowlabel =
1307			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1308#endif
1309	}
1310	SCH_UNLOCK(sch);
1311
1312	/*
1313	 * Do a standard 3-way handshake.
1314	 */
1315	if (syncache_respond(sc) == 0) {
1316		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1317			syncache_free(sc);
1318		else if (sc != &scs)
1319			syncache_insert(sc, sch);   /* locks and unlocks sch */
1320		TCPSTAT_INC(tcps_sndacks);
1321		TCPSTAT_INC(tcps_sndtotal);
1322	} else {
1323		if (sc != &scs)
1324			syncache_free(sc);
1325		TCPSTAT_INC(tcps_sc_dropped);
1326	}
1327
1328done:
1329	if (cred != NULL)
1330		crfree(cred);
1331#ifdef MAC
1332	if (sc == &scs)
1333		mac_syncache_destroy(&maclabel);
1334#endif
1335	if (m) {
1336
1337		*lsop = NULL;
1338		m_freem(m);
1339	}
1340}
1341
1342static int
1343syncache_respond(struct syncache *sc)
1344{
1345	struct ip *ip = NULL;
1346	struct mbuf *m;
1347	struct tcphdr *th = NULL;
1348	int optlen, error = 0;	/* Make compiler happy */
1349	u_int16_t hlen, tlen, mssopt;
1350	struct tcpopt to;
1351#ifdef INET6
1352	struct ip6_hdr *ip6 = NULL;
1353#endif
1354
1355	hlen =
1356#ifdef INET6
1357	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1358#endif
1359		sizeof(struct ip);
1360	tlen = hlen + sizeof(struct tcphdr);
1361
1362	/* Determine MSS we advertize to other end of connection. */
1363	mssopt = tcp_mssopt(&sc->sc_inc);
1364	if (sc->sc_peer_mss)
1365		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1366
1367	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1368	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1369	    ("syncache: mbuf too small"));
1370
1371	/* Create the IP+TCP header from scratch. */
1372	m = m_gethdr(M_DONTWAIT, MT_DATA);
1373	if (m == NULL)
1374		return (ENOBUFS);
1375#ifdef MAC
1376	mac_syncache_create_mbuf(sc->sc_label, m);
1377#endif
1378	m->m_data += max_linkhdr;
1379	m->m_len = tlen;
1380	m->m_pkthdr.len = tlen;
1381	m->m_pkthdr.rcvif = NULL;
1382
1383#ifdef INET6
1384	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1385		ip6 = mtod(m, struct ip6_hdr *);
1386		ip6->ip6_vfc = IPV6_VERSION;
1387		ip6->ip6_nxt = IPPROTO_TCP;
1388		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1389		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1390		ip6->ip6_plen = htons(tlen - hlen);
1391		/* ip6_hlim is set after checksum */
1392		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1393		ip6->ip6_flow |= sc->sc_flowlabel;
1394
1395		th = (struct tcphdr *)(ip6 + 1);
1396	}
1397#endif
1398#if defined(INET6) && defined(INET)
1399	else
1400#endif
1401#ifdef INET
1402	{
1403		ip = mtod(m, struct ip *);
1404		ip->ip_v = IPVERSION;
1405		ip->ip_hl = sizeof(struct ip) >> 2;
1406		ip->ip_len = tlen;
1407		ip->ip_id = 0;
1408		ip->ip_off = 0;
1409		ip->ip_sum = 0;
1410		ip->ip_p = IPPROTO_TCP;
1411		ip->ip_src = sc->sc_inc.inc_laddr;
1412		ip->ip_dst = sc->sc_inc.inc_faddr;
1413		ip->ip_ttl = sc->sc_ip_ttl;
1414		ip->ip_tos = sc->sc_ip_tos;
1415
1416		/*
1417		 * See if we should do MTU discovery.  Route lookups are
1418		 * expensive, so we will only unset the DF bit if:
1419		 *
1420		 *	1) path_mtu_discovery is disabled
1421		 *	2) the SCF_UNREACH flag has been set
1422		 */
1423		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1424		       ip->ip_off |= IP_DF;
1425
1426		th = (struct tcphdr *)(ip + 1);
1427	}
1428#endif /* INET */
1429	th->th_sport = sc->sc_inc.inc_lport;
1430	th->th_dport = sc->sc_inc.inc_fport;
1431
1432	th->th_seq = htonl(sc->sc_iss);
1433	th->th_ack = htonl(sc->sc_irs + 1);
1434	th->th_off = sizeof(struct tcphdr) >> 2;
1435	th->th_x2 = 0;
1436	th->th_flags = TH_SYN|TH_ACK;
1437	th->th_win = htons(sc->sc_wnd);
1438	th->th_urp = 0;
1439
1440	if (sc->sc_flags & SCF_ECN) {
1441		th->th_flags |= TH_ECE;
1442		TCPSTAT_INC(tcps_ecn_shs);
1443	}
1444
1445	/* Tack on the TCP options. */
1446	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1447		to.to_flags = 0;
1448
1449		to.to_mss = mssopt;
1450		to.to_flags = TOF_MSS;
1451		if (sc->sc_flags & SCF_WINSCALE) {
1452			to.to_wscale = sc->sc_requested_r_scale;
1453			to.to_flags |= TOF_SCALE;
1454		}
1455		if (sc->sc_flags & SCF_TIMESTAMP) {
1456			/* Virgin timestamp or TCP cookie enhanced one. */
1457			to.to_tsval = sc->sc_ts;
1458			to.to_tsecr = sc->sc_tsreflect;
1459			to.to_flags |= TOF_TS;
1460		}
1461		if (sc->sc_flags & SCF_SACK)
1462			to.to_flags |= TOF_SACKPERM;
1463#ifdef TCP_SIGNATURE
1464		if (sc->sc_flags & SCF_SIGNATURE)
1465			to.to_flags |= TOF_SIGNATURE;
1466#endif
1467		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1468
1469		/* Adjust headers by option size. */
1470		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1471		m->m_len += optlen;
1472		m->m_pkthdr.len += optlen;
1473
1474#ifdef TCP_SIGNATURE
1475		if (sc->sc_flags & SCF_SIGNATURE)
1476			tcp_signature_compute(m, 0, 0, optlen,
1477			    to.to_signature, IPSEC_DIR_OUTBOUND);
1478#endif
1479#ifdef INET6
1480		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1481			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1482		else
1483#endif
1484			ip->ip_len += optlen;
1485	} else
1486		optlen = 0;
1487
1488	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1489	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1490#ifdef INET6
1491	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1492		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1493		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1494		    IPPROTO_TCP, 0);
1495		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1496#ifdef TCP_OFFLOAD
1497		if (ADDED_BY_TOE(sc)) {
1498			struct toedev *tod = sc->sc_tod;
1499
1500			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1501
1502			return (error);
1503		}
1504#endif
1505		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1506	}
1507#endif
1508#if defined(INET6) && defined(INET)
1509	else
1510#endif
1511#ifdef INET
1512	{
1513		m->m_pkthdr.csum_flags = CSUM_TCP;
1514		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1515		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1516#ifdef TCP_OFFLOAD
1517		if (ADDED_BY_TOE(sc)) {
1518			struct toedev *tod = sc->sc_tod;
1519
1520			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1521
1522			return (error);
1523		}
1524#endif
1525		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1526	}
1527#endif
1528	return (error);
1529}
1530
1531void
1532syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1533    struct inpcb *inp, struct socket **lsop, struct mbuf *m)
1534{
1535	_syncache_add(inc, to, th, inp, lsop, m, NULL, NULL);
1536}
1537
1538void
1539tcp_offload_syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1540    struct inpcb *inp, struct socket **lsop, void *tod, void *todctx)
1541{
1542
1543	_syncache_add(inc, to, th, inp, lsop, NULL, tod, todctx);
1544}
1545/*
1546 * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1547 * receive and to be able to handle SYN floods from bogus source addresses
1548 * (where we will never receive any reply).  SYN floods try to exhaust all
1549 * our memory and available slots in the SYN cache table to cause a denial
1550 * of service to legitimate users of the local host.
1551 *
1552 * The idea of SYN cookies is to encode and include all necessary information
1553 * about the connection setup state within the SYN-ACK we send back and thus
1554 * to get along without keeping any local state until the ACK to the SYN-ACK
1555 * arrives (if ever).  Everything we need to know should be available from
1556 * the information we encoded in the SYN-ACK.
1557 *
1558 * More information about the theory behind SYN cookies and its first
1559 * discussion and specification can be found at:
1560 *  http://cr.yp.to/syncookies.html    (overview)
1561 *  http://cr.yp.to/syncookies/archive (gory details)
1562 *
1563 * This implementation extends the orginal idea and first implementation
1564 * of FreeBSD by using not only the initial sequence number field to store
1565 * information but also the timestamp field if present.  This way we can
1566 * keep track of the entire state we need to know to recreate the session in
1567 * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1568 * these days.  For those that do not we still have to live with the known
1569 * shortcomings of the ISN only SYN cookies.
1570 *
1571 * Cookie layers:
1572 *
1573 * Initial sequence number we send:
1574 * 31|................................|0
1575 *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1576 *    D = MD5 Digest (first dword)
1577 *    M = MSS index
1578 *    R = Rotation of secret
1579 *    P = Odd or Even secret
1580 *
1581 * The MD5 Digest is computed with over following parameters:
1582 *  a) randomly rotated secret
1583 *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1584 *  c) the received initial sequence number from remote host
1585 *  d) the rotation offset and odd/even bit
1586 *
1587 * Timestamp we send:
1588 * 31|................................|0
1589 *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1590 *    D = MD5 Digest (third dword) (only as filler)
1591 *    S = Requested send window scale
1592 *    R = Requested receive window scale
1593 *    A = SACK allowed
1594 *    5 = TCP-MD5 enabled (not implemented yet)
1595 *    XORed with MD5 Digest (forth dword)
1596 *
1597 * The timestamp isn't cryptographically secure and doesn't need to be.
1598 * The double use of the MD5 digest dwords ties it to a specific remote/
1599 * local host/port, remote initial sequence number and our local time
1600 * limited secret.  A received timestamp is reverted (XORed) and then
1601 * the contained MD5 dword is compared to the computed one to ensure the
1602 * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1603 * have been tampered with but this isn't different from supplying bogus
1604 * values in the SYN in the first place.
1605 *
1606 * Some problems with SYN cookies remain however:
1607 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1608 * original SYN was accepted, the connection is established.  The second
1609 * SYN is inflight, and if it arrives with an ISN that falls within the
1610 * receive window, the connection is killed.
1611 *
1612 * Notes:
1613 * A heuristic to determine when to accept syn cookies is not necessary.
1614 * An ACK flood would cause the syncookie verification to be attempted,
1615 * but a SYN flood causes syncookies to be generated.  Both are of equal
1616 * cost, so there's no point in trying to optimize the ACK flood case.
1617 * Also, if you don't process certain ACKs for some reason, then all someone
1618 * would have to do is launch a SYN and ACK flood at the same time, which
1619 * would stop cookie verification and defeat the entire purpose of syncookies.
1620 */
1621static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1622
1623static void
1624syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1625    u_int32_t *flowlabel)
1626{
1627	MD5_CTX ctx;
1628	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1629	u_int32_t data;
1630	u_int32_t *secbits;
1631	u_int off, pmss, mss;
1632	int i;
1633
1634	SCH_LOCK_ASSERT(sch);
1635
1636	/* Which of the two secrets to use. */
1637	secbits = sch->sch_oddeven ?
1638			sch->sch_secbits_odd : sch->sch_secbits_even;
1639
1640	/* Reseed secret if too old. */
1641	if (sch->sch_reseed < time_uptime) {
1642		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1643		secbits = sch->sch_oddeven ?
1644				sch->sch_secbits_odd : sch->sch_secbits_even;
1645		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1646			secbits[i] = arc4random();
1647		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1648	}
1649
1650	/* Secret rotation offset. */
1651	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1652
1653	/* Maximum segment size calculation. */
1654	pmss =
1655	    max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)),	V_tcp_minmss);
1656	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1657		if (tcp_sc_msstab[mss] <= pmss)
1658			break;
1659
1660	/* Fold parameters and MD5 digest into the ISN we will send. */
1661	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1662	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1663	data |= mss << 4;	/* mss, 3 bits */
1664
1665	MD5Init(&ctx);
1666	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1667	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1668	MD5Update(&ctx, secbits, off);
1669	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1670	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1671	MD5Update(&ctx, &data, sizeof(data));
1672	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1673
1674	data |= (md5_buffer[0] << 7);
1675	sc->sc_iss = data;
1676
1677#ifdef INET6
1678	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1679#endif
1680
1681	/* Additional parameters are stored in the timestamp if present. */
1682	if (sc->sc_flags & SCF_TIMESTAMP) {
1683		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1684		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1685		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1686		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1687		data |= md5_buffer[2] << 10;		/* more digest bits */
1688		data ^= md5_buffer[3];
1689		sc->sc_ts = data;
1690		sc->sc_tsoff = data - tcp_ts_getticks();	/* after XOR */
1691	}
1692
1693	TCPSTAT_INC(tcps_sc_sendcookie);
1694}
1695
1696static struct syncache *
1697syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1698    struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1699    struct socket *so)
1700{
1701	MD5_CTX ctx;
1702	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1703	u_int32_t data = 0;
1704	u_int32_t *secbits;
1705	tcp_seq ack, seq;
1706	int off, mss, wnd, flags;
1707
1708	SCH_LOCK_ASSERT(sch);
1709
1710	/*
1711	 * Pull information out of SYN-ACK/ACK and
1712	 * revert sequence number advances.
1713	 */
1714	ack = th->th_ack - 1;
1715	seq = th->th_seq - 1;
1716	off = (ack >> 1) & 0x7;
1717	mss = (ack >> 4) & 0x7;
1718	flags = ack & 0x7f;
1719
1720	/* Which of the two secrets to use. */
1721	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1722
1723	/*
1724	 * The secret wasn't updated for the lifetime of a syncookie,
1725	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1726	 */
1727	if (sch->sch_reseed + SYNCOOKIE_LIFETIME < time_uptime) {
1728		return (NULL);
1729	}
1730
1731	/* Recompute the digest so we can compare it. */
1732	MD5Init(&ctx);
1733	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1734	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1735	MD5Update(&ctx, secbits, off);
1736	MD5Update(&ctx, inc, sizeof(*inc));
1737	MD5Update(&ctx, &seq, sizeof(seq));
1738	MD5Update(&ctx, &flags, sizeof(flags));
1739	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1740
1741	/* Does the digest part of or ACK'ed ISS match? */
1742	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1743		return (NULL);
1744
1745	/* Does the digest part of our reflected timestamp match? */
1746	if (to->to_flags & TOF_TS) {
1747		data = md5_buffer[3] ^ to->to_tsecr;
1748		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1749			return (NULL);
1750	}
1751
1752	/* Fill in the syncache values. */
1753	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1754	sc->sc_ipopts = NULL;
1755
1756	sc->sc_irs = seq;
1757	sc->sc_iss = ack;
1758
1759#ifdef INET6
1760	if (inc->inc_flags & INC_ISIPV6) {
1761		if (sotoinpcb(so)->inp_flags & IN6P_AUTOFLOWLABEL)
1762			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1763	} else
1764#endif
1765	{
1766		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1767		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1768	}
1769
1770	/* Additional parameters that were encoded in the timestamp. */
1771	if (data) {
1772		sc->sc_flags |= SCF_TIMESTAMP;
1773		sc->sc_tsreflect = to->to_tsval;
1774		sc->sc_ts = to->to_tsecr;
1775		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
1776		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1777		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1778		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1779		    TCP_MAX_WINSHIFT);
1780		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1781		    TCP_MAX_WINSHIFT);
1782		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1783			sc->sc_flags |= SCF_WINSCALE;
1784	} else
1785		sc->sc_flags |= SCF_NOOPT;
1786
1787	wnd = sbspace(&so->so_rcv);
1788	wnd = imax(wnd, 0);
1789	wnd = imin(wnd, TCP_MAXWIN);
1790	sc->sc_wnd = wnd;
1791
1792	sc->sc_rxmits = 0;
1793	sc->sc_peer_mss = tcp_sc_msstab[mss];
1794
1795	TCPSTAT_INC(tcps_sc_recvcookie);
1796	return (sc);
1797}
1798
1799/*
1800 * Returns the current number of syncache entries.  This number
1801 * will probably change before you get around to calling
1802 * syncache_pcblist.
1803 */
1804
1805int
1806syncache_pcbcount(void)
1807{
1808	struct syncache_head *sch;
1809	int count, i;
1810
1811	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1812		/* No need to lock for a read. */
1813		sch = &V_tcp_syncache.hashbase[i];
1814		count += sch->sch_length;
1815	}
1816	return count;
1817}
1818
1819/*
1820 * Exports the syncache entries to userland so that netstat can display
1821 * them alongside the other sockets.  This function is intended to be
1822 * called only from tcp_pcblist.
1823 *
1824 * Due to concurrency on an active system, the number of pcbs exported
1825 * may have no relation to max_pcbs.  max_pcbs merely indicates the
1826 * amount of space the caller allocated for this function to use.
1827 */
1828int
1829syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1830{
1831	struct xtcpcb xt;
1832	struct syncache *sc;
1833	struct syncache_head *sch;
1834	int count, error, i;
1835
1836	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1837		sch = &V_tcp_syncache.hashbase[i];
1838		SCH_LOCK(sch);
1839		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1840			if (count >= max_pcbs) {
1841				SCH_UNLOCK(sch);
1842				goto exit;
1843			}
1844			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1845				continue;
1846			bzero(&xt, sizeof(xt));
1847			xt.xt_len = sizeof(xt);
1848			if (sc->sc_inc.inc_flags & INC_ISIPV6)
1849				xt.xt_inp.inp_vflag = INP_IPV6;
1850			else
1851				xt.xt_inp.inp_vflag = INP_IPV4;
1852			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1853			xt.xt_tp.t_inpcb = &xt.xt_inp;
1854			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1855			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1856			xt.xt_socket.xso_len = sizeof (struct xsocket);
1857			xt.xt_socket.so_type = SOCK_STREAM;
1858			xt.xt_socket.so_state = SS_ISCONNECTING;
1859			error = SYSCTL_OUT(req, &xt, sizeof xt);
1860			if (error) {
1861				SCH_UNLOCK(sch);
1862				goto exit;
1863			}
1864			count++;
1865		}
1866		SCH_UNLOCK(sch);
1867	}
1868exit:
1869	*pcbs_exported = count;
1870	return error;
1871}
1872