1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 2007-2008,2010
5 *	Swinburne University of Technology, Melbourne, Australia.
6 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7 * Copyright (c) 2010 The FreeBSD Foundation
8 * Copyright (c) 2010-2011 Juniper Networks, Inc.
9 * All rights reserved.
10 *
11 * Portions of this software were developed at the Centre for Advanced Internet
12 * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13 * James Healy and David Hayes, made possible in part by a grant from the Cisco
14 * University Research Program Fund at Community Foundation Silicon Valley.
15 *
16 * Portions of this software were developed at the Centre for Advanced
17 * Internet Architectures, Swinburne University of Technology, Melbourne,
18 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19 *
20 * Portions of this software were developed by Robert N. M. Watson under
21 * contract to Juniper Networks, Inc.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the above copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 4. Neither the name of the University nor the names of its contributors
32 *    may be used to endorse or promote products derived from this software
33 *    without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * SUCH DAMAGE.
46 *
47 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD$");
52
53#include "opt_ipfw.h"		/* for ipfw_fwd	*/
54#include "opt_inet.h"
55#include "opt_inet6.h"
56#include "opt_ipsec.h"
57#include "opt_tcpdebug.h"
58
59#include <sys/param.h>
60#include <sys/kernel.h>
61#include <sys/hhook.h>
62#include <sys/malloc.h>
63#include <sys/mbuf.h>
64#include <sys/proc.h>		/* for proc0 declaration */
65#include <sys/protosw.h>
66#include <sys/signalvar.h>
67#include <sys/socket.h>
68#include <sys/socketvar.h>
69#include <sys/sysctl.h>
70#include <sys/syslog.h>
71#include <sys/systm.h>
72
73#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
74
75#include <vm/uma.h>
76
77#include <net/if.h>
78#include <net/route.h>
79#include <net/vnet.h>
80
81#define TCPSTATES		/* for logging */
82
83#include <netinet/cc.h>
84#include <netinet/in.h>
85#include <netinet/in_pcb.h>
86#include <netinet/in_systm.h>
87#include <netinet/in_var.h>
88#include <netinet/ip.h>
89#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
90#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
91#include <netinet/ip_var.h>
92#include <netinet/ip_options.h>
93#include <netinet/ip6.h>
94#include <netinet/icmp6.h>
95#include <netinet6/in6_pcb.h>
96#include <netinet6/ip6_var.h>
97#include <netinet6/nd6.h>
98#include <netinet/tcp_fsm.h>
99#include <netinet/tcp_seq.h>
100#include <netinet/tcp_timer.h>
101#include <netinet/tcp_var.h>
102#include <netinet6/tcp6_var.h>
103#include <netinet/tcpip.h>
104#include <netinet/tcp_syncache.h>
105#ifdef TCPDEBUG
106#include <netinet/tcp_debug.h>
107#endif /* TCPDEBUG */
108#ifdef TCP_OFFLOAD
109#include <netinet/tcp_offload.h>
110#endif
111
112#ifdef IPSEC
113#include <netipsec/ipsec.h>
114#include <netipsec/ipsec6.h>
115#endif /*IPSEC*/
116
117#include <machine/in_cksum.h>
118
119#include <security/mac/mac_framework.h>
120
121const int tcprexmtthresh = 3;
122
123VNET_DEFINE(struct tcpstat, tcpstat);
124SYSCTL_VNET_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
125    &VNET_NAME(tcpstat), tcpstat,
126    "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
127
128int tcp_log_in_vain = 0;
129SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
130    &tcp_log_in_vain, 0,
131    "Log all incoming TCP segments to closed ports");
132
133VNET_DEFINE(int, blackhole) = 0;
134#define	V_blackhole		VNET(blackhole)
135SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
136    &VNET_NAME(blackhole), 0,
137    "Do not send RST on segments to closed ports");
138
139VNET_DEFINE(int, tcp_delack_enabled) = 1;
140SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
141    &VNET_NAME(tcp_delack_enabled), 0,
142    "Delay ACK to try and piggyback it onto a data packet");
143
144VNET_DEFINE(int, drop_synfin) = 0;
145#define	V_drop_synfin		VNET(drop_synfin)
146SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
147    &VNET_NAME(drop_synfin), 0,
148    "Drop TCP packets with SYN+FIN set");
149
150VNET_DEFINE(int, tcp_do_rfc3042) = 1;
151#define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
152SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
153    &VNET_NAME(tcp_do_rfc3042), 0,
154    "Enable RFC 3042 (Limited Transmit)");
155
156VNET_DEFINE(int, tcp_do_rfc3390) = 1;
157SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
158    &VNET_NAME(tcp_do_rfc3390), 0,
159    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
160
161SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0,
162    "Experimental TCP extensions");
163
164VNET_DEFINE(int, tcp_do_initcwnd10) = 1;
165SYSCTL_VNET_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_RW,
166    &VNET_NAME(tcp_do_initcwnd10), 0,
167    "Enable RFC 6928 (Increasing initial CWND to 10)");
168
169VNET_DEFINE(int, tcp_do_rfc3465) = 1;
170SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
171    &VNET_NAME(tcp_do_rfc3465), 0,
172    "Enable RFC 3465 (Appropriate Byte Counting)");
173
174VNET_DEFINE(int, tcp_abc_l_var) = 2;
175SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
176    &VNET_NAME(tcp_abc_l_var), 2,
177    "Cap the max cwnd increment during slow-start to this number of segments");
178
179static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
180
181VNET_DEFINE(int, tcp_do_ecn) = 0;
182SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
183    &VNET_NAME(tcp_do_ecn), 0,
184    "TCP ECN support");
185
186VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
187SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
188    &VNET_NAME(tcp_ecn_maxretries), 0,
189    "Max retries before giving up on ECN");
190
191VNET_DEFINE(int, tcp_insecure_rst) = 0;
192#define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
193SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
194    &VNET_NAME(tcp_insecure_rst), 0,
195    "Follow the old (insecure) criteria for accepting RST packets");
196
197VNET_DEFINE(int, tcp_recvspace) = 1024*64;
198#define	V_tcp_recvspace	VNET(tcp_recvspace)
199SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
200    &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
201
202VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
203#define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
204SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
205    &VNET_NAME(tcp_do_autorcvbuf), 0,
206    "Enable automatic receive buffer sizing");
207
208VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
209#define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
210SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
211    &VNET_NAME(tcp_autorcvbuf_inc), 0,
212    "Incrementor step size of automatic receive buffer");
213
214VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
215#define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
216SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
217    &VNET_NAME(tcp_autorcvbuf_max), 0,
218    "Max size of automatic receive buffer");
219
220VNET_DEFINE(struct inpcbhead, tcb);
221#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
222VNET_DEFINE(struct inpcbinfo, tcbinfo);
223
224static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
225static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
226		     struct socket *, struct tcpcb *, int, int, uint8_t,
227		     int);
228static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
229		     struct tcpcb *, int, int);
230static void	 tcp_pulloutofband(struct socket *,
231		     struct tcphdr *, struct mbuf *, int);
232static void	 tcp_xmit_timer(struct tcpcb *, int);
233static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
234static void inline 	tcp_fields_to_host(struct tcphdr *);
235#ifdef TCP_SIGNATURE
236static void inline 	tcp_fields_to_net(struct tcphdr *);
237static int inline	tcp_signature_verify_input(struct mbuf *, int, int,
238			    int, struct tcpopt *, struct tcphdr *, u_int);
239#endif
240static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
241			    uint16_t type);
242static void inline	cc_conn_init(struct tcpcb *tp);
243static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
244static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
245			    struct tcphdr *th, struct tcpopt *to);
246
247/*
248 * Kernel module interface for updating tcpstat.  The argument is an index
249 * into tcpstat treated as an array of u_long.  While this encodes the
250 * general layout of tcpstat into the caller, it doesn't encode its location,
251 * so that future changes to add, for example, per-CPU stats support won't
252 * cause binary compatibility problems for kernel modules.
253 */
254void
255kmod_tcpstat_inc(int statnum)
256{
257
258	(*((u_long *)&V_tcpstat + statnum))++;
259}
260
261/*
262 * Wrapper for the TCP established input helper hook.
263 */
264static void inline
265hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
266{
267	struct tcp_hhook_data hhook_data;
268
269	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
270		hhook_data.tp = tp;
271		hhook_data.th = th;
272		hhook_data.to = to;
273
274		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
275		    tp->osd);
276	}
277}
278
279/*
280 * CC wrapper hook functions
281 */
282static void inline
283cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
284{
285	INP_WLOCK_ASSERT(tp->t_inpcb);
286
287	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
288	if (tp->snd_cwnd <= tp->snd_wnd)
289		tp->ccv->flags |= CCF_CWND_LIMITED;
290	else
291		tp->ccv->flags &= ~CCF_CWND_LIMITED;
292
293	if (type == CC_ACK) {
294		if (tp->snd_cwnd > tp->snd_ssthresh) {
295			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
296			     V_tcp_abc_l_var * tp->t_maxseg);
297			if (tp->t_bytes_acked >= tp->snd_cwnd) {
298				tp->t_bytes_acked -= tp->snd_cwnd;
299				tp->ccv->flags |= CCF_ABC_SENTAWND;
300			}
301		} else {
302				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
303				tp->t_bytes_acked = 0;
304		}
305	}
306
307	if (CC_ALGO(tp)->ack_received != NULL) {
308		/* XXXLAS: Find a way to live without this */
309		tp->ccv->curack = th->th_ack;
310		CC_ALGO(tp)->ack_received(tp->ccv, type);
311	}
312}
313
314static void inline
315cc_conn_init(struct tcpcb *tp)
316{
317	struct hc_metrics_lite metrics;
318	struct inpcb *inp = tp->t_inpcb;
319	int rtt;
320
321	INP_WLOCK_ASSERT(tp->t_inpcb);
322
323	tcp_hc_get(&inp->inp_inc, &metrics);
324
325	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
326		tp->t_srtt = rtt;
327		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
328		TCPSTAT_INC(tcps_usedrtt);
329		if (metrics.rmx_rttvar) {
330			tp->t_rttvar = metrics.rmx_rttvar;
331			TCPSTAT_INC(tcps_usedrttvar);
332		} else {
333			/* default variation is +- 1 rtt */
334			tp->t_rttvar =
335			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
336		}
337		TCPT_RANGESET(tp->t_rxtcur,
338		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
339		    tp->t_rttmin, TCPTV_REXMTMAX);
340	}
341	if (metrics.rmx_ssthresh) {
342		/*
343		 * There's some sort of gateway or interface
344		 * buffer limit on the path.  Use this to set
345		 * the slow start threshhold, but set the
346		 * threshold to no less than 2*mss.
347		 */
348		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
349		TCPSTAT_INC(tcps_usedssthresh);
350	}
351
352	/*
353	 * Set the initial slow-start flight size.
354	 *
355	 * RFC5681 Section 3.1 specifies the default conservative values.
356	 * RFC3390 specifies slightly more aggressive values.
357	 * RFC6928 increases it to ten segments.
358	 *
359	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
360	 * reduce the initial CWND to one segment as congestion is likely
361	 * requiring us to be cautious.
362	 */
363	if (tp->snd_cwnd == 1)
364		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
365	else if (V_tcp_do_initcwnd10)
366		tp->snd_cwnd = min(10 * tp->t_maxseg,
367		    max(2 * tp->t_maxseg, 14600));
368	else if (V_tcp_do_rfc3390)
369		tp->snd_cwnd = min(4 * tp->t_maxseg,
370		    max(2 * tp->t_maxseg, 4380));
371	else {
372		/* Per RFC5681 Section 3.1 */
373		if (tp->t_maxseg > 2190)
374			tp->snd_cwnd = 2 * tp->t_maxseg;
375		else if (tp->t_maxseg > 1095)
376			tp->snd_cwnd = 3 * tp->t_maxseg;
377		else
378			tp->snd_cwnd = 4 * tp->t_maxseg;
379	}
380
381	if (CC_ALGO(tp)->conn_init != NULL)
382		CC_ALGO(tp)->conn_init(tp->ccv);
383}
384
385void inline
386cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
387{
388	INP_WLOCK_ASSERT(tp->t_inpcb);
389
390	switch(type) {
391	case CC_NDUPACK:
392		if (!IN_FASTRECOVERY(tp->t_flags)) {
393			tp->snd_recover = tp->snd_max;
394			if (tp->t_flags & TF_ECN_PERMIT)
395				tp->t_flags |= TF_ECN_SND_CWR;
396		}
397		break;
398	case CC_ECN:
399		if (!IN_CONGRECOVERY(tp->t_flags)) {
400			TCPSTAT_INC(tcps_ecn_rcwnd);
401			tp->snd_recover = tp->snd_max;
402			if (tp->t_flags & TF_ECN_PERMIT)
403				tp->t_flags |= TF_ECN_SND_CWR;
404		}
405		break;
406	case CC_RTO:
407		tp->t_dupacks = 0;
408		tp->t_bytes_acked = 0;
409		EXIT_RECOVERY(tp->t_flags);
410		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
411		    tp->t_maxseg) * tp->t_maxseg;
412		tp->snd_cwnd = tp->t_maxseg;
413		break;
414	case CC_RTO_ERR:
415		TCPSTAT_INC(tcps_sndrexmitbad);
416		/* RTO was unnecessary, so reset everything. */
417		tp->snd_cwnd = tp->snd_cwnd_prev;
418		tp->snd_ssthresh = tp->snd_ssthresh_prev;
419		tp->snd_recover = tp->snd_recover_prev;
420		if (tp->t_flags & TF_WASFRECOVERY)
421			ENTER_FASTRECOVERY(tp->t_flags);
422		if (tp->t_flags & TF_WASCRECOVERY)
423			ENTER_CONGRECOVERY(tp->t_flags);
424		tp->snd_nxt = tp->snd_max;
425		tp->t_flags &= ~TF_PREVVALID;
426		tp->t_badrxtwin = 0;
427		break;
428	}
429
430	if (CC_ALGO(tp)->cong_signal != NULL) {
431		if (th != NULL)
432			tp->ccv->curack = th->th_ack;
433		CC_ALGO(tp)->cong_signal(tp->ccv, type);
434	}
435}
436
437static void inline
438cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
439{
440	INP_WLOCK_ASSERT(tp->t_inpcb);
441
442	/* XXXLAS: KASSERT that we're in recovery? */
443
444	if (CC_ALGO(tp)->post_recovery != NULL) {
445		tp->ccv->curack = th->th_ack;
446		CC_ALGO(tp)->post_recovery(tp->ccv);
447	}
448	/* XXXLAS: EXIT_RECOVERY ? */
449	tp->t_bytes_acked = 0;
450}
451
452static inline void
453tcp_fields_to_host(struct tcphdr *th)
454{
455
456	th->th_seq = ntohl(th->th_seq);
457	th->th_ack = ntohl(th->th_ack);
458	th->th_win = ntohs(th->th_win);
459	th->th_urp = ntohs(th->th_urp);
460}
461
462#ifdef TCP_SIGNATURE
463static inline void
464tcp_fields_to_net(struct tcphdr *th)
465{
466
467	th->th_seq = htonl(th->th_seq);
468	th->th_ack = htonl(th->th_ack);
469	th->th_win = htons(th->th_win);
470	th->th_urp = htons(th->th_urp);
471}
472
473static inline int
474tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
475    struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
476{
477	int ret;
478
479	tcp_fields_to_net(th);
480	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
481	tcp_fields_to_host(th);
482	return (ret);
483}
484#endif
485
486/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
487#ifdef INET6
488#define ND6_HINT(tp) \
489do { \
490	if ((tp) && (tp)->t_inpcb && \
491	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
492		nd6_nud_hint(NULL, NULL, 0); \
493} while (0)
494#else
495#define ND6_HINT(tp)
496#endif
497
498/*
499 * Indicate whether this ack should be delayed.  We can delay the ack if
500 *	- there is no delayed ack timer in progress and
501 *	- our last ack wasn't a 0-sized window.  We never want to delay
502 *	  the ack that opens up a 0-sized window and
503 *		- delayed acks are enabled or
504 *		- this is a half-synchronized T/TCP connection.
505 */
506#define DELAY_ACK(tp)							\
507	((!tcp_timer_active(tp, TT_DELACK) &&				\
508	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
509	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
510
511/*
512 * TCP input handling is split into multiple parts:
513 *   tcp6_input is a thin wrapper around tcp_input for the extended
514 *	ip6_protox[] call format in ip6_input
515 *   tcp_input handles primary segment validation, inpcb lookup and
516 *	SYN processing on listen sockets
517 *   tcp_do_segment processes the ACK and text of the segment for
518 *	establishing, established and closing connections
519 */
520#ifdef INET6
521int
522tcp6_input(struct mbuf **mp, int *offp, int proto)
523{
524	struct mbuf *m = *mp;
525	struct in6_ifaddr *ia6;
526
527	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
528
529	/*
530	 * draft-itojun-ipv6-tcp-to-anycast
531	 * better place to put this in?
532	 */
533	ia6 = ip6_getdstifaddr(m);
534	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
535		struct ip6_hdr *ip6;
536
537		ifa_free(&ia6->ia_ifa);
538		ip6 = mtod(m, struct ip6_hdr *);
539		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
540			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
541		return IPPROTO_DONE;
542	}
543	if (ia6)
544		ifa_free(&ia6->ia_ifa);
545
546	tcp_input(m, *offp);
547	return IPPROTO_DONE;
548}
549#endif /* INET6 */
550
551void
552tcp_input(struct mbuf *m, int off0)
553{
554	struct tcphdr *th = NULL;
555	struct ip *ip = NULL;
556#ifdef INET
557	struct ipovly *ipov;
558#endif
559	struct inpcb *inp = NULL;
560	struct tcpcb *tp = NULL;
561	struct socket *so = NULL;
562	u_char *optp = NULL;
563	int optlen = 0;
564#ifdef INET
565	int len;
566#endif
567	int tlen = 0, off;
568	int drop_hdrlen;
569	int thflags;
570	int rstreason = 0;	/* For badport_bandlim accounting purposes */
571#ifdef TCP_SIGNATURE
572	uint8_t sig_checked = 0;
573#endif
574	uint8_t iptos = 0;
575	struct m_tag *fwd_tag = NULL;
576#ifdef INET6
577	struct ip6_hdr *ip6 = NULL;
578	int isipv6;
579#else
580	const void *ip6 = NULL;
581#endif /* INET6 */
582	struct tcpopt to;		/* options in this segment */
583	char *s = NULL;			/* address and port logging */
584	int ti_locked;
585#define	TI_UNLOCKED	1
586#define	TI_WLOCKED	2
587
588#ifdef TCPDEBUG
589	/*
590	 * The size of tcp_saveipgen must be the size of the max ip header,
591	 * now IPv6.
592	 */
593	u_char tcp_saveipgen[IP6_HDR_LEN];
594	struct tcphdr tcp_savetcp;
595	short ostate = 0;
596#endif
597
598#ifdef INET6
599	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
600#endif
601
602	to.to_flags = 0;
603	TCPSTAT_INC(tcps_rcvtotal);
604
605#ifdef INET6
606	if (isipv6) {
607		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
608
609		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
610			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
611			if (m == NULL) {
612				TCPSTAT_INC(tcps_rcvshort);
613				return;
614			}
615		}
616
617		ip6 = mtod(m, struct ip6_hdr *);
618		th = (struct tcphdr *)((caddr_t)ip6 + off0);
619		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
620		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
621			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
622				th->th_sum = m->m_pkthdr.csum_data;
623			else
624				th->th_sum = in6_cksum_pseudo(ip6, tlen,
625				    IPPROTO_TCP, m->m_pkthdr.csum_data);
626			th->th_sum ^= 0xffff;
627		} else
628			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
629		if (th->th_sum) {
630			TCPSTAT_INC(tcps_rcvbadsum);
631			goto drop;
632		}
633
634		/*
635		 * Be proactive about unspecified IPv6 address in source.
636		 * As we use all-zero to indicate unbounded/unconnected pcb,
637		 * unspecified IPv6 address can be used to confuse us.
638		 *
639		 * Note that packets with unspecified IPv6 destination is
640		 * already dropped in ip6_input.
641		 */
642		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
643			/* XXX stat */
644			goto drop;
645		}
646	}
647#endif
648#if defined(INET) && defined(INET6)
649	else
650#endif
651#ifdef INET
652	{
653		/*
654		 * Get IP and TCP header together in first mbuf.
655		 * Note: IP leaves IP header in first mbuf.
656		 */
657		if (off0 > sizeof (struct ip)) {
658			ip_stripoptions(m, (struct mbuf *)0);
659			off0 = sizeof(struct ip);
660		}
661		if (m->m_len < sizeof (struct tcpiphdr)) {
662			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
663			    == NULL) {
664				TCPSTAT_INC(tcps_rcvshort);
665				return;
666			}
667		}
668		ip = mtod(m, struct ip *);
669		ipov = (struct ipovly *)ip;
670		th = (struct tcphdr *)((caddr_t)ip + off0);
671		tlen = ip->ip_len;
672
673		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
674			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
675				th->th_sum = m->m_pkthdr.csum_data;
676			else
677				th->th_sum = in_pseudo(ip->ip_src.s_addr,
678						ip->ip_dst.s_addr,
679						htonl(m->m_pkthdr.csum_data +
680							ip->ip_len +
681							IPPROTO_TCP));
682			th->th_sum ^= 0xffff;
683#ifdef TCPDEBUG
684			ipov->ih_len = (u_short)tlen;
685			ipov->ih_len = htons(ipov->ih_len);
686#endif
687		} else {
688			/*
689			 * Checksum extended TCP header and data.
690			 */
691			len = sizeof (struct ip) + tlen;
692			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
693			ipov->ih_len = (u_short)tlen;
694			ipov->ih_len = htons(ipov->ih_len);
695			th->th_sum = in_cksum(m, len);
696		}
697		if (th->th_sum) {
698			TCPSTAT_INC(tcps_rcvbadsum);
699			goto drop;
700		}
701		/* Re-initialization for later version check */
702		ip->ip_v = IPVERSION;
703	}
704#endif /* INET */
705
706#ifdef INET6
707	if (isipv6)
708		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
709#endif
710#if defined(INET) && defined(INET6)
711	else
712#endif
713#ifdef INET
714		iptos = ip->ip_tos;
715#endif
716
717	/*
718	 * Check that TCP offset makes sense,
719	 * pull out TCP options and adjust length.		XXX
720	 */
721	off = th->th_off << 2;
722	if (off < sizeof (struct tcphdr) || off > tlen) {
723		TCPSTAT_INC(tcps_rcvbadoff);
724		goto drop;
725	}
726	tlen -= off;	/* tlen is used instead of ti->ti_len */
727	if (off > sizeof (struct tcphdr)) {
728#ifdef INET6
729		if (isipv6) {
730			IP6_EXTHDR_CHECK(m, off0, off, );
731			ip6 = mtod(m, struct ip6_hdr *);
732			th = (struct tcphdr *)((caddr_t)ip6 + off0);
733		}
734#endif
735#if defined(INET) && defined(INET6)
736		else
737#endif
738#ifdef INET
739		{
740			if (m->m_len < sizeof(struct ip) + off) {
741				if ((m = m_pullup(m, sizeof (struct ip) + off))
742				    == NULL) {
743					TCPSTAT_INC(tcps_rcvshort);
744					return;
745				}
746				ip = mtod(m, struct ip *);
747				ipov = (struct ipovly *)ip;
748				th = (struct tcphdr *)((caddr_t)ip + off0);
749			}
750		}
751#endif
752		optlen = off - sizeof (struct tcphdr);
753		optp = (u_char *)(th + 1);
754	}
755	thflags = th->th_flags;
756
757	/*
758	 * Convert TCP protocol specific fields to host format.
759	 */
760	tcp_fields_to_host(th);
761
762	/*
763	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
764	 */
765	drop_hdrlen = off0 + off;
766
767	/*
768	 * Locate pcb for segment; if we're likely to add or remove a
769	 * connection then first acquire pcbinfo lock.  There are two cases
770	 * where we might discover later we need a write lock despite the
771	 * flags: ACKs moving a connection out of the syncache, and ACKs for
772	 * a connection in TIMEWAIT.
773	 */
774	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
775		INP_INFO_WLOCK(&V_tcbinfo);
776		ti_locked = TI_WLOCKED;
777	} else
778		ti_locked = TI_UNLOCKED;
779
780findpcb:
781#ifdef INVARIANTS
782	if (ti_locked == TI_WLOCKED) {
783		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
784	} else {
785		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
786	}
787#endif
788
789	/*
790	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
791	 */
792        if (
793#ifdef INET6
794	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
795#ifdef INET
796	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
797#endif
798#endif
799#if defined(INET) && !defined(INET6)
800	    (m->m_flags & M_IP_NEXTHOP)
801#endif
802	    )
803		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
804
805#ifdef INET6
806	if (isipv6 && fwd_tag != NULL) {
807		struct sockaddr_in6 *next_hop6;
808
809		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
810		/*
811		 * Transparently forwarded. Pretend to be the destination.
812		 * Already got one like this?
813		 */
814		inp = in6_pcblookup_mbuf(&V_tcbinfo,
815		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
816		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
817		if (!inp) {
818			/*
819			 * It's new.  Try to find the ambushing socket.
820			 * Because we've rewritten the destination address,
821			 * any hardware-generated hash is ignored.
822			 */
823			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
824			    th->th_sport, &next_hop6->sin6_addr,
825			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
826			    th->th_dport, INPLOOKUP_WILDCARD |
827			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
828		}
829		/* Remove the tag from the packet.  We don't need it anymore. */
830		m_tag_delete(m, fwd_tag);
831		m->m_flags &= ~M_IP6_NEXTHOP;
832		fwd_tag = NULL;
833	} else if (isipv6) {
834		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
835		    th->th_sport, &ip6->ip6_dst, th->th_dport,
836		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
837		    m->m_pkthdr.rcvif, m);
838	}
839#endif /* INET6 */
840#if defined(INET6) && defined(INET)
841	else
842#endif
843#ifdef INET
844	if (fwd_tag != NULL) {
845		struct sockaddr_in *next_hop;
846
847		next_hop = (struct sockaddr_in *)(fwd_tag+1);
848		/*
849		 * Transparently forwarded. Pretend to be the destination.
850		 * already got one like this?
851		 */
852		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
853		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
854		    m->m_pkthdr.rcvif, m);
855		if (!inp) {
856			/*
857			 * It's new.  Try to find the ambushing socket.
858			 * Because we've rewritten the destination address,
859			 * any hardware-generated hash is ignored.
860			 */
861			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
862			    th->th_sport, next_hop->sin_addr,
863			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
864			    th->th_dport, INPLOOKUP_WILDCARD |
865			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
866		}
867		/* Remove the tag from the packet.  We don't need it anymore. */
868		m_tag_delete(m, fwd_tag);
869		m->m_flags &= ~M_IP_NEXTHOP;
870		fwd_tag = NULL;
871	} else
872		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
873		    th->th_sport, ip->ip_dst, th->th_dport,
874		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
875		    m->m_pkthdr.rcvif, m);
876#endif /* INET */
877
878	/*
879	 * If the INPCB does not exist then all data in the incoming
880	 * segment is discarded and an appropriate RST is sent back.
881	 * XXX MRT Send RST using which routing table?
882	 */
883	if (inp == NULL) {
884		/*
885		 * Log communication attempts to ports that are not
886		 * in use.
887		 */
888		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
889		    tcp_log_in_vain == 2) {
890			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
891				log(LOG_INFO, "%s; %s: Connection attempt "
892				    "to closed port\n", s, __func__);
893		}
894		/*
895		 * When blackholing do not respond with a RST but
896		 * completely ignore the segment and drop it.
897		 */
898		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
899		    V_blackhole == 2)
900			goto dropunlock;
901
902		rstreason = BANDLIM_RST_CLOSEDPORT;
903		goto dropwithreset;
904	}
905	INP_WLOCK_ASSERT(inp);
906	if (!(inp->inp_flags & INP_HW_FLOWID)
907	    && (m->m_flags & M_FLOWID)
908	    && ((inp->inp_socket == NULL)
909		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
910		inp->inp_flags |= INP_HW_FLOWID;
911		inp->inp_flags &= ~INP_SW_FLOWID;
912		inp->inp_flowid = m->m_pkthdr.flowid;
913	}
914#ifdef IPSEC
915#ifdef INET6
916	if (isipv6 && ipsec6_in_reject(m, inp)) {
917		IPSEC6STAT_INC(in_polvio);
918		goto dropunlock;
919	} else
920#endif /* INET6 */
921	if (ipsec4_in_reject(m, inp) != 0) {
922		IPSECSTAT_INC(in_polvio);
923		goto dropunlock;
924	}
925#endif /* IPSEC */
926
927	/*
928	 * Check the minimum TTL for socket.
929	 */
930	if (inp->inp_ip_minttl != 0) {
931#ifdef INET6
932		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
933			goto dropunlock;
934		else
935#endif
936		if (inp->inp_ip_minttl > ip->ip_ttl)
937			goto dropunlock;
938	}
939
940	/*
941	 * A previous connection in TIMEWAIT state is supposed to catch stray
942	 * or duplicate segments arriving late.  If this segment was a
943	 * legitimate new connection attempt the old INPCB gets removed and
944	 * we can try again to find a listening socket.
945	 *
946	 * At this point, due to earlier optimism, we may hold only an inpcb
947	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
948	 * acquire it, or if that fails, acquire a reference on the inpcb,
949	 * drop all locks, acquire a global write lock, and then re-acquire
950	 * the inpcb lock.  We may at that point discover that another thread
951	 * has tried to free the inpcb, in which case we need to loop back
952	 * and try to find a new inpcb to deliver to.
953	 *
954	 * XXXRW: It may be time to rethink timewait locking.
955	 */
956relocked:
957	if (inp->inp_flags & INP_TIMEWAIT) {
958		if (ti_locked == TI_UNLOCKED) {
959			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
960				in_pcbref(inp);
961				INP_WUNLOCK(inp);
962				INP_INFO_WLOCK(&V_tcbinfo);
963				ti_locked = TI_WLOCKED;
964				INP_WLOCK(inp);
965				if (in_pcbrele_wlocked(inp)) {
966					inp = NULL;
967					goto findpcb;
968				}
969			} else
970				ti_locked = TI_WLOCKED;
971		}
972		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
973
974		if (thflags & TH_SYN)
975			tcp_dooptions(&to, optp, optlen, TO_SYN);
976		/*
977		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
978		 */
979		if (tcp_twcheck(inp, &to, th, m, tlen))
980			goto findpcb;
981		INP_INFO_WUNLOCK(&V_tcbinfo);
982		return;
983	}
984	/*
985	 * The TCPCB may no longer exist if the connection is winding
986	 * down or it is in the CLOSED state.  Either way we drop the
987	 * segment and send an appropriate response.
988	 */
989	tp = intotcpcb(inp);
990	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
991		rstreason = BANDLIM_RST_CLOSEDPORT;
992		goto dropwithreset;
993	}
994
995#ifdef TCP_OFFLOAD
996	if (tp->t_flags & TF_TOE) {
997		tcp_offload_input(tp, m);
998		m = NULL;	/* consumed by the TOE driver */
999		goto dropunlock;
1000	}
1001#endif
1002
1003	/*
1004	 * We've identified a valid inpcb, but it could be that we need an
1005	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
1006	 * acquire using the same strategy as the TIMEWAIT case above.  If we
1007	 * relock, we have to jump back to 'relocked' as the connection might
1008	 * now be in TIMEWAIT.
1009	 */
1010#ifdef INVARIANTS
1011	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
1012		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1013#endif
1014	if (tp->t_state != TCPS_ESTABLISHED) {
1015		if (ti_locked == TI_UNLOCKED) {
1016			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
1017				in_pcbref(inp);
1018				INP_WUNLOCK(inp);
1019				INP_INFO_WLOCK(&V_tcbinfo);
1020				ti_locked = TI_WLOCKED;
1021				INP_WLOCK(inp);
1022				if (in_pcbrele_wlocked(inp)) {
1023					inp = NULL;
1024					goto findpcb;
1025				}
1026				goto relocked;
1027			} else
1028				ti_locked = TI_WLOCKED;
1029		}
1030		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1031	}
1032
1033#ifdef MAC
1034	INP_WLOCK_ASSERT(inp);
1035	if (mac_inpcb_check_deliver(inp, m))
1036		goto dropunlock;
1037#endif
1038	so = inp->inp_socket;
1039	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1040#ifdef TCPDEBUG
1041	if (so->so_options & SO_DEBUG) {
1042		ostate = tp->t_state;
1043#ifdef INET6
1044		if (isipv6) {
1045			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1046		} else
1047#endif
1048			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1049		tcp_savetcp = *th;
1050	}
1051#endif /* TCPDEBUG */
1052	/*
1053	 * When the socket is accepting connections (the INPCB is in LISTEN
1054	 * state) we look into the SYN cache if this is a new connection
1055	 * attempt or the completion of a previous one.  Because listen
1056	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
1057	 * held in this case.
1058	 */
1059	if (so->so_options & SO_ACCEPTCONN) {
1060		struct in_conninfo inc;
1061
1062		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1063		    "tp not listening", __func__));
1064		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1065
1066		bzero(&inc, sizeof(inc));
1067#ifdef INET6
1068		if (isipv6) {
1069			inc.inc_flags |= INC_ISIPV6;
1070			inc.inc6_faddr = ip6->ip6_src;
1071			inc.inc6_laddr = ip6->ip6_dst;
1072		} else
1073#endif
1074		{
1075			inc.inc_faddr = ip->ip_src;
1076			inc.inc_laddr = ip->ip_dst;
1077		}
1078		inc.inc_fport = th->th_sport;
1079		inc.inc_lport = th->th_dport;
1080		inc.inc_fibnum = so->so_fibnum;
1081
1082		/*
1083		 * Check for an existing connection attempt in syncache if
1084		 * the flag is only ACK.  A successful lookup creates a new
1085		 * socket appended to the listen queue in SYN_RECEIVED state.
1086		 */
1087		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1088			/*
1089			 * Parse the TCP options here because
1090			 * syncookies need access to the reflected
1091			 * timestamp.
1092			 */
1093			tcp_dooptions(&to, optp, optlen, 0);
1094			/*
1095			 * NB: syncache_expand() doesn't unlock
1096			 * inp and tcpinfo locks.
1097			 */
1098			if (!syncache_expand(&inc, &to, th, &so, m)) {
1099				/*
1100				 * No syncache entry or ACK was not
1101				 * for our SYN/ACK.  Send a RST.
1102				 * NB: syncache did its own logging
1103				 * of the failure cause.
1104				 */
1105				rstreason = BANDLIM_RST_OPENPORT;
1106				goto dropwithreset;
1107			}
1108			if (so == NULL) {
1109				/*
1110				 * We completed the 3-way handshake
1111				 * but could not allocate a socket
1112				 * either due to memory shortage,
1113				 * listen queue length limits or
1114				 * global socket limits.  Send RST
1115				 * or wait and have the remote end
1116				 * retransmit the ACK for another
1117				 * try.
1118				 */
1119				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1120					log(LOG_DEBUG, "%s; %s: Listen socket: "
1121					    "Socket allocation failed due to "
1122					    "limits or memory shortage, %s\n",
1123					    s, __func__,
1124					    V_tcp_sc_rst_sock_fail ?
1125					    "sending RST" : "try again");
1126				if (V_tcp_sc_rst_sock_fail) {
1127					rstreason = BANDLIM_UNLIMITED;
1128					goto dropwithreset;
1129				} else
1130					goto dropunlock;
1131			}
1132			/*
1133			 * Socket is created in state SYN_RECEIVED.
1134			 * Unlock the listen socket, lock the newly
1135			 * created socket and update the tp variable.
1136			 */
1137			INP_WUNLOCK(inp);	/* listen socket */
1138			inp = sotoinpcb(so);
1139			INP_WLOCK(inp);		/* new connection */
1140			tp = intotcpcb(inp);
1141			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1142			    ("%s: ", __func__));
1143#ifdef TCP_SIGNATURE
1144			if (sig_checked == 0)  {
1145				tcp_dooptions(&to, optp, optlen,
1146				    (thflags & TH_SYN) ? TO_SYN : 0);
1147				if (!tcp_signature_verify_input(m, off0, tlen,
1148				    optlen, &to, th, tp->t_flags)) {
1149
1150					/*
1151					 * In SYN_SENT state if it receives an
1152					 * RST, it is allowed for further
1153					 * processing.
1154					 */
1155					if ((thflags & TH_RST) == 0 ||
1156					    (tp->t_state == TCPS_SYN_SENT) == 0)
1157						goto dropunlock;
1158				}
1159				sig_checked = 1;
1160			}
1161#endif
1162
1163			/*
1164			 * Process the segment and the data it
1165			 * contains.  tcp_do_segment() consumes
1166			 * the mbuf chain and unlocks the inpcb.
1167			 */
1168			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1169			    iptos, ti_locked);
1170			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1171			return;
1172		}
1173		/*
1174		 * Segment flag validation for new connection attempts:
1175		 *
1176		 * Our (SYN|ACK) response was rejected.
1177		 * Check with syncache and remove entry to prevent
1178		 * retransmits.
1179		 *
1180		 * NB: syncache_chkrst does its own logging of failure
1181		 * causes.
1182		 */
1183		if (thflags & TH_RST) {
1184			syncache_chkrst(&inc, th);
1185			goto dropunlock;
1186		}
1187		/*
1188		 * We can't do anything without SYN.
1189		 */
1190		if ((thflags & TH_SYN) == 0) {
1191			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1192				log(LOG_DEBUG, "%s; %s: Listen socket: "
1193				    "SYN is missing, segment ignored\n",
1194				    s, __func__);
1195			TCPSTAT_INC(tcps_badsyn);
1196			goto dropunlock;
1197		}
1198		/*
1199		 * (SYN|ACK) is bogus on a listen socket.
1200		 */
1201		if (thflags & TH_ACK) {
1202			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1203				log(LOG_DEBUG, "%s; %s: Listen socket: "
1204				    "SYN|ACK invalid, segment rejected\n",
1205				    s, __func__);
1206			syncache_badack(&inc);	/* XXX: Not needed! */
1207			TCPSTAT_INC(tcps_badsyn);
1208			rstreason = BANDLIM_RST_OPENPORT;
1209			goto dropwithreset;
1210		}
1211		/*
1212		 * If the drop_synfin option is enabled, drop all
1213		 * segments with both the SYN and FIN bits set.
1214		 * This prevents e.g. nmap from identifying the
1215		 * TCP/IP stack.
1216		 * XXX: Poor reasoning.  nmap has other methods
1217		 * and is constantly refining its stack detection
1218		 * strategies.
1219		 * XXX: This is a violation of the TCP specification
1220		 * and was used by RFC1644.
1221		 */
1222		if ((thflags & TH_FIN) && V_drop_synfin) {
1223			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1224				log(LOG_DEBUG, "%s; %s: Listen socket: "
1225				    "SYN|FIN segment ignored (based on "
1226				    "sysctl setting)\n", s, __func__);
1227			TCPSTAT_INC(tcps_badsyn);
1228			goto dropunlock;
1229		}
1230		/*
1231		 * Segment's flags are (SYN) or (SYN|FIN).
1232		 *
1233		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1234		 * as they do not affect the state of the TCP FSM.
1235		 * The data pointed to by TH_URG and th_urp is ignored.
1236		 */
1237		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1238		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1239		KASSERT(thflags & (TH_SYN),
1240		    ("%s: Listen socket: TH_SYN not set", __func__));
1241#ifdef INET6
1242		/*
1243		 * If deprecated address is forbidden,
1244		 * we do not accept SYN to deprecated interface
1245		 * address to prevent any new inbound connection from
1246		 * getting established.
1247		 * When we do not accept SYN, we send a TCP RST,
1248		 * with deprecated source address (instead of dropping
1249		 * it).  We compromise it as it is much better for peer
1250		 * to send a RST, and RST will be the final packet
1251		 * for the exchange.
1252		 *
1253		 * If we do not forbid deprecated addresses, we accept
1254		 * the SYN packet.  RFC2462 does not suggest dropping
1255		 * SYN in this case.
1256		 * If we decipher RFC2462 5.5.4, it says like this:
1257		 * 1. use of deprecated addr with existing
1258		 *    communication is okay - "SHOULD continue to be
1259		 *    used"
1260		 * 2. use of it with new communication:
1261		 *   (2a) "SHOULD NOT be used if alternate address
1262		 *        with sufficient scope is available"
1263		 *   (2b) nothing mentioned otherwise.
1264		 * Here we fall into (2b) case as we have no choice in
1265		 * our source address selection - we must obey the peer.
1266		 *
1267		 * The wording in RFC2462 is confusing, and there are
1268		 * multiple description text for deprecated address
1269		 * handling - worse, they are not exactly the same.
1270		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1271		 */
1272		if (isipv6 && !V_ip6_use_deprecated) {
1273			struct in6_ifaddr *ia6;
1274
1275			ia6 = ip6_getdstifaddr(m);
1276			if (ia6 != NULL &&
1277			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1278				ifa_free(&ia6->ia_ifa);
1279				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1280				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1281					"Connection attempt to deprecated "
1282					"IPv6 address rejected\n",
1283					s, __func__);
1284				rstreason = BANDLIM_RST_OPENPORT;
1285				goto dropwithreset;
1286			}
1287			if (ia6)
1288				ifa_free(&ia6->ia_ifa);
1289		}
1290#endif /* INET6 */
1291		/*
1292		 * Basic sanity checks on incoming SYN requests:
1293		 *   Don't respond if the destination is a link layer
1294		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1295		 *   If it is from this socket it must be forged.
1296		 *   Don't respond if the source or destination is a
1297		 *	global or subnet broad- or multicast address.
1298		 *   Note that it is quite possible to receive unicast
1299		 *	link-layer packets with a broadcast IP address. Use
1300		 *	in_broadcast() to find them.
1301		 */
1302		if (m->m_flags & (M_BCAST|M_MCAST)) {
1303			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1304			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1305				"Connection attempt from broad- or multicast "
1306				"link layer address ignored\n", s, __func__);
1307			goto dropunlock;
1308		}
1309#ifdef INET6
1310		if (isipv6) {
1311			if (th->th_dport == th->th_sport &&
1312			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1313				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1314				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1315					"Connection attempt to/from self "
1316					"ignored\n", s, __func__);
1317				goto dropunlock;
1318			}
1319			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1320			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1321				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1322				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1323					"Connection attempt from/to multicast "
1324					"address ignored\n", s, __func__);
1325				goto dropunlock;
1326			}
1327		}
1328#endif
1329#if defined(INET) && defined(INET6)
1330		else
1331#endif
1332#ifdef INET
1333		{
1334			if (th->th_dport == th->th_sport &&
1335			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1336				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1337				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1338					"Connection attempt from/to self "
1339					"ignored\n", s, __func__);
1340				goto dropunlock;
1341			}
1342			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1343			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1344			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1345			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1346				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1347				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1348					"Connection attempt from/to broad- "
1349					"or multicast address ignored\n",
1350					s, __func__);
1351				goto dropunlock;
1352			}
1353		}
1354#endif
1355		/*
1356		 * SYN appears to be valid.  Create compressed TCP state
1357		 * for syncache.
1358		 */
1359#ifdef TCPDEBUG
1360		if (so->so_options & SO_DEBUG)
1361			tcp_trace(TA_INPUT, ostate, tp,
1362			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1363#endif
1364		tcp_dooptions(&to, optp, optlen, TO_SYN);
1365		syncache_add(&inc, &to, th, inp, &so, m);
1366		/*
1367		 * Entry added to syncache and mbuf consumed.
1368		 * Everything already unlocked by syncache_add().
1369		 */
1370		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1371		return;
1372	} else if (tp->t_state == TCPS_LISTEN) {
1373		/*
1374		 * When a listen socket is torn down the SO_ACCEPTCONN
1375		 * flag is removed first while connections are drained
1376		 * from the accept queue in a unlock/lock cycle of the
1377		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1378		 * attempt go through unhandled.
1379		 */
1380		goto dropunlock;
1381	}
1382
1383#ifdef TCP_SIGNATURE
1384	if (sig_checked == 0)  {
1385		tcp_dooptions(&to, optp, optlen,
1386		    (thflags & TH_SYN) ? TO_SYN : 0);
1387		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1388		    th, tp->t_flags)) {
1389
1390			/*
1391			 * In SYN_SENT state if it receives an RST, it is
1392			 * allowed for further processing.
1393			 */
1394			if ((thflags & TH_RST) == 0 ||
1395			    (tp->t_state == TCPS_SYN_SENT) == 0)
1396				goto dropunlock;
1397		}
1398		sig_checked = 1;
1399	}
1400#endif
1401
1402	/*
1403	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1404	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1405	 * the inpcb, and unlocks pcbinfo.
1406	 */
1407	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1408	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1409	return;
1410
1411dropwithreset:
1412	if (ti_locked == TI_WLOCKED) {
1413		INP_INFO_WUNLOCK(&V_tcbinfo);
1414		ti_locked = TI_UNLOCKED;
1415	}
1416#ifdef INVARIANTS
1417	else {
1418		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1419		    "ti_locked: %d", __func__, ti_locked));
1420		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1421	}
1422#endif
1423
1424	if (inp != NULL) {
1425		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1426		INP_WUNLOCK(inp);
1427	} else
1428		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1429	m = NULL;	/* mbuf chain got consumed. */
1430	goto drop;
1431
1432dropunlock:
1433	if (ti_locked == TI_WLOCKED) {
1434		INP_INFO_WUNLOCK(&V_tcbinfo);
1435		ti_locked = TI_UNLOCKED;
1436	}
1437#ifdef INVARIANTS
1438	else {
1439		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1440		    "ti_locked: %d", __func__, ti_locked));
1441		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1442	}
1443#endif
1444
1445	if (inp != NULL)
1446		INP_WUNLOCK(inp);
1447
1448drop:
1449	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1450	if (s != NULL)
1451		free(s, M_TCPLOG);
1452	if (m != NULL)
1453		m_freem(m);
1454}
1455
1456static void
1457tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1458    struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1459    int ti_locked)
1460{
1461	int thflags, acked, ourfinisacked, needoutput = 0;
1462	int rstreason, todrop, win;
1463	u_long tiwin;
1464	struct tcpopt to;
1465
1466#ifdef TCPDEBUG
1467	/*
1468	 * The size of tcp_saveipgen must be the size of the max ip header,
1469	 * now IPv6.
1470	 */
1471	u_char tcp_saveipgen[IP6_HDR_LEN];
1472	struct tcphdr tcp_savetcp;
1473	short ostate = 0;
1474#endif
1475	thflags = th->th_flags;
1476	tp->sackhint.last_sack_ack = 0;
1477
1478	/*
1479	 * If this is either a state-changing packet or current state isn't
1480	 * established, we require a write lock on tcbinfo.  Otherwise, we
1481	 * allow either a read lock or a write lock, as we may have acquired
1482	 * a write lock due to a race.
1483	 *
1484	 * Require a global write lock for SYN/FIN/RST segments or
1485	 * non-established connections; otherwise accept either a read or
1486	 * write lock, as we may have conservatively acquired a write lock in
1487	 * certain cases in tcp_input() (is this still true?).  Currently we
1488	 * will never enter with no lock, so we try to drop it quickly in the
1489	 * common pure ack/pure data cases.
1490	 */
1491	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1492	    tp->t_state != TCPS_ESTABLISHED) {
1493		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1494		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1495		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1496	} else {
1497#ifdef INVARIANTS
1498		if (ti_locked == TI_WLOCKED)
1499			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1500		else {
1501			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1502			    "ti_locked: %d", __func__, ti_locked));
1503			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1504		}
1505#endif
1506	}
1507	INP_WLOCK_ASSERT(tp->t_inpcb);
1508	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1509	    __func__));
1510	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1511	    __func__));
1512
1513	/*
1514	 * Segment received on connection.
1515	 * Reset idle time and keep-alive timer.
1516	 * XXX: This should be done after segment
1517	 * validation to ignore broken/spoofed segs.
1518	 */
1519	tp->t_rcvtime = ticks;
1520	if (TCPS_HAVEESTABLISHED(tp->t_state))
1521		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1522
1523	/*
1524	 * Unscale the window into a 32-bit value.
1525	 * For the SYN_SENT state the scale is zero.
1526	 */
1527	tiwin = th->th_win << tp->snd_scale;
1528
1529	/*
1530	 * TCP ECN processing.
1531	 */
1532	if (tp->t_flags & TF_ECN_PERMIT) {
1533		if (thflags & TH_CWR)
1534			tp->t_flags &= ~TF_ECN_SND_ECE;
1535		switch (iptos & IPTOS_ECN_MASK) {
1536		case IPTOS_ECN_CE:
1537			tp->t_flags |= TF_ECN_SND_ECE;
1538			TCPSTAT_INC(tcps_ecn_ce);
1539			break;
1540		case IPTOS_ECN_ECT0:
1541			TCPSTAT_INC(tcps_ecn_ect0);
1542			break;
1543		case IPTOS_ECN_ECT1:
1544			TCPSTAT_INC(tcps_ecn_ect1);
1545			break;
1546		}
1547		/* Congestion experienced. */
1548		if (thflags & TH_ECE) {
1549			cc_cong_signal(tp, th, CC_ECN);
1550		}
1551	}
1552
1553	/*
1554	 * Parse options on any incoming segment.
1555	 */
1556	tcp_dooptions(&to, (u_char *)(th + 1),
1557	    (th->th_off << 2) - sizeof(struct tcphdr),
1558	    (thflags & TH_SYN) ? TO_SYN : 0);
1559
1560	/*
1561	 * If echoed timestamp is later than the current time,
1562	 * fall back to non RFC1323 RTT calculation.  Normalize
1563	 * timestamp if syncookies were used when this connection
1564	 * was established.
1565	 */
1566	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1567		to.to_tsecr -= tp->ts_offset;
1568		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1569			to.to_tsecr = 0;
1570	}
1571
1572	/*
1573	 * Process options only when we get SYN/ACK back. The SYN case
1574	 * for incoming connections is handled in tcp_syncache.
1575	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1576	 * or <SYN,ACK>) segment itself is never scaled.
1577	 * XXX this is traditional behavior, may need to be cleaned up.
1578	 */
1579	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1580		if ((to.to_flags & TOF_SCALE) &&
1581		    (tp->t_flags & TF_REQ_SCALE)) {
1582			tp->t_flags |= TF_RCVD_SCALE;
1583			tp->snd_scale = to.to_wscale;
1584		}
1585		/*
1586		 * Initial send window.  It will be updated with
1587		 * the next incoming segment to the scaled value.
1588		 */
1589		tp->snd_wnd = th->th_win;
1590		if (to.to_flags & TOF_TS) {
1591			tp->t_flags |= TF_RCVD_TSTMP;
1592			tp->ts_recent = to.to_tsval;
1593			tp->ts_recent_age = tcp_ts_getticks();
1594		}
1595		if (to.to_flags & TOF_MSS)
1596			tcp_mss(tp, to.to_mss);
1597		if ((tp->t_flags & TF_SACK_PERMIT) &&
1598		    (to.to_flags & TOF_SACKPERM) == 0)
1599			tp->t_flags &= ~TF_SACK_PERMIT;
1600	}
1601
1602	/*
1603	 * Header prediction: check for the two common cases
1604	 * of a uni-directional data xfer.  If the packet has
1605	 * no control flags, is in-sequence, the window didn't
1606	 * change and we're not retransmitting, it's a
1607	 * candidate.  If the length is zero and the ack moved
1608	 * forward, we're the sender side of the xfer.  Just
1609	 * free the data acked & wake any higher level process
1610	 * that was blocked waiting for space.  If the length
1611	 * is non-zero and the ack didn't move, we're the
1612	 * receiver side.  If we're getting packets in-order
1613	 * (the reassembly queue is empty), add the data to
1614	 * the socket buffer and note that we need a delayed ack.
1615	 * Make sure that the hidden state-flags are also off.
1616	 * Since we check for TCPS_ESTABLISHED first, it can only
1617	 * be TH_NEEDSYN.
1618	 */
1619	if (tp->t_state == TCPS_ESTABLISHED &&
1620	    th->th_seq == tp->rcv_nxt &&
1621	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1622	    tp->snd_nxt == tp->snd_max &&
1623	    tiwin && tiwin == tp->snd_wnd &&
1624	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1625	    LIST_EMPTY(&tp->t_segq) &&
1626	    ((to.to_flags & TOF_TS) == 0 ||
1627	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1628
1629		/*
1630		 * If last ACK falls within this segment's sequence numbers,
1631		 * record the timestamp.
1632		 * NOTE that the test is modified according to the latest
1633		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1634		 */
1635		if ((to.to_flags & TOF_TS) != 0 &&
1636		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1637			tp->ts_recent_age = tcp_ts_getticks();
1638			tp->ts_recent = to.to_tsval;
1639		}
1640
1641		if (tlen == 0) {
1642			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1643			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1644			    !IN_RECOVERY(tp->t_flags) &&
1645			    (to.to_flags & TOF_SACK) == 0 &&
1646			    TAILQ_EMPTY(&tp->snd_holes)) {
1647				/*
1648				 * This is a pure ack for outstanding data.
1649				 */
1650				if (ti_locked == TI_WLOCKED)
1651					INP_INFO_WUNLOCK(&V_tcbinfo);
1652				ti_locked = TI_UNLOCKED;
1653
1654				TCPSTAT_INC(tcps_predack);
1655
1656				/*
1657				 * "bad retransmit" recovery.
1658				 */
1659				if (tp->t_rxtshift == 1 &&
1660				    tp->t_flags & TF_PREVVALID &&
1661				    (int)(ticks - tp->t_badrxtwin) < 0) {
1662					cc_cong_signal(tp, th, CC_RTO_ERR);
1663				}
1664
1665				/*
1666				 * Recalculate the transmit timer / rtt.
1667				 *
1668				 * Some boxes send broken timestamp replies
1669				 * during the SYN+ACK phase, ignore
1670				 * timestamps of 0 or we could calculate a
1671				 * huge RTT and blow up the retransmit timer.
1672				 */
1673				if ((to.to_flags & TOF_TS) != 0 &&
1674				    to.to_tsecr) {
1675					u_int t;
1676
1677					t = tcp_ts_getticks() - to.to_tsecr;
1678					if (!tp->t_rttlow || tp->t_rttlow > t)
1679						tp->t_rttlow = t;
1680					tcp_xmit_timer(tp,
1681					    TCP_TS_TO_TICKS(t) + 1);
1682				} else if (tp->t_rtttime &&
1683				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1684					if (!tp->t_rttlow ||
1685					    tp->t_rttlow > ticks - tp->t_rtttime)
1686						tp->t_rttlow = ticks - tp->t_rtttime;
1687					tcp_xmit_timer(tp,
1688							ticks - tp->t_rtttime);
1689				}
1690				acked = BYTES_THIS_ACK(tp, th);
1691
1692				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1693				hhook_run_tcp_est_in(tp, th, &to);
1694
1695				TCPSTAT_INC(tcps_rcvackpack);
1696				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1697				sbdrop(&so->so_snd, acked);
1698				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1699				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1700					tp->snd_recover = th->th_ack - 1;
1701
1702				/*
1703				 * Let the congestion control algorithm update
1704				 * congestion control related information. This
1705				 * typically means increasing the congestion
1706				 * window.
1707				 */
1708				cc_ack_received(tp, th, CC_ACK);
1709
1710				tp->snd_una = th->th_ack;
1711				/*
1712				 * Pull snd_wl2 up to prevent seq wrap relative
1713				 * to th_ack.
1714				 */
1715				tp->snd_wl2 = th->th_ack;
1716				tp->t_dupacks = 0;
1717				m_freem(m);
1718				ND6_HINT(tp); /* Some progress has been made. */
1719
1720				/*
1721				 * If all outstanding data are acked, stop
1722				 * retransmit timer, otherwise restart timer
1723				 * using current (possibly backed-off) value.
1724				 * If process is waiting for space,
1725				 * wakeup/selwakeup/signal.  If data
1726				 * are ready to send, let tcp_output
1727				 * decide between more output or persist.
1728				 */
1729#ifdef TCPDEBUG
1730				if (so->so_options & SO_DEBUG)
1731					tcp_trace(TA_INPUT, ostate, tp,
1732					    (void *)tcp_saveipgen,
1733					    &tcp_savetcp, 0);
1734#endif
1735				if (tp->snd_una == tp->snd_max)
1736					tcp_timer_activate(tp, TT_REXMT, 0);
1737				else if (!tcp_timer_active(tp, TT_PERSIST))
1738					tcp_timer_activate(tp, TT_REXMT,
1739						      tp->t_rxtcur);
1740				sowwakeup(so);
1741				if (so->so_snd.sb_cc)
1742					(void) tcp_output(tp);
1743				goto check_delack;
1744			}
1745		} else if (th->th_ack == tp->snd_una &&
1746		    tlen <= sbspace(&so->so_rcv)) {
1747			int newsize = 0;	/* automatic sockbuf scaling */
1748
1749			/*
1750			 * This is a pure, in-sequence data packet with
1751			 * nothing on the reassembly queue and we have enough
1752			 * buffer space to take it.
1753			 */
1754			if (ti_locked == TI_WLOCKED)
1755				INP_INFO_WUNLOCK(&V_tcbinfo);
1756			ti_locked = TI_UNLOCKED;
1757
1758			/* Clean receiver SACK report if present */
1759			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1760				tcp_clean_sackreport(tp);
1761			TCPSTAT_INC(tcps_preddat);
1762			tp->rcv_nxt += tlen;
1763			/*
1764			 * Pull snd_wl1 up to prevent seq wrap relative to
1765			 * th_seq.
1766			 */
1767			tp->snd_wl1 = th->th_seq;
1768			/*
1769			 * Pull rcv_up up to prevent seq wrap relative to
1770			 * rcv_nxt.
1771			 */
1772			tp->rcv_up = tp->rcv_nxt;
1773			TCPSTAT_INC(tcps_rcvpack);
1774			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1775			ND6_HINT(tp);	/* Some progress has been made */
1776#ifdef TCPDEBUG
1777			if (so->so_options & SO_DEBUG)
1778				tcp_trace(TA_INPUT, ostate, tp,
1779				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1780#endif
1781		/*
1782		 * Automatic sizing of receive socket buffer.  Often the send
1783		 * buffer size is not optimally adjusted to the actual network
1784		 * conditions at hand (delay bandwidth product).  Setting the
1785		 * buffer size too small limits throughput on links with high
1786		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1787		 *
1788		 * On the receive side the socket buffer memory is only rarely
1789		 * used to any significant extent.  This allows us to be much
1790		 * more aggressive in scaling the receive socket buffer.  For
1791		 * the case that the buffer space is actually used to a large
1792		 * extent and we run out of kernel memory we can simply drop
1793		 * the new segments; TCP on the sender will just retransmit it
1794		 * later.  Setting the buffer size too big may only consume too
1795		 * much kernel memory if the application doesn't read() from
1796		 * the socket or packet loss or reordering makes use of the
1797		 * reassembly queue.
1798		 *
1799		 * The criteria to step up the receive buffer one notch are:
1800		 *  1. the number of bytes received during the time it takes
1801		 *     one timestamp to be reflected back to us (the RTT);
1802		 *  2. received bytes per RTT is within seven eighth of the
1803		 *     current socket buffer size;
1804		 *  3. receive buffer size has not hit maximal automatic size;
1805		 *
1806		 * This algorithm does one step per RTT at most and only if
1807		 * we receive a bulk stream w/o packet losses or reorderings.
1808		 * Shrinking the buffer during idle times is not necessary as
1809		 * it doesn't consume any memory when idle.
1810		 *
1811		 * TODO: Only step up if the application is actually serving
1812		 * the buffer to better manage the socket buffer resources.
1813		 */
1814			if (V_tcp_do_autorcvbuf &&
1815			    to.to_tsecr &&
1816			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1817				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1818				    to.to_tsecr - tp->rfbuf_ts < hz) {
1819					if (tp->rfbuf_cnt >
1820					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1821					    so->so_rcv.sb_hiwat <
1822					    V_tcp_autorcvbuf_max) {
1823						newsize =
1824						    min(so->so_rcv.sb_hiwat +
1825						    V_tcp_autorcvbuf_inc,
1826						    V_tcp_autorcvbuf_max);
1827					}
1828					/* Start over with next RTT. */
1829					tp->rfbuf_ts = 0;
1830					tp->rfbuf_cnt = 0;
1831				} else
1832					tp->rfbuf_cnt += tlen;	/* add up */
1833			}
1834
1835			/* Add data to socket buffer. */
1836			SOCKBUF_LOCK(&so->so_rcv);
1837			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1838				m_freem(m);
1839			} else {
1840				/*
1841				 * Set new socket buffer size.
1842				 * Give up when limit is reached.
1843				 */
1844				if (newsize)
1845					if (!sbreserve_locked(&so->so_rcv,
1846					    newsize, so, NULL))
1847						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1848				m_adj(m, drop_hdrlen);	/* delayed header drop */
1849				sbappendstream_locked(&so->so_rcv, m);
1850			}
1851			/* NB: sorwakeup_locked() does an implicit unlock. */
1852			sorwakeup_locked(so);
1853			if (DELAY_ACK(tp)) {
1854				tp->t_flags |= TF_DELACK;
1855			} else {
1856				tp->t_flags |= TF_ACKNOW;
1857				tcp_output(tp);
1858			}
1859			goto check_delack;
1860		}
1861	}
1862
1863	/*
1864	 * Calculate amount of space in receive window,
1865	 * and then do TCP input processing.
1866	 * Receive window is amount of space in rcv queue,
1867	 * but not less than advertised window.
1868	 */
1869	win = sbspace(&so->so_rcv);
1870	if (win < 0)
1871		win = 0;
1872	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1873
1874	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1875	tp->rfbuf_ts = 0;
1876	tp->rfbuf_cnt = 0;
1877
1878	switch (tp->t_state) {
1879
1880	/*
1881	 * If the state is SYN_RECEIVED:
1882	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1883	 */
1884	case TCPS_SYN_RECEIVED:
1885		if ((thflags & TH_ACK) &&
1886		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1887		     SEQ_GT(th->th_ack, tp->snd_max))) {
1888				rstreason = BANDLIM_RST_OPENPORT;
1889				goto dropwithreset;
1890		}
1891		break;
1892
1893	/*
1894	 * If the state is SYN_SENT:
1895	 *	if seg contains an ACK, but not for our SYN, drop the input.
1896	 *	if seg contains a RST, then drop the connection.
1897	 *	if seg does not contain SYN, then drop it.
1898	 * Otherwise this is an acceptable SYN segment
1899	 *	initialize tp->rcv_nxt and tp->irs
1900	 *	if seg contains ack then advance tp->snd_una
1901	 *	if seg contains an ECE and ECN support is enabled, the stream
1902	 *	    is ECN capable.
1903	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1904	 *	arrange for segment to be acked (eventually)
1905	 *	continue processing rest of data/controls, beginning with URG
1906	 */
1907	case TCPS_SYN_SENT:
1908		if ((thflags & TH_ACK) &&
1909		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1910		     SEQ_GT(th->th_ack, tp->snd_max))) {
1911			rstreason = BANDLIM_UNLIMITED;
1912			goto dropwithreset;
1913		}
1914		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1915			tp = tcp_drop(tp, ECONNREFUSED);
1916		if (thflags & TH_RST)
1917			goto drop;
1918		if (!(thflags & TH_SYN))
1919			goto drop;
1920
1921		tp->irs = th->th_seq;
1922		tcp_rcvseqinit(tp);
1923		if (thflags & TH_ACK) {
1924			TCPSTAT_INC(tcps_connects);
1925			soisconnected(so);
1926#ifdef MAC
1927			mac_socketpeer_set_from_mbuf(m, so);
1928#endif
1929			/* Do window scaling on this connection? */
1930			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1931				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1932				tp->rcv_scale = tp->request_r_scale;
1933			}
1934			tp->rcv_adv += imin(tp->rcv_wnd,
1935			    TCP_MAXWIN << tp->rcv_scale);
1936			tp->snd_una++;		/* SYN is acked */
1937			/*
1938			 * If there's data, delay ACK; if there's also a FIN
1939			 * ACKNOW will be turned on later.
1940			 */
1941			if (DELAY_ACK(tp) && tlen != 0)
1942				tcp_timer_activate(tp, TT_DELACK,
1943				    tcp_delacktime);
1944			else
1945				tp->t_flags |= TF_ACKNOW;
1946
1947			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1948				tp->t_flags |= TF_ECN_PERMIT;
1949				TCPSTAT_INC(tcps_ecn_shs);
1950			}
1951
1952			/*
1953			 * Received <SYN,ACK> in SYN_SENT[*] state.
1954			 * Transitions:
1955			 *	SYN_SENT  --> ESTABLISHED
1956			 *	SYN_SENT* --> FIN_WAIT_1
1957			 */
1958			tp->t_starttime = ticks;
1959			if (tp->t_flags & TF_NEEDFIN) {
1960				tp->t_state = TCPS_FIN_WAIT_1;
1961				tp->t_flags &= ~TF_NEEDFIN;
1962				thflags &= ~TH_SYN;
1963			} else {
1964				tp->t_state = TCPS_ESTABLISHED;
1965				cc_conn_init(tp);
1966				tcp_timer_activate(tp, TT_KEEP,
1967				    TP_KEEPIDLE(tp));
1968			}
1969		} else {
1970			/*
1971			 * Received initial SYN in SYN-SENT[*] state =>
1972			 * simultaneous open.  If segment contains CC option
1973			 * and there is a cached CC, apply TAO test.
1974			 * If it succeeds, connection is * half-synchronized.
1975			 * Otherwise, do 3-way handshake:
1976			 *        SYN-SENT -> SYN-RECEIVED
1977			 *        SYN-SENT* -> SYN-RECEIVED*
1978			 * If there was no CC option, clear cached CC value.
1979			 */
1980			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1981			tcp_timer_activate(tp, TT_REXMT, 0);
1982			tp->t_state = TCPS_SYN_RECEIVED;
1983		}
1984
1985		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1986		    "ti_locked %d", __func__, ti_locked));
1987		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1988		INP_WLOCK_ASSERT(tp->t_inpcb);
1989
1990		/*
1991		 * Advance th->th_seq to correspond to first data byte.
1992		 * If data, trim to stay within window,
1993		 * dropping FIN if necessary.
1994		 */
1995		th->th_seq++;
1996		if (tlen > tp->rcv_wnd) {
1997			todrop = tlen - tp->rcv_wnd;
1998			m_adj(m, -todrop);
1999			tlen = tp->rcv_wnd;
2000			thflags &= ~TH_FIN;
2001			TCPSTAT_INC(tcps_rcvpackafterwin);
2002			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2003		}
2004		tp->snd_wl1 = th->th_seq - 1;
2005		tp->rcv_up = th->th_seq;
2006		/*
2007		 * Client side of transaction: already sent SYN and data.
2008		 * If the remote host used T/TCP to validate the SYN,
2009		 * our data will be ACK'd; if so, enter normal data segment
2010		 * processing in the middle of step 5, ack processing.
2011		 * Otherwise, goto step 6.
2012		 */
2013		if (thflags & TH_ACK)
2014			goto process_ACK;
2015
2016		goto step6;
2017
2018	/*
2019	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2020	 *      do normal processing.
2021	 *
2022	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2023	 */
2024	case TCPS_LAST_ACK:
2025	case TCPS_CLOSING:
2026		break;  /* continue normal processing */
2027	}
2028
2029	/*
2030	 * States other than LISTEN or SYN_SENT.
2031	 * First check the RST flag and sequence number since reset segments
2032	 * are exempt from the timestamp and connection count tests.  This
2033	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2034	 * below which allowed reset segments in half the sequence space
2035	 * to fall though and be processed (which gives forged reset
2036	 * segments with a random sequence number a 50 percent chance of
2037	 * killing a connection).
2038	 * Then check timestamp, if present.
2039	 * Then check the connection count, if present.
2040	 * Then check that at least some bytes of segment are within
2041	 * receive window.  If segment begins before rcv_nxt,
2042	 * drop leading data (and SYN); if nothing left, just ack.
2043	 *
2044	 *
2045	 * If the RST bit is set, check the sequence number to see
2046	 * if this is a valid reset segment.
2047	 * RFC 793 page 37:
2048	 *   In all states except SYN-SENT, all reset (RST) segments
2049	 *   are validated by checking their SEQ-fields.  A reset is
2050	 *   valid if its sequence number is in the window.
2051	 * Note: this does not take into account delayed ACKs, so
2052	 *   we should test against last_ack_sent instead of rcv_nxt.
2053	 *   The sequence number in the reset segment is normally an
2054	 *   echo of our outgoing acknowlegement numbers, but some hosts
2055	 *   send a reset with the sequence number at the rightmost edge
2056	 *   of our receive window, and we have to handle this case.
2057	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2058	 *   that brute force RST attacks are possible.  To combat this,
2059	 *   we use a much stricter check while in the ESTABLISHED state,
2060	 *   only accepting RSTs where the sequence number is equal to
2061	 *   last_ack_sent.  In all other states (the states in which a
2062	 *   RST is more likely), the more permissive check is used.
2063	 * If we have multiple segments in flight, the initial reset
2064	 * segment sequence numbers will be to the left of last_ack_sent,
2065	 * but they will eventually catch up.
2066	 * In any case, it never made sense to trim reset segments to
2067	 * fit the receive window since RFC 1122 says:
2068	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2069	 *
2070	 *    A TCP SHOULD allow a received RST segment to include data.
2071	 *
2072	 *    DISCUSSION
2073	 *         It has been suggested that a RST segment could contain
2074	 *         ASCII text that encoded and explained the cause of the
2075	 *         RST.  No standard has yet been established for such
2076	 *         data.
2077	 *
2078	 * If the reset segment passes the sequence number test examine
2079	 * the state:
2080	 *    SYN_RECEIVED STATE:
2081	 *	If passive open, return to LISTEN state.
2082	 *	If active open, inform user that connection was refused.
2083	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2084	 *	Inform user that connection was reset, and close tcb.
2085	 *    CLOSING, LAST_ACK STATES:
2086	 *	Close the tcb.
2087	 *    TIME_WAIT STATE:
2088	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2089	 *      RFC 1337.
2090	 */
2091	if (thflags & TH_RST) {
2092		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2093		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2094			switch (tp->t_state) {
2095
2096			case TCPS_SYN_RECEIVED:
2097				so->so_error = ECONNREFUSED;
2098				goto close;
2099
2100			case TCPS_ESTABLISHED:
2101				if (V_tcp_insecure_rst == 0 &&
2102				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2103				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2104				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2105				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2106					TCPSTAT_INC(tcps_badrst);
2107					goto drop;
2108				}
2109				/* FALLTHROUGH */
2110			case TCPS_FIN_WAIT_1:
2111			case TCPS_FIN_WAIT_2:
2112			case TCPS_CLOSE_WAIT:
2113				so->so_error = ECONNRESET;
2114			close:
2115				KASSERT(ti_locked == TI_WLOCKED,
2116				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2117				    ti_locked));
2118				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2119
2120				tp->t_state = TCPS_CLOSED;
2121				TCPSTAT_INC(tcps_drops);
2122				tp = tcp_close(tp);
2123				break;
2124
2125			case TCPS_CLOSING:
2126			case TCPS_LAST_ACK:
2127				KASSERT(ti_locked == TI_WLOCKED,
2128				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2129				    ti_locked));
2130				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2131
2132				tp = tcp_close(tp);
2133				break;
2134			}
2135		}
2136		goto drop;
2137	}
2138
2139	/*
2140	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2141	 * and it's less than ts_recent, drop it.
2142	 */
2143	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2144	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2145
2146		/* Check to see if ts_recent is over 24 days old.  */
2147		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2148			/*
2149			 * Invalidate ts_recent.  If this segment updates
2150			 * ts_recent, the age will be reset later and ts_recent
2151			 * will get a valid value.  If it does not, setting
2152			 * ts_recent to zero will at least satisfy the
2153			 * requirement that zero be placed in the timestamp
2154			 * echo reply when ts_recent isn't valid.  The
2155			 * age isn't reset until we get a valid ts_recent
2156			 * because we don't want out-of-order segments to be
2157			 * dropped when ts_recent is old.
2158			 */
2159			tp->ts_recent = 0;
2160		} else {
2161			TCPSTAT_INC(tcps_rcvduppack);
2162			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2163			TCPSTAT_INC(tcps_pawsdrop);
2164			if (tlen)
2165				goto dropafterack;
2166			goto drop;
2167		}
2168	}
2169
2170	/*
2171	 * In the SYN-RECEIVED state, validate that the packet belongs to
2172	 * this connection before trimming the data to fit the receive
2173	 * window.  Check the sequence number versus IRS since we know
2174	 * the sequence numbers haven't wrapped.  This is a partial fix
2175	 * for the "LAND" DoS attack.
2176	 */
2177	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2178		rstreason = BANDLIM_RST_OPENPORT;
2179		goto dropwithreset;
2180	}
2181
2182	todrop = tp->rcv_nxt - th->th_seq;
2183	if (todrop > 0) {
2184		if (thflags & TH_SYN) {
2185			thflags &= ~TH_SYN;
2186			th->th_seq++;
2187			if (th->th_urp > 1)
2188				th->th_urp--;
2189			else
2190				thflags &= ~TH_URG;
2191			todrop--;
2192		}
2193		/*
2194		 * Following if statement from Stevens, vol. 2, p. 960.
2195		 */
2196		if (todrop > tlen
2197		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2198			/*
2199			 * Any valid FIN must be to the left of the window.
2200			 * At this point the FIN must be a duplicate or out
2201			 * of sequence; drop it.
2202			 */
2203			thflags &= ~TH_FIN;
2204
2205			/*
2206			 * Send an ACK to resynchronize and drop any data.
2207			 * But keep on processing for RST or ACK.
2208			 */
2209			tp->t_flags |= TF_ACKNOW;
2210			todrop = tlen;
2211			TCPSTAT_INC(tcps_rcvduppack);
2212			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2213		} else {
2214			TCPSTAT_INC(tcps_rcvpartduppack);
2215			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2216		}
2217		drop_hdrlen += todrop;	/* drop from the top afterwards */
2218		th->th_seq += todrop;
2219		tlen -= todrop;
2220		if (th->th_urp > todrop)
2221			th->th_urp -= todrop;
2222		else {
2223			thflags &= ~TH_URG;
2224			th->th_urp = 0;
2225		}
2226	}
2227
2228	/*
2229	 * If new data are received on a connection after the
2230	 * user processes are gone, then RST the other end.
2231	 */
2232	if ((so->so_state & SS_NOFDREF) &&
2233	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2234		char *s;
2235
2236		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2237		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2238		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2239
2240		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
2241			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
2242			    "was closed, sending RST and removing tcpcb\n",
2243			    s, __func__, tcpstates[tp->t_state], tlen);
2244			free(s, M_TCPLOG);
2245		}
2246		tp = tcp_close(tp);
2247		TCPSTAT_INC(tcps_rcvafterclose);
2248		rstreason = BANDLIM_UNLIMITED;
2249		goto dropwithreset;
2250	}
2251
2252	/*
2253	 * If segment ends after window, drop trailing data
2254	 * (and PUSH and FIN); if nothing left, just ACK.
2255	 */
2256	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2257	if (todrop > 0) {
2258		TCPSTAT_INC(tcps_rcvpackafterwin);
2259		if (todrop >= tlen) {
2260			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2261			/*
2262			 * If window is closed can only take segments at
2263			 * window edge, and have to drop data and PUSH from
2264			 * incoming segments.  Continue processing, but
2265			 * remember to ack.  Otherwise, drop segment
2266			 * and ack.
2267			 */
2268			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2269				tp->t_flags |= TF_ACKNOW;
2270				TCPSTAT_INC(tcps_rcvwinprobe);
2271			} else
2272				goto dropafterack;
2273		} else
2274			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2275		m_adj(m, -todrop);
2276		tlen -= todrop;
2277		thflags &= ~(TH_PUSH|TH_FIN);
2278	}
2279
2280	/*
2281	 * If last ACK falls within this segment's sequence numbers,
2282	 * record its timestamp.
2283	 * NOTE:
2284	 * 1) That the test incorporates suggestions from the latest
2285	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2286	 * 2) That updating only on newer timestamps interferes with
2287	 *    our earlier PAWS tests, so this check should be solely
2288	 *    predicated on the sequence space of this segment.
2289	 * 3) That we modify the segment boundary check to be
2290	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2291	 *    instead of RFC1323's
2292	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2293	 *    This modified check allows us to overcome RFC1323's
2294	 *    limitations as described in Stevens TCP/IP Illustrated
2295	 *    Vol. 2 p.869. In such cases, we can still calculate the
2296	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2297	 */
2298	if ((to.to_flags & TOF_TS) != 0 &&
2299	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2300	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2301		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2302		tp->ts_recent_age = tcp_ts_getticks();
2303		tp->ts_recent = to.to_tsval;
2304	}
2305
2306	/*
2307	 * If a SYN is in the window, then this is an
2308	 * error and we send an RST and drop the connection.
2309	 */
2310	if (thflags & TH_SYN) {
2311		KASSERT(ti_locked == TI_WLOCKED,
2312		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2313		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2314
2315		tp = tcp_drop(tp, ECONNRESET);
2316		rstreason = BANDLIM_UNLIMITED;
2317		goto drop;
2318	}
2319
2320	/*
2321	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2322	 * flag is on (half-synchronized state), then queue data for
2323	 * later processing; else drop segment and return.
2324	 */
2325	if ((thflags & TH_ACK) == 0) {
2326		if (tp->t_state == TCPS_SYN_RECEIVED ||
2327		    (tp->t_flags & TF_NEEDSYN))
2328			goto step6;
2329		else if (tp->t_flags & TF_ACKNOW)
2330			goto dropafterack;
2331		else
2332			goto drop;
2333	}
2334
2335	/*
2336	 * Ack processing.
2337	 */
2338	switch (tp->t_state) {
2339
2340	/*
2341	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2342	 * ESTABLISHED state and continue processing.
2343	 * The ACK was checked above.
2344	 */
2345	case TCPS_SYN_RECEIVED:
2346
2347		TCPSTAT_INC(tcps_connects);
2348		soisconnected(so);
2349		/* Do window scaling? */
2350		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2351			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2352			tp->rcv_scale = tp->request_r_scale;
2353			tp->snd_wnd = tiwin;
2354		}
2355		/*
2356		 * Make transitions:
2357		 *      SYN-RECEIVED  -> ESTABLISHED
2358		 *      SYN-RECEIVED* -> FIN-WAIT-1
2359		 */
2360		tp->t_starttime = ticks;
2361		if (tp->t_flags & TF_NEEDFIN) {
2362			tp->t_state = TCPS_FIN_WAIT_1;
2363			tp->t_flags &= ~TF_NEEDFIN;
2364		} else {
2365			tp->t_state = TCPS_ESTABLISHED;
2366			cc_conn_init(tp);
2367			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2368		}
2369		/*
2370		 * If segment contains data or ACK, will call tcp_reass()
2371		 * later; if not, do so now to pass queued data to user.
2372		 */
2373		if (tlen == 0 && (thflags & TH_FIN) == 0)
2374			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2375			    (struct mbuf *)0);
2376		tp->snd_wl1 = th->th_seq - 1;
2377		/* FALLTHROUGH */
2378
2379	/*
2380	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2381	 * ACKs.  If the ack is in the range
2382	 *	tp->snd_una < th->th_ack <= tp->snd_max
2383	 * then advance tp->snd_una to th->th_ack and drop
2384	 * data from the retransmission queue.  If this ACK reflects
2385	 * more up to date window information we update our window information.
2386	 */
2387	case TCPS_ESTABLISHED:
2388	case TCPS_FIN_WAIT_1:
2389	case TCPS_FIN_WAIT_2:
2390	case TCPS_CLOSE_WAIT:
2391	case TCPS_CLOSING:
2392	case TCPS_LAST_ACK:
2393		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2394			TCPSTAT_INC(tcps_rcvacktoomuch);
2395			goto dropafterack;
2396		}
2397		if ((tp->t_flags & TF_SACK_PERMIT) &&
2398		    ((to.to_flags & TOF_SACK) ||
2399		     !TAILQ_EMPTY(&tp->snd_holes)))
2400			tcp_sack_doack(tp, &to, th->th_ack);
2401
2402		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2403		hhook_run_tcp_est_in(tp, th, &to);
2404
2405		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2406			if (tlen == 0 && tiwin == tp->snd_wnd) {
2407				TCPSTAT_INC(tcps_rcvdupack);
2408				/*
2409				 * If we have outstanding data (other than
2410				 * a window probe), this is a completely
2411				 * duplicate ack (ie, window info didn't
2412				 * change), the ack is the biggest we've
2413				 * seen and we've seen exactly our rexmt
2414				 * threshhold of them, assume a packet
2415				 * has been dropped and retransmit it.
2416				 * Kludge snd_nxt & the congestion
2417				 * window so we send only this one
2418				 * packet.
2419				 *
2420				 * We know we're losing at the current
2421				 * window size so do congestion avoidance
2422				 * (set ssthresh to half the current window
2423				 * and pull our congestion window back to
2424				 * the new ssthresh).
2425				 *
2426				 * Dup acks mean that packets have left the
2427				 * network (they're now cached at the receiver)
2428				 * so bump cwnd by the amount in the receiver
2429				 * to keep a constant cwnd packets in the
2430				 * network.
2431				 *
2432				 * When using TCP ECN, notify the peer that
2433				 * we reduced the cwnd.
2434				 */
2435				if (!tcp_timer_active(tp, TT_REXMT) ||
2436				    th->th_ack != tp->snd_una)
2437					tp->t_dupacks = 0;
2438				else if (++tp->t_dupacks > tcprexmtthresh ||
2439				     IN_FASTRECOVERY(tp->t_flags)) {
2440					cc_ack_received(tp, th, CC_DUPACK);
2441					if ((tp->t_flags & TF_SACK_PERMIT) &&
2442					    IN_FASTRECOVERY(tp->t_flags)) {
2443						int awnd;
2444
2445						/*
2446						 * Compute the amount of data in flight first.
2447						 * We can inject new data into the pipe iff
2448						 * we have less than 1/2 the original window's
2449						 * worth of data in flight.
2450						 */
2451						awnd = (tp->snd_nxt - tp->snd_fack) +
2452							tp->sackhint.sack_bytes_rexmit;
2453						if (awnd < tp->snd_ssthresh) {
2454							tp->snd_cwnd += tp->t_maxseg;
2455							if (tp->snd_cwnd > tp->snd_ssthresh)
2456								tp->snd_cwnd = tp->snd_ssthresh;
2457						}
2458					} else
2459						tp->snd_cwnd += tp->t_maxseg;
2460					if ((thflags & TH_FIN) &&
2461					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2462						/*
2463						 * If its a fin we need to process
2464						 * it to avoid a race where both
2465						 * sides enter FIN-WAIT and send FIN|ACK
2466						 * at the same time.
2467						 */
2468						break;
2469					}
2470					(void) tcp_output(tp);
2471					goto drop;
2472				} else if (tp->t_dupacks == tcprexmtthresh) {
2473					tcp_seq onxt = tp->snd_nxt;
2474
2475					/*
2476					 * If we're doing sack, check to
2477					 * see if we're already in sack
2478					 * recovery. If we're not doing sack,
2479					 * check to see if we're in newreno
2480					 * recovery.
2481					 */
2482					if (tp->t_flags & TF_SACK_PERMIT) {
2483						if (IN_FASTRECOVERY(tp->t_flags)) {
2484							tp->t_dupacks = 0;
2485							break;
2486						}
2487					} else {
2488						if (SEQ_LEQ(th->th_ack,
2489						    tp->snd_recover)) {
2490							tp->t_dupacks = 0;
2491							break;
2492						}
2493					}
2494					/* Congestion signal before ack. */
2495					cc_cong_signal(tp, th, CC_NDUPACK);
2496					cc_ack_received(tp, th, CC_DUPACK);
2497					tcp_timer_activate(tp, TT_REXMT, 0);
2498					tp->t_rtttime = 0;
2499					if (tp->t_flags & TF_SACK_PERMIT) {
2500						TCPSTAT_INC(
2501						    tcps_sack_recovery_episode);
2502						tp->sack_newdata = tp->snd_nxt;
2503						tp->snd_cwnd = tp->t_maxseg;
2504						(void) tcp_output(tp);
2505						goto drop;
2506					}
2507					tp->snd_nxt = th->th_ack;
2508					tp->snd_cwnd = tp->t_maxseg;
2509					if ((thflags & TH_FIN) &&
2510					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2511						/*
2512						 * If its a fin we need to process
2513						 * it to avoid a race where both
2514						 * sides enter FIN-WAIT and send FIN|ACK
2515						 * at the same time.
2516						 */
2517						break;
2518					}
2519					(void) tcp_output(tp);
2520					KASSERT(tp->snd_limited <= 2,
2521					    ("%s: tp->snd_limited too big",
2522					    __func__));
2523					tp->snd_cwnd = tp->snd_ssthresh +
2524					     tp->t_maxseg *
2525					     (tp->t_dupacks - tp->snd_limited);
2526					if (SEQ_GT(onxt, tp->snd_nxt))
2527						tp->snd_nxt = onxt;
2528					goto drop;
2529				} else if (V_tcp_do_rfc3042) {
2530					cc_ack_received(tp, th, CC_DUPACK);
2531					u_long oldcwnd = tp->snd_cwnd;
2532					tcp_seq oldsndmax = tp->snd_max;
2533					u_int sent;
2534					int avail;
2535
2536					KASSERT(tp->t_dupacks == 1 ||
2537					    tp->t_dupacks == 2,
2538					    ("%s: dupacks not 1 or 2",
2539					    __func__));
2540					if (tp->t_dupacks == 1)
2541						tp->snd_limited = 0;
2542					tp->snd_cwnd =
2543					    (tp->snd_nxt - tp->snd_una) +
2544					    (tp->t_dupacks - tp->snd_limited) *
2545					    tp->t_maxseg;
2546					if ((thflags & TH_FIN) &&
2547					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2548						/*
2549						 * If its a fin we need to process
2550						 * it to avoid a race where both
2551						 * sides enter FIN-WAIT and send FIN|ACK
2552						 * at the same time.
2553						 */
2554						break;
2555					}
2556					/*
2557					 * Only call tcp_output when there
2558					 * is new data available to be sent.
2559					 * Otherwise we would send pure ACKs.
2560					 */
2561					SOCKBUF_LOCK(&so->so_snd);
2562					avail = so->so_snd.sb_cc -
2563					    (tp->snd_nxt - tp->snd_una);
2564					SOCKBUF_UNLOCK(&so->so_snd);
2565					if (avail > 0)
2566						(void) tcp_output(tp);
2567					sent = tp->snd_max - oldsndmax;
2568					if (sent > tp->t_maxseg) {
2569						KASSERT((tp->t_dupacks == 2 &&
2570						    tp->snd_limited == 0) ||
2571						   (sent == tp->t_maxseg + 1 &&
2572						    tp->t_flags & TF_SENTFIN),
2573						    ("%s: sent too much",
2574						    __func__));
2575						tp->snd_limited = 2;
2576					} else if (sent > 0)
2577						++tp->snd_limited;
2578					tp->snd_cwnd = oldcwnd;
2579					goto drop;
2580				}
2581			} else
2582				tp->t_dupacks = 0;
2583			break;
2584		}
2585
2586		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2587		    ("%s: th_ack <= snd_una", __func__));
2588
2589		/*
2590		 * If the congestion window was inflated to account
2591		 * for the other side's cached packets, retract it.
2592		 */
2593		if (IN_FASTRECOVERY(tp->t_flags)) {
2594			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2595				if (tp->t_flags & TF_SACK_PERMIT)
2596					tcp_sack_partialack(tp, th);
2597				else
2598					tcp_newreno_partial_ack(tp, th);
2599			} else
2600				cc_post_recovery(tp, th);
2601		}
2602		tp->t_dupacks = 0;
2603		/*
2604		 * If we reach this point, ACK is not a duplicate,
2605		 *     i.e., it ACKs something we sent.
2606		 */
2607		if (tp->t_flags & TF_NEEDSYN) {
2608			/*
2609			 * T/TCP: Connection was half-synchronized, and our
2610			 * SYN has been ACK'd (so connection is now fully
2611			 * synchronized).  Go to non-starred state,
2612			 * increment snd_una for ACK of SYN, and check if
2613			 * we can do window scaling.
2614			 */
2615			tp->t_flags &= ~TF_NEEDSYN;
2616			tp->snd_una++;
2617			/* Do window scaling? */
2618			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2619				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2620				tp->rcv_scale = tp->request_r_scale;
2621				/* Send window already scaled. */
2622			}
2623		}
2624
2625process_ACK:
2626		INP_WLOCK_ASSERT(tp->t_inpcb);
2627
2628		acked = BYTES_THIS_ACK(tp, th);
2629		TCPSTAT_INC(tcps_rcvackpack);
2630		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2631
2632		/*
2633		 * If we just performed our first retransmit, and the ACK
2634		 * arrives within our recovery window, then it was a mistake
2635		 * to do the retransmit in the first place.  Recover our
2636		 * original cwnd and ssthresh, and proceed to transmit where
2637		 * we left off.
2638		 */
2639		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2640		    (int)(ticks - tp->t_badrxtwin) < 0)
2641			cc_cong_signal(tp, th, CC_RTO_ERR);
2642
2643		/*
2644		 * If we have a timestamp reply, update smoothed
2645		 * round trip time.  If no timestamp is present but
2646		 * transmit timer is running and timed sequence
2647		 * number was acked, update smoothed round trip time.
2648		 * Since we now have an rtt measurement, cancel the
2649		 * timer backoff (cf., Phil Karn's retransmit alg.).
2650		 * Recompute the initial retransmit timer.
2651		 *
2652		 * Some boxes send broken timestamp replies
2653		 * during the SYN+ACK phase, ignore
2654		 * timestamps of 0 or we could calculate a
2655		 * huge RTT and blow up the retransmit timer.
2656		 */
2657		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2658			u_int t;
2659
2660			t = tcp_ts_getticks() - to.to_tsecr;
2661			if (!tp->t_rttlow || tp->t_rttlow > t)
2662				tp->t_rttlow = t;
2663			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2664		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2665			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2666				tp->t_rttlow = ticks - tp->t_rtttime;
2667			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2668		}
2669
2670		/*
2671		 * If all outstanding data is acked, stop retransmit
2672		 * timer and remember to restart (more output or persist).
2673		 * If there is more data to be acked, restart retransmit
2674		 * timer, using current (possibly backed-off) value.
2675		 */
2676		if (th->th_ack == tp->snd_max) {
2677			tcp_timer_activate(tp, TT_REXMT, 0);
2678			needoutput = 1;
2679		} else if (!tcp_timer_active(tp, TT_PERSIST))
2680			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2681
2682		/*
2683		 * If no data (only SYN) was ACK'd,
2684		 *    skip rest of ACK processing.
2685		 */
2686		if (acked == 0)
2687			goto step6;
2688
2689		/*
2690		 * Let the congestion control algorithm update congestion
2691		 * control related information. This typically means increasing
2692		 * the congestion window.
2693		 */
2694		cc_ack_received(tp, th, CC_ACK);
2695
2696		SOCKBUF_LOCK(&so->so_snd);
2697		if (acked > so->so_snd.sb_cc) {
2698			tp->snd_wnd -= so->so_snd.sb_cc;
2699			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2700			ourfinisacked = 1;
2701		} else {
2702			sbdrop_locked(&so->so_snd, acked);
2703			tp->snd_wnd -= acked;
2704			ourfinisacked = 0;
2705		}
2706		/* NB: sowwakeup_locked() does an implicit unlock. */
2707		sowwakeup_locked(so);
2708		/* Detect una wraparound. */
2709		if (!IN_RECOVERY(tp->t_flags) &&
2710		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2711		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2712			tp->snd_recover = th->th_ack - 1;
2713		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2714		if (IN_RECOVERY(tp->t_flags) &&
2715		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2716			EXIT_RECOVERY(tp->t_flags);
2717		}
2718		tp->snd_una = th->th_ack;
2719		if (tp->t_flags & TF_SACK_PERMIT) {
2720			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2721				tp->snd_recover = tp->snd_una;
2722		}
2723		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2724			tp->snd_nxt = tp->snd_una;
2725
2726		switch (tp->t_state) {
2727
2728		/*
2729		 * In FIN_WAIT_1 STATE in addition to the processing
2730		 * for the ESTABLISHED state if our FIN is now acknowledged
2731		 * then enter FIN_WAIT_2.
2732		 */
2733		case TCPS_FIN_WAIT_1:
2734			if (ourfinisacked) {
2735				/*
2736				 * If we can't receive any more
2737				 * data, then closing user can proceed.
2738				 * Starting the timer is contrary to the
2739				 * specification, but if we don't get a FIN
2740				 * we'll hang forever.
2741				 *
2742				 * XXXjl:
2743				 * we should release the tp also, and use a
2744				 * compressed state.
2745				 */
2746				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2747					soisdisconnected(so);
2748					tcp_timer_activate(tp, TT_2MSL,
2749					    (tcp_fast_finwait2_recycle ?
2750					    tcp_finwait2_timeout :
2751					    TP_MAXIDLE(tp)));
2752				}
2753				tp->t_state = TCPS_FIN_WAIT_2;
2754			}
2755			break;
2756
2757		/*
2758		 * In CLOSING STATE in addition to the processing for
2759		 * the ESTABLISHED state if the ACK acknowledges our FIN
2760		 * then enter the TIME-WAIT state, otherwise ignore
2761		 * the segment.
2762		 */
2763		case TCPS_CLOSING:
2764			if (ourfinisacked) {
2765				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2766				tcp_twstart(tp);
2767				INP_INFO_WUNLOCK(&V_tcbinfo);
2768				m_freem(m);
2769				return;
2770			}
2771			break;
2772
2773		/*
2774		 * In LAST_ACK, we may still be waiting for data to drain
2775		 * and/or to be acked, as well as for the ack of our FIN.
2776		 * If our FIN is now acknowledged, delete the TCB,
2777		 * enter the closed state and return.
2778		 */
2779		case TCPS_LAST_ACK:
2780			if (ourfinisacked) {
2781				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2782				tp = tcp_close(tp);
2783				goto drop;
2784			}
2785			break;
2786		}
2787	}
2788
2789step6:
2790	INP_WLOCK_ASSERT(tp->t_inpcb);
2791
2792	/*
2793	 * Update window information.
2794	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2795	 */
2796	if ((thflags & TH_ACK) &&
2797	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2798	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2799	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2800		/* keep track of pure window updates */
2801		if (tlen == 0 &&
2802		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2803			TCPSTAT_INC(tcps_rcvwinupd);
2804		tp->snd_wnd = tiwin;
2805		tp->snd_wl1 = th->th_seq;
2806		tp->snd_wl2 = th->th_ack;
2807		if (tp->snd_wnd > tp->max_sndwnd)
2808			tp->max_sndwnd = tp->snd_wnd;
2809		needoutput = 1;
2810	}
2811
2812	/*
2813	 * Process segments with URG.
2814	 */
2815	if ((thflags & TH_URG) && th->th_urp &&
2816	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2817		/*
2818		 * This is a kludge, but if we receive and accept
2819		 * random urgent pointers, we'll crash in
2820		 * soreceive.  It's hard to imagine someone
2821		 * actually wanting to send this much urgent data.
2822		 */
2823		SOCKBUF_LOCK(&so->so_rcv);
2824		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2825			th->th_urp = 0;			/* XXX */
2826			thflags &= ~TH_URG;		/* XXX */
2827			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2828			goto dodata;			/* XXX */
2829		}
2830		/*
2831		 * If this segment advances the known urgent pointer,
2832		 * then mark the data stream.  This should not happen
2833		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2834		 * a FIN has been received from the remote side.
2835		 * In these states we ignore the URG.
2836		 *
2837		 * According to RFC961 (Assigned Protocols),
2838		 * the urgent pointer points to the last octet
2839		 * of urgent data.  We continue, however,
2840		 * to consider it to indicate the first octet
2841		 * of data past the urgent section as the original
2842		 * spec states (in one of two places).
2843		 */
2844		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2845			tp->rcv_up = th->th_seq + th->th_urp;
2846			so->so_oobmark = so->so_rcv.sb_cc +
2847			    (tp->rcv_up - tp->rcv_nxt) - 1;
2848			if (so->so_oobmark == 0)
2849				so->so_rcv.sb_state |= SBS_RCVATMARK;
2850			sohasoutofband(so);
2851			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2852		}
2853		SOCKBUF_UNLOCK(&so->so_rcv);
2854		/*
2855		 * Remove out of band data so doesn't get presented to user.
2856		 * This can happen independent of advancing the URG pointer,
2857		 * but if two URG's are pending at once, some out-of-band
2858		 * data may creep in... ick.
2859		 */
2860		if (th->th_urp <= (u_long)tlen &&
2861		    !(so->so_options & SO_OOBINLINE)) {
2862			/* hdr drop is delayed */
2863			tcp_pulloutofband(so, th, m, drop_hdrlen);
2864		}
2865	} else {
2866		/*
2867		 * If no out of band data is expected,
2868		 * pull receive urgent pointer along
2869		 * with the receive window.
2870		 */
2871		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2872			tp->rcv_up = tp->rcv_nxt;
2873	}
2874dodata:							/* XXX */
2875	INP_WLOCK_ASSERT(tp->t_inpcb);
2876
2877	/*
2878	 * Process the segment text, merging it into the TCP sequencing queue,
2879	 * and arranging for acknowledgment of receipt if necessary.
2880	 * This process logically involves adjusting tp->rcv_wnd as data
2881	 * is presented to the user (this happens in tcp_usrreq.c,
2882	 * case PRU_RCVD).  If a FIN has already been received on this
2883	 * connection then we just ignore the text.
2884	 */
2885	if ((tlen || (thflags & TH_FIN)) &&
2886	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2887		tcp_seq save_start = th->th_seq;
2888		m_adj(m, drop_hdrlen);	/* delayed header drop */
2889		/*
2890		 * Insert segment which includes th into TCP reassembly queue
2891		 * with control block tp.  Set thflags to whether reassembly now
2892		 * includes a segment with FIN.  This handles the common case
2893		 * inline (segment is the next to be received on an established
2894		 * connection, and the queue is empty), avoiding linkage into
2895		 * and removal from the queue and repetition of various
2896		 * conversions.
2897		 * Set DELACK for segments received in order, but ack
2898		 * immediately when segments are out of order (so
2899		 * fast retransmit can work).
2900		 */
2901		if (th->th_seq == tp->rcv_nxt &&
2902		    LIST_EMPTY(&tp->t_segq) &&
2903		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2904			if (DELAY_ACK(tp))
2905				tp->t_flags |= TF_DELACK;
2906			else
2907				tp->t_flags |= TF_ACKNOW;
2908			tp->rcv_nxt += tlen;
2909			thflags = th->th_flags & TH_FIN;
2910			TCPSTAT_INC(tcps_rcvpack);
2911			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2912			ND6_HINT(tp);
2913			SOCKBUF_LOCK(&so->so_rcv);
2914			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2915				m_freem(m);
2916			else
2917				sbappendstream_locked(&so->so_rcv, m);
2918			/* NB: sorwakeup_locked() does an implicit unlock. */
2919			sorwakeup_locked(so);
2920		} else {
2921			/*
2922			 * XXX: Due to the header drop above "th" is
2923			 * theoretically invalid by now.  Fortunately
2924			 * m_adj() doesn't actually frees any mbufs
2925			 * when trimming from the head.
2926			 */
2927			thflags = tcp_reass(tp, th, &tlen, m);
2928			tp->t_flags |= TF_ACKNOW;
2929		}
2930		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2931			tcp_update_sack_list(tp, save_start, save_start + tlen);
2932#if 0
2933		/*
2934		 * Note the amount of data that peer has sent into
2935		 * our window, in order to estimate the sender's
2936		 * buffer size.
2937		 * XXX: Unused.
2938		 */
2939		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2940			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2941		else
2942			len = so->so_rcv.sb_hiwat;
2943#endif
2944	} else {
2945		m_freem(m);
2946		thflags &= ~TH_FIN;
2947	}
2948
2949	/*
2950	 * If FIN is received ACK the FIN and let the user know
2951	 * that the connection is closing.
2952	 */
2953	if (thflags & TH_FIN) {
2954		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2955			socantrcvmore(so);
2956			/*
2957			 * If connection is half-synchronized
2958			 * (ie NEEDSYN flag on) then delay ACK,
2959			 * so it may be piggybacked when SYN is sent.
2960			 * Otherwise, since we received a FIN then no
2961			 * more input can be expected, send ACK now.
2962			 */
2963			if (tp->t_flags & TF_NEEDSYN)
2964				tp->t_flags |= TF_DELACK;
2965			else
2966				tp->t_flags |= TF_ACKNOW;
2967			tp->rcv_nxt++;
2968		}
2969		switch (tp->t_state) {
2970
2971		/*
2972		 * In SYN_RECEIVED and ESTABLISHED STATES
2973		 * enter the CLOSE_WAIT state.
2974		 */
2975		case TCPS_SYN_RECEIVED:
2976			tp->t_starttime = ticks;
2977			/* FALLTHROUGH */
2978		case TCPS_ESTABLISHED:
2979			tp->t_state = TCPS_CLOSE_WAIT;
2980			break;
2981
2982		/*
2983		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2984		 * enter the CLOSING state.
2985		 */
2986		case TCPS_FIN_WAIT_1:
2987			tp->t_state = TCPS_CLOSING;
2988			break;
2989
2990		/*
2991		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2992		 * starting the time-wait timer, turning off the other
2993		 * standard timers.
2994		 */
2995		case TCPS_FIN_WAIT_2:
2996			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2997			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2998			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2999			    ti_locked));
3000
3001			tcp_twstart(tp);
3002			INP_INFO_WUNLOCK(&V_tcbinfo);
3003			return;
3004		}
3005	}
3006	if (ti_locked == TI_WLOCKED)
3007		INP_INFO_WUNLOCK(&V_tcbinfo);
3008	ti_locked = TI_UNLOCKED;
3009
3010#ifdef TCPDEBUG
3011	if (so->so_options & SO_DEBUG)
3012		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3013			  &tcp_savetcp, 0);
3014#endif
3015
3016	/*
3017	 * Return any desired output.
3018	 */
3019	if (needoutput || (tp->t_flags & TF_ACKNOW))
3020		(void) tcp_output(tp);
3021
3022check_delack:
3023	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3024	    __func__, ti_locked));
3025	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3026	INP_WLOCK_ASSERT(tp->t_inpcb);
3027
3028	if (tp->t_flags & TF_DELACK) {
3029		tp->t_flags &= ~TF_DELACK;
3030		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3031	}
3032	INP_WUNLOCK(tp->t_inpcb);
3033	return;
3034
3035dropafterack:
3036	/*
3037	 * Generate an ACK dropping incoming segment if it occupies
3038	 * sequence space, where the ACK reflects our state.
3039	 *
3040	 * We can now skip the test for the RST flag since all
3041	 * paths to this code happen after packets containing
3042	 * RST have been dropped.
3043	 *
3044	 * In the SYN-RECEIVED state, don't send an ACK unless the
3045	 * segment we received passes the SYN-RECEIVED ACK test.
3046	 * If it fails send a RST.  This breaks the loop in the
3047	 * "LAND" DoS attack, and also prevents an ACK storm
3048	 * between two listening ports that have been sent forged
3049	 * SYN segments, each with the source address of the other.
3050	 */
3051	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3052	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3053	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3054		rstreason = BANDLIM_RST_OPENPORT;
3055		goto dropwithreset;
3056	}
3057#ifdef TCPDEBUG
3058	if (so->so_options & SO_DEBUG)
3059		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3060			  &tcp_savetcp, 0);
3061#endif
3062	if (ti_locked == TI_WLOCKED)
3063		INP_INFO_WUNLOCK(&V_tcbinfo);
3064	ti_locked = TI_UNLOCKED;
3065
3066	tp->t_flags |= TF_ACKNOW;
3067	(void) tcp_output(tp);
3068	INP_WUNLOCK(tp->t_inpcb);
3069	m_freem(m);
3070	return;
3071
3072dropwithreset:
3073	if (ti_locked == TI_WLOCKED)
3074		INP_INFO_WUNLOCK(&V_tcbinfo);
3075	ti_locked = TI_UNLOCKED;
3076
3077	if (tp != NULL) {
3078		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3079		INP_WUNLOCK(tp->t_inpcb);
3080	} else
3081		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3082	return;
3083
3084drop:
3085	if (ti_locked == TI_WLOCKED) {
3086		INP_INFO_WUNLOCK(&V_tcbinfo);
3087		ti_locked = TI_UNLOCKED;
3088	}
3089#ifdef INVARIANTS
3090	else
3091		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3092#endif
3093
3094	/*
3095	 * Drop space held by incoming segment and return.
3096	 */
3097#ifdef TCPDEBUG
3098	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3099		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3100			  &tcp_savetcp, 0);
3101#endif
3102	if (tp != NULL)
3103		INP_WUNLOCK(tp->t_inpcb);
3104	m_freem(m);
3105}
3106
3107/*
3108 * Issue RST and make ACK acceptable to originator of segment.
3109 * The mbuf must still include the original packet header.
3110 * tp may be NULL.
3111 */
3112static void
3113tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3114    int tlen, int rstreason)
3115{
3116#ifdef INET
3117	struct ip *ip;
3118#endif
3119#ifdef INET6
3120	struct ip6_hdr *ip6;
3121#endif
3122
3123	if (tp != NULL) {
3124		INP_WLOCK_ASSERT(tp->t_inpcb);
3125	}
3126
3127	/* Don't bother if destination was broadcast/multicast. */
3128	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3129		goto drop;
3130#ifdef INET6
3131	if (mtod(m, struct ip *)->ip_v == 6) {
3132		ip6 = mtod(m, struct ip6_hdr *);
3133		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3134		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3135			goto drop;
3136		/* IPv6 anycast check is done at tcp6_input() */
3137	}
3138#endif
3139#if defined(INET) && defined(INET6)
3140	else
3141#endif
3142#ifdef INET
3143	{
3144		ip = mtod(m, struct ip *);
3145		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3146		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3147		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3148		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3149			goto drop;
3150	}
3151#endif
3152
3153	/* Perform bandwidth limiting. */
3154	if (badport_bandlim(rstreason) < 0)
3155		goto drop;
3156
3157	/* tcp_respond consumes the mbuf chain. */
3158	if (th->th_flags & TH_ACK) {
3159		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3160		    th->th_ack, TH_RST);
3161	} else {
3162		if (th->th_flags & TH_SYN)
3163			tlen++;
3164		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3165		    (tcp_seq)0, TH_RST|TH_ACK);
3166	}
3167	return;
3168drop:
3169	m_freem(m);
3170}
3171
3172/*
3173 * Parse TCP options and place in tcpopt.
3174 */
3175static void
3176tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3177{
3178	int opt, optlen;
3179
3180	to->to_flags = 0;
3181	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3182		opt = cp[0];
3183		if (opt == TCPOPT_EOL)
3184			break;
3185		if (opt == TCPOPT_NOP)
3186			optlen = 1;
3187		else {
3188			if (cnt < 2)
3189				break;
3190			optlen = cp[1];
3191			if (optlen < 2 || optlen > cnt)
3192				break;
3193		}
3194		switch (opt) {
3195		case TCPOPT_MAXSEG:
3196			if (optlen != TCPOLEN_MAXSEG)
3197				continue;
3198			if (!(flags & TO_SYN))
3199				continue;
3200			to->to_flags |= TOF_MSS;
3201			bcopy((char *)cp + 2,
3202			    (char *)&to->to_mss, sizeof(to->to_mss));
3203			to->to_mss = ntohs(to->to_mss);
3204			break;
3205		case TCPOPT_WINDOW:
3206			if (optlen != TCPOLEN_WINDOW)
3207				continue;
3208			if (!(flags & TO_SYN))
3209				continue;
3210			to->to_flags |= TOF_SCALE;
3211			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3212			break;
3213		case TCPOPT_TIMESTAMP:
3214			if (optlen != TCPOLEN_TIMESTAMP)
3215				continue;
3216			to->to_flags |= TOF_TS;
3217			bcopy((char *)cp + 2,
3218			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3219			to->to_tsval = ntohl(to->to_tsval);
3220			bcopy((char *)cp + 6,
3221			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3222			to->to_tsecr = ntohl(to->to_tsecr);
3223			break;
3224#ifdef TCP_SIGNATURE
3225		/*
3226		 * XXX In order to reply to a host which has set the
3227		 * TCP_SIGNATURE option in its initial SYN, we have to
3228		 * record the fact that the option was observed here
3229		 * for the syncache code to perform the correct response.
3230		 */
3231		case TCPOPT_SIGNATURE:
3232			if (optlen != TCPOLEN_SIGNATURE)
3233				continue;
3234			to->to_flags |= TOF_SIGNATURE;
3235			to->to_signature = cp + 2;
3236			break;
3237#endif
3238		case TCPOPT_SACK_PERMITTED:
3239			if (optlen != TCPOLEN_SACK_PERMITTED)
3240				continue;
3241			if (!(flags & TO_SYN))
3242				continue;
3243			if (!V_tcp_do_sack)
3244				continue;
3245			to->to_flags |= TOF_SACKPERM;
3246			break;
3247		case TCPOPT_SACK:
3248			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3249				continue;
3250			if (flags & TO_SYN)
3251				continue;
3252			to->to_flags |= TOF_SACK;
3253			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3254			to->to_sacks = cp + 2;
3255			TCPSTAT_INC(tcps_sack_rcv_blocks);
3256			break;
3257		default:
3258			continue;
3259		}
3260	}
3261}
3262
3263/*
3264 * Pull out of band byte out of a segment so
3265 * it doesn't appear in the user's data queue.
3266 * It is still reflected in the segment length for
3267 * sequencing purposes.
3268 */
3269static void
3270tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3271    int off)
3272{
3273	int cnt = off + th->th_urp - 1;
3274
3275	while (cnt >= 0) {
3276		if (m->m_len > cnt) {
3277			char *cp = mtod(m, caddr_t) + cnt;
3278			struct tcpcb *tp = sototcpcb(so);
3279
3280			INP_WLOCK_ASSERT(tp->t_inpcb);
3281
3282			tp->t_iobc = *cp;
3283			tp->t_oobflags |= TCPOOB_HAVEDATA;
3284			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3285			m->m_len--;
3286			if (m->m_flags & M_PKTHDR)
3287				m->m_pkthdr.len--;
3288			return;
3289		}
3290		cnt -= m->m_len;
3291		m = m->m_next;
3292		if (m == NULL)
3293			break;
3294	}
3295	panic("tcp_pulloutofband");
3296}
3297
3298/*
3299 * Collect new round-trip time estimate
3300 * and update averages and current timeout.
3301 */
3302static void
3303tcp_xmit_timer(struct tcpcb *tp, int rtt)
3304{
3305	int delta;
3306
3307	INP_WLOCK_ASSERT(tp->t_inpcb);
3308
3309	TCPSTAT_INC(tcps_rttupdated);
3310	tp->t_rttupdated++;
3311	if (tp->t_srtt != 0) {
3312		/*
3313		 * srtt is stored as fixed point with 5 bits after the
3314		 * binary point (i.e., scaled by 8).  The following magic
3315		 * is equivalent to the smoothing algorithm in rfc793 with
3316		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3317		 * point).  Adjust rtt to origin 0.
3318		 */
3319		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3320			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3321
3322		if ((tp->t_srtt += delta) <= 0)
3323			tp->t_srtt = 1;
3324
3325		/*
3326		 * We accumulate a smoothed rtt variance (actually, a
3327		 * smoothed mean difference), then set the retransmit
3328		 * timer to smoothed rtt + 4 times the smoothed variance.
3329		 * rttvar is stored as fixed point with 4 bits after the
3330		 * binary point (scaled by 16).  The following is
3331		 * equivalent to rfc793 smoothing with an alpha of .75
3332		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3333		 * rfc793's wired-in beta.
3334		 */
3335		if (delta < 0)
3336			delta = -delta;
3337		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3338		if ((tp->t_rttvar += delta) <= 0)
3339			tp->t_rttvar = 1;
3340		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3341		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3342	} else {
3343		/*
3344		 * No rtt measurement yet - use the unsmoothed rtt.
3345		 * Set the variance to half the rtt (so our first
3346		 * retransmit happens at 3*rtt).
3347		 */
3348		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3349		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3350		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3351	}
3352	tp->t_rtttime = 0;
3353	tp->t_rxtshift = 0;
3354
3355	/*
3356	 * the retransmit should happen at rtt + 4 * rttvar.
3357	 * Because of the way we do the smoothing, srtt and rttvar
3358	 * will each average +1/2 tick of bias.  When we compute
3359	 * the retransmit timer, we want 1/2 tick of rounding and
3360	 * 1 extra tick because of +-1/2 tick uncertainty in the
3361	 * firing of the timer.  The bias will give us exactly the
3362	 * 1.5 tick we need.  But, because the bias is
3363	 * statistical, we have to test that we don't drop below
3364	 * the minimum feasible timer (which is 2 ticks).
3365	 */
3366	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3367		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3368
3369	/*
3370	 * We received an ack for a packet that wasn't retransmitted;
3371	 * it is probably safe to discard any error indications we've
3372	 * received recently.  This isn't quite right, but close enough
3373	 * for now (a route might have failed after we sent a segment,
3374	 * and the return path might not be symmetrical).
3375	 */
3376	tp->t_softerror = 0;
3377}
3378
3379/*
3380 * Determine a reasonable value for maxseg size.
3381 * If the route is known, check route for mtu.
3382 * If none, use an mss that can be handled on the outgoing interface
3383 * without forcing IP to fragment.  If no route is found, route has no mtu,
3384 * or the destination isn't local, use a default, hopefully conservative
3385 * size (usually 512 or the default IP max size, but no more than the mtu
3386 * of the interface), as we can't discover anything about intervening
3387 * gateways or networks.  We also initialize the congestion/slow start
3388 * window to be a single segment if the destination isn't local.
3389 * While looking at the routing entry, we also initialize other path-dependent
3390 * parameters from pre-set or cached values in the routing entry.
3391 *
3392 * Also take into account the space needed for options that we
3393 * send regularly.  Make maxseg shorter by that amount to assure
3394 * that we can send maxseg amount of data even when the options
3395 * are present.  Store the upper limit of the length of options plus
3396 * data in maxopd.
3397 *
3398 * NOTE that this routine is only called when we process an incoming
3399 * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3400 * settings are handled in tcp_mssopt().
3401 */
3402void
3403tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3404    struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3405{
3406	int mss = 0;
3407	u_long maxmtu = 0;
3408	struct inpcb *inp = tp->t_inpcb;
3409	struct hc_metrics_lite metrics;
3410	int origoffer;
3411#ifdef INET6
3412	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3413	size_t min_protoh = isipv6 ?
3414			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3415			    sizeof (struct tcpiphdr);
3416#else
3417	const size_t min_protoh = sizeof(struct tcpiphdr);
3418#endif
3419
3420	INP_WLOCK_ASSERT(tp->t_inpcb);
3421
3422	if (mtuoffer != -1) {
3423		KASSERT(offer == -1, ("%s: conflict", __func__));
3424		offer = mtuoffer - min_protoh;
3425	}
3426	origoffer = offer;
3427
3428	/* Initialize. */
3429#ifdef INET6
3430	if (isipv6) {
3431		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3432		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3433	}
3434#endif
3435#if defined(INET) && defined(INET6)
3436	else
3437#endif
3438#ifdef INET
3439	{
3440		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3441		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3442	}
3443#endif
3444
3445	/*
3446	 * No route to sender, stay with default mss and return.
3447	 */
3448	if (maxmtu == 0) {
3449		/*
3450		 * In case we return early we need to initialize metrics
3451		 * to a defined state as tcp_hc_get() would do for us
3452		 * if there was no cache hit.
3453		 */
3454		if (metricptr != NULL)
3455			bzero(metricptr, sizeof(struct hc_metrics_lite));
3456		return;
3457	}
3458
3459	/* What have we got? */
3460	switch (offer) {
3461		case 0:
3462			/*
3463			 * Offer == 0 means that there was no MSS on the SYN
3464			 * segment, in this case we use tcp_mssdflt as
3465			 * already assigned to t_maxopd above.
3466			 */
3467			offer = tp->t_maxopd;
3468			break;
3469
3470		case -1:
3471			/*
3472			 * Offer == -1 means that we didn't receive SYN yet.
3473			 */
3474			/* FALLTHROUGH */
3475
3476		default:
3477			/*
3478			 * Prevent DoS attack with too small MSS. Round up
3479			 * to at least minmss.
3480			 */
3481			offer = max(offer, V_tcp_minmss);
3482	}
3483
3484	/*
3485	 * rmx information is now retrieved from tcp_hostcache.
3486	 */
3487	tcp_hc_get(&inp->inp_inc, &metrics);
3488	if (metricptr != NULL)
3489		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3490
3491	/*
3492	 * If there's a discovered mtu int tcp hostcache, use it
3493	 * else, use the link mtu.
3494	 */
3495	if (metrics.rmx_mtu)
3496		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3497	else {
3498#ifdef INET6
3499		if (isipv6) {
3500			mss = maxmtu - min_protoh;
3501			if (!V_path_mtu_discovery &&
3502			    !in6_localaddr(&inp->in6p_faddr))
3503				mss = min(mss, V_tcp_v6mssdflt);
3504		}
3505#endif
3506#if defined(INET) && defined(INET6)
3507		else
3508#endif
3509#ifdef INET
3510		{
3511			mss = maxmtu - min_protoh;
3512			if (!V_path_mtu_discovery &&
3513			    !in_localaddr(inp->inp_faddr))
3514				mss = min(mss, V_tcp_mssdflt);
3515		}
3516#endif
3517		/*
3518		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3519		 * probably violates the TCP spec.
3520		 * The problem is that, since we don't know the
3521		 * other end's MSS, we are supposed to use a conservative
3522		 * default.  But, if we do that, then MTU discovery will
3523		 * never actually take place, because the conservative
3524		 * default is much less than the MTUs typically seen
3525		 * on the Internet today.  For the moment, we'll sweep
3526		 * this under the carpet.
3527		 *
3528		 * The conservative default might not actually be a problem
3529		 * if the only case this occurs is when sending an initial
3530		 * SYN with options and data to a host we've never talked
3531		 * to before.  Then, they will reply with an MSS value which
3532		 * will get recorded and the new parameters should get
3533		 * recomputed.  For Further Study.
3534		 */
3535	}
3536	mss = min(mss, offer);
3537
3538	/*
3539	 * Sanity check: make sure that maxopd will be large
3540	 * enough to allow some data on segments even if the
3541	 * all the option space is used (40bytes).  Otherwise
3542	 * funny things may happen in tcp_output.
3543	 */
3544	mss = max(mss, 64);
3545
3546	/*
3547	 * maxopd stores the maximum length of data AND options
3548	 * in a segment; maxseg is the amount of data in a normal
3549	 * segment.  We need to store this value (maxopd) apart
3550	 * from maxseg, because now every segment carries options
3551	 * and thus we normally have somewhat less data in segments.
3552	 */
3553	tp->t_maxopd = mss;
3554
3555	/*
3556	 * origoffer==-1 indicates that no segments were received yet.
3557	 * In this case we just guess.
3558	 */
3559	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3560	    (origoffer == -1 ||
3561	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3562		mss -= TCPOLEN_TSTAMP_APPA;
3563
3564	tp->t_maxseg = mss;
3565}
3566
3567void
3568tcp_mss(struct tcpcb *tp, int offer)
3569{
3570	int mss;
3571	u_long bufsize;
3572	struct inpcb *inp;
3573	struct socket *so;
3574	struct hc_metrics_lite metrics;
3575	struct tcp_ifcap cap;
3576
3577	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3578
3579	bzero(&cap, sizeof(cap));
3580	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3581
3582	mss = tp->t_maxseg;
3583	inp = tp->t_inpcb;
3584
3585	/*
3586	 * If there's a pipesize, change the socket buffer to that size,
3587	 * don't change if sb_hiwat is different than default (then it
3588	 * has been changed on purpose with setsockopt).
3589	 * Make the socket buffers an integral number of mss units;
3590	 * if the mss is larger than the socket buffer, decrease the mss.
3591	 */
3592	so = inp->inp_socket;
3593	SOCKBUF_LOCK(&so->so_snd);
3594	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3595		bufsize = metrics.rmx_sendpipe;
3596	else
3597		bufsize = so->so_snd.sb_hiwat;
3598	if (bufsize < mss)
3599		mss = bufsize;
3600	else {
3601		bufsize = roundup(bufsize, mss);
3602		if (bufsize > sb_max)
3603			bufsize = sb_max;
3604		if (bufsize > so->so_snd.sb_hiwat)
3605			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3606	}
3607	SOCKBUF_UNLOCK(&so->so_snd);
3608	tp->t_maxseg = mss;
3609
3610	SOCKBUF_LOCK(&so->so_rcv);
3611	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3612		bufsize = metrics.rmx_recvpipe;
3613	else
3614		bufsize = so->so_rcv.sb_hiwat;
3615	if (bufsize > mss) {
3616		bufsize = roundup(bufsize, mss);
3617		if (bufsize > sb_max)
3618			bufsize = sb_max;
3619		if (bufsize > so->so_rcv.sb_hiwat)
3620			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3621	}
3622	SOCKBUF_UNLOCK(&so->so_rcv);
3623
3624	/* Check the interface for TSO capabilities. */
3625	if (cap.ifcap & CSUM_TSO) {
3626		tp->t_flags |= TF_TSO;
3627		tp->t_tsomax = cap.tsomax;
3628	}
3629}
3630
3631/*
3632 * Determine the MSS option to send on an outgoing SYN.
3633 */
3634int
3635tcp_mssopt(struct in_conninfo *inc)
3636{
3637	int mss = 0;
3638	u_long maxmtu = 0;
3639	u_long thcmtu = 0;
3640	size_t min_protoh;
3641
3642	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3643
3644#ifdef INET6
3645	if (inc->inc_flags & INC_ISIPV6) {
3646		mss = V_tcp_v6mssdflt;
3647		maxmtu = tcp_maxmtu6(inc, NULL);
3648		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3649	}
3650#endif
3651#if defined(INET) && defined(INET6)
3652	else
3653#endif
3654#ifdef INET
3655	{
3656		mss = V_tcp_mssdflt;
3657		maxmtu = tcp_maxmtu(inc, NULL);
3658		min_protoh = sizeof(struct tcpiphdr);
3659	}
3660#endif
3661#if defined(INET6) || defined(INET)
3662	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3663#endif
3664
3665	if (maxmtu && thcmtu)
3666		mss = min(maxmtu, thcmtu) - min_protoh;
3667	else if (maxmtu || thcmtu)
3668		mss = max(maxmtu, thcmtu) - min_protoh;
3669
3670	return (mss);
3671}
3672
3673
3674/*
3675 * On a partial ack arrives, force the retransmission of the
3676 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3677 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3678 * be started again.
3679 */
3680static void
3681tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3682{
3683	tcp_seq onxt = tp->snd_nxt;
3684	u_long  ocwnd = tp->snd_cwnd;
3685
3686	INP_WLOCK_ASSERT(tp->t_inpcb);
3687
3688	tcp_timer_activate(tp, TT_REXMT, 0);
3689	tp->t_rtttime = 0;
3690	tp->snd_nxt = th->th_ack;
3691	/*
3692	 * Set snd_cwnd to one segment beyond acknowledged offset.
3693	 * (tp->snd_una has not yet been updated when this function is called.)
3694	 */
3695	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3696	tp->t_flags |= TF_ACKNOW;
3697	(void) tcp_output(tp);
3698	tp->snd_cwnd = ocwnd;
3699	if (SEQ_GT(onxt, tp->snd_nxt))
3700		tp->snd_nxt = onxt;
3701	/*
3702	 * Partial window deflation.  Relies on fact that tp->snd_una
3703	 * not updated yet.
3704	 */
3705	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3706		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3707	else
3708		tp->snd_cwnd = 0;
3709	tp->snd_cwnd += tp->t_maxseg;
3710}
3711