1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993, 1995
3 *	The Regents of the University of California.
4 * Copyright (c) 2007-2009 Robert N. M. Watson
5 * Copyright (c) 2010-2011 Juniper Networks, Inc.
6 * All rights reserved.
7 *
8 * Portions of this software were developed by Robert N. M. Watson under
9 * contract to Juniper Networks, Inc.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD$");
40
41#include "opt_ddb.h"
42#include "opt_ipsec.h"
43#include "opt_inet.h"
44#include "opt_inet6.h"
45#include "opt_pcbgroup.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/callout.h>
52#include <sys/domain.h>
53#include <sys/protosw.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/priv.h>
57#include <sys/proc.h>
58#include <sys/refcount.h>
59#include <sys/jail.h>
60#include <sys/kernel.h>
61#include <sys/sysctl.h>
62
63#ifdef DDB
64#include <ddb/ddb.h>
65#endif
66
67#include <vm/uma.h>
68
69#include <net/if.h>
70#include <net/if_types.h>
71#include <net/route.h>
72#include <net/vnet.h>
73
74#if defined(INET) || defined(INET6)
75#include <netinet/in.h>
76#include <netinet/in_pcb.h>
77#include <netinet/ip_var.h>
78#include <netinet/tcp_var.h>
79#include <netinet/udp.h>
80#include <netinet/udp_var.h>
81#endif
82#ifdef INET
83#include <netinet/in_var.h>
84#endif
85#ifdef INET6
86#include <netinet/ip6.h>
87#include <netinet6/in6_pcb.h>
88#include <netinet6/in6_var.h>
89#include <netinet6/ip6_var.h>
90#endif /* INET6 */
91
92
93#ifdef IPSEC
94#include <netipsec/ipsec.h>
95#include <netipsec/key.h>
96#endif /* IPSEC */
97
98#include <security/mac/mac_framework.h>
99
100static struct callout	ipport_tick_callout;
101
102/*
103 * These configure the range of local port addresses assigned to
104 * "unspecified" outgoing connections/packets/whatever.
105 */
106VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
107VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
108VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
109VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
110VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
111VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
112
113/*
114 * Reserved ports accessible only to root. There are significant
115 * security considerations that must be accounted for when changing these,
116 * but the security benefits can be great. Please be careful.
117 */
118VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
119VNET_DEFINE(int, ipport_reservedlow);
120
121/* Variables dealing with random ephemeral port allocation. */
122VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
123VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
124VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
125VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
126VNET_DEFINE(int, ipport_tcpallocs);
127static VNET_DEFINE(int, ipport_tcplastcount);
128
129#define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
130
131static void	in_pcbremlists(struct inpcb *inp);
132#ifdef INET
133static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
134			    struct in_addr faddr, u_int fport_arg,
135			    struct in_addr laddr, u_int lport_arg,
136			    int lookupflags, struct ifnet *ifp);
137
138#define RANGECHK(var, min, max) \
139	if ((var) < (min)) { (var) = (min); } \
140	else if ((var) > (max)) { (var) = (max); }
141
142static int
143sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
144{
145	int error;
146
147#ifdef VIMAGE
148	error = vnet_sysctl_handle_int(oidp, arg1, arg2, req);
149#else
150	error = sysctl_handle_int(oidp, arg1, arg2, req);
151#endif
152	if (error == 0) {
153		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
154		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
155		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
156		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
157		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
158		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
159	}
160	return (error);
161}
162
163#undef RANGECHK
164
165static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
166    "IP Ports");
167
168SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
169	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
170	&sysctl_net_ipport_check, "I", "");
171SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
172	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
173	&sysctl_net_ipport_check, "I", "");
174SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
175	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
176	&sysctl_net_ipport_check, "I", "");
177SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
178	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
179	&sysctl_net_ipport_check, "I", "");
180SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
181	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
182	&sysctl_net_ipport_check, "I", "");
183SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
184	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
185	&sysctl_net_ipport_check, "I", "");
186SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
187	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
188SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
189	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
190SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
191	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
192SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
193	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
194	"allocations before switching to a sequental one");
195SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
196	&VNET_NAME(ipport_randomtime), 0,
197	"Minimum time to keep sequental port "
198	"allocation before switching to a random one");
199#endif
200
201/*
202 * in_pcb.c: manage the Protocol Control Blocks.
203 *
204 * NOTE: It is assumed that most of these functions will be called with
205 * the pcbinfo lock held, and often, the inpcb lock held, as these utility
206 * functions often modify hash chains or addresses in pcbs.
207 */
208
209/*
210 * Initialize an inpcbinfo -- we should be able to reduce the number of
211 * arguments in time.
212 */
213void
214in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
215    struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
216    char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
217    uint32_t inpcbzone_flags, u_int hashfields)
218{
219
220	INP_INFO_LOCK_INIT(pcbinfo, name);
221	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
222#ifdef VIMAGE
223	pcbinfo->ipi_vnet = curvnet;
224#endif
225	pcbinfo->ipi_listhead = listhead;
226	LIST_INIT(pcbinfo->ipi_listhead);
227	pcbinfo->ipi_count = 0;
228	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
229	    &pcbinfo->ipi_hashmask);
230	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
231	    &pcbinfo->ipi_porthashmask);
232#ifdef PCBGROUP
233	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
234#endif
235	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
236	    NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
237	    inpcbzone_flags);
238	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
239}
240
241/*
242 * Destroy an inpcbinfo.
243 */
244void
245in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
246{
247
248	KASSERT(pcbinfo->ipi_count == 0,
249	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
250
251	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
252	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
253	    pcbinfo->ipi_porthashmask);
254#ifdef PCBGROUP
255	in_pcbgroup_destroy(pcbinfo);
256#endif
257	uma_zdestroy(pcbinfo->ipi_zone);
258	INP_HASH_LOCK_DESTROY(pcbinfo);
259	INP_INFO_LOCK_DESTROY(pcbinfo);
260}
261
262/*
263 * Allocate a PCB and associate it with the socket.
264 * On success return with the PCB locked.
265 */
266int
267in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
268{
269	struct inpcb *inp;
270	int error;
271
272	INP_INFO_WLOCK_ASSERT(pcbinfo);
273	error = 0;
274	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
275	if (inp == NULL)
276		return (ENOBUFS);
277	bzero(inp, inp_zero_size);
278	inp->inp_pcbinfo = pcbinfo;
279	inp->inp_socket = so;
280	inp->inp_cred = crhold(so->so_cred);
281	inp->inp_inc.inc_fibnum = so->so_fibnum;
282#ifdef MAC
283	error = mac_inpcb_init(inp, M_NOWAIT);
284	if (error != 0)
285		goto out;
286	mac_inpcb_create(so, inp);
287#endif
288#ifdef IPSEC
289	error = ipsec_init_policy(so, &inp->inp_sp);
290	if (error != 0) {
291#ifdef MAC
292		mac_inpcb_destroy(inp);
293#endif
294		goto out;
295	}
296#endif /*IPSEC*/
297#ifdef INET6
298	if (INP_SOCKAF(so) == AF_INET6) {
299		inp->inp_vflag |= INP_IPV6PROTO;
300		if (V_ip6_v6only)
301			inp->inp_flags |= IN6P_IPV6_V6ONLY;
302	}
303#endif
304	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
305	pcbinfo->ipi_count++;
306	so->so_pcb = (caddr_t)inp;
307#ifdef INET6
308	if (V_ip6_auto_flowlabel)
309		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
310#endif
311	INP_WLOCK(inp);
312	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
313	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
314#if defined(IPSEC) || defined(MAC)
315out:
316	if (error != 0) {
317		crfree(inp->inp_cred);
318		uma_zfree(pcbinfo->ipi_zone, inp);
319	}
320#endif
321	return (error);
322}
323
324#ifdef INET
325int
326in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
327{
328	int anonport, error;
329
330	INP_WLOCK_ASSERT(inp);
331	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
332
333	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
334		return (EINVAL);
335	anonport = inp->inp_lport == 0 && (nam == NULL ||
336	    ((struct sockaddr_in *)nam)->sin_port == 0);
337	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
338	    &inp->inp_lport, cred);
339	if (error)
340		return (error);
341	if (in_pcbinshash(inp) != 0) {
342		inp->inp_laddr.s_addr = INADDR_ANY;
343		inp->inp_lport = 0;
344		return (EAGAIN);
345	}
346	if (anonport)
347		inp->inp_flags |= INP_ANONPORT;
348	return (0);
349}
350#endif
351
352#if defined(INET) || defined(INET6)
353int
354in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
355    struct ucred *cred, int lookupflags)
356{
357	struct inpcbinfo *pcbinfo;
358	struct inpcb *tmpinp;
359	unsigned short *lastport;
360	int count, dorandom, error;
361	u_short aux, first, last, lport;
362#ifdef INET
363	struct in_addr laddr;
364#endif
365
366	pcbinfo = inp->inp_pcbinfo;
367
368	/*
369	 * Because no actual state changes occur here, a global write lock on
370	 * the pcbinfo isn't required.
371	 */
372	INP_LOCK_ASSERT(inp);
373	INP_HASH_LOCK_ASSERT(pcbinfo);
374
375	if (inp->inp_flags & INP_HIGHPORT) {
376		first = V_ipport_hifirstauto;	/* sysctl */
377		last  = V_ipport_hilastauto;
378		lastport = &pcbinfo->ipi_lasthi;
379	} else if (inp->inp_flags & INP_LOWPORT) {
380		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
381		if (error)
382			return (error);
383		first = V_ipport_lowfirstauto;	/* 1023 */
384		last  = V_ipport_lowlastauto;	/* 600 */
385		lastport = &pcbinfo->ipi_lastlow;
386	} else {
387		first = V_ipport_firstauto;	/* sysctl */
388		last  = V_ipport_lastauto;
389		lastport = &pcbinfo->ipi_lastport;
390	}
391	/*
392	 * For UDP, use random port allocation as long as the user
393	 * allows it.  For TCP (and as of yet unknown) connections,
394	 * use random port allocation only if the user allows it AND
395	 * ipport_tick() allows it.
396	 */
397	if (V_ipport_randomized &&
398		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
399		dorandom = 1;
400	else
401		dorandom = 0;
402	/*
403	 * It makes no sense to do random port allocation if
404	 * we have the only port available.
405	 */
406	if (first == last)
407		dorandom = 0;
408	/* Make sure to not include UDP packets in the count. */
409	if (pcbinfo != &V_udbinfo)
410		V_ipport_tcpallocs++;
411	/*
412	 * Instead of having two loops further down counting up or down
413	 * make sure that first is always <= last and go with only one
414	 * code path implementing all logic.
415	 */
416	if (first > last) {
417		aux = first;
418		first = last;
419		last = aux;
420	}
421
422#ifdef INET
423	/* Make the compiler happy. */
424	laddr.s_addr = 0;
425	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
426		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
427		    __func__, inp));
428		laddr = *laddrp;
429	}
430#endif
431	tmpinp = NULL;	/* Make compiler happy. */
432	lport = *lportp;
433
434	if (dorandom)
435		*lastport = first + (arc4random() % (last - first));
436
437	count = last - first;
438
439	do {
440		if (count-- < 0)	/* completely used? */
441			return (EADDRNOTAVAIL);
442		++*lastport;
443		if (*lastport < first || *lastport > last)
444			*lastport = first;
445		lport = htons(*lastport);
446
447#ifdef INET6
448		if ((inp->inp_vflag & INP_IPV6) != 0)
449			tmpinp = in6_pcblookup_local(pcbinfo,
450			    &inp->in6p_laddr, lport, lookupflags, cred);
451#endif
452#if defined(INET) && defined(INET6)
453		else
454#endif
455#ifdef INET
456			tmpinp = in_pcblookup_local(pcbinfo, laddr,
457			    lport, lookupflags, cred);
458#endif
459	} while (tmpinp != NULL);
460
461#ifdef INET
462	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
463		laddrp->s_addr = laddr.s_addr;
464#endif
465	*lportp = lport;
466
467	return (0);
468}
469
470/*
471 * Return cached socket options.
472 */
473short
474inp_so_options(const struct inpcb *inp)
475{
476   short so_options;
477
478   so_options = 0;
479
480   if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
481	   so_options |= SO_REUSEPORT;
482   if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
483	   so_options |= SO_REUSEADDR;
484   return (so_options);
485}
486#endif /* INET || INET6 */
487
488#ifdef INET
489/*
490 * Set up a bind operation on a PCB, performing port allocation
491 * as required, but do not actually modify the PCB. Callers can
492 * either complete the bind by setting inp_laddr/inp_lport and
493 * calling in_pcbinshash(), or they can just use the resulting
494 * port and address to authorise the sending of a once-off packet.
495 *
496 * On error, the values of *laddrp and *lportp are not changed.
497 */
498int
499in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
500    u_short *lportp, struct ucred *cred)
501{
502	struct socket *so = inp->inp_socket;
503	struct sockaddr_in *sin;
504	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
505	struct in_addr laddr;
506	u_short lport = 0;
507	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
508	int error;
509
510	/*
511	 * No state changes, so read locks are sufficient here.
512	 */
513	INP_LOCK_ASSERT(inp);
514	INP_HASH_LOCK_ASSERT(pcbinfo);
515
516	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
517		return (EADDRNOTAVAIL);
518	laddr.s_addr = *laddrp;
519	if (nam != NULL && laddr.s_addr != INADDR_ANY)
520		return (EINVAL);
521	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
522		lookupflags = INPLOOKUP_WILDCARD;
523	if (nam == NULL) {
524		if ((error = prison_local_ip4(cred, &laddr)) != 0)
525			return (error);
526	} else {
527		sin = (struct sockaddr_in *)nam;
528		if (nam->sa_len != sizeof (*sin))
529			return (EINVAL);
530#ifdef notdef
531		/*
532		 * We should check the family, but old programs
533		 * incorrectly fail to initialize it.
534		 */
535		if (sin->sin_family != AF_INET)
536			return (EAFNOSUPPORT);
537#endif
538		error = prison_local_ip4(cred, &sin->sin_addr);
539		if (error)
540			return (error);
541		if (sin->sin_port != *lportp) {
542			/* Don't allow the port to change. */
543			if (*lportp != 0)
544				return (EINVAL);
545			lport = sin->sin_port;
546		}
547		/* NB: lport is left as 0 if the port isn't being changed. */
548		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
549			/*
550			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
551			 * allow complete duplication of binding if
552			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
553			 * and a multicast address is bound on both
554			 * new and duplicated sockets.
555			 */
556			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
557				reuseport = SO_REUSEADDR|SO_REUSEPORT;
558		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
559			sin->sin_port = 0;		/* yech... */
560			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
561			/*
562			 * Is the address a local IP address?
563			 * If INP_BINDANY is set, then the socket may be bound
564			 * to any endpoint address, local or not.
565			 */
566			if ((inp->inp_flags & INP_BINDANY) == 0 &&
567			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
568				return (EADDRNOTAVAIL);
569		}
570		laddr = sin->sin_addr;
571		if (lport) {
572			struct inpcb *t;
573			struct tcptw *tw;
574
575			/* GROSS */
576			if (ntohs(lport) <= V_ipport_reservedhigh &&
577			    ntohs(lport) >= V_ipport_reservedlow &&
578			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
579			    0))
580				return (EACCES);
581			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
582			    priv_check_cred(inp->inp_cred,
583			    PRIV_NETINET_REUSEPORT, 0) != 0) {
584				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
585				    lport, INPLOOKUP_WILDCARD, cred);
586	/*
587	 * XXX
588	 * This entire block sorely needs a rewrite.
589	 */
590				if (t &&
591				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
592				    (so->so_type != SOCK_STREAM ||
593				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
594				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
595				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
596				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
597				    (inp->inp_cred->cr_uid !=
598				     t->inp_cred->cr_uid))
599					return (EADDRINUSE);
600			}
601			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
602			    lport, lookupflags, cred);
603			if (t && (t->inp_flags & INP_TIMEWAIT)) {
604				/*
605				 * XXXRW: If an incpb has had its timewait
606				 * state recycled, we treat the address as
607				 * being in use (for now).  This is better
608				 * than a panic, but not desirable.
609				 */
610				tw = intotw(t);
611				if (tw == NULL ||
612				    (reuseport & tw->tw_so_options) == 0)
613					return (EADDRINUSE);
614			} else if (t && (reuseport & inp_so_options(t)) == 0) {
615#ifdef INET6
616				if (ntohl(sin->sin_addr.s_addr) !=
617				    INADDR_ANY ||
618				    ntohl(t->inp_laddr.s_addr) !=
619				    INADDR_ANY ||
620				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
621				    (t->inp_vflag & INP_IPV6PROTO) == 0)
622#endif
623				return (EADDRINUSE);
624			}
625		}
626	}
627	if (*lportp != 0)
628		lport = *lportp;
629	if (lport == 0) {
630		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
631		if (error != 0)
632			return (error);
633
634	}
635	*laddrp = laddr.s_addr;
636	*lportp = lport;
637	return (0);
638}
639
640/*
641 * Connect from a socket to a specified address.
642 * Both address and port must be specified in argument sin.
643 * If don't have a local address for this socket yet,
644 * then pick one.
645 */
646int
647in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
648    struct ucred *cred, struct mbuf *m)
649{
650	u_short lport, fport;
651	in_addr_t laddr, faddr;
652	int anonport, error;
653
654	INP_WLOCK_ASSERT(inp);
655	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
656
657	lport = inp->inp_lport;
658	laddr = inp->inp_laddr.s_addr;
659	anonport = (lport == 0);
660	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
661	    NULL, cred);
662	if (error)
663		return (error);
664
665	/* Do the initial binding of the local address if required. */
666	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
667		inp->inp_lport = lport;
668		inp->inp_laddr.s_addr = laddr;
669		if (in_pcbinshash(inp) != 0) {
670			inp->inp_laddr.s_addr = INADDR_ANY;
671			inp->inp_lport = 0;
672			return (EAGAIN);
673		}
674	}
675
676	/* Commit the remaining changes. */
677	inp->inp_lport = lport;
678	inp->inp_laddr.s_addr = laddr;
679	inp->inp_faddr.s_addr = faddr;
680	inp->inp_fport = fport;
681	in_pcbrehash_mbuf(inp, m);
682
683	if (anonport)
684		inp->inp_flags |= INP_ANONPORT;
685	return (0);
686}
687
688int
689in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
690{
691
692	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
693}
694
695/*
696 * Do proper source address selection on an unbound socket in case
697 * of connect. Take jails into account as well.
698 */
699static int
700in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
701    struct ucred *cred)
702{
703	struct ifaddr *ifa;
704	struct sockaddr *sa;
705	struct sockaddr_in *sin;
706	struct route sro;
707	int error;
708
709	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
710
711	/*
712	 * Bypass source address selection and use the primary jail IP
713	 * if requested.
714	 */
715	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
716		return (0);
717
718	error = 0;
719	bzero(&sro, sizeof(sro));
720
721	sin = (struct sockaddr_in *)&sro.ro_dst;
722	sin->sin_family = AF_INET;
723	sin->sin_len = sizeof(struct sockaddr_in);
724	sin->sin_addr.s_addr = faddr->s_addr;
725
726	/*
727	 * If route is known our src addr is taken from the i/f,
728	 * else punt.
729	 *
730	 * Find out route to destination.
731	 */
732	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
733		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
734
735	/*
736	 * If we found a route, use the address corresponding to
737	 * the outgoing interface.
738	 *
739	 * Otherwise assume faddr is reachable on a directly connected
740	 * network and try to find a corresponding interface to take
741	 * the source address from.
742	 */
743	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
744		struct in_ifaddr *ia;
745		struct ifnet *ifp;
746
747		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
748		if (ia == NULL)
749			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
750		if (ia == NULL) {
751			error = ENETUNREACH;
752			goto done;
753		}
754
755		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
756			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
757			ifa_free(&ia->ia_ifa);
758			goto done;
759		}
760
761		ifp = ia->ia_ifp;
762		ifa_free(&ia->ia_ifa);
763		ia = NULL;
764		IF_ADDR_RLOCK(ifp);
765		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
766
767			sa = ifa->ifa_addr;
768			if (sa->sa_family != AF_INET)
769				continue;
770			sin = (struct sockaddr_in *)sa;
771			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
772				ia = (struct in_ifaddr *)ifa;
773				break;
774			}
775		}
776		if (ia != NULL) {
777			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
778			IF_ADDR_RUNLOCK(ifp);
779			goto done;
780		}
781		IF_ADDR_RUNLOCK(ifp);
782
783		/* 3. As a last resort return the 'default' jail address. */
784		error = prison_get_ip4(cred, laddr);
785		goto done;
786	}
787
788	/*
789	 * If the outgoing interface on the route found is not
790	 * a loopback interface, use the address from that interface.
791	 * In case of jails do those three steps:
792	 * 1. check if the interface address belongs to the jail. If so use it.
793	 * 2. check if we have any address on the outgoing interface
794	 *    belonging to this jail. If so use it.
795	 * 3. as a last resort return the 'default' jail address.
796	 */
797	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
798		struct in_ifaddr *ia;
799		struct ifnet *ifp;
800
801		/* If not jailed, use the default returned. */
802		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
803			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
804			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
805			goto done;
806		}
807
808		/* Jailed. */
809		/* 1. Check if the iface address belongs to the jail. */
810		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
811		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
812			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
813			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
814			goto done;
815		}
816
817		/*
818		 * 2. Check if we have any address on the outgoing interface
819		 *    belonging to this jail.
820		 */
821		ia = NULL;
822		ifp = sro.ro_rt->rt_ifp;
823		IF_ADDR_RLOCK(ifp);
824		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
825			sa = ifa->ifa_addr;
826			if (sa->sa_family != AF_INET)
827				continue;
828			sin = (struct sockaddr_in *)sa;
829			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
830				ia = (struct in_ifaddr *)ifa;
831				break;
832			}
833		}
834		if (ia != NULL) {
835			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
836			IF_ADDR_RUNLOCK(ifp);
837			goto done;
838		}
839		IF_ADDR_RUNLOCK(ifp);
840
841		/* 3. As a last resort return the 'default' jail address. */
842		error = prison_get_ip4(cred, laddr);
843		goto done;
844	}
845
846	/*
847	 * The outgoing interface is marked with 'loopback net', so a route
848	 * to ourselves is here.
849	 * Try to find the interface of the destination address and then
850	 * take the address from there. That interface is not necessarily
851	 * a loopback interface.
852	 * In case of jails, check that it is an address of the jail
853	 * and if we cannot find, fall back to the 'default' jail address.
854	 */
855	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
856		struct sockaddr_in sain;
857		struct in_ifaddr *ia;
858
859		bzero(&sain, sizeof(struct sockaddr_in));
860		sain.sin_family = AF_INET;
861		sain.sin_len = sizeof(struct sockaddr_in);
862		sain.sin_addr.s_addr = faddr->s_addr;
863
864		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
865		if (ia == NULL)
866			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
867		if (ia == NULL)
868			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
869
870		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
871			if (ia == NULL) {
872				error = ENETUNREACH;
873				goto done;
874			}
875			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
876			ifa_free(&ia->ia_ifa);
877			goto done;
878		}
879
880		/* Jailed. */
881		if (ia != NULL) {
882			struct ifnet *ifp;
883
884			ifp = ia->ia_ifp;
885			ifa_free(&ia->ia_ifa);
886			ia = NULL;
887			IF_ADDR_RLOCK(ifp);
888			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
889
890				sa = ifa->ifa_addr;
891				if (sa->sa_family != AF_INET)
892					continue;
893				sin = (struct sockaddr_in *)sa;
894				if (prison_check_ip4(cred,
895				    &sin->sin_addr) == 0) {
896					ia = (struct in_ifaddr *)ifa;
897					break;
898				}
899			}
900			if (ia != NULL) {
901				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
902				IF_ADDR_RUNLOCK(ifp);
903				goto done;
904			}
905			IF_ADDR_RUNLOCK(ifp);
906		}
907
908		/* 3. As a last resort return the 'default' jail address. */
909		error = prison_get_ip4(cred, laddr);
910		goto done;
911	}
912
913done:
914	if (sro.ro_rt != NULL)
915		RTFREE(sro.ro_rt);
916	return (error);
917}
918
919/*
920 * Set up for a connect from a socket to the specified address.
921 * On entry, *laddrp and *lportp should contain the current local
922 * address and port for the PCB; these are updated to the values
923 * that should be placed in inp_laddr and inp_lport to complete
924 * the connect.
925 *
926 * On success, *faddrp and *fportp will be set to the remote address
927 * and port. These are not updated in the error case.
928 *
929 * If the operation fails because the connection already exists,
930 * *oinpp will be set to the PCB of that connection so that the
931 * caller can decide to override it. In all other cases, *oinpp
932 * is set to NULL.
933 */
934int
935in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
936    in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
937    struct inpcb **oinpp, struct ucred *cred)
938{
939	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
940	struct in_ifaddr *ia;
941	struct inpcb *oinp;
942	struct in_addr laddr, faddr;
943	u_short lport, fport;
944	int error;
945
946	/*
947	 * Because a global state change doesn't actually occur here, a read
948	 * lock is sufficient.
949	 */
950	INP_LOCK_ASSERT(inp);
951	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
952
953	if (oinpp != NULL)
954		*oinpp = NULL;
955	if (nam->sa_len != sizeof (*sin))
956		return (EINVAL);
957	if (sin->sin_family != AF_INET)
958		return (EAFNOSUPPORT);
959	if (sin->sin_port == 0)
960		return (EADDRNOTAVAIL);
961	laddr.s_addr = *laddrp;
962	lport = *lportp;
963	faddr = sin->sin_addr;
964	fport = sin->sin_port;
965
966	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
967		/*
968		 * If the destination address is INADDR_ANY,
969		 * use the primary local address.
970		 * If the supplied address is INADDR_BROADCAST,
971		 * and the primary interface supports broadcast,
972		 * choose the broadcast address for that interface.
973		 */
974		if (faddr.s_addr == INADDR_ANY) {
975			IN_IFADDR_RLOCK();
976			faddr =
977			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
978			IN_IFADDR_RUNLOCK();
979			if (cred != NULL &&
980			    (error = prison_get_ip4(cred, &faddr)) != 0)
981				return (error);
982		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
983			IN_IFADDR_RLOCK();
984			if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
985			    IFF_BROADCAST)
986				faddr = satosin(&TAILQ_FIRST(
987				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
988			IN_IFADDR_RUNLOCK();
989		}
990	}
991	if (laddr.s_addr == INADDR_ANY) {
992		error = in_pcbladdr(inp, &faddr, &laddr, cred);
993		/*
994		 * If the destination address is multicast and an outgoing
995		 * interface has been set as a multicast option, prefer the
996		 * address of that interface as our source address.
997		 */
998		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
999		    inp->inp_moptions != NULL) {
1000			struct ip_moptions *imo;
1001			struct ifnet *ifp;
1002
1003			imo = inp->inp_moptions;
1004			if (imo->imo_multicast_ifp != NULL) {
1005				ifp = imo->imo_multicast_ifp;
1006				IN_IFADDR_RLOCK();
1007				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1008					if ((ia->ia_ifp == ifp) &&
1009					    (cred == NULL ||
1010					    prison_check_ip4(cred,
1011					    &ia->ia_addr.sin_addr) == 0))
1012						break;
1013				}
1014				if (ia == NULL)
1015					error = EADDRNOTAVAIL;
1016				else {
1017					laddr = ia->ia_addr.sin_addr;
1018					error = 0;
1019				}
1020				IN_IFADDR_RUNLOCK();
1021			}
1022		}
1023		if (error)
1024			return (error);
1025	}
1026	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1027	    laddr, lport, 0, NULL);
1028	if (oinp != NULL) {
1029		if (oinpp != NULL)
1030			*oinpp = oinp;
1031		return (EADDRINUSE);
1032	}
1033	if (lport == 0) {
1034		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1035		    cred);
1036		if (error)
1037			return (error);
1038	}
1039	*laddrp = laddr.s_addr;
1040	*lportp = lport;
1041	*faddrp = faddr.s_addr;
1042	*fportp = fport;
1043	return (0);
1044}
1045
1046void
1047in_pcbdisconnect(struct inpcb *inp)
1048{
1049
1050	INP_WLOCK_ASSERT(inp);
1051	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1052
1053	inp->inp_faddr.s_addr = INADDR_ANY;
1054	inp->inp_fport = 0;
1055	in_pcbrehash(inp);
1056}
1057#endif
1058
1059/*
1060 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1061 * For most protocols, this will be invoked immediately prior to calling
1062 * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1063 * socket, in which case in_pcbfree() is deferred.
1064 */
1065void
1066in_pcbdetach(struct inpcb *inp)
1067{
1068
1069	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1070
1071	inp->inp_socket->so_pcb = NULL;
1072	inp->inp_socket = NULL;
1073}
1074
1075/*
1076 * in_pcbref() bumps the reference count on an inpcb in order to maintain
1077 * stability of an inpcb pointer despite the inpcb lock being released.  This
1078 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1079 * but where the inpcb lock may already held, or when acquiring a reference
1080 * via a pcbgroup.
1081 *
1082 * in_pcbref() should be used only to provide brief memory stability, and
1083 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1084 * garbage collect the inpcb if it has been in_pcbfree()'d from another
1085 * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1086 * lock and rele are the *only* safe operations that may be performed on the
1087 * inpcb.
1088 *
1089 * While the inpcb will not be freed, releasing the inpcb lock means that the
1090 * connection's state may change, so the caller should be careful to
1091 * revalidate any cached state on reacquiring the lock.  Drop the reference
1092 * using in_pcbrele().
1093 */
1094void
1095in_pcbref(struct inpcb *inp)
1096{
1097
1098	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1099
1100	refcount_acquire(&inp->inp_refcount);
1101}
1102
1103/*
1104 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1105 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1106 * return a flag indicating whether or not the inpcb remains valid.  If it is
1107 * valid, we return with the inpcb lock held.
1108 *
1109 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1110 * reference on an inpcb.  Historically more work was done here (actually, in
1111 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1112 * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1113 * about memory stability (and continued use of the write lock).
1114 */
1115int
1116in_pcbrele_rlocked(struct inpcb *inp)
1117{
1118	struct inpcbinfo *pcbinfo;
1119
1120	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1121
1122	INP_RLOCK_ASSERT(inp);
1123
1124	if (refcount_release(&inp->inp_refcount) == 0) {
1125		/*
1126		 * If the inpcb has been freed, let the caller know, even if
1127		 * this isn't the last reference.
1128		 */
1129		if (inp->inp_flags2 & INP_FREED) {
1130			INP_RUNLOCK(inp);
1131			return (1);
1132		}
1133		return (0);
1134	}
1135
1136	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1137
1138	INP_RUNLOCK(inp);
1139	pcbinfo = inp->inp_pcbinfo;
1140	uma_zfree(pcbinfo->ipi_zone, inp);
1141	return (1);
1142}
1143
1144int
1145in_pcbrele_wlocked(struct inpcb *inp)
1146{
1147	struct inpcbinfo *pcbinfo;
1148
1149	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1150
1151	INP_WLOCK_ASSERT(inp);
1152
1153	if (refcount_release(&inp->inp_refcount) == 0)
1154		return (0);
1155
1156	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1157
1158	INP_WUNLOCK(inp);
1159	pcbinfo = inp->inp_pcbinfo;
1160	uma_zfree(pcbinfo->ipi_zone, inp);
1161	return (1);
1162}
1163
1164/*
1165 * Temporary wrapper.
1166 */
1167int
1168in_pcbrele(struct inpcb *inp)
1169{
1170
1171	return (in_pcbrele_wlocked(inp));
1172}
1173
1174/*
1175 * Unconditionally schedule an inpcb to be freed by decrementing its
1176 * reference count, which should occur only after the inpcb has been detached
1177 * from its socket.  If another thread holds a temporary reference (acquired
1178 * using in_pcbref()) then the free is deferred until that reference is
1179 * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1180 * work, including removal from global lists, is done in this context, where
1181 * the pcbinfo lock is held.
1182 */
1183void
1184in_pcbfree(struct inpcb *inp)
1185{
1186	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1187
1188	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1189
1190	INP_INFO_WLOCK_ASSERT(pcbinfo);
1191	INP_WLOCK_ASSERT(inp);
1192
1193	/* XXXRW: Do as much as possible here. */
1194#ifdef IPSEC
1195	if (inp->inp_sp != NULL)
1196		ipsec_delete_pcbpolicy(inp);
1197#endif /* IPSEC */
1198	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1199	in_pcbremlists(inp);
1200#ifdef INET6
1201	if (inp->inp_vflag & INP_IPV6PROTO) {
1202		ip6_freepcbopts(inp->in6p_outputopts);
1203		if (inp->in6p_moptions != NULL)
1204			ip6_freemoptions(inp->in6p_moptions);
1205	}
1206#endif
1207	if (inp->inp_options)
1208		(void)m_free(inp->inp_options);
1209#ifdef INET
1210	if (inp->inp_moptions != NULL)
1211		inp_freemoptions(inp->inp_moptions);
1212#endif
1213	inp->inp_vflag = 0;
1214	inp->inp_flags2 |= INP_FREED;
1215	crfree(inp->inp_cred);
1216#ifdef MAC
1217	mac_inpcb_destroy(inp);
1218#endif
1219	if (!in_pcbrele_wlocked(inp))
1220		INP_WUNLOCK(inp);
1221}
1222
1223/*
1224 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1225 * port reservation, and preventing it from being returned by inpcb lookups.
1226 *
1227 * It is used by TCP to mark an inpcb as unused and avoid future packet
1228 * delivery or event notification when a socket remains open but TCP has
1229 * closed.  This might occur as a result of a shutdown()-initiated TCP close
1230 * or a RST on the wire, and allows the port binding to be reused while still
1231 * maintaining the invariant that so_pcb always points to a valid inpcb until
1232 * in_pcbdetach().
1233 *
1234 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1235 * in_pcbnotifyall() and in_pcbpurgeif0()?
1236 */
1237void
1238in_pcbdrop(struct inpcb *inp)
1239{
1240
1241	INP_WLOCK_ASSERT(inp);
1242
1243	/*
1244	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1245	 * the hash lock...?
1246	 */
1247	inp->inp_flags |= INP_DROPPED;
1248	if (inp->inp_flags & INP_INHASHLIST) {
1249		struct inpcbport *phd = inp->inp_phd;
1250
1251		INP_HASH_WLOCK(inp->inp_pcbinfo);
1252		LIST_REMOVE(inp, inp_hash);
1253		LIST_REMOVE(inp, inp_portlist);
1254		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1255			LIST_REMOVE(phd, phd_hash);
1256			free(phd, M_PCB);
1257		}
1258		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1259		inp->inp_flags &= ~INP_INHASHLIST;
1260#ifdef PCBGROUP
1261		in_pcbgroup_remove(inp);
1262#endif
1263	}
1264}
1265
1266#ifdef INET
1267/*
1268 * Common routines to return the socket addresses associated with inpcbs.
1269 */
1270struct sockaddr *
1271in_sockaddr(in_port_t port, struct in_addr *addr_p)
1272{
1273	struct sockaddr_in *sin;
1274
1275	sin = malloc(sizeof *sin, M_SONAME,
1276		M_WAITOK | M_ZERO);
1277	sin->sin_family = AF_INET;
1278	sin->sin_len = sizeof(*sin);
1279	sin->sin_addr = *addr_p;
1280	sin->sin_port = port;
1281
1282	return (struct sockaddr *)sin;
1283}
1284
1285int
1286in_getsockaddr(struct socket *so, struct sockaddr **nam)
1287{
1288	struct inpcb *inp;
1289	struct in_addr addr;
1290	in_port_t port;
1291
1292	inp = sotoinpcb(so);
1293	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1294
1295	INP_RLOCK(inp);
1296	port = inp->inp_lport;
1297	addr = inp->inp_laddr;
1298	INP_RUNLOCK(inp);
1299
1300	*nam = in_sockaddr(port, &addr);
1301	return 0;
1302}
1303
1304int
1305in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1306{
1307	struct inpcb *inp;
1308	struct in_addr addr;
1309	in_port_t port;
1310
1311	inp = sotoinpcb(so);
1312	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1313
1314	INP_RLOCK(inp);
1315	port = inp->inp_fport;
1316	addr = inp->inp_faddr;
1317	INP_RUNLOCK(inp);
1318
1319	*nam = in_sockaddr(port, &addr);
1320	return 0;
1321}
1322
1323void
1324in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1325    struct inpcb *(*notify)(struct inpcb *, int))
1326{
1327	struct inpcb *inp, *inp_temp;
1328
1329	INP_INFO_WLOCK(pcbinfo);
1330	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1331		INP_WLOCK(inp);
1332#ifdef INET6
1333		if ((inp->inp_vflag & INP_IPV4) == 0) {
1334			INP_WUNLOCK(inp);
1335			continue;
1336		}
1337#endif
1338		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1339		    inp->inp_socket == NULL) {
1340			INP_WUNLOCK(inp);
1341			continue;
1342		}
1343		if ((*notify)(inp, errno))
1344			INP_WUNLOCK(inp);
1345	}
1346	INP_INFO_WUNLOCK(pcbinfo);
1347}
1348
1349void
1350in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1351{
1352	struct inpcb *inp;
1353	struct ip_moptions *imo;
1354	int i, gap;
1355
1356	INP_INFO_RLOCK(pcbinfo);
1357	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1358		INP_WLOCK(inp);
1359		imo = inp->inp_moptions;
1360		if ((inp->inp_vflag & INP_IPV4) &&
1361		    imo != NULL) {
1362			/*
1363			 * Unselect the outgoing interface if it is being
1364			 * detached.
1365			 */
1366			if (imo->imo_multicast_ifp == ifp)
1367				imo->imo_multicast_ifp = NULL;
1368
1369			/*
1370			 * Drop multicast group membership if we joined
1371			 * through the interface being detached.
1372			 */
1373			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1374			    i++) {
1375				if (imo->imo_membership[i]->inm_ifp == ifp) {
1376					in_delmulti(imo->imo_membership[i]);
1377					gap++;
1378				} else if (gap != 0)
1379					imo->imo_membership[i - gap] =
1380					    imo->imo_membership[i];
1381			}
1382			imo->imo_num_memberships -= gap;
1383		}
1384		INP_WUNLOCK(inp);
1385	}
1386	INP_INFO_RUNLOCK(pcbinfo);
1387}
1388
1389/*
1390 * Lookup a PCB based on the local address and port.  Caller must hold the
1391 * hash lock.  No inpcb locks or references are acquired.
1392 */
1393#define INP_LOOKUP_MAPPED_PCB_COST	3
1394struct inpcb *
1395in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1396    u_short lport, int lookupflags, struct ucred *cred)
1397{
1398	struct inpcb *inp;
1399#ifdef INET6
1400	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1401#else
1402	int matchwild = 3;
1403#endif
1404	int wildcard;
1405
1406	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1407	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1408
1409	INP_HASH_LOCK_ASSERT(pcbinfo);
1410
1411	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1412		struct inpcbhead *head;
1413		/*
1414		 * Look for an unconnected (wildcard foreign addr) PCB that
1415		 * matches the local address and port we're looking for.
1416		 */
1417		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1418		    0, pcbinfo->ipi_hashmask)];
1419		LIST_FOREACH(inp, head, inp_hash) {
1420#ifdef INET6
1421			/* XXX inp locking */
1422			if ((inp->inp_vflag & INP_IPV4) == 0)
1423				continue;
1424#endif
1425			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1426			    inp->inp_laddr.s_addr == laddr.s_addr &&
1427			    inp->inp_lport == lport) {
1428				/*
1429				 * Found?
1430				 */
1431				if (cred == NULL ||
1432				    prison_equal_ip4(cred->cr_prison,
1433					inp->inp_cred->cr_prison))
1434					return (inp);
1435			}
1436		}
1437		/*
1438		 * Not found.
1439		 */
1440		return (NULL);
1441	} else {
1442		struct inpcbporthead *porthash;
1443		struct inpcbport *phd;
1444		struct inpcb *match = NULL;
1445		/*
1446		 * Best fit PCB lookup.
1447		 *
1448		 * First see if this local port is in use by looking on the
1449		 * port hash list.
1450		 */
1451		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1452		    pcbinfo->ipi_porthashmask)];
1453		LIST_FOREACH(phd, porthash, phd_hash) {
1454			if (phd->phd_port == lport)
1455				break;
1456		}
1457		if (phd != NULL) {
1458			/*
1459			 * Port is in use by one or more PCBs. Look for best
1460			 * fit.
1461			 */
1462			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1463				wildcard = 0;
1464				if (cred != NULL &&
1465				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1466					cred->cr_prison))
1467					continue;
1468#ifdef INET6
1469				/* XXX inp locking */
1470				if ((inp->inp_vflag & INP_IPV4) == 0)
1471					continue;
1472				/*
1473				 * We never select the PCB that has
1474				 * INP_IPV6 flag and is bound to :: if
1475				 * we have another PCB which is bound
1476				 * to 0.0.0.0.  If a PCB has the
1477				 * INP_IPV6 flag, then we set its cost
1478				 * higher than IPv4 only PCBs.
1479				 *
1480				 * Note that the case only happens
1481				 * when a socket is bound to ::, under
1482				 * the condition that the use of the
1483				 * mapped address is allowed.
1484				 */
1485				if ((inp->inp_vflag & INP_IPV6) != 0)
1486					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1487#endif
1488				if (inp->inp_faddr.s_addr != INADDR_ANY)
1489					wildcard++;
1490				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1491					if (laddr.s_addr == INADDR_ANY)
1492						wildcard++;
1493					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1494						continue;
1495				} else {
1496					if (laddr.s_addr != INADDR_ANY)
1497						wildcard++;
1498				}
1499				if (wildcard < matchwild) {
1500					match = inp;
1501					matchwild = wildcard;
1502					if (matchwild == 0)
1503						break;
1504				}
1505			}
1506		}
1507		return (match);
1508	}
1509}
1510#undef INP_LOOKUP_MAPPED_PCB_COST
1511
1512#ifdef PCBGROUP
1513/*
1514 * Lookup PCB in hash list, using pcbgroup tables.
1515 */
1516static struct inpcb *
1517in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1518    struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1519    u_int lport_arg, int lookupflags, struct ifnet *ifp)
1520{
1521	struct inpcbhead *head;
1522	struct inpcb *inp, *tmpinp;
1523	u_short fport = fport_arg, lport = lport_arg;
1524
1525	/*
1526	 * First look for an exact match.
1527	 */
1528	tmpinp = NULL;
1529	INP_GROUP_LOCK(pcbgroup);
1530	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1531	    pcbgroup->ipg_hashmask)];
1532	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1533#ifdef INET6
1534		/* XXX inp locking */
1535		if ((inp->inp_vflag & INP_IPV4) == 0)
1536			continue;
1537#endif
1538		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1539		    inp->inp_laddr.s_addr == laddr.s_addr &&
1540		    inp->inp_fport == fport &&
1541		    inp->inp_lport == lport) {
1542			/*
1543			 * XXX We should be able to directly return
1544			 * the inp here, without any checks.
1545			 * Well unless both bound with SO_REUSEPORT?
1546			 */
1547			if (prison_flag(inp->inp_cred, PR_IP4))
1548				goto found;
1549			if (tmpinp == NULL)
1550				tmpinp = inp;
1551		}
1552	}
1553	if (tmpinp != NULL) {
1554		inp = tmpinp;
1555		goto found;
1556	}
1557
1558	/*
1559	 * Then look for a wildcard match, if requested.
1560	 */
1561	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1562		struct inpcb *local_wild = NULL, *local_exact = NULL;
1563#ifdef INET6
1564		struct inpcb *local_wild_mapped = NULL;
1565#endif
1566		struct inpcb *jail_wild = NULL;
1567		struct inpcbhead *head;
1568		int injail;
1569
1570		/*
1571		 * Order of socket selection - we always prefer jails.
1572		 *      1. jailed, non-wild.
1573		 *      2. jailed, wild.
1574		 *      3. non-jailed, non-wild.
1575		 *      4. non-jailed, wild.
1576		 */
1577		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1578		    0, pcbinfo->ipi_wildmask)];
1579		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1580#ifdef INET6
1581			/* XXX inp locking */
1582			if ((inp->inp_vflag & INP_IPV4) == 0)
1583				continue;
1584#endif
1585			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1586			    inp->inp_lport != lport)
1587				continue;
1588
1589			/* XXX inp locking */
1590			if (ifp && ifp->if_type == IFT_FAITH &&
1591			    (inp->inp_flags & INP_FAITH) == 0)
1592				continue;
1593
1594			injail = prison_flag(inp->inp_cred, PR_IP4);
1595			if (injail) {
1596				if (prison_check_ip4(inp->inp_cred,
1597				    &laddr) != 0)
1598					continue;
1599			} else {
1600				if (local_exact != NULL)
1601					continue;
1602			}
1603
1604			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1605				if (injail)
1606					goto found;
1607				else
1608					local_exact = inp;
1609			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1610#ifdef INET6
1611				/* XXX inp locking, NULL check */
1612				if (inp->inp_vflag & INP_IPV6PROTO)
1613					local_wild_mapped = inp;
1614				else
1615#endif /* INET6 */
1616					if (injail)
1617						jail_wild = inp;
1618					else
1619						local_wild = inp;
1620			}
1621		} /* LIST_FOREACH */
1622		inp = jail_wild;
1623		if (inp == NULL)
1624			inp = local_exact;
1625		if (inp == NULL)
1626			inp = local_wild;
1627#ifdef INET6
1628		if (inp == NULL)
1629			inp = local_wild_mapped;
1630#endif /* defined(INET6) */
1631		if (inp != NULL)
1632			goto found;
1633	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1634	INP_GROUP_UNLOCK(pcbgroup);
1635	return (NULL);
1636
1637found:
1638	in_pcbref(inp);
1639	INP_GROUP_UNLOCK(pcbgroup);
1640	if (lookupflags & INPLOOKUP_WLOCKPCB) {
1641		INP_WLOCK(inp);
1642		if (in_pcbrele_wlocked(inp))
1643			return (NULL);
1644	} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1645		INP_RLOCK(inp);
1646		if (in_pcbrele_rlocked(inp))
1647			return (NULL);
1648	} else
1649		panic("%s: locking bug", __func__);
1650	return (inp);
1651}
1652#endif /* PCBGROUP */
1653
1654/*
1655 * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1656 * that the caller has locked the hash list, and will not perform any further
1657 * locking or reference operations on either the hash list or the connection.
1658 */
1659static struct inpcb *
1660in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1661    u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1662    struct ifnet *ifp)
1663{
1664	struct inpcbhead *head;
1665	struct inpcb *inp, *tmpinp;
1666	u_short fport = fport_arg, lport = lport_arg;
1667
1668	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1669	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1670
1671	INP_HASH_LOCK_ASSERT(pcbinfo);
1672
1673	/*
1674	 * First look for an exact match.
1675	 */
1676	tmpinp = NULL;
1677	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1678	    pcbinfo->ipi_hashmask)];
1679	LIST_FOREACH(inp, head, inp_hash) {
1680#ifdef INET6
1681		/* XXX inp locking */
1682		if ((inp->inp_vflag & INP_IPV4) == 0)
1683			continue;
1684#endif
1685		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1686		    inp->inp_laddr.s_addr == laddr.s_addr &&
1687		    inp->inp_fport == fport &&
1688		    inp->inp_lport == lport) {
1689			/*
1690			 * XXX We should be able to directly return
1691			 * the inp here, without any checks.
1692			 * Well unless both bound with SO_REUSEPORT?
1693			 */
1694			if (prison_flag(inp->inp_cred, PR_IP4))
1695				return (inp);
1696			if (tmpinp == NULL)
1697				tmpinp = inp;
1698		}
1699	}
1700	if (tmpinp != NULL)
1701		return (tmpinp);
1702
1703	/*
1704	 * Then look for a wildcard match, if requested.
1705	 */
1706	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1707		struct inpcb *local_wild = NULL, *local_exact = NULL;
1708#ifdef INET6
1709		struct inpcb *local_wild_mapped = NULL;
1710#endif
1711		struct inpcb *jail_wild = NULL;
1712		int injail;
1713
1714		/*
1715		 * Order of socket selection - we always prefer jails.
1716		 *      1. jailed, non-wild.
1717		 *      2. jailed, wild.
1718		 *      3. non-jailed, non-wild.
1719		 *      4. non-jailed, wild.
1720		 */
1721
1722		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1723		    0, pcbinfo->ipi_hashmask)];
1724		LIST_FOREACH(inp, head, inp_hash) {
1725#ifdef INET6
1726			/* XXX inp locking */
1727			if ((inp->inp_vflag & INP_IPV4) == 0)
1728				continue;
1729#endif
1730			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1731			    inp->inp_lport != lport)
1732				continue;
1733
1734			/* XXX inp locking */
1735			if (ifp && ifp->if_type == IFT_FAITH &&
1736			    (inp->inp_flags & INP_FAITH) == 0)
1737				continue;
1738
1739			injail = prison_flag(inp->inp_cred, PR_IP4);
1740			if (injail) {
1741				if (prison_check_ip4(inp->inp_cred,
1742				    &laddr) != 0)
1743					continue;
1744			} else {
1745				if (local_exact != NULL)
1746					continue;
1747			}
1748
1749			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1750				if (injail)
1751					return (inp);
1752				else
1753					local_exact = inp;
1754			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1755#ifdef INET6
1756				/* XXX inp locking, NULL check */
1757				if (inp->inp_vflag & INP_IPV6PROTO)
1758					local_wild_mapped = inp;
1759				else
1760#endif /* INET6 */
1761					if (injail)
1762						jail_wild = inp;
1763					else
1764						local_wild = inp;
1765			}
1766		} /* LIST_FOREACH */
1767		if (jail_wild != NULL)
1768			return (jail_wild);
1769		if (local_exact != NULL)
1770			return (local_exact);
1771		if (local_wild != NULL)
1772			return (local_wild);
1773#ifdef INET6
1774		if (local_wild_mapped != NULL)
1775			return (local_wild_mapped);
1776#endif /* defined(INET6) */
1777	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1778
1779	return (NULL);
1780}
1781
1782/*
1783 * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1784 * hash list lock, and will return the inpcb locked (i.e., requires
1785 * INPLOOKUP_LOCKPCB).
1786 */
1787static struct inpcb *
1788in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1789    u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1790    struct ifnet *ifp)
1791{
1792	struct inpcb *inp;
1793
1794	INP_HASH_RLOCK(pcbinfo);
1795	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1796	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1797	if (inp != NULL) {
1798		in_pcbref(inp);
1799		INP_HASH_RUNLOCK(pcbinfo);
1800		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1801			INP_WLOCK(inp);
1802			if (in_pcbrele_wlocked(inp))
1803				return (NULL);
1804		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1805			INP_RLOCK(inp);
1806			if (in_pcbrele_rlocked(inp))
1807				return (NULL);
1808		} else
1809			panic("%s: locking bug", __func__);
1810	} else
1811		INP_HASH_RUNLOCK(pcbinfo);
1812	return (inp);
1813}
1814
1815/*
1816 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1817 * from which a pre-calculated hash value may be extracted.
1818 *
1819 * Possibly more of this logic should be in in_pcbgroup.c.
1820 */
1821struct inpcb *
1822in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1823    struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1824{
1825#if defined(PCBGROUP)
1826	struct inpcbgroup *pcbgroup;
1827#endif
1828
1829	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1830	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1831	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1832	    ("%s: LOCKPCB not set", __func__));
1833
1834#if defined(PCBGROUP)
1835	if (in_pcbgroup_enabled(pcbinfo)) {
1836		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1837		    fport);
1838		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1839		    laddr, lport, lookupflags, ifp));
1840	}
1841#endif
1842	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1843	    lookupflags, ifp));
1844}
1845
1846struct inpcb *
1847in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1848    u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1849    struct ifnet *ifp, struct mbuf *m)
1850{
1851#ifdef PCBGROUP
1852	struct inpcbgroup *pcbgroup;
1853#endif
1854
1855	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1856	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1857	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1858	    ("%s: LOCKPCB not set", __func__));
1859
1860#ifdef PCBGROUP
1861	if (in_pcbgroup_enabled(pcbinfo)) {
1862		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
1863		    m->m_pkthdr.flowid);
1864		if (pcbgroup != NULL)
1865			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
1866			    fport, laddr, lport, lookupflags, ifp));
1867		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1868		    fport);
1869		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1870		    laddr, lport, lookupflags, ifp));
1871	}
1872#endif
1873	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1874	    lookupflags, ifp));
1875}
1876#endif /* INET */
1877
1878/*
1879 * Insert PCB onto various hash lists.
1880 */
1881static int
1882in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
1883{
1884	struct inpcbhead *pcbhash;
1885	struct inpcbporthead *pcbporthash;
1886	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1887	struct inpcbport *phd;
1888	u_int32_t hashkey_faddr;
1889
1890	INP_WLOCK_ASSERT(inp);
1891	INP_HASH_WLOCK_ASSERT(pcbinfo);
1892
1893	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
1894	    ("in_pcbinshash: INP_INHASHLIST"));
1895
1896#ifdef INET6
1897	if (inp->inp_vflag & INP_IPV6)
1898		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1899	else
1900#endif /* INET6 */
1901	hashkey_faddr = inp->inp_faddr.s_addr;
1902
1903	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1904		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1905
1906	pcbporthash = &pcbinfo->ipi_porthashbase[
1907	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1908
1909	/*
1910	 * Go through port list and look for a head for this lport.
1911	 */
1912	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1913		if (phd->phd_port == inp->inp_lport)
1914			break;
1915	}
1916	/*
1917	 * If none exists, malloc one and tack it on.
1918	 */
1919	if (phd == NULL) {
1920		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1921		if (phd == NULL) {
1922			return (ENOBUFS); /* XXX */
1923		}
1924		phd->phd_port = inp->inp_lport;
1925		LIST_INIT(&phd->phd_pcblist);
1926		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1927	}
1928	inp->inp_phd = phd;
1929	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1930	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1931	inp->inp_flags |= INP_INHASHLIST;
1932#ifdef PCBGROUP
1933	if (do_pcbgroup_update)
1934		in_pcbgroup_update(inp);
1935#endif
1936	return (0);
1937}
1938
1939/*
1940 * For now, there are two public interfaces to insert an inpcb into the hash
1941 * lists -- one that does update pcbgroups, and one that doesn't.  The latter
1942 * is used only in the TCP syncache, where in_pcbinshash is called before the
1943 * full 4-tuple is set for the inpcb, and we don't want to install in the
1944 * pcbgroup until later.
1945 *
1946 * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
1947 * connection groups, and partially initialised inpcbs should not be exposed
1948 * to either reservation hash tables or pcbgroups.
1949 */
1950int
1951in_pcbinshash(struct inpcb *inp)
1952{
1953
1954	return (in_pcbinshash_internal(inp, 1));
1955}
1956
1957int
1958in_pcbinshash_nopcbgroup(struct inpcb *inp)
1959{
1960
1961	return (in_pcbinshash_internal(inp, 0));
1962}
1963
1964/*
1965 * Move PCB to the proper hash bucket when { faddr, fport } have  been
1966 * changed. NOTE: This does not handle the case of the lport changing (the
1967 * hashed port list would have to be updated as well), so the lport must
1968 * not change after in_pcbinshash() has been called.
1969 */
1970void
1971in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
1972{
1973	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1974	struct inpcbhead *head;
1975	u_int32_t hashkey_faddr;
1976
1977	INP_WLOCK_ASSERT(inp);
1978	INP_HASH_WLOCK_ASSERT(pcbinfo);
1979
1980	KASSERT(inp->inp_flags & INP_INHASHLIST,
1981	    ("in_pcbrehash: !INP_INHASHLIST"));
1982
1983#ifdef INET6
1984	if (inp->inp_vflag & INP_IPV6)
1985		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1986	else
1987#endif /* INET6 */
1988	hashkey_faddr = inp->inp_faddr.s_addr;
1989
1990	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1991		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1992
1993	LIST_REMOVE(inp, inp_hash);
1994	LIST_INSERT_HEAD(head, inp, inp_hash);
1995
1996#ifdef PCBGROUP
1997	if (m != NULL)
1998		in_pcbgroup_update_mbuf(inp, m);
1999	else
2000		in_pcbgroup_update(inp);
2001#endif
2002}
2003
2004void
2005in_pcbrehash(struct inpcb *inp)
2006{
2007
2008	in_pcbrehash_mbuf(inp, NULL);
2009}
2010
2011/*
2012 * Remove PCB from various lists.
2013 */
2014static void
2015in_pcbremlists(struct inpcb *inp)
2016{
2017	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2018
2019	INP_INFO_WLOCK_ASSERT(pcbinfo);
2020	INP_WLOCK_ASSERT(inp);
2021
2022	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2023	if (inp->inp_flags & INP_INHASHLIST) {
2024		struct inpcbport *phd = inp->inp_phd;
2025
2026		INP_HASH_WLOCK(pcbinfo);
2027		LIST_REMOVE(inp, inp_hash);
2028		LIST_REMOVE(inp, inp_portlist);
2029		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2030			LIST_REMOVE(phd, phd_hash);
2031			free(phd, M_PCB);
2032		}
2033		INP_HASH_WUNLOCK(pcbinfo);
2034		inp->inp_flags &= ~INP_INHASHLIST;
2035	}
2036	LIST_REMOVE(inp, inp_list);
2037	pcbinfo->ipi_count--;
2038#ifdef PCBGROUP
2039	in_pcbgroup_remove(inp);
2040#endif
2041}
2042
2043/*
2044 * A set label operation has occurred at the socket layer, propagate the
2045 * label change into the in_pcb for the socket.
2046 */
2047void
2048in_pcbsosetlabel(struct socket *so)
2049{
2050#ifdef MAC
2051	struct inpcb *inp;
2052
2053	inp = sotoinpcb(so);
2054	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2055
2056	INP_WLOCK(inp);
2057	SOCK_LOCK(so);
2058	mac_inpcb_sosetlabel(so, inp);
2059	SOCK_UNLOCK(so);
2060	INP_WUNLOCK(inp);
2061#endif
2062}
2063
2064/*
2065 * ipport_tick runs once per second, determining if random port allocation
2066 * should be continued.  If more than ipport_randomcps ports have been
2067 * allocated in the last second, then we return to sequential port
2068 * allocation. We return to random allocation only once we drop below
2069 * ipport_randomcps for at least ipport_randomtime seconds.
2070 */
2071static void
2072ipport_tick(void *xtp)
2073{
2074	VNET_ITERATOR_DECL(vnet_iter);
2075
2076	VNET_LIST_RLOCK_NOSLEEP();
2077	VNET_FOREACH(vnet_iter) {
2078		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2079		if (V_ipport_tcpallocs <=
2080		    V_ipport_tcplastcount + V_ipport_randomcps) {
2081			if (V_ipport_stoprandom > 0)
2082				V_ipport_stoprandom--;
2083		} else
2084			V_ipport_stoprandom = V_ipport_randomtime;
2085		V_ipport_tcplastcount = V_ipport_tcpallocs;
2086		CURVNET_RESTORE();
2087	}
2088	VNET_LIST_RUNLOCK_NOSLEEP();
2089	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2090}
2091
2092static void
2093ip_fini(void *xtp)
2094{
2095
2096	callout_stop(&ipport_tick_callout);
2097}
2098
2099/*
2100 * The ipport_callout should start running at about the time we attach the
2101 * inet or inet6 domains.
2102 */
2103static void
2104ipport_tick_init(const void *unused __unused)
2105{
2106
2107	/* Start ipport_tick. */
2108	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
2109	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2110	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2111		SHUTDOWN_PRI_DEFAULT);
2112}
2113SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2114    ipport_tick_init, NULL);
2115
2116void
2117inp_wlock(struct inpcb *inp)
2118{
2119
2120	INP_WLOCK(inp);
2121}
2122
2123void
2124inp_wunlock(struct inpcb *inp)
2125{
2126
2127	INP_WUNLOCK(inp);
2128}
2129
2130void
2131inp_rlock(struct inpcb *inp)
2132{
2133
2134	INP_RLOCK(inp);
2135}
2136
2137void
2138inp_runlock(struct inpcb *inp)
2139{
2140
2141	INP_RUNLOCK(inp);
2142}
2143
2144#ifdef INVARIANTS
2145void
2146inp_lock_assert(struct inpcb *inp)
2147{
2148
2149	INP_WLOCK_ASSERT(inp);
2150}
2151
2152void
2153inp_unlock_assert(struct inpcb *inp)
2154{
2155
2156	INP_UNLOCK_ASSERT(inp);
2157}
2158#endif
2159
2160void
2161inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2162{
2163	struct inpcb *inp;
2164
2165	INP_INFO_RLOCK(&V_tcbinfo);
2166	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2167		INP_WLOCK(inp);
2168		func(inp, arg);
2169		INP_WUNLOCK(inp);
2170	}
2171	INP_INFO_RUNLOCK(&V_tcbinfo);
2172}
2173
2174struct socket *
2175inp_inpcbtosocket(struct inpcb *inp)
2176{
2177
2178	INP_WLOCK_ASSERT(inp);
2179	return (inp->inp_socket);
2180}
2181
2182struct tcpcb *
2183inp_inpcbtotcpcb(struct inpcb *inp)
2184{
2185
2186	INP_WLOCK_ASSERT(inp);
2187	return ((struct tcpcb *)inp->inp_ppcb);
2188}
2189
2190int
2191inp_ip_tos_get(const struct inpcb *inp)
2192{
2193
2194	return (inp->inp_ip_tos);
2195}
2196
2197void
2198inp_ip_tos_set(struct inpcb *inp, int val)
2199{
2200
2201	inp->inp_ip_tos = val;
2202}
2203
2204void
2205inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2206    uint32_t *faddr, uint16_t *fp)
2207{
2208
2209	INP_LOCK_ASSERT(inp);
2210	*laddr = inp->inp_laddr.s_addr;
2211	*faddr = inp->inp_faddr.s_addr;
2212	*lp = inp->inp_lport;
2213	*fp = inp->inp_fport;
2214}
2215
2216struct inpcb *
2217so_sotoinpcb(struct socket *so)
2218{
2219
2220	return (sotoinpcb(so));
2221}
2222
2223struct tcpcb *
2224so_sototcpcb(struct socket *so)
2225{
2226
2227	return (sototcpcb(so));
2228}
2229
2230#ifdef DDB
2231static void
2232db_print_indent(int indent)
2233{
2234	int i;
2235
2236	for (i = 0; i < indent; i++)
2237		db_printf(" ");
2238}
2239
2240static void
2241db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2242{
2243	char faddr_str[48], laddr_str[48];
2244
2245	db_print_indent(indent);
2246	db_printf("%s at %p\n", name, inc);
2247
2248	indent += 2;
2249
2250#ifdef INET6
2251	if (inc->inc_flags & INC_ISIPV6) {
2252		/* IPv6. */
2253		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2254		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2255	} else {
2256#endif
2257		/* IPv4. */
2258		inet_ntoa_r(inc->inc_laddr, laddr_str);
2259		inet_ntoa_r(inc->inc_faddr, faddr_str);
2260#ifdef INET6
2261	}
2262#endif
2263	db_print_indent(indent);
2264	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2265	    ntohs(inc->inc_lport));
2266	db_print_indent(indent);
2267	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2268	    ntohs(inc->inc_fport));
2269}
2270
2271static void
2272db_print_inpflags(int inp_flags)
2273{
2274	int comma;
2275
2276	comma = 0;
2277	if (inp_flags & INP_RECVOPTS) {
2278		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2279		comma = 1;
2280	}
2281	if (inp_flags & INP_RECVRETOPTS) {
2282		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2283		comma = 1;
2284	}
2285	if (inp_flags & INP_RECVDSTADDR) {
2286		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2287		comma = 1;
2288	}
2289	if (inp_flags & INP_HDRINCL) {
2290		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2291		comma = 1;
2292	}
2293	if (inp_flags & INP_HIGHPORT) {
2294		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2295		comma = 1;
2296	}
2297	if (inp_flags & INP_LOWPORT) {
2298		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2299		comma = 1;
2300	}
2301	if (inp_flags & INP_ANONPORT) {
2302		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2303		comma = 1;
2304	}
2305	if (inp_flags & INP_RECVIF) {
2306		db_printf("%sINP_RECVIF", comma ? ", " : "");
2307		comma = 1;
2308	}
2309	if (inp_flags & INP_MTUDISC) {
2310		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2311		comma = 1;
2312	}
2313	if (inp_flags & INP_FAITH) {
2314		db_printf("%sINP_FAITH", comma ? ", " : "");
2315		comma = 1;
2316	}
2317	if (inp_flags & INP_RECVTTL) {
2318		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2319		comma = 1;
2320	}
2321	if (inp_flags & INP_DONTFRAG) {
2322		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2323		comma = 1;
2324	}
2325	if (inp_flags & INP_RECVTOS) {
2326		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2327		comma = 1;
2328	}
2329	if (inp_flags & IN6P_IPV6_V6ONLY) {
2330		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2331		comma = 1;
2332	}
2333	if (inp_flags & IN6P_PKTINFO) {
2334		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2335		comma = 1;
2336	}
2337	if (inp_flags & IN6P_HOPLIMIT) {
2338		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2339		comma = 1;
2340	}
2341	if (inp_flags & IN6P_HOPOPTS) {
2342		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2343		comma = 1;
2344	}
2345	if (inp_flags & IN6P_DSTOPTS) {
2346		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2347		comma = 1;
2348	}
2349	if (inp_flags & IN6P_RTHDR) {
2350		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2351		comma = 1;
2352	}
2353	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2354		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2355		comma = 1;
2356	}
2357	if (inp_flags & IN6P_TCLASS) {
2358		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2359		comma = 1;
2360	}
2361	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2362		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2363		comma = 1;
2364	}
2365	if (inp_flags & INP_TIMEWAIT) {
2366		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2367		comma  = 1;
2368	}
2369	if (inp_flags & INP_ONESBCAST) {
2370		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2371		comma  = 1;
2372	}
2373	if (inp_flags & INP_DROPPED) {
2374		db_printf("%sINP_DROPPED", comma ? ", " : "");
2375		comma  = 1;
2376	}
2377	if (inp_flags & INP_SOCKREF) {
2378		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2379		comma  = 1;
2380	}
2381	if (inp_flags & IN6P_RFC2292) {
2382		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2383		comma = 1;
2384	}
2385	if (inp_flags & IN6P_MTU) {
2386		db_printf("IN6P_MTU%s", comma ? ", " : "");
2387		comma = 1;
2388	}
2389}
2390
2391static void
2392db_print_inpvflag(u_char inp_vflag)
2393{
2394	int comma;
2395
2396	comma = 0;
2397	if (inp_vflag & INP_IPV4) {
2398		db_printf("%sINP_IPV4", comma ? ", " : "");
2399		comma  = 1;
2400	}
2401	if (inp_vflag & INP_IPV6) {
2402		db_printf("%sINP_IPV6", comma ? ", " : "");
2403		comma  = 1;
2404	}
2405	if (inp_vflag & INP_IPV6PROTO) {
2406		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2407		comma  = 1;
2408	}
2409}
2410
2411static void
2412db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2413{
2414
2415	db_print_indent(indent);
2416	db_printf("%s at %p\n", name, inp);
2417
2418	indent += 2;
2419
2420	db_print_indent(indent);
2421	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2422
2423	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2424
2425	db_print_indent(indent);
2426	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2427	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2428
2429	db_print_indent(indent);
2430	db_printf("inp_label: %p   inp_flags: 0x%x (",
2431	   inp->inp_label, inp->inp_flags);
2432	db_print_inpflags(inp->inp_flags);
2433	db_printf(")\n");
2434
2435	db_print_indent(indent);
2436	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2437	    inp->inp_vflag);
2438	db_print_inpvflag(inp->inp_vflag);
2439	db_printf(")\n");
2440
2441	db_print_indent(indent);
2442	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2443	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2444
2445	db_print_indent(indent);
2446#ifdef INET6
2447	if (inp->inp_vflag & INP_IPV6) {
2448		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2449		    "in6p_moptions: %p\n", inp->in6p_options,
2450		    inp->in6p_outputopts, inp->in6p_moptions);
2451		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2452		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2453		    inp->in6p_hops);
2454	} else
2455#endif
2456	{
2457		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2458		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2459		    inp->inp_options, inp->inp_moptions);
2460	}
2461
2462	db_print_indent(indent);
2463	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2464	    (uintmax_t)inp->inp_gencnt);
2465}
2466
2467DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2468{
2469	struct inpcb *inp;
2470
2471	if (!have_addr) {
2472		db_printf("usage: show inpcb <addr>\n");
2473		return;
2474	}
2475	inp = (struct inpcb *)addr;
2476
2477	db_print_inpcb(inp, "inpcb", 0);
2478}
2479#endif
2480