1/*-
2 * Copyright (c) 2007-2009 Bruce Simpson.
3 * Copyright (c) 2005 Robert N. M. Watson.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. The name of the author may not be used to endorse or promote
15 *    products derived from this software without specific prior written
16 *    permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31/*
32 * IPv4 multicast socket, group, and socket option processing module.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD$");
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/protosw.h>
44#include <sys/socket.h>
45#include <sys/socketvar.h>
46#include <sys/protosw.h>
47#include <sys/sysctl.h>
48#include <sys/ktr.h>
49#include <sys/tree.h>
50
51#include <net/if.h>
52#include <net/if_dl.h>
53#include <net/route.h>
54#include <net/vnet.h>
55
56#include <netinet/in.h>
57#include <netinet/in_systm.h>
58#include <netinet/in_pcb.h>
59#include <netinet/in_var.h>
60#include <netinet/ip_var.h>
61#include <netinet/igmp_var.h>
62
63#ifndef KTR_IGMPV3
64#define KTR_IGMPV3 KTR_INET
65#endif
66
67#ifndef __SOCKUNION_DECLARED
68union sockunion {
69	struct sockaddr_storage	ss;
70	struct sockaddr		sa;
71	struct sockaddr_dl	sdl;
72	struct sockaddr_in	sin;
73};
74typedef union sockunion sockunion_t;
75#define __SOCKUNION_DECLARED
76#endif /* __SOCKUNION_DECLARED */
77
78static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
79    "IPv4 multicast PCB-layer source filter");
80static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
81static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
82static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
83    "IPv4 multicast IGMP-layer source filter");
84
85/*
86 * Locking:
87 * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
88 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
89 *   it can be taken by code in net/if.c also.
90 * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
91 *
92 * struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly
93 * any need for in_multi itself to be virtualized -- it is bound to an ifp
94 * anyway no matter what happens.
95 */
96struct mtx in_multi_mtx;
97MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF);
98
99/*
100 * Functions with non-static linkage defined in this file should be
101 * declared in in_var.h:
102 *  imo_multi_filter()
103 *  in_addmulti()
104 *  in_delmulti()
105 *  in_joingroup()
106 *  in_joingroup_locked()
107 *  in_leavegroup()
108 *  in_leavegroup_locked()
109 * and ip_var.h:
110 *  inp_freemoptions()
111 *  inp_getmoptions()
112 *  inp_setmoptions()
113 *
114 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
115 * and in_delmulti().
116 */
117static void	imf_commit(struct in_mfilter *);
118static int	imf_get_source(struct in_mfilter *imf,
119		    const struct sockaddr_in *psin,
120		    struct in_msource **);
121static struct in_msource *
122		imf_graft(struct in_mfilter *, const uint8_t,
123		    const struct sockaddr_in *);
124static void	imf_leave(struct in_mfilter *);
125static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
126static void	imf_purge(struct in_mfilter *);
127static void	imf_rollback(struct in_mfilter *);
128static void	imf_reap(struct in_mfilter *);
129static int	imo_grow(struct ip_moptions *);
130static size_t	imo_match_group(const struct ip_moptions *,
131		    const struct ifnet *, const struct sockaddr *);
132static struct in_msource *
133		imo_match_source(const struct ip_moptions *, const size_t,
134		    const struct sockaddr *);
135static void	ims_merge(struct ip_msource *ims,
136		    const struct in_msource *lims, const int rollback);
137static int	in_getmulti(struct ifnet *, const struct in_addr *,
138		    struct in_multi **);
139static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
140		    const int noalloc, struct ip_msource **pims);
141#ifdef KTR
142static int	inm_is_ifp_detached(const struct in_multi *);
143#endif
144static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
145static void	inm_purge(struct in_multi *);
146static void	inm_reap(struct in_multi *);
147static struct ip_moptions *
148		inp_findmoptions(struct inpcb *);
149static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
150static int	inp_join_group(struct inpcb *, struct sockopt *);
151static int	inp_leave_group(struct inpcb *, struct sockopt *);
152static struct ifnet *
153		inp_lookup_mcast_ifp(const struct inpcb *,
154		    const struct sockaddr_in *, const struct in_addr);
155static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
156static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
157static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
158static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
159
160static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0,
161    "IPv4 multicast");
162
163static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
164SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
165    CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxgrpsrc, 0,
166    "Max source filters per group");
167TUNABLE_ULONG("net.inet.ip.mcast.maxgrpsrc", &in_mcast_maxgrpsrc);
168
169static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
170SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
171    CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxsocksrc, 0,
172    "Max source filters per socket");
173TUNABLE_ULONG("net.inet.ip.mcast.maxsocksrc", &in_mcast_maxsocksrc);
174
175int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
176SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN,
177    &in_mcast_loop, 0, "Loopback multicast datagrams by default");
178TUNABLE_INT("net.inet.ip.mcast.loop", &in_mcast_loop);
179
180static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
181    CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
182    "Per-interface stack-wide source filters");
183
184#ifdef KTR
185/*
186 * Inline function which wraps assertions for a valid ifp.
187 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
188 * is detached.
189 */
190static int __inline
191inm_is_ifp_detached(const struct in_multi *inm)
192{
193	struct ifnet *ifp;
194
195	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
196	ifp = inm->inm_ifma->ifma_ifp;
197	if (ifp != NULL) {
198		/*
199		 * Sanity check that netinet's notion of ifp is the
200		 * same as net's.
201		 */
202		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
203	}
204
205	return (ifp == NULL);
206}
207#endif
208
209/*
210 * Initialize an in_mfilter structure to a known state at t0, t1
211 * with an empty source filter list.
212 */
213static __inline void
214imf_init(struct in_mfilter *imf, const int st0, const int st1)
215{
216	memset(imf, 0, sizeof(struct in_mfilter));
217	RB_INIT(&imf->imf_sources);
218	imf->imf_st[0] = st0;
219	imf->imf_st[1] = st1;
220}
221
222/*
223 * Resize the ip_moptions vector to the next power-of-two minus 1.
224 * May be called with locks held; do not sleep.
225 */
226static int
227imo_grow(struct ip_moptions *imo)
228{
229	struct in_multi		**nmships;
230	struct in_multi		**omships;
231	struct in_mfilter	 *nmfilters;
232	struct in_mfilter	 *omfilters;
233	size_t			  idx;
234	size_t			  newmax;
235	size_t			  oldmax;
236
237	nmships = NULL;
238	nmfilters = NULL;
239	omships = imo->imo_membership;
240	omfilters = imo->imo_mfilters;
241	oldmax = imo->imo_max_memberships;
242	newmax = ((oldmax + 1) * 2) - 1;
243
244	if (newmax <= IP_MAX_MEMBERSHIPS) {
245		nmships = (struct in_multi **)realloc(omships,
246		    sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT);
247		nmfilters = (struct in_mfilter *)realloc(omfilters,
248		    sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT);
249		if (nmships != NULL && nmfilters != NULL) {
250			/* Initialize newly allocated source filter heads. */
251			for (idx = oldmax; idx < newmax; idx++) {
252				imf_init(&nmfilters[idx], MCAST_UNDEFINED,
253				    MCAST_EXCLUDE);
254			}
255			imo->imo_max_memberships = newmax;
256			imo->imo_membership = nmships;
257			imo->imo_mfilters = nmfilters;
258		}
259	}
260
261	if (nmships == NULL || nmfilters == NULL) {
262		if (nmships != NULL)
263			free(nmships, M_IPMOPTS);
264		if (nmfilters != NULL)
265			free(nmfilters, M_INMFILTER);
266		return (ETOOMANYREFS);
267	}
268
269	return (0);
270}
271
272/*
273 * Find an IPv4 multicast group entry for this ip_moptions instance
274 * which matches the specified group, and optionally an interface.
275 * Return its index into the array, or -1 if not found.
276 */
277static size_t
278imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
279    const struct sockaddr *group)
280{
281	const struct sockaddr_in *gsin;
282	struct in_multi	**pinm;
283	int		  idx;
284	int		  nmships;
285
286	gsin = (const struct sockaddr_in *)group;
287
288	/* The imo_membership array may be lazy allocated. */
289	if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
290		return (-1);
291
292	nmships = imo->imo_num_memberships;
293	pinm = &imo->imo_membership[0];
294	for (idx = 0; idx < nmships; idx++, pinm++) {
295		if (*pinm == NULL)
296			continue;
297		if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) &&
298		    in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) {
299			break;
300		}
301	}
302	if (idx >= nmships)
303		idx = -1;
304
305	return (idx);
306}
307
308/*
309 * Find an IPv4 multicast source entry for this imo which matches
310 * the given group index for this socket, and source address.
311 *
312 * NOTE: This does not check if the entry is in-mode, merely if
313 * it exists, which may not be the desired behaviour.
314 */
315static struct in_msource *
316imo_match_source(const struct ip_moptions *imo, const size_t gidx,
317    const struct sockaddr *src)
318{
319	struct ip_msource	 find;
320	struct in_mfilter	*imf;
321	struct ip_msource	*ims;
322	const sockunion_t	*psa;
323
324	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
325	KASSERT(gidx != -1 && gidx < imo->imo_num_memberships,
326	    ("%s: invalid index %d\n", __func__, (int)gidx));
327
328	/* The imo_mfilters array may be lazy allocated. */
329	if (imo->imo_mfilters == NULL)
330		return (NULL);
331	imf = &imo->imo_mfilters[gidx];
332
333	/* Source trees are keyed in host byte order. */
334	psa = (const sockunion_t *)src;
335	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
336	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
337
338	return ((struct in_msource *)ims);
339}
340
341/*
342 * Perform filtering for multicast datagrams on a socket by group and source.
343 *
344 * Returns 0 if a datagram should be allowed through, or various error codes
345 * if the socket was not a member of the group, or the source was muted, etc.
346 */
347int
348imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
349    const struct sockaddr *group, const struct sockaddr *src)
350{
351	size_t gidx;
352	struct in_msource *ims;
353	int mode;
354
355	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
356
357	gidx = imo_match_group(imo, ifp, group);
358	if (gidx == -1)
359		return (MCAST_NOTGMEMBER);
360
361	/*
362	 * Check if the source was included in an (S,G) join.
363	 * Allow reception on exclusive memberships by default,
364	 * reject reception on inclusive memberships by default.
365	 * Exclude source only if an in-mode exclude filter exists.
366	 * Include source only if an in-mode include filter exists.
367	 * NOTE: We are comparing group state here at IGMP t1 (now)
368	 * with socket-layer t0 (since last downcall).
369	 */
370	mode = imo->imo_mfilters[gidx].imf_st[1];
371	ims = imo_match_source(imo, gidx, src);
372
373	if ((ims == NULL && mode == MCAST_INCLUDE) ||
374	    (ims != NULL && ims->imsl_st[0] != mode))
375		return (MCAST_NOTSMEMBER);
376
377	return (MCAST_PASS);
378}
379
380/*
381 * Find and return a reference to an in_multi record for (ifp, group),
382 * and bump its reference count.
383 * If one does not exist, try to allocate it, and update link-layer multicast
384 * filters on ifp to listen for group.
385 * Assumes the IN_MULTI lock is held across the call.
386 * Return 0 if successful, otherwise return an appropriate error code.
387 */
388static int
389in_getmulti(struct ifnet *ifp, const struct in_addr *group,
390    struct in_multi **pinm)
391{
392	struct sockaddr_in	 gsin;
393	struct ifmultiaddr	*ifma;
394	struct in_ifinfo	*ii;
395	struct in_multi		*inm;
396	int error;
397
398	IN_MULTI_LOCK_ASSERT();
399
400	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
401
402	inm = inm_lookup(ifp, *group);
403	if (inm != NULL) {
404		/*
405		 * If we already joined this group, just bump the
406		 * refcount and return it.
407		 */
408		KASSERT(inm->inm_refcount >= 1,
409		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
410		++inm->inm_refcount;
411		*pinm = inm;
412		return (0);
413	}
414
415	memset(&gsin, 0, sizeof(gsin));
416	gsin.sin_family = AF_INET;
417	gsin.sin_len = sizeof(struct sockaddr_in);
418	gsin.sin_addr = *group;
419
420	/*
421	 * Check if a link-layer group is already associated
422	 * with this network-layer group on the given ifnet.
423	 */
424	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
425	if (error != 0)
426		return (error);
427
428	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
429	IF_ADDR_WLOCK(ifp);
430
431	/*
432	 * If something other than netinet is occupying the link-layer
433	 * group, print a meaningful error message and back out of
434	 * the allocation.
435	 * Otherwise, bump the refcount on the existing network-layer
436	 * group association and return it.
437	 */
438	if (ifma->ifma_protospec != NULL) {
439		inm = (struct in_multi *)ifma->ifma_protospec;
440#ifdef INVARIANTS
441		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
442		    __func__));
443		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
444		    ("%s: ifma not AF_INET", __func__));
445		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
446		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
447		    !in_hosteq(inm->inm_addr, *group))
448			panic("%s: ifma %p is inconsistent with %p (%s)",
449			    __func__, ifma, inm, inet_ntoa(*group));
450#endif
451		++inm->inm_refcount;
452		*pinm = inm;
453		IF_ADDR_WUNLOCK(ifp);
454		return (0);
455	}
456
457	IF_ADDR_WLOCK_ASSERT(ifp);
458
459	/*
460	 * A new in_multi record is needed; allocate and initialize it.
461	 * We DO NOT perform an IGMP join as the in_ layer may need to
462	 * push an initial source list down to IGMP to support SSM.
463	 *
464	 * The initial source filter state is INCLUDE, {} as per the RFC.
465	 */
466	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
467	if (inm == NULL) {
468		if_delmulti_ifma(ifma);
469		IF_ADDR_WUNLOCK(ifp);
470		return (ENOMEM);
471	}
472	inm->inm_addr = *group;
473	inm->inm_ifp = ifp;
474	inm->inm_igi = ii->ii_igmp;
475	inm->inm_ifma = ifma;
476	inm->inm_refcount = 1;
477	inm->inm_state = IGMP_NOT_MEMBER;
478
479	/*
480	 * Pending state-changes per group are subject to a bounds check.
481	 */
482	IFQ_SET_MAXLEN(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
483
484	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
485	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
486	RB_INIT(&inm->inm_srcs);
487
488	ifma->ifma_protospec = inm;
489
490	*pinm = inm;
491
492	IF_ADDR_WUNLOCK(ifp);
493	return (0);
494}
495
496/*
497 * Drop a reference to an in_multi record.
498 *
499 * If the refcount drops to 0, free the in_multi record and
500 * delete the underlying link-layer membership.
501 */
502void
503inm_release_locked(struct in_multi *inm)
504{
505	struct ifmultiaddr *ifma;
506
507	IN_MULTI_LOCK_ASSERT();
508
509	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
510
511	if (--inm->inm_refcount > 0) {
512		CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__,
513		    inm->inm_refcount);
514		return;
515	}
516
517	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
518
519	ifma = inm->inm_ifma;
520
521	/* XXX this access is not covered by IF_ADDR_LOCK */
522	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
523	KASSERT(ifma->ifma_protospec == inm,
524	    ("%s: ifma_protospec != inm", __func__));
525	ifma->ifma_protospec = NULL;
526
527	inm_purge(inm);
528
529	free(inm, M_IPMADDR);
530
531	if_delmulti_ifma(ifma);
532}
533
534/*
535 * Clear recorded source entries for a group.
536 * Used by the IGMP code. Caller must hold the IN_MULTI lock.
537 * FIXME: Should reap.
538 */
539void
540inm_clear_recorded(struct in_multi *inm)
541{
542	struct ip_msource	*ims;
543
544	IN_MULTI_LOCK_ASSERT();
545
546	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
547		if (ims->ims_stp) {
548			ims->ims_stp = 0;
549			--inm->inm_st[1].iss_rec;
550		}
551	}
552	KASSERT(inm->inm_st[1].iss_rec == 0,
553	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
554}
555
556/*
557 * Record a source as pending for a Source-Group IGMPv3 query.
558 * This lives here as it modifies the shared tree.
559 *
560 * inm is the group descriptor.
561 * naddr is the address of the source to record in network-byte order.
562 *
563 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
564 * lazy-allocate a source node in response to an SG query.
565 * Otherwise, no allocation is performed. This saves some memory
566 * with the trade-off that the source will not be reported to the
567 * router if joined in the window between the query response and
568 * the group actually being joined on the local host.
569 *
570 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
571 * This turns off the allocation of a recorded source entry if
572 * the group has not been joined.
573 *
574 * Return 0 if the source didn't exist or was already marked as recorded.
575 * Return 1 if the source was marked as recorded by this function.
576 * Return <0 if any error occured (negated errno code).
577 */
578int
579inm_record_source(struct in_multi *inm, const in_addr_t naddr)
580{
581	struct ip_msource	 find;
582	struct ip_msource	*ims, *nims;
583
584	IN_MULTI_LOCK_ASSERT();
585
586	find.ims_haddr = ntohl(naddr);
587	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
588	if (ims && ims->ims_stp)
589		return (0);
590	if (ims == NULL) {
591		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
592			return (-ENOSPC);
593		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
594		    M_NOWAIT | M_ZERO);
595		if (nims == NULL)
596			return (-ENOMEM);
597		nims->ims_haddr = find.ims_haddr;
598		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
599		++inm->inm_nsrc;
600		ims = nims;
601	}
602
603	/*
604	 * Mark the source as recorded and update the recorded
605	 * source count.
606	 */
607	++ims->ims_stp;
608	++inm->inm_st[1].iss_rec;
609
610	return (1);
611}
612
613/*
614 * Return a pointer to an in_msource owned by an in_mfilter,
615 * given its source address.
616 * Lazy-allocate if needed. If this is a new entry its filter state is
617 * undefined at t0.
618 *
619 * imf is the filter set being modified.
620 * haddr is the source address in *host* byte-order.
621 *
622 * SMPng: May be called with locks held; malloc must not block.
623 */
624static int
625imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
626    struct in_msource **plims)
627{
628	struct ip_msource	 find;
629	struct ip_msource	*ims, *nims;
630	struct in_msource	*lims;
631	int			 error;
632
633	error = 0;
634	ims = NULL;
635	lims = NULL;
636
637	/* key is host byte order */
638	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
639	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
640	lims = (struct in_msource *)ims;
641	if (lims == NULL) {
642		if (imf->imf_nsrc == in_mcast_maxsocksrc)
643			return (ENOSPC);
644		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
645		    M_NOWAIT | M_ZERO);
646		if (nims == NULL)
647			return (ENOMEM);
648		lims = (struct in_msource *)nims;
649		lims->ims_haddr = find.ims_haddr;
650		lims->imsl_st[0] = MCAST_UNDEFINED;
651		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
652		++imf->imf_nsrc;
653	}
654
655	*plims = lims;
656
657	return (error);
658}
659
660/*
661 * Graft a source entry into an existing socket-layer filter set,
662 * maintaining any required invariants and checking allocations.
663 *
664 * The source is marked as being in the new filter mode at t1.
665 *
666 * Return the pointer to the new node, otherwise return NULL.
667 */
668static struct in_msource *
669imf_graft(struct in_mfilter *imf, const uint8_t st1,
670    const struct sockaddr_in *psin)
671{
672	struct ip_msource	*nims;
673	struct in_msource	*lims;
674
675	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
676	    M_NOWAIT | M_ZERO);
677	if (nims == NULL)
678		return (NULL);
679	lims = (struct in_msource *)nims;
680	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
681	lims->imsl_st[0] = MCAST_UNDEFINED;
682	lims->imsl_st[1] = st1;
683	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
684	++imf->imf_nsrc;
685
686	return (lims);
687}
688
689/*
690 * Prune a source entry from an existing socket-layer filter set,
691 * maintaining any required invariants and checking allocations.
692 *
693 * The source is marked as being left at t1, it is not freed.
694 *
695 * Return 0 if no error occurred, otherwise return an errno value.
696 */
697static int
698imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
699{
700	struct ip_msource	 find;
701	struct ip_msource	*ims;
702	struct in_msource	*lims;
703
704	/* key is host byte order */
705	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
706	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
707	if (ims == NULL)
708		return (ENOENT);
709	lims = (struct in_msource *)ims;
710	lims->imsl_st[1] = MCAST_UNDEFINED;
711	return (0);
712}
713
714/*
715 * Revert socket-layer filter set deltas at t1 to t0 state.
716 */
717static void
718imf_rollback(struct in_mfilter *imf)
719{
720	struct ip_msource	*ims, *tims;
721	struct in_msource	*lims;
722
723	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
724		lims = (struct in_msource *)ims;
725		if (lims->imsl_st[0] == lims->imsl_st[1]) {
726			/* no change at t1 */
727			continue;
728		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
729			/* revert change to existing source at t1 */
730			lims->imsl_st[1] = lims->imsl_st[0];
731		} else {
732			/* revert source added t1 */
733			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
734			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
735			free(ims, M_INMFILTER);
736			imf->imf_nsrc--;
737		}
738	}
739	imf->imf_st[1] = imf->imf_st[0];
740}
741
742/*
743 * Mark socket-layer filter set as INCLUDE {} at t1.
744 */
745static void
746imf_leave(struct in_mfilter *imf)
747{
748	struct ip_msource	*ims;
749	struct in_msource	*lims;
750
751	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
752		lims = (struct in_msource *)ims;
753		lims->imsl_st[1] = MCAST_UNDEFINED;
754	}
755	imf->imf_st[1] = MCAST_INCLUDE;
756}
757
758/*
759 * Mark socket-layer filter set deltas as committed.
760 */
761static void
762imf_commit(struct in_mfilter *imf)
763{
764	struct ip_msource	*ims;
765	struct in_msource	*lims;
766
767	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
768		lims = (struct in_msource *)ims;
769		lims->imsl_st[0] = lims->imsl_st[1];
770	}
771	imf->imf_st[0] = imf->imf_st[1];
772}
773
774/*
775 * Reap unreferenced sources from socket-layer filter set.
776 */
777static void
778imf_reap(struct in_mfilter *imf)
779{
780	struct ip_msource	*ims, *tims;
781	struct in_msource	*lims;
782
783	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
784		lims = (struct in_msource *)ims;
785		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
786		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
787			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
788			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
789			free(ims, M_INMFILTER);
790			imf->imf_nsrc--;
791		}
792	}
793}
794
795/*
796 * Purge socket-layer filter set.
797 */
798static void
799imf_purge(struct in_mfilter *imf)
800{
801	struct ip_msource	*ims, *tims;
802
803	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
804		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
805		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
806		free(ims, M_INMFILTER);
807		imf->imf_nsrc--;
808	}
809	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
810	KASSERT(RB_EMPTY(&imf->imf_sources),
811	    ("%s: imf_sources not empty", __func__));
812}
813
814/*
815 * Look up a source filter entry for a multicast group.
816 *
817 * inm is the group descriptor to work with.
818 * haddr is the host-byte-order IPv4 address to look up.
819 * noalloc may be non-zero to suppress allocation of sources.
820 * *pims will be set to the address of the retrieved or allocated source.
821 *
822 * SMPng: NOTE: may be called with locks held.
823 * Return 0 if successful, otherwise return a non-zero error code.
824 */
825static int
826inm_get_source(struct in_multi *inm, const in_addr_t haddr,
827    const int noalloc, struct ip_msource **pims)
828{
829	struct ip_msource	 find;
830	struct ip_msource	*ims, *nims;
831#ifdef KTR
832	struct in_addr ia;
833#endif
834
835	find.ims_haddr = haddr;
836	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
837	if (ims == NULL && !noalloc) {
838		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
839			return (ENOSPC);
840		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
841		    M_NOWAIT | M_ZERO);
842		if (nims == NULL)
843			return (ENOMEM);
844		nims->ims_haddr = haddr;
845		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
846		++inm->inm_nsrc;
847		ims = nims;
848#ifdef KTR
849		ia.s_addr = htonl(haddr);
850		CTR3(KTR_IGMPV3, "%s: allocated %s as %p", __func__,
851		    inet_ntoa(ia), ims);
852#endif
853	}
854
855	*pims = ims;
856	return (0);
857}
858
859/*
860 * Merge socket-layer source into IGMP-layer source.
861 * If rollback is non-zero, perform the inverse of the merge.
862 */
863static void
864ims_merge(struct ip_msource *ims, const struct in_msource *lims,
865    const int rollback)
866{
867	int n = rollback ? -1 : 1;
868#ifdef KTR
869	struct in_addr ia;
870
871	ia.s_addr = htonl(ims->ims_haddr);
872#endif
873
874	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
875		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on %s",
876		    __func__, n, inet_ntoa(ia));
877		ims->ims_st[1].ex -= n;
878	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
879		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on %s",
880		    __func__, n, inet_ntoa(ia));
881		ims->ims_st[1].in -= n;
882	}
883
884	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
885		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on %s",
886		    __func__, n, inet_ntoa(ia));
887		ims->ims_st[1].ex += n;
888	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
889		CTR3(KTR_IGMPV3, "%s: t1 in += %d on %s",
890		    __func__, n, inet_ntoa(ia));
891		ims->ims_st[1].in += n;
892	}
893}
894
895/*
896 * Atomically update the global in_multi state, when a membership's
897 * filter list is being updated in any way.
898 *
899 * imf is the per-inpcb-membership group filter pointer.
900 * A fake imf may be passed for in-kernel consumers.
901 *
902 * XXX This is a candidate for a set-symmetric-difference style loop
903 * which would eliminate the repeated lookup from root of ims nodes,
904 * as they share the same key space.
905 *
906 * If any error occurred this function will back out of refcounts
907 * and return a non-zero value.
908 */
909static int
910inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
911{
912	struct ip_msource	*ims, *nims;
913	struct in_msource	*lims;
914	int			 schanged, error;
915	int			 nsrc0, nsrc1;
916
917	schanged = 0;
918	error = 0;
919	nsrc1 = nsrc0 = 0;
920
921	/*
922	 * Update the source filters first, as this may fail.
923	 * Maintain count of in-mode filters at t0, t1. These are
924	 * used to work out if we transition into ASM mode or not.
925	 * Maintain a count of source filters whose state was
926	 * actually modified by this operation.
927	 */
928	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
929		lims = (struct in_msource *)ims;
930		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
931		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
932		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
933		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
934		++schanged;
935		if (error)
936			break;
937		ims_merge(nims, lims, 0);
938	}
939	if (error) {
940		struct ip_msource *bims;
941
942		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
943			lims = (struct in_msource *)ims;
944			if (lims->imsl_st[0] == lims->imsl_st[1])
945				continue;
946			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
947			if (bims == NULL)
948				continue;
949			ims_merge(bims, lims, 1);
950		}
951		goto out_reap;
952	}
953
954	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
955	    __func__, nsrc0, nsrc1);
956
957	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
958	if (imf->imf_st[0] == imf->imf_st[1] &&
959	    imf->imf_st[1] == MCAST_INCLUDE) {
960		if (nsrc1 == 0) {
961			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
962			--inm->inm_st[1].iss_in;
963		}
964	}
965
966	/* Handle filter mode transition on socket. */
967	if (imf->imf_st[0] != imf->imf_st[1]) {
968		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
969		    __func__, imf->imf_st[0], imf->imf_st[1]);
970
971		if (imf->imf_st[0] == MCAST_EXCLUDE) {
972			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
973			--inm->inm_st[1].iss_ex;
974		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
975			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
976			--inm->inm_st[1].iss_in;
977		}
978
979		if (imf->imf_st[1] == MCAST_EXCLUDE) {
980			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
981			inm->inm_st[1].iss_ex++;
982		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
983			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
984			inm->inm_st[1].iss_in++;
985		}
986	}
987
988	/*
989	 * Track inm filter state in terms of listener counts.
990	 * If there are any exclusive listeners, stack-wide
991	 * membership is exclusive.
992	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
993	 * If no listeners remain, state is undefined at t1,
994	 * and the IGMP lifecycle for this group should finish.
995	 */
996	if (inm->inm_st[1].iss_ex > 0) {
997		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
998		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
999	} else if (inm->inm_st[1].iss_in > 0) {
1000		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1001		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1002	} else {
1003		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1004		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1005	}
1006
1007	/* Decrement ASM listener count on transition out of ASM mode. */
1008	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1009		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1010		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0))
1011			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1012			--inm->inm_st[1].iss_asm;
1013	}
1014
1015	/* Increment ASM listener count on transition to ASM mode. */
1016	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1017		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1018		inm->inm_st[1].iss_asm++;
1019	}
1020
1021	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1022	inm_print(inm);
1023
1024out_reap:
1025	if (schanged > 0) {
1026		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1027		inm_reap(inm);
1028	}
1029	return (error);
1030}
1031
1032/*
1033 * Mark an in_multi's filter set deltas as committed.
1034 * Called by IGMP after a state change has been enqueued.
1035 */
1036void
1037inm_commit(struct in_multi *inm)
1038{
1039	struct ip_msource	*ims;
1040
1041	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1042	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1043	inm_print(inm);
1044
1045	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1046		ims->ims_st[0] = ims->ims_st[1];
1047	}
1048	inm->inm_st[0] = inm->inm_st[1];
1049}
1050
1051/*
1052 * Reap unreferenced nodes from an in_multi's filter set.
1053 */
1054static void
1055inm_reap(struct in_multi *inm)
1056{
1057	struct ip_msource	*ims, *tims;
1058
1059	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1060		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1061		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1062		    ims->ims_stp != 0)
1063			continue;
1064		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1065		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1066		free(ims, M_IPMSOURCE);
1067		inm->inm_nsrc--;
1068	}
1069}
1070
1071/*
1072 * Purge all source nodes from an in_multi's filter set.
1073 */
1074static void
1075inm_purge(struct in_multi *inm)
1076{
1077	struct ip_msource	*ims, *tims;
1078
1079	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1080		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1081		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1082		free(ims, M_IPMSOURCE);
1083		inm->inm_nsrc--;
1084	}
1085}
1086
1087/*
1088 * Join a multicast group; unlocked entry point.
1089 *
1090 * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1091 * is not held. Fortunately, ifp is unlikely to have been detached
1092 * at this point, so we assume it's OK to recurse.
1093 */
1094int
1095in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1096    /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1097{
1098	int error;
1099
1100	IN_MULTI_LOCK();
1101	error = in_joingroup_locked(ifp, gina, imf, pinm);
1102	IN_MULTI_UNLOCK();
1103
1104	return (error);
1105}
1106
1107/*
1108 * Join a multicast group; real entry point.
1109 *
1110 * Only preserves atomicity at inm level.
1111 * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1112 *
1113 * If the IGMP downcall fails, the group is not joined, and an error
1114 * code is returned.
1115 */
1116int
1117in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1118    /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1119{
1120	struct in_mfilter	 timf;
1121	struct in_multi		*inm;
1122	int			 error;
1123
1124	IN_MULTI_LOCK_ASSERT();
1125
1126	CTR4(KTR_IGMPV3, "%s: join %s on %p(%s))", __func__,
1127	    inet_ntoa(*gina), ifp, ifp->if_xname);
1128
1129	error = 0;
1130	inm = NULL;
1131
1132	/*
1133	 * If no imf was specified (i.e. kernel consumer),
1134	 * fake one up and assume it is an ASM join.
1135	 */
1136	if (imf == NULL) {
1137		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1138		imf = &timf;
1139	}
1140
1141	error = in_getmulti(ifp, gina, &inm);
1142	if (error) {
1143		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1144		return (error);
1145	}
1146
1147	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1148	error = inm_merge(inm, imf);
1149	if (error) {
1150		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1151		goto out_inm_release;
1152	}
1153
1154	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1155	error = igmp_change_state(inm);
1156	if (error) {
1157		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1158		goto out_inm_release;
1159	}
1160
1161out_inm_release:
1162	if (error) {
1163		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1164		inm_release_locked(inm);
1165	} else {
1166		*pinm = inm;
1167	}
1168
1169	return (error);
1170}
1171
1172/*
1173 * Leave a multicast group; unlocked entry point.
1174 */
1175int
1176in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1177{
1178	struct ifnet *ifp;
1179	int error;
1180
1181	ifp = inm->inm_ifp;
1182
1183	IN_MULTI_LOCK();
1184	error = in_leavegroup_locked(inm, imf);
1185	IN_MULTI_UNLOCK();
1186
1187	return (error);
1188}
1189
1190/*
1191 * Leave a multicast group; real entry point.
1192 * All source filters will be expunged.
1193 *
1194 * Only preserves atomicity at inm level.
1195 *
1196 * Holding the write lock for the INP which contains imf
1197 * is highly advisable. We can't assert for it as imf does not
1198 * contain a back-pointer to the owning inp.
1199 *
1200 * Note: This is not the same as inm_release(*) as this function also
1201 * makes a state change downcall into IGMP.
1202 */
1203int
1204in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1205{
1206	struct in_mfilter	 timf;
1207	int			 error;
1208
1209	error = 0;
1210
1211	IN_MULTI_LOCK_ASSERT();
1212
1213	CTR5(KTR_IGMPV3, "%s: leave inm %p, %s/%s, imf %p", __func__,
1214	    inm, inet_ntoa(inm->inm_addr),
1215	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1216	    imf);
1217
1218	/*
1219	 * If no imf was specified (i.e. kernel consumer),
1220	 * fake one up and assume it is an ASM join.
1221	 */
1222	if (imf == NULL) {
1223		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1224		imf = &timf;
1225	}
1226
1227	/*
1228	 * Begin state merge transaction at IGMP layer.
1229	 *
1230	 * As this particular invocation should not cause any memory
1231	 * to be allocated, and there is no opportunity to roll back
1232	 * the transaction, it MUST NOT fail.
1233	 */
1234	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1235	error = inm_merge(inm, imf);
1236	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1237
1238	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1239	error = igmp_change_state(inm);
1240	if (error)
1241		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1242
1243	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1244	inm_release_locked(inm);
1245
1246	return (error);
1247}
1248
1249/*#ifndef BURN_BRIDGES*/
1250/*
1251 * Join an IPv4 multicast group in (*,G) exclusive mode.
1252 * The group must be a 224.0.0.0/24 link-scope group.
1253 * This KPI is for legacy kernel consumers only.
1254 */
1255struct in_multi *
1256in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1257{
1258	struct in_multi *pinm;
1259	int error;
1260
1261	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1262	    ("%s: %s not in 224.0.0.0/24", __func__, inet_ntoa(*ap)));
1263
1264	error = in_joingroup(ifp, ap, NULL, &pinm);
1265	if (error != 0)
1266		pinm = NULL;
1267
1268	return (pinm);
1269}
1270
1271/*
1272 * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode.
1273 * This KPI is for legacy kernel consumers only.
1274 */
1275void
1276in_delmulti(struct in_multi *inm)
1277{
1278
1279	(void)in_leavegroup(inm, NULL);
1280}
1281/*#endif*/
1282
1283/*
1284 * Block or unblock an ASM multicast source on an inpcb.
1285 * This implements the delta-based API described in RFC 3678.
1286 *
1287 * The delta-based API applies only to exclusive-mode memberships.
1288 * An IGMP downcall will be performed.
1289 *
1290 * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1291 *
1292 * Return 0 if successful, otherwise return an appropriate error code.
1293 */
1294static int
1295inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1296{
1297	struct group_source_req		 gsr;
1298	sockunion_t			*gsa, *ssa;
1299	struct ifnet			*ifp;
1300	struct in_mfilter		*imf;
1301	struct ip_moptions		*imo;
1302	struct in_msource		*ims;
1303	struct in_multi			*inm;
1304	size_t				 idx;
1305	uint16_t			 fmode;
1306	int				 error, doblock;
1307
1308	ifp = NULL;
1309	error = 0;
1310	doblock = 0;
1311
1312	memset(&gsr, 0, sizeof(struct group_source_req));
1313	gsa = (sockunion_t *)&gsr.gsr_group;
1314	ssa = (sockunion_t *)&gsr.gsr_source;
1315
1316	switch (sopt->sopt_name) {
1317	case IP_BLOCK_SOURCE:
1318	case IP_UNBLOCK_SOURCE: {
1319		struct ip_mreq_source	 mreqs;
1320
1321		error = sooptcopyin(sopt, &mreqs,
1322		    sizeof(struct ip_mreq_source),
1323		    sizeof(struct ip_mreq_source));
1324		if (error)
1325			return (error);
1326
1327		gsa->sin.sin_family = AF_INET;
1328		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1329		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1330
1331		ssa->sin.sin_family = AF_INET;
1332		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1333		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1334
1335		if (!in_nullhost(mreqs.imr_interface))
1336			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1337
1338		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1339			doblock = 1;
1340
1341		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
1342		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
1343		break;
1344	    }
1345
1346	case MCAST_BLOCK_SOURCE:
1347	case MCAST_UNBLOCK_SOURCE:
1348		error = sooptcopyin(sopt, &gsr,
1349		    sizeof(struct group_source_req),
1350		    sizeof(struct group_source_req));
1351		if (error)
1352			return (error);
1353
1354		if (gsa->sin.sin_family != AF_INET ||
1355		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1356			return (EINVAL);
1357
1358		if (ssa->sin.sin_family != AF_INET ||
1359		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1360			return (EINVAL);
1361
1362		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1363			return (EADDRNOTAVAIL);
1364
1365		ifp = ifnet_byindex(gsr.gsr_interface);
1366
1367		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1368			doblock = 1;
1369		break;
1370
1371	default:
1372		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1373		    __func__, sopt->sopt_name);
1374		return (EOPNOTSUPP);
1375		break;
1376	}
1377
1378	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1379		return (EINVAL);
1380
1381	/*
1382	 * Check if we are actually a member of this group.
1383	 */
1384	imo = inp_findmoptions(inp);
1385	idx = imo_match_group(imo, ifp, &gsa->sa);
1386	if (idx == -1 || imo->imo_mfilters == NULL) {
1387		error = EADDRNOTAVAIL;
1388		goto out_inp_locked;
1389	}
1390
1391	KASSERT(imo->imo_mfilters != NULL,
1392	    ("%s: imo_mfilters not allocated", __func__));
1393	imf = &imo->imo_mfilters[idx];
1394	inm = imo->imo_membership[idx];
1395
1396	/*
1397	 * Attempting to use the delta-based API on an
1398	 * non exclusive-mode membership is an error.
1399	 */
1400	fmode = imf->imf_st[0];
1401	if (fmode != MCAST_EXCLUDE) {
1402		error = EINVAL;
1403		goto out_inp_locked;
1404	}
1405
1406	/*
1407	 * Deal with error cases up-front:
1408	 *  Asked to block, but already blocked; or
1409	 *  Asked to unblock, but nothing to unblock.
1410	 * If adding a new block entry, allocate it.
1411	 */
1412	ims = imo_match_source(imo, idx, &ssa->sa);
1413	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1414		CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
1415		    inet_ntoa(ssa->sin.sin_addr), doblock ? "" : "not ");
1416		error = EADDRNOTAVAIL;
1417		goto out_inp_locked;
1418	}
1419
1420	INP_WLOCK_ASSERT(inp);
1421
1422	/*
1423	 * Begin state merge transaction at socket layer.
1424	 */
1425	if (doblock) {
1426		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1427		ims = imf_graft(imf, fmode, &ssa->sin);
1428		if (ims == NULL)
1429			error = ENOMEM;
1430	} else {
1431		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1432		error = imf_prune(imf, &ssa->sin);
1433	}
1434
1435	if (error) {
1436		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1437		goto out_imf_rollback;
1438	}
1439
1440	/*
1441	 * Begin state merge transaction at IGMP layer.
1442	 */
1443	IN_MULTI_LOCK();
1444
1445	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1446	error = inm_merge(inm, imf);
1447	if (error) {
1448		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1449		goto out_in_multi_locked;
1450	}
1451
1452	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1453	error = igmp_change_state(inm);
1454	if (error)
1455		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1456
1457out_in_multi_locked:
1458
1459	IN_MULTI_UNLOCK();
1460
1461out_imf_rollback:
1462	if (error)
1463		imf_rollback(imf);
1464	else
1465		imf_commit(imf);
1466
1467	imf_reap(imf);
1468
1469out_inp_locked:
1470	INP_WUNLOCK(inp);
1471	return (error);
1472}
1473
1474/*
1475 * Given an inpcb, return its multicast options structure pointer.  Accepts
1476 * an unlocked inpcb pointer, but will return it locked.  May sleep.
1477 *
1478 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1479 * SMPng: NOTE: Returns with the INP write lock held.
1480 */
1481static struct ip_moptions *
1482inp_findmoptions(struct inpcb *inp)
1483{
1484	struct ip_moptions	 *imo;
1485	struct in_multi		**immp;
1486	struct in_mfilter	 *imfp;
1487	size_t			  idx;
1488
1489	INP_WLOCK(inp);
1490	if (inp->inp_moptions != NULL)
1491		return (inp->inp_moptions);
1492
1493	INP_WUNLOCK(inp);
1494
1495	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1496	immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1497	    M_WAITOK | M_ZERO);
1498	imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1499	    M_INMFILTER, M_WAITOK);
1500
1501	imo->imo_multicast_ifp = NULL;
1502	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1503	imo->imo_multicast_vif = -1;
1504	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1505	imo->imo_multicast_loop = in_mcast_loop;
1506	imo->imo_num_memberships = 0;
1507	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1508	imo->imo_membership = immp;
1509
1510	/* Initialize per-group source filters. */
1511	for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1512		imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1513	imo->imo_mfilters = imfp;
1514
1515	INP_WLOCK(inp);
1516	if (inp->inp_moptions != NULL) {
1517		free(imfp, M_INMFILTER);
1518		free(immp, M_IPMOPTS);
1519		free(imo, M_IPMOPTS);
1520		return (inp->inp_moptions);
1521	}
1522	inp->inp_moptions = imo;
1523	return (imo);
1524}
1525
1526/*
1527 * Discard the IP multicast options (and source filters).
1528 *
1529 * SMPng: NOTE: assumes INP write lock is held.
1530 */
1531void
1532inp_freemoptions(struct ip_moptions *imo)
1533{
1534	struct in_mfilter	*imf;
1535	size_t			 idx, nmships;
1536
1537	KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__));
1538
1539	nmships = imo->imo_num_memberships;
1540	for (idx = 0; idx < nmships; ++idx) {
1541		imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL;
1542		if (imf)
1543			imf_leave(imf);
1544		(void)in_leavegroup(imo->imo_membership[idx], imf);
1545		if (imf)
1546			imf_purge(imf);
1547	}
1548
1549	if (imo->imo_mfilters)
1550		free(imo->imo_mfilters, M_INMFILTER);
1551	free(imo->imo_membership, M_IPMOPTS);
1552	free(imo, M_IPMOPTS);
1553}
1554
1555/*
1556 * Atomically get source filters on a socket for an IPv4 multicast group.
1557 * Called with INP lock held; returns with lock released.
1558 */
1559static int
1560inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1561{
1562	struct __msfilterreq	 msfr;
1563	sockunion_t		*gsa;
1564	struct ifnet		*ifp;
1565	struct ip_moptions	*imo;
1566	struct in_mfilter	*imf;
1567	struct ip_msource	*ims;
1568	struct in_msource	*lims;
1569	struct sockaddr_in	*psin;
1570	struct sockaddr_storage	*ptss;
1571	struct sockaddr_storage	*tss;
1572	int			 error;
1573	size_t			 idx, nsrcs, ncsrcs;
1574
1575	INP_WLOCK_ASSERT(inp);
1576
1577	imo = inp->inp_moptions;
1578	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1579
1580	INP_WUNLOCK(inp);
1581
1582	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1583	    sizeof(struct __msfilterreq));
1584	if (error)
1585		return (error);
1586
1587	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1588		return (EINVAL);
1589
1590	ifp = ifnet_byindex(msfr.msfr_ifindex);
1591	if (ifp == NULL)
1592		return (EINVAL);
1593
1594	INP_WLOCK(inp);
1595
1596	/*
1597	 * Lookup group on the socket.
1598	 */
1599	gsa = (sockunion_t *)&msfr.msfr_group;
1600	idx = imo_match_group(imo, ifp, &gsa->sa);
1601	if (idx == -1 || imo->imo_mfilters == NULL) {
1602		INP_WUNLOCK(inp);
1603		return (EADDRNOTAVAIL);
1604	}
1605	imf = &imo->imo_mfilters[idx];
1606
1607	/*
1608	 * Ignore memberships which are in limbo.
1609	 */
1610	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1611		INP_WUNLOCK(inp);
1612		return (EAGAIN);
1613	}
1614	msfr.msfr_fmode = imf->imf_st[1];
1615
1616	/*
1617	 * If the user specified a buffer, copy out the source filter
1618	 * entries to userland gracefully.
1619	 * We only copy out the number of entries which userland
1620	 * has asked for, but we always tell userland how big the
1621	 * buffer really needs to be.
1622	 */
1623	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1624		msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1625	tss = NULL;
1626	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1627		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1628		    M_TEMP, M_NOWAIT | M_ZERO);
1629		if (tss == NULL) {
1630			INP_WUNLOCK(inp);
1631			return (ENOBUFS);
1632		}
1633	}
1634
1635	/*
1636	 * Count number of sources in-mode at t0.
1637	 * If buffer space exists and remains, copy out source entries.
1638	 */
1639	nsrcs = msfr.msfr_nsrcs;
1640	ncsrcs = 0;
1641	ptss = tss;
1642	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1643		lims = (struct in_msource *)ims;
1644		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1645		    lims->imsl_st[0] != imf->imf_st[0])
1646			continue;
1647		++ncsrcs;
1648		if (tss != NULL && nsrcs > 0) {
1649			psin = (struct sockaddr_in *)ptss;
1650			psin->sin_family = AF_INET;
1651			psin->sin_len = sizeof(struct sockaddr_in);
1652			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1653			psin->sin_port = 0;
1654			++ptss;
1655			--nsrcs;
1656		}
1657	}
1658
1659	INP_WUNLOCK(inp);
1660
1661	if (tss != NULL) {
1662		error = copyout(tss, msfr.msfr_srcs,
1663		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1664		free(tss, M_TEMP);
1665		if (error)
1666			return (error);
1667	}
1668
1669	msfr.msfr_nsrcs = ncsrcs;
1670	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1671
1672	return (error);
1673}
1674
1675/*
1676 * Return the IP multicast options in response to user getsockopt().
1677 */
1678int
1679inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1680{
1681	struct ip_mreqn		 mreqn;
1682	struct ip_moptions	*imo;
1683	struct ifnet		*ifp;
1684	struct in_ifaddr	*ia;
1685	int			 error, optval;
1686	u_char			 coptval;
1687
1688	INP_WLOCK(inp);
1689	imo = inp->inp_moptions;
1690	/*
1691	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1692	 * or is a divert socket, reject it.
1693	 */
1694	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1695	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1696	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1697		INP_WUNLOCK(inp);
1698		return (EOPNOTSUPP);
1699	}
1700
1701	error = 0;
1702	switch (sopt->sopt_name) {
1703	case IP_MULTICAST_VIF:
1704		if (imo != NULL)
1705			optval = imo->imo_multicast_vif;
1706		else
1707			optval = -1;
1708		INP_WUNLOCK(inp);
1709		error = sooptcopyout(sopt, &optval, sizeof(int));
1710		break;
1711
1712	case IP_MULTICAST_IF:
1713		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1714		if (imo != NULL) {
1715			ifp = imo->imo_multicast_ifp;
1716			if (!in_nullhost(imo->imo_multicast_addr)) {
1717				mreqn.imr_address = imo->imo_multicast_addr;
1718			} else if (ifp != NULL) {
1719				mreqn.imr_ifindex = ifp->if_index;
1720				IFP_TO_IA(ifp, ia);
1721				if (ia != NULL) {
1722					mreqn.imr_address =
1723					    IA_SIN(ia)->sin_addr;
1724					ifa_free(&ia->ia_ifa);
1725				}
1726			}
1727		}
1728		INP_WUNLOCK(inp);
1729		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1730			error = sooptcopyout(sopt, &mreqn,
1731			    sizeof(struct ip_mreqn));
1732		} else {
1733			error = sooptcopyout(sopt, &mreqn.imr_address,
1734			    sizeof(struct in_addr));
1735		}
1736		break;
1737
1738	case IP_MULTICAST_TTL:
1739		if (imo == 0)
1740			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1741		else
1742			optval = coptval = imo->imo_multicast_ttl;
1743		INP_WUNLOCK(inp);
1744		if (sopt->sopt_valsize == sizeof(u_char))
1745			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1746		else
1747			error = sooptcopyout(sopt, &optval, sizeof(int));
1748		break;
1749
1750	case IP_MULTICAST_LOOP:
1751		if (imo == 0)
1752			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1753		else
1754			optval = coptval = imo->imo_multicast_loop;
1755		INP_WUNLOCK(inp);
1756		if (sopt->sopt_valsize == sizeof(u_char))
1757			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1758		else
1759			error = sooptcopyout(sopt, &optval, sizeof(int));
1760		break;
1761
1762	case IP_MSFILTER:
1763		if (imo == NULL) {
1764			error = EADDRNOTAVAIL;
1765			INP_WUNLOCK(inp);
1766		} else {
1767			error = inp_get_source_filters(inp, sopt);
1768		}
1769		break;
1770
1771	default:
1772		INP_WUNLOCK(inp);
1773		error = ENOPROTOOPT;
1774		break;
1775	}
1776
1777	INP_UNLOCK_ASSERT(inp);
1778
1779	return (error);
1780}
1781
1782/*
1783 * Look up the ifnet to use for a multicast group membership,
1784 * given the IPv4 address of an interface, and the IPv4 group address.
1785 *
1786 * This routine exists to support legacy multicast applications
1787 * which do not understand that multicast memberships are scoped to
1788 * specific physical links in the networking stack, or which need
1789 * to join link-scope groups before IPv4 addresses are configured.
1790 *
1791 * If inp is non-NULL, use this socket's current FIB number for any
1792 * required FIB lookup.
1793 * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1794 * and use its ifp; usually, this points to the default next-hop.
1795 *
1796 * If the FIB lookup fails, attempt to use the first non-loopback
1797 * interface with multicast capability in the system as a
1798 * last resort. The legacy IPv4 ASM API requires that we do
1799 * this in order to allow groups to be joined when the routing
1800 * table has not yet been populated during boot.
1801 *
1802 * Returns NULL if no ifp could be found.
1803 *
1804 * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP.
1805 * FUTURE: Implement IPv4 source-address selection.
1806 */
1807static struct ifnet *
1808inp_lookup_mcast_ifp(const struct inpcb *inp,
1809    const struct sockaddr_in *gsin, const struct in_addr ina)
1810{
1811	struct ifnet *ifp;
1812
1813	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1814	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1815	    ("%s: not multicast", __func__));
1816
1817	ifp = NULL;
1818	if (!in_nullhost(ina)) {
1819		INADDR_TO_IFP(ina, ifp);
1820	} else {
1821		struct route ro;
1822
1823		ro.ro_rt = NULL;
1824		memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in));
1825		in_rtalloc_ign(&ro, 0, inp ? inp->inp_inc.inc_fibnum : 0);
1826		if (ro.ro_rt != NULL) {
1827			ifp = ro.ro_rt->rt_ifp;
1828			KASSERT(ifp != NULL, ("%s: null ifp", __func__));
1829			RTFREE(ro.ro_rt);
1830		} else {
1831			struct in_ifaddr *ia;
1832			struct ifnet *mifp;
1833
1834			mifp = NULL;
1835			IN_IFADDR_RLOCK();
1836			TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1837				mifp = ia->ia_ifp;
1838				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1839				     (mifp->if_flags & IFF_MULTICAST)) {
1840					ifp = mifp;
1841					break;
1842				}
1843			}
1844			IN_IFADDR_RUNLOCK();
1845		}
1846	}
1847
1848	return (ifp);
1849}
1850
1851/*
1852 * Join an IPv4 multicast group, possibly with a source.
1853 */
1854static int
1855inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1856{
1857	struct group_source_req		 gsr;
1858	sockunion_t			*gsa, *ssa;
1859	struct ifnet			*ifp;
1860	struct in_mfilter		*imf;
1861	struct ip_moptions		*imo;
1862	struct in_multi			*inm;
1863	struct in_msource		*lims;
1864	size_t				 idx;
1865	int				 error, is_new;
1866
1867	ifp = NULL;
1868	imf = NULL;
1869	lims = NULL;
1870	error = 0;
1871	is_new = 0;
1872
1873	memset(&gsr, 0, sizeof(struct group_source_req));
1874	gsa = (sockunion_t *)&gsr.gsr_group;
1875	gsa->ss.ss_family = AF_UNSPEC;
1876	ssa = (sockunion_t *)&gsr.gsr_source;
1877	ssa->ss.ss_family = AF_UNSPEC;
1878
1879	switch (sopt->sopt_name) {
1880	case IP_ADD_MEMBERSHIP:
1881	case IP_ADD_SOURCE_MEMBERSHIP: {
1882		struct ip_mreq_source	 mreqs;
1883
1884		if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
1885			error = sooptcopyin(sopt, &mreqs,
1886			    sizeof(struct ip_mreq),
1887			    sizeof(struct ip_mreq));
1888			/*
1889			 * Do argument switcharoo from ip_mreq into
1890			 * ip_mreq_source to avoid using two instances.
1891			 */
1892			mreqs.imr_interface = mreqs.imr_sourceaddr;
1893			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
1894		} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1895			error = sooptcopyin(sopt, &mreqs,
1896			    sizeof(struct ip_mreq_source),
1897			    sizeof(struct ip_mreq_source));
1898		}
1899		if (error)
1900			return (error);
1901
1902		gsa->sin.sin_family = AF_INET;
1903		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1904		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1905
1906		if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1907			ssa->sin.sin_family = AF_INET;
1908			ssa->sin.sin_len = sizeof(struct sockaddr_in);
1909			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1910		}
1911
1912		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1913			return (EINVAL);
1914
1915		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1916		    mreqs.imr_interface);
1917		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
1918		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
1919		break;
1920	}
1921
1922	case MCAST_JOIN_GROUP:
1923	case MCAST_JOIN_SOURCE_GROUP:
1924		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1925			error = sooptcopyin(sopt, &gsr,
1926			    sizeof(struct group_req),
1927			    sizeof(struct group_req));
1928		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1929			error = sooptcopyin(sopt, &gsr,
1930			    sizeof(struct group_source_req),
1931			    sizeof(struct group_source_req));
1932		}
1933		if (error)
1934			return (error);
1935
1936		if (gsa->sin.sin_family != AF_INET ||
1937		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1938			return (EINVAL);
1939
1940		/*
1941		 * Overwrite the port field if present, as the sockaddr
1942		 * being copied in may be matched with a binary comparison.
1943		 */
1944		gsa->sin.sin_port = 0;
1945		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1946			if (ssa->sin.sin_family != AF_INET ||
1947			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1948				return (EINVAL);
1949			ssa->sin.sin_port = 0;
1950		}
1951
1952		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1953			return (EINVAL);
1954
1955		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1956			return (EADDRNOTAVAIL);
1957		ifp = ifnet_byindex(gsr.gsr_interface);
1958		break;
1959
1960	default:
1961		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1962		    __func__, sopt->sopt_name);
1963		return (EOPNOTSUPP);
1964		break;
1965	}
1966
1967	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1968		return (EADDRNOTAVAIL);
1969
1970	imo = inp_findmoptions(inp);
1971	idx = imo_match_group(imo, ifp, &gsa->sa);
1972	if (idx == -1) {
1973		is_new = 1;
1974	} else {
1975		inm = imo->imo_membership[idx];
1976		imf = &imo->imo_mfilters[idx];
1977		if (ssa->ss.ss_family != AF_UNSPEC) {
1978			/*
1979			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
1980			 * is an error. On an existing inclusive membership,
1981			 * it just adds the source to the filter list.
1982			 */
1983			if (imf->imf_st[1] != MCAST_INCLUDE) {
1984				error = EINVAL;
1985				goto out_inp_locked;
1986			}
1987			/*
1988			 * Throw out duplicates.
1989			 *
1990			 * XXX FIXME: This makes a naive assumption that
1991			 * even if entries exist for *ssa in this imf,
1992			 * they will be rejected as dupes, even if they
1993			 * are not valid in the current mode (in-mode).
1994			 *
1995			 * in_msource is transactioned just as for anything
1996			 * else in SSM -- but note naive use of inm_graft()
1997			 * below for allocating new filter entries.
1998			 *
1999			 * This is only an issue if someone mixes the
2000			 * full-state SSM API with the delta-based API,
2001			 * which is discouraged in the relevant RFCs.
2002			 */
2003			lims = imo_match_source(imo, idx, &ssa->sa);
2004			if (lims != NULL /*&&
2005			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2006				error = EADDRNOTAVAIL;
2007				goto out_inp_locked;
2008			}
2009		} else {
2010			/*
2011			 * MCAST_JOIN_GROUP on an existing exclusive
2012			 * membership is an error; return EADDRINUSE
2013			 * to preserve 4.4BSD API idempotence, and
2014			 * avoid tedious detour to code below.
2015			 * NOTE: This is bending RFC 3678 a bit.
2016			 *
2017			 * On an existing inclusive membership, this is also
2018			 * an error; if you want to change filter mode,
2019			 * you must use the userland API setsourcefilter().
2020			 * XXX We don't reject this for imf in UNDEFINED
2021			 * state at t1, because allocation of a filter
2022			 * is atomic with allocation of a membership.
2023			 */
2024			error = EINVAL;
2025			if (imf->imf_st[1] == MCAST_EXCLUDE)
2026				error = EADDRINUSE;
2027			goto out_inp_locked;
2028		}
2029	}
2030
2031	/*
2032	 * Begin state merge transaction at socket layer.
2033	 */
2034	INP_WLOCK_ASSERT(inp);
2035
2036	if (is_new) {
2037		if (imo->imo_num_memberships == imo->imo_max_memberships) {
2038			error = imo_grow(imo);
2039			if (error)
2040				goto out_inp_locked;
2041		}
2042		/*
2043		 * Allocate the new slot upfront so we can deal with
2044		 * grafting the new source filter in same code path
2045		 * as for join-source on existing membership.
2046		 */
2047		idx = imo->imo_num_memberships;
2048		imo->imo_membership[idx] = NULL;
2049		imo->imo_num_memberships++;
2050		KASSERT(imo->imo_mfilters != NULL,
2051		    ("%s: imf_mfilters vector was not allocated", __func__));
2052		imf = &imo->imo_mfilters[idx];
2053		KASSERT(RB_EMPTY(&imf->imf_sources),
2054		    ("%s: imf_sources not empty", __func__));
2055	}
2056
2057	/*
2058	 * Graft new source into filter list for this inpcb's
2059	 * membership of the group. The in_multi may not have
2060	 * been allocated yet if this is a new membership, however,
2061	 * the in_mfilter slot will be allocated and must be initialized.
2062	 *
2063	 * Note: Grafting of exclusive mode filters doesn't happen
2064	 * in this path.
2065	 * XXX: Should check for non-NULL lims (node exists but may
2066	 * not be in-mode) for interop with full-state API.
2067	 */
2068	if (ssa->ss.ss_family != AF_UNSPEC) {
2069		/* Membership starts in IN mode */
2070		if (is_new) {
2071			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2072			imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2073		} else {
2074			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2075		}
2076		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2077		if (lims == NULL) {
2078			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2079			    __func__);
2080			error = ENOMEM;
2081			goto out_imo_free;
2082		}
2083	} else {
2084		/* No address specified; Membership starts in EX mode */
2085		if (is_new) {
2086			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2087			imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2088		}
2089	}
2090
2091	/*
2092	 * Begin state merge transaction at IGMP layer.
2093	 */
2094	IN_MULTI_LOCK();
2095
2096	if (is_new) {
2097		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2098		    &inm);
2099		if (error) {
2100                        CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed",
2101                            __func__);
2102                        IN_MULTI_UNLOCK();
2103			goto out_imo_free;
2104                }
2105		imo->imo_membership[idx] = inm;
2106	} else {
2107		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2108		error = inm_merge(inm, imf);
2109		if (error) {
2110			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2111			    __func__);
2112			goto out_in_multi_locked;
2113		}
2114		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2115		error = igmp_change_state(inm);
2116		if (error) {
2117			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2118			    __func__);
2119			goto out_in_multi_locked;
2120		}
2121	}
2122
2123out_in_multi_locked:
2124
2125	IN_MULTI_UNLOCK();
2126
2127	INP_WLOCK_ASSERT(inp);
2128	if (error) {
2129		imf_rollback(imf);
2130		if (is_new)
2131			imf_purge(imf);
2132		else
2133			imf_reap(imf);
2134	} else {
2135		imf_commit(imf);
2136	}
2137
2138out_imo_free:
2139	if (error && is_new) {
2140		imo->imo_membership[idx] = NULL;
2141		--imo->imo_num_memberships;
2142	}
2143
2144out_inp_locked:
2145	INP_WUNLOCK(inp);
2146	return (error);
2147}
2148
2149/*
2150 * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2151 */
2152static int
2153inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2154{
2155	struct group_source_req		 gsr;
2156	struct ip_mreq_source		 mreqs;
2157	sockunion_t			*gsa, *ssa;
2158	struct ifnet			*ifp;
2159	struct in_mfilter		*imf;
2160	struct ip_moptions		*imo;
2161	struct in_msource		*ims;
2162	struct in_multi			*inm;
2163	size_t				 idx;
2164	int				 error, is_final;
2165
2166	ifp = NULL;
2167	error = 0;
2168	is_final = 1;
2169
2170	memset(&gsr, 0, sizeof(struct group_source_req));
2171	gsa = (sockunion_t *)&gsr.gsr_group;
2172	gsa->ss.ss_family = AF_UNSPEC;
2173	ssa = (sockunion_t *)&gsr.gsr_source;
2174	ssa->ss.ss_family = AF_UNSPEC;
2175
2176	switch (sopt->sopt_name) {
2177	case IP_DROP_MEMBERSHIP:
2178	case IP_DROP_SOURCE_MEMBERSHIP:
2179		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2180			error = sooptcopyin(sopt, &mreqs,
2181			    sizeof(struct ip_mreq),
2182			    sizeof(struct ip_mreq));
2183			/*
2184			 * Swap interface and sourceaddr arguments,
2185			 * as ip_mreq and ip_mreq_source are laid
2186			 * out differently.
2187			 */
2188			mreqs.imr_interface = mreqs.imr_sourceaddr;
2189			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2190		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2191			error = sooptcopyin(sopt, &mreqs,
2192			    sizeof(struct ip_mreq_source),
2193			    sizeof(struct ip_mreq_source));
2194		}
2195		if (error)
2196			return (error);
2197
2198		gsa->sin.sin_family = AF_INET;
2199		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2200		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2201
2202		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2203			ssa->sin.sin_family = AF_INET;
2204			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2205			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2206		}
2207
2208		/*
2209		 * Attempt to look up hinted ifp from interface address.
2210		 * Fallthrough with null ifp iff lookup fails, to
2211		 * preserve 4.4BSD mcast API idempotence.
2212		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2213		 * using an IPv4 address as a key is racy.
2214		 */
2215		if (!in_nullhost(mreqs.imr_interface))
2216			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2217
2218		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
2219		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
2220
2221		break;
2222
2223	case MCAST_LEAVE_GROUP:
2224	case MCAST_LEAVE_SOURCE_GROUP:
2225		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2226			error = sooptcopyin(sopt, &gsr,
2227			    sizeof(struct group_req),
2228			    sizeof(struct group_req));
2229		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2230			error = sooptcopyin(sopt, &gsr,
2231			    sizeof(struct group_source_req),
2232			    sizeof(struct group_source_req));
2233		}
2234		if (error)
2235			return (error);
2236
2237		if (gsa->sin.sin_family != AF_INET ||
2238		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2239			return (EINVAL);
2240
2241		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2242			if (ssa->sin.sin_family != AF_INET ||
2243			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2244				return (EINVAL);
2245		}
2246
2247		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2248			return (EADDRNOTAVAIL);
2249
2250		ifp = ifnet_byindex(gsr.gsr_interface);
2251
2252		if (ifp == NULL)
2253			return (EADDRNOTAVAIL);
2254		break;
2255
2256	default:
2257		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2258		    __func__, sopt->sopt_name);
2259		return (EOPNOTSUPP);
2260		break;
2261	}
2262
2263	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2264		return (EINVAL);
2265
2266	/*
2267	 * Find the membership in the membership array.
2268	 */
2269	imo = inp_findmoptions(inp);
2270	idx = imo_match_group(imo, ifp, &gsa->sa);
2271	if (idx == -1) {
2272		error = EADDRNOTAVAIL;
2273		goto out_inp_locked;
2274	}
2275	inm = imo->imo_membership[idx];
2276	imf = &imo->imo_mfilters[idx];
2277
2278	if (ssa->ss.ss_family != AF_UNSPEC)
2279		is_final = 0;
2280
2281	/*
2282	 * Begin state merge transaction at socket layer.
2283	 */
2284	INP_WLOCK_ASSERT(inp);
2285
2286	/*
2287	 * If we were instructed only to leave a given source, do so.
2288	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2289	 */
2290	if (is_final) {
2291		imf_leave(imf);
2292	} else {
2293		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2294			error = EADDRNOTAVAIL;
2295			goto out_inp_locked;
2296		}
2297		ims = imo_match_source(imo, idx, &ssa->sa);
2298		if (ims == NULL) {
2299			CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
2300			    inet_ntoa(ssa->sin.sin_addr), "not ");
2301			error = EADDRNOTAVAIL;
2302			goto out_inp_locked;
2303		}
2304		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2305		error = imf_prune(imf, &ssa->sin);
2306		if (error) {
2307			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2308			    __func__);
2309			goto out_inp_locked;
2310		}
2311	}
2312
2313	/*
2314	 * Begin state merge transaction at IGMP layer.
2315	 */
2316	IN_MULTI_LOCK();
2317
2318	if (is_final) {
2319		/*
2320		 * Give up the multicast address record to which
2321		 * the membership points.
2322		 */
2323		(void)in_leavegroup_locked(inm, imf);
2324	} else {
2325		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2326		error = inm_merge(inm, imf);
2327		if (error) {
2328			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2329			    __func__);
2330			goto out_in_multi_locked;
2331		}
2332
2333		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2334		error = igmp_change_state(inm);
2335		if (error) {
2336			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2337			    __func__);
2338		}
2339	}
2340
2341out_in_multi_locked:
2342
2343	IN_MULTI_UNLOCK();
2344
2345	if (error)
2346		imf_rollback(imf);
2347	else
2348		imf_commit(imf);
2349
2350	imf_reap(imf);
2351
2352	if (is_final) {
2353		/* Remove the gap in the membership and filter array. */
2354		for (++idx; idx < imo->imo_num_memberships; ++idx) {
2355			imo->imo_membership[idx-1] = imo->imo_membership[idx];
2356			imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2357		}
2358		imo->imo_num_memberships--;
2359	}
2360
2361out_inp_locked:
2362	INP_WUNLOCK(inp);
2363	return (error);
2364}
2365
2366/*
2367 * Select the interface for transmitting IPv4 multicast datagrams.
2368 *
2369 * Either an instance of struct in_addr or an instance of struct ip_mreqn
2370 * may be passed to this socket option. An address of INADDR_ANY or an
2371 * interface index of 0 is used to remove a previous selection.
2372 * When no interface is selected, one is chosen for every send.
2373 */
2374static int
2375inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2376{
2377	struct in_addr		 addr;
2378	struct ip_mreqn		 mreqn;
2379	struct ifnet		*ifp;
2380	struct ip_moptions	*imo;
2381	int			 error;
2382
2383	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2384		/*
2385		 * An interface index was specified using the
2386		 * Linux-derived ip_mreqn structure.
2387		 */
2388		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2389		    sizeof(struct ip_mreqn));
2390		if (error)
2391			return (error);
2392
2393		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2394			return (EINVAL);
2395
2396		if (mreqn.imr_ifindex == 0) {
2397			ifp = NULL;
2398		} else {
2399			ifp = ifnet_byindex(mreqn.imr_ifindex);
2400			if (ifp == NULL)
2401				return (EADDRNOTAVAIL);
2402		}
2403	} else {
2404		/*
2405		 * An interface was specified by IPv4 address.
2406		 * This is the traditional BSD usage.
2407		 */
2408		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2409		    sizeof(struct in_addr));
2410		if (error)
2411			return (error);
2412		if (in_nullhost(addr)) {
2413			ifp = NULL;
2414		} else {
2415			INADDR_TO_IFP(addr, ifp);
2416			if (ifp == NULL)
2417				return (EADDRNOTAVAIL);
2418		}
2419		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = %s", __func__, ifp,
2420		    inet_ntoa(addr));
2421	}
2422
2423	/* Reject interfaces which do not support multicast. */
2424	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2425		return (EOPNOTSUPP);
2426
2427	imo = inp_findmoptions(inp);
2428	imo->imo_multicast_ifp = ifp;
2429	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2430	INP_WUNLOCK(inp);
2431
2432	return (0);
2433}
2434
2435/*
2436 * Atomically set source filters on a socket for an IPv4 multicast group.
2437 *
2438 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2439 */
2440static int
2441inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2442{
2443	struct __msfilterreq	 msfr;
2444	sockunion_t		*gsa;
2445	struct ifnet		*ifp;
2446	struct in_mfilter	*imf;
2447	struct ip_moptions	*imo;
2448	struct in_multi		*inm;
2449	size_t			 idx;
2450	int			 error;
2451
2452	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2453	    sizeof(struct __msfilterreq));
2454	if (error)
2455		return (error);
2456
2457	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2458		return (ENOBUFS);
2459
2460	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2461	     msfr.msfr_fmode != MCAST_INCLUDE))
2462		return (EINVAL);
2463
2464	if (msfr.msfr_group.ss_family != AF_INET ||
2465	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2466		return (EINVAL);
2467
2468	gsa = (sockunion_t *)&msfr.msfr_group;
2469	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2470		return (EINVAL);
2471
2472	gsa->sin.sin_port = 0;	/* ignore port */
2473
2474	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2475		return (EADDRNOTAVAIL);
2476
2477	ifp = ifnet_byindex(msfr.msfr_ifindex);
2478	if (ifp == NULL)
2479		return (EADDRNOTAVAIL);
2480
2481	/*
2482	 * Take the INP write lock.
2483	 * Check if this socket is a member of this group.
2484	 */
2485	imo = inp_findmoptions(inp);
2486	idx = imo_match_group(imo, ifp, &gsa->sa);
2487	if (idx == -1 || imo->imo_mfilters == NULL) {
2488		error = EADDRNOTAVAIL;
2489		goto out_inp_locked;
2490	}
2491	inm = imo->imo_membership[idx];
2492	imf = &imo->imo_mfilters[idx];
2493
2494	/*
2495	 * Begin state merge transaction at socket layer.
2496	 */
2497	INP_WLOCK_ASSERT(inp);
2498
2499	imf->imf_st[1] = msfr.msfr_fmode;
2500
2501	/*
2502	 * Apply any new source filters, if present.
2503	 * Make a copy of the user-space source vector so
2504	 * that we may copy them with a single copyin. This
2505	 * allows us to deal with page faults up-front.
2506	 */
2507	if (msfr.msfr_nsrcs > 0) {
2508		struct in_msource	*lims;
2509		struct sockaddr_in	*psin;
2510		struct sockaddr_storage	*kss, *pkss;
2511		int			 i;
2512
2513		INP_WUNLOCK(inp);
2514
2515		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2516		    __func__, (unsigned long)msfr.msfr_nsrcs);
2517		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2518		    M_TEMP, M_WAITOK);
2519		error = copyin(msfr.msfr_srcs, kss,
2520		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2521		if (error) {
2522			free(kss, M_TEMP);
2523			return (error);
2524		}
2525
2526		INP_WLOCK(inp);
2527
2528		/*
2529		 * Mark all source filters as UNDEFINED at t1.
2530		 * Restore new group filter mode, as imf_leave()
2531		 * will set it to INCLUDE.
2532		 */
2533		imf_leave(imf);
2534		imf->imf_st[1] = msfr.msfr_fmode;
2535
2536		/*
2537		 * Update socket layer filters at t1, lazy-allocating
2538		 * new entries. This saves a bunch of memory at the
2539		 * cost of one RB_FIND() per source entry; duplicate
2540		 * entries in the msfr_nsrcs vector are ignored.
2541		 * If we encounter an error, rollback transaction.
2542		 *
2543		 * XXX This too could be replaced with a set-symmetric
2544		 * difference like loop to avoid walking from root
2545		 * every time, as the key space is common.
2546		 */
2547		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2548			psin = (struct sockaddr_in *)pkss;
2549			if (psin->sin_family != AF_INET) {
2550				error = EAFNOSUPPORT;
2551				break;
2552			}
2553			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2554				error = EINVAL;
2555				break;
2556			}
2557			error = imf_get_source(imf, psin, &lims);
2558			if (error)
2559				break;
2560			lims->imsl_st[1] = imf->imf_st[1];
2561		}
2562		free(kss, M_TEMP);
2563	}
2564
2565	if (error)
2566		goto out_imf_rollback;
2567
2568	INP_WLOCK_ASSERT(inp);
2569	IN_MULTI_LOCK();
2570
2571	/*
2572	 * Begin state merge transaction at IGMP layer.
2573	 */
2574	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2575	error = inm_merge(inm, imf);
2576	if (error) {
2577		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2578		goto out_in_multi_locked;
2579	}
2580
2581	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2582	error = igmp_change_state(inm);
2583	if (error)
2584		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2585
2586out_in_multi_locked:
2587
2588	IN_MULTI_UNLOCK();
2589
2590out_imf_rollback:
2591	if (error)
2592		imf_rollback(imf);
2593	else
2594		imf_commit(imf);
2595
2596	imf_reap(imf);
2597
2598out_inp_locked:
2599	INP_WUNLOCK(inp);
2600	return (error);
2601}
2602
2603/*
2604 * Set the IP multicast options in response to user setsockopt().
2605 *
2606 * Many of the socket options handled in this function duplicate the
2607 * functionality of socket options in the regular unicast API. However,
2608 * it is not possible to merge the duplicate code, because the idempotence
2609 * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2610 * the effects of these options must be treated as separate and distinct.
2611 *
2612 * SMPng: XXX: Unlocked read of inp_socket believed OK.
2613 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2614 * is refactored to no longer use vifs.
2615 */
2616int
2617inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2618{
2619	struct ip_moptions	*imo;
2620	int			 error;
2621
2622	error = 0;
2623
2624	/*
2625	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2626	 * or is a divert socket, reject it.
2627	 */
2628	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2629	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2630	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2631		return (EOPNOTSUPP);
2632
2633	switch (sopt->sopt_name) {
2634	case IP_MULTICAST_VIF: {
2635		int vifi;
2636		/*
2637		 * Select a multicast VIF for transmission.
2638		 * Only useful if multicast forwarding is active.
2639		 */
2640		if (legal_vif_num == NULL) {
2641			error = EOPNOTSUPP;
2642			break;
2643		}
2644		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2645		if (error)
2646			break;
2647		if (!legal_vif_num(vifi) && (vifi != -1)) {
2648			error = EINVAL;
2649			break;
2650		}
2651		imo = inp_findmoptions(inp);
2652		imo->imo_multicast_vif = vifi;
2653		INP_WUNLOCK(inp);
2654		break;
2655	}
2656
2657	case IP_MULTICAST_IF:
2658		error = inp_set_multicast_if(inp, sopt);
2659		break;
2660
2661	case IP_MULTICAST_TTL: {
2662		u_char ttl;
2663
2664		/*
2665		 * Set the IP time-to-live for outgoing multicast packets.
2666		 * The original multicast API required a char argument,
2667		 * which is inconsistent with the rest of the socket API.
2668		 * We allow either a char or an int.
2669		 */
2670		if (sopt->sopt_valsize == sizeof(u_char)) {
2671			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2672			    sizeof(u_char));
2673			if (error)
2674				break;
2675		} else {
2676			u_int ittl;
2677
2678			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2679			    sizeof(u_int));
2680			if (error)
2681				break;
2682			if (ittl > 255) {
2683				error = EINVAL;
2684				break;
2685			}
2686			ttl = (u_char)ittl;
2687		}
2688		imo = inp_findmoptions(inp);
2689		imo->imo_multicast_ttl = ttl;
2690		INP_WUNLOCK(inp);
2691		break;
2692	}
2693
2694	case IP_MULTICAST_LOOP: {
2695		u_char loop;
2696
2697		/*
2698		 * Set the loopback flag for outgoing multicast packets.
2699		 * Must be zero or one.  The original multicast API required a
2700		 * char argument, which is inconsistent with the rest
2701		 * of the socket API.  We allow either a char or an int.
2702		 */
2703		if (sopt->sopt_valsize == sizeof(u_char)) {
2704			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2705			    sizeof(u_char));
2706			if (error)
2707				break;
2708		} else {
2709			u_int iloop;
2710
2711			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2712					    sizeof(u_int));
2713			if (error)
2714				break;
2715			loop = (u_char)iloop;
2716		}
2717		imo = inp_findmoptions(inp);
2718		imo->imo_multicast_loop = !!loop;
2719		INP_WUNLOCK(inp);
2720		break;
2721	}
2722
2723	case IP_ADD_MEMBERSHIP:
2724	case IP_ADD_SOURCE_MEMBERSHIP:
2725	case MCAST_JOIN_GROUP:
2726	case MCAST_JOIN_SOURCE_GROUP:
2727		error = inp_join_group(inp, sopt);
2728		break;
2729
2730	case IP_DROP_MEMBERSHIP:
2731	case IP_DROP_SOURCE_MEMBERSHIP:
2732	case MCAST_LEAVE_GROUP:
2733	case MCAST_LEAVE_SOURCE_GROUP:
2734		error = inp_leave_group(inp, sopt);
2735		break;
2736
2737	case IP_BLOCK_SOURCE:
2738	case IP_UNBLOCK_SOURCE:
2739	case MCAST_BLOCK_SOURCE:
2740	case MCAST_UNBLOCK_SOURCE:
2741		error = inp_block_unblock_source(inp, sopt);
2742		break;
2743
2744	case IP_MSFILTER:
2745		error = inp_set_source_filters(inp, sopt);
2746		break;
2747
2748	default:
2749		error = EOPNOTSUPP;
2750		break;
2751	}
2752
2753	INP_UNLOCK_ASSERT(inp);
2754
2755	return (error);
2756}
2757
2758/*
2759 * Expose IGMP's multicast filter mode and source list(s) to userland,
2760 * keyed by (ifindex, group).
2761 * The filter mode is written out as a uint32_t, followed by
2762 * 0..n of struct in_addr.
2763 * For use by ifmcstat(8).
2764 * SMPng: NOTE: unlocked read of ifindex space.
2765 */
2766static int
2767sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2768{
2769	struct in_addr			 src, group;
2770	struct ifnet			*ifp;
2771	struct ifmultiaddr		*ifma;
2772	struct in_multi			*inm;
2773	struct ip_msource		*ims;
2774	int				*name;
2775	int				 retval;
2776	u_int				 namelen;
2777	uint32_t			 fmode, ifindex;
2778
2779	name = (int *)arg1;
2780	namelen = arg2;
2781
2782	if (req->newptr != NULL)
2783		return (EPERM);
2784
2785	if (namelen != 2)
2786		return (EINVAL);
2787
2788	ifindex = name[0];
2789	if (ifindex <= 0 || ifindex > V_if_index) {
2790		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2791		    __func__, ifindex);
2792		return (ENOENT);
2793	}
2794
2795	group.s_addr = name[1];
2796	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2797		CTR2(KTR_IGMPV3, "%s: group %s is not multicast",
2798		    __func__, inet_ntoa(group));
2799		return (EINVAL);
2800	}
2801
2802	ifp = ifnet_byindex(ifindex);
2803	if (ifp == NULL) {
2804		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2805		    __func__, ifindex);
2806		return (ENOENT);
2807	}
2808
2809	retval = sysctl_wire_old_buffer(req,
2810	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2811	if (retval)
2812		return (retval);
2813
2814	IN_MULTI_LOCK();
2815
2816	IF_ADDR_RLOCK(ifp);
2817	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2818		if (ifma->ifma_addr->sa_family != AF_INET ||
2819		    ifma->ifma_protospec == NULL)
2820			continue;
2821		inm = (struct in_multi *)ifma->ifma_protospec;
2822		if (!in_hosteq(inm->inm_addr, group))
2823			continue;
2824		fmode = inm->inm_st[1].iss_fmode;
2825		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2826		if (retval != 0)
2827			break;
2828		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2829#ifdef KTR
2830			struct in_addr ina;
2831			ina.s_addr = htonl(ims->ims_haddr);
2832			CTR2(KTR_IGMPV3, "%s: visit node %s", __func__,
2833			    inet_ntoa(ina));
2834#endif
2835			/*
2836			 * Only copy-out sources which are in-mode.
2837			 */
2838			if (fmode != ims_get_mode(inm, ims, 1)) {
2839				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2840				    __func__);
2841				continue;
2842			}
2843			src.s_addr = htonl(ims->ims_haddr);
2844			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2845			if (retval != 0)
2846				break;
2847		}
2848	}
2849	IF_ADDR_RUNLOCK(ifp);
2850
2851	IN_MULTI_UNLOCK();
2852
2853	return (retval);
2854}
2855
2856#ifdef KTR
2857
2858static const char *inm_modestrs[] = { "un", "in", "ex" };
2859
2860static const char *
2861inm_mode_str(const int mode)
2862{
2863
2864	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2865		return (inm_modestrs[mode]);
2866	return ("??");
2867}
2868
2869static const char *inm_statestrs[] = {
2870	"not-member",
2871	"silent",
2872	"idle",
2873	"lazy",
2874	"sleeping",
2875	"awakening",
2876	"query-pending",
2877	"sg-query-pending",
2878	"leaving"
2879};
2880
2881static const char *
2882inm_state_str(const int state)
2883{
2884
2885	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
2886		return (inm_statestrs[state]);
2887	return ("??");
2888}
2889
2890/*
2891 * Dump an in_multi structure to the console.
2892 */
2893void
2894inm_print(const struct in_multi *inm)
2895{
2896	int t;
2897
2898	if ((ktr_mask & KTR_IGMPV3) == 0)
2899		return;
2900
2901	printf("%s: --- begin inm %p ---\n", __func__, inm);
2902	printf("addr %s ifp %p(%s) ifma %p\n",
2903	    inet_ntoa(inm->inm_addr),
2904	    inm->inm_ifp,
2905	    inm->inm_ifp->if_xname,
2906	    inm->inm_ifma);
2907	printf("timer %u state %s refcount %u scq.len %u\n",
2908	    inm->inm_timer,
2909	    inm_state_str(inm->inm_state),
2910	    inm->inm_refcount,
2911	    inm->inm_scq.ifq_len);
2912	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
2913	    inm->inm_igi,
2914	    inm->inm_nsrc,
2915	    inm->inm_sctimer,
2916	    inm->inm_scrv);
2917	for (t = 0; t < 2; t++) {
2918		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
2919		    inm_mode_str(inm->inm_st[t].iss_fmode),
2920		    inm->inm_st[t].iss_asm,
2921		    inm->inm_st[t].iss_ex,
2922		    inm->inm_st[t].iss_in,
2923		    inm->inm_st[t].iss_rec);
2924	}
2925	printf("%s: --- end inm %p ---\n", __func__, inm);
2926}
2927
2928#else /* !KTR */
2929
2930void
2931inm_print(const struct in_multi *inm)
2932{
2933
2934}
2935
2936#endif /* KTR */
2937
2938RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
2939