1/*
2 * This file is derived from various .h and .c files from the zlib-1.0.4
3 * distribution by Jean-loup Gailly and Mark Adler, with some additions
4 * by Paul Mackerras to aid in implementing Deflate compression and
5 * decompression for PPP packets.  See zlib.h for conditions of
6 * distribution and use.
7 *
8 * Changes that have been made include:
9 * - added Z_PACKET_FLUSH (see zlib.h for details)
10 * - added inflateIncomp and deflateOutputPending
11 * - allow strm->next_out to be NULL, meaning discard the output
12 *
13 * $FreeBSD$
14 */
15
16/*
17 *  ==FILEVERSION 971210==
18 *
19 * This marker is used by the Linux installation script to determine
20 * whether an up-to-date version of this file is already installed.
21 */
22
23#define NO_DUMMY_DECL
24#define NO_ZCFUNCS
25#define MY_ZCALLOC
26
27#if defined(__FreeBSD__) && defined(_KERNEL)
28#define inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
29#endif
30
31
32/* +++ zutil.h */
33/*-
34 * zutil.h -- internal interface and configuration of the compression library
35 * Copyright (C) 1995-1996 Jean-loup Gailly.
36 * For conditions of distribution and use, see copyright notice in zlib.h
37 */
38
39/* WARNING: this file should *not* be used by applications. It is
40   part of the implementation of the compression library and is
41   subject to change. Applications should only use zlib.h.
42 */
43
44/* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
45
46#ifndef _Z_UTIL_H
47#define _Z_UTIL_H
48
49#ifdef _KERNEL
50#include <net/zlib.h>
51#else
52#include "zlib.h"
53#endif
54
55#ifdef _KERNEL
56/* Assume this is a *BSD or SVR4 kernel */
57#include <sys/types.h>
58#include <sys/time.h>
59#include <sys/systm.h>
60#include <sys/param.h>
61#include <sys/kernel.h>
62#include <sys/module.h>
63#  define HAVE_MEMCPY
64
65#else
66#if defined(__KERNEL__)
67/* Assume this is a Linux kernel */
68#include <linux/string.h>
69#define HAVE_MEMCPY
70
71#else /* not kernel */
72
73#if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
74#   include <stddef.h>
75#   include <errno.h>
76#else
77    extern int errno;
78#endif
79#ifdef STDC
80#  include <string.h>
81#  include <stdlib.h>
82#endif
83#endif /* __KERNEL__ */
84#endif /* _KERNEL */
85
86#ifndef local
87#  define local static
88#endif
89/* compile with -Dlocal if your debugger can't find static symbols */
90
91typedef unsigned char  uch;
92typedef uch FAR uchf;
93typedef unsigned short ush;
94typedef ush FAR ushf;
95typedef unsigned long  ulg;
96
97static const char *z_errmsg[10]; /* indexed by 2-zlib_error */
98/* (size given to avoid silly warnings with Visual C++) */
99
100#define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
101
102#define ERR_RETURN(strm,err) \
103  return (strm->msg = (const char*)ERR_MSG(err), (err))
104/* To be used only when the state is known to be valid */
105
106        /* common constants */
107
108#ifndef DEF_WBITS
109#  define DEF_WBITS MAX_WBITS
110#endif
111/* default windowBits for decompression. MAX_WBITS is for compression only */
112
113#if MAX_MEM_LEVEL >= 8
114#  define DEF_MEM_LEVEL 8
115#else
116#  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
117#endif
118/* default memLevel */
119
120#define STORED_BLOCK 0
121#define STATIC_TREES 1
122#define DYN_TREES    2
123/* The three kinds of block type */
124
125#define MIN_MATCH  3
126#define MAX_MATCH  258
127/* The minimum and maximum match lengths */
128
129#define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
130
131        /* target dependencies */
132
133#ifdef MSDOS
134#  define OS_CODE  0x00
135#  ifdef __TURBOC__
136#    include <alloc.h>
137#  else /* MSC or DJGPP */
138#    include <malloc.h>
139#  endif
140#endif
141
142#ifdef OS2
143#  define OS_CODE  0x06
144#endif
145
146#ifdef WIN32 /* Window 95 & Windows NT */
147#  define OS_CODE  0x0b
148#endif
149
150#if defined(VAXC) || defined(VMS)
151#  define OS_CODE  0x02
152#  define FOPEN(name, mode) \
153     fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
154#endif
155
156#ifdef AMIGA
157#  define OS_CODE  0x01
158#endif
159
160#if defined(ATARI) || defined(atarist)
161#  define OS_CODE  0x05
162#endif
163
164#ifdef MACOS
165#  define OS_CODE  0x07
166#endif
167
168#ifdef __50SERIES /* Prime/PRIMOS */
169#  define OS_CODE  0x0F
170#endif
171
172#ifdef TOPS20
173#  define OS_CODE  0x0a
174#endif
175
176#if defined(_BEOS_) || defined(RISCOS)
177#  define fdopen(fd,mode) NULL /* No fdopen() */
178#endif
179
180        /* Common defaults */
181
182#ifndef OS_CODE
183#  define OS_CODE  0x03  /* assume Unix */
184#endif
185
186#ifndef FOPEN
187#  define FOPEN(name, mode) fopen((name), (mode))
188#endif
189
190         /* functions */
191
192#ifdef HAVE_STRERROR
193   extern char *strerror OF((int));
194#  define zstrerror(errnum) strerror(errnum)
195#else
196#  define zstrerror(errnum) ""
197#endif
198
199#if defined(pyr)
200#  define NO_MEMCPY
201#endif
202#if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
203 /* Use our own functions for small and medium model with MSC <= 5.0.
204  * You may have to use the same strategy for Borland C (untested).
205  */
206#  define NO_MEMCPY
207#endif
208#if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
209#  define HAVE_MEMCPY
210#endif
211#ifdef HAVE_MEMCPY
212#  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
213#    define zmemcpy _fmemcpy
214#    define zmemcmp _fmemcmp
215#    define zmemzero(dest, len) _fmemset(dest, 0, len)
216#  else
217#    define zmemcpy memcpy
218#    define zmemcmp memcmp
219#    define zmemzero(dest, len) memset(dest, 0, len)
220#  endif
221#else
222   extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
223   extern int  zmemcmp  OF((Bytef* s1,   Bytef* s2, uInt len));
224   extern void zmemzero OF((Bytef* dest, uInt len));
225#endif
226
227/* Diagnostic functions */
228#ifdef DEBUG_ZLIB
229#  include <stdio.h>
230#  ifndef verbose
231#    define verbose 0
232#  endif
233   extern void z_error    OF((char *m));
234#  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
235#  define Trace(x) fprintf x
236#  define Tracev(x) {if (verbose) fprintf x ;}
237#  define Tracevv(x) {if (verbose>1) fprintf x ;}
238#  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
239#  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
240#else
241#  define Assert(cond,msg)
242#  define Trace(x)
243#  define Tracev(x)
244#  define Tracevv(x)
245#  define Tracec(c,x)
246#  define Tracecv(c,x)
247#endif
248
249
250typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
251
252voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
253void   zcfree  OF((voidpf opaque, voidpf ptr));
254
255#define ZALLOC(strm, items, size) \
256           (*((strm)->zalloc))((strm)->opaque, (items), (size))
257#define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
258#define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
259
260#endif /* _Z_UTIL_H */
261/* --- zutil.h */
262
263/* +++ deflate.h */
264/* deflate.h -- internal compression state
265 * Copyright (C) 1995-1996 Jean-loup Gailly
266 * For conditions of distribution and use, see copyright notice in zlib.h
267 */
268
269/* WARNING: this file should *not* be used by applications. It is
270   part of the implementation of the compression library and is
271   subject to change. Applications should only use zlib.h.
272 */
273
274/* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
275
276#ifndef _DEFLATE_H
277#define _DEFLATE_H
278
279/* #include "zutil.h" */
280
281/* ===========================================================================
282 * Internal compression state.
283 */
284
285#define LENGTH_CODES 29
286/* number of length codes, not counting the special END_BLOCK code */
287
288#define LITERALS  256
289/* number of literal bytes 0..255 */
290
291#define L_CODES (LITERALS+1+LENGTH_CODES)
292/* number of Literal or Length codes, including the END_BLOCK code */
293
294#define D_CODES   30
295/* number of distance codes */
296
297#define BL_CODES  19
298/* number of codes used to transfer the bit lengths */
299
300#define HEAP_SIZE (2*L_CODES+1)
301/* maximum heap size */
302
303#define MAX_BITS 15
304/* All codes must not exceed MAX_BITS bits */
305
306#define INIT_STATE    42
307#define BUSY_STATE   113
308#define FINISH_STATE 666
309/* Stream status */
310
311
312/* Data structure describing a single value and its code string. */
313typedef struct ct_data_s {
314    union {
315        ush  freq;       /* frequency count */
316        ush  code;       /* bit string */
317    } fc;
318    union {
319        ush  dad;        /* father node in Huffman tree */
320        ush  len;        /* length of bit string */
321    } dl;
322} FAR ct_data;
323
324#define Freq fc.freq
325#define Code fc.code
326#define Dad  dl.dad
327#define Len  dl.len
328
329typedef struct static_tree_desc_s  static_tree_desc;
330
331typedef struct tree_desc_s {
332    ct_data *dyn_tree;           /* the dynamic tree */
333    int     max_code;            /* largest code with non zero frequency */
334    static_tree_desc *stat_desc; /* the corresponding static tree */
335} FAR tree_desc;
336
337typedef ush Pos;
338typedef Pos FAR Posf;
339typedef unsigned IPos;
340
341/* A Pos is an index in the character window. We use short instead of int to
342 * save space in the various tables. IPos is used only for parameter passing.
343 */
344
345typedef struct deflate_state {
346    z_streamp strm;      /* pointer back to this zlib stream */
347    int   status;        /* as the name implies */
348    Bytef *pending_buf;  /* output still pending */
349    ulg   pending_buf_size; /* size of pending_buf */
350    Bytef *pending_out;  /* next pending byte to output to the stream */
351    int   pending;       /* nb of bytes in the pending buffer */
352    int   noheader;      /* suppress zlib header and adler32 */
353    Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
354    Byte  method;        /* STORED (for zip only) or DEFLATED */
355    int   last_flush;    /* value of flush param for previous deflate call */
356
357                /* used by deflate.c: */
358
359    uInt  w_size;        /* LZ77 window size (32K by default) */
360    uInt  w_bits;        /* log2(w_size)  (8..16) */
361    uInt  w_mask;        /* w_size - 1 */
362
363    Bytef *window;
364    /* Sliding window. Input bytes are read into the second half of the window,
365     * and move to the first half later to keep a dictionary of at least wSize
366     * bytes. With this organization, matches are limited to a distance of
367     * wSize-MAX_MATCH bytes, but this ensures that IO is always
368     * performed with a length multiple of the block size. Also, it limits
369     * the window size to 64K, which is quite useful on MSDOS.
370     * To do: use the user input buffer as sliding window.
371     */
372
373    ulg window_size;
374    /* Actual size of window: 2*wSize, except when the user input buffer
375     * is directly used as sliding window.
376     */
377
378    Posf *prev;
379    /* Link to older string with same hash index. To limit the size of this
380     * array to 64K, this link is maintained only for the last 32K strings.
381     * An index in this array is thus a window index modulo 32K.
382     */
383
384    Posf *head; /* Heads of the hash chains or NIL. */
385
386    uInt  ins_h;          /* hash index of string to be inserted */
387    uInt  hash_size;      /* number of elements in hash table */
388    uInt  hash_bits;      /* log2(hash_size) */
389    uInt  hash_mask;      /* hash_size-1 */
390
391    uInt  hash_shift;
392    /* Number of bits by which ins_h must be shifted at each input
393     * step. It must be such that after MIN_MATCH steps, the oldest
394     * byte no longer takes part in the hash key, that is:
395     *   hash_shift * MIN_MATCH >= hash_bits
396     */
397
398    long block_start;
399    /* Window position at the beginning of the current output block. Gets
400     * negative when the window is moved backwards.
401     */
402
403    uInt match_length;           /* length of best match */
404    IPos prev_match;             /* previous match */
405    int match_available;         /* set if previous match exists */
406    uInt strstart;               /* start of string to insert */
407    uInt match_start;            /* start of matching string */
408    uInt lookahead;              /* number of valid bytes ahead in window */
409
410    uInt prev_length;
411    /* Length of the best match at previous step. Matches not greater than this
412     * are discarded. This is used in the lazy match evaluation.
413     */
414
415    uInt max_chain_length;
416    /* To speed up deflation, hash chains are never searched beyond this
417     * length.  A higher limit improves compression ratio but degrades the
418     * speed.
419     */
420
421    uInt max_lazy_match;
422    /* Attempt to find a better match only when the current match is strictly
423     * smaller than this value. This mechanism is used only for compression
424     * levels >= 4.
425     */
426#   define max_insert_length  max_lazy_match
427    /* Insert new strings in the hash table only if the match length is not
428     * greater than this length. This saves time but degrades compression.
429     * max_insert_length is used only for compression levels <= 3.
430     */
431
432    int level;    /* compression level (1..9) */
433    int strategy; /* favor or force Huffman coding*/
434
435    uInt good_match;
436    /* Use a faster search when the previous match is longer than this */
437
438    int nice_match; /* Stop searching when current match exceeds this */
439
440                /* used by trees.c: */
441    /* Didn't use ct_data typedef below to supress compiler warning */
442    struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
443    struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
444    struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
445
446    struct tree_desc_s l_desc;               /* desc. for literal tree */
447    struct tree_desc_s d_desc;               /* desc. for distance tree */
448    struct tree_desc_s bl_desc;              /* desc. for bit length tree */
449
450    ush bl_count[MAX_BITS+1];
451    /* number of codes at each bit length for an optimal tree */
452
453    int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
454    int heap_len;               /* number of elements in the heap */
455    int heap_max;               /* element of largest frequency */
456    /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
457     * The same heap array is used to build all trees.
458     */
459
460    uch depth[2*L_CODES+1];
461    /* Depth of each subtree used as tie breaker for trees of equal frequency
462     */
463
464    uchf *l_buf;          /* buffer for literals or lengths */
465
466    uInt  lit_bufsize;
467    /* Size of match buffer for literals/lengths.  There are 4 reasons for
468     * limiting lit_bufsize to 64K:
469     *   - frequencies can be kept in 16 bit counters
470     *   - if compression is not successful for the first block, all input
471     *     data is still in the window so we can still emit a stored block even
472     *     when input comes from standard input.  (This can also be done for
473     *     all blocks if lit_bufsize is not greater than 32K.)
474     *   - if compression is not successful for a file smaller than 64K, we can
475     *     even emit a stored file instead of a stored block (saving 5 bytes).
476     *     This is applicable only for zip (not gzip or zlib).
477     *   - creating new Huffman trees less frequently may not provide fast
478     *     adaptation to changes in the input data statistics. (Take for
479     *     example a binary file with poorly compressible code followed by
480     *     a highly compressible string table.) Smaller buffer sizes give
481     *     fast adaptation but have of course the overhead of transmitting
482     *     trees more frequently.
483     *   - I can't count above 4
484     */
485
486    uInt last_lit;      /* running index in l_buf */
487
488    ushf *d_buf;
489    /* Buffer for distances. To simplify the code, d_buf and l_buf have
490     * the same number of elements. To use different lengths, an extra flag
491     * array would be necessary.
492     */
493
494    ulg opt_len;        /* bit length of current block with optimal trees */
495    ulg static_len;     /* bit length of current block with static trees */
496    ulg compressed_len; /* total bit length of compressed file */
497    uInt matches;       /* number of string matches in current block */
498    int last_eob_len;   /* bit length of EOB code for last block */
499
500#ifdef DEBUG_ZLIB
501    ulg bits_sent;      /* bit length of the compressed data */
502#endif
503
504    ush bi_buf;
505    /* Output buffer. bits are inserted starting at the bottom (least
506     * significant bits).
507     */
508    int bi_valid;
509    /* Number of valid bits in bi_buf.  All bits above the last valid bit
510     * are always zero.
511     */
512
513} FAR deflate_state;
514
515/* Output a byte on the stream.
516 * IN assertion: there is enough room in pending_buf.
517 */
518#define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
519
520
521#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
522/* Minimum amount of lookahead, except at the end of the input file.
523 * See deflate.c for comments about the MIN_MATCH+1.
524 */
525
526#define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
527/* In order to simplify the code, particularly on 16 bit machines, match
528 * distances are limited to MAX_DIST instead of WSIZE.
529 */
530
531        /* in trees.c */
532void _tr_init         OF((deflate_state *s));
533int  _tr_tally        OF((deflate_state *s, unsigned dist, unsigned lc));
534ulg  _tr_flush_block  OF((deflate_state *s, charf *buf, ulg stored_len,
535			  int eof));
536void _tr_align        OF((deflate_state *s));
537void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
538                          int eof));
539void _tr_stored_type_only OF((deflate_state *));
540
541#endif
542/* --- deflate.h */
543
544/* +++ deflate.c */
545/* deflate.c -- compress data using the deflation algorithm
546 * Copyright (C) 1995-1996 Jean-loup Gailly.
547 * For conditions of distribution and use, see copyright notice in zlib.h
548 */
549
550/*
551 *  ALGORITHM
552 *
553 *      The "deflation" process depends on being able to identify portions
554 *      of the input text which are identical to earlier input (within a
555 *      sliding window trailing behind the input currently being processed).
556 *
557 *      The most straightforward technique turns out to be the fastest for
558 *      most input files: try all possible matches and select the longest.
559 *      The key feature of this algorithm is that insertions into the string
560 *      dictionary are very simple and thus fast, and deletions are avoided
561 *      completely. Insertions are performed at each input character, whereas
562 *      string matches are performed only when the previous match ends. So it
563 *      is preferable to spend more time in matches to allow very fast string
564 *      insertions and avoid deletions. The matching algorithm for small
565 *      strings is inspired from that of Rabin & Karp. A brute force approach
566 *      is used to find longer strings when a small match has been found.
567 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
568 *      (by Leonid Broukhis).
569 *         A previous version of this file used a more sophisticated algorithm
570 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
571 *      time, but has a larger average cost, uses more memory and is patented.
572 *      However the F&G algorithm may be faster for some highly redundant
573 *      files if the parameter max_chain_length (described below) is too large.
574 *
575 *  ACKNOWLEDGEMENTS
576 *
577 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
578 *      I found it in 'freeze' written by Leonid Broukhis.
579 *      Thanks to many people for bug reports and testing.
580 *
581 *  REFERENCES
582 *
583 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
584 *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
585 *
586 *      A description of the Rabin and Karp algorithm is given in the book
587 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
588 *
589 *      Fiala,E.R., and Greene,D.H.
590 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
591 *
592 */
593
594/* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
595
596/* #include "deflate.h" */
597
598char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
599/*
600  If you use the zlib library in a product, an acknowledgment is welcome
601  in the documentation of your product. If for some reason you cannot
602  include such an acknowledgment, I would appreciate that you keep this
603  copyright string in the executable of your product.
604 */
605
606/* ===========================================================================
607 *  Function prototypes.
608 */
609typedef enum {
610    need_more,      /* block not completed, need more input or more output */
611    block_done,     /* block flush performed */
612    finish_started, /* finish started, need only more output at next deflate */
613    finish_done     /* finish done, accept no more input or output */
614} block_state;
615
616typedef block_state (*compress_func) OF((deflate_state *s, int flush));
617/* Compression function. Returns the block state after the call. */
618
619local void fill_window    OF((deflate_state *s));
620local block_state deflate_stored OF((deflate_state *s, int flush));
621local block_state deflate_fast   OF((deflate_state *s, int flush));
622local block_state deflate_slow   OF((deflate_state *s, int flush));
623local void lm_init        OF((deflate_state *s));
624local void putShortMSB    OF((deflate_state *s, uInt b));
625local void flush_pending  OF((z_streamp strm));
626local int read_buf        OF((z_streamp strm, charf *buf, unsigned size));
627#ifdef ASMV
628      void match_init OF((void)); /* asm code initialization */
629      uInt longest_match  OF((deflate_state *s, IPos cur_match));
630#else
631local uInt longest_match  OF((deflate_state *s, IPos cur_match));
632#endif
633
634#ifdef DEBUG_ZLIB
635local  void check_match OF((deflate_state *s, IPos start, IPos match,
636                            int length));
637#endif
638
639/* ===========================================================================
640 * Local data
641 */
642
643#define NIL 0
644/* Tail of hash chains */
645
646#ifndef TOO_FAR
647#  define TOO_FAR 4096
648#endif
649/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
650
651#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
652/* Minimum amount of lookahead, except at the end of the input file.
653 * See deflate.c for comments about the MIN_MATCH+1.
654 */
655
656/* Values for max_lazy_match, good_match and max_chain_length, depending on
657 * the desired pack level (0..9). The values given below have been tuned to
658 * exclude worst case performance for pathological files. Better values may be
659 * found for specific files.
660 */
661typedef struct config_s {
662   ush good_length; /* reduce lazy search above this match length */
663   ush max_lazy;    /* do not perform lazy search above this match length */
664   ush nice_length; /* quit search above this match length */
665   ush max_chain;
666   compress_func func;
667} config;
668
669local config configuration_table[10] = {
670/*      good lazy nice chain */
671/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
672/* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
673/* 2 */ {4,    5, 16,    8, deflate_fast},
674/* 3 */ {4,    6, 32,   32, deflate_fast},
675
676/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
677/* 5 */ {8,   16, 32,   32, deflate_slow},
678/* 6 */ {8,   16, 128, 128, deflate_slow},
679/* 7 */ {8,   32, 128, 256, deflate_slow},
680/* 8 */ {32, 128, 258, 1024, deflate_slow},
681/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
682
683/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
684 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
685 * meaning.
686 */
687
688#define EQUAL 0
689/* result of memcmp for equal strings */
690
691#ifndef NO_DUMMY_DECL
692struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
693#endif
694
695/* ===========================================================================
696 * Update a hash value with the given input byte
697 * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
698 *    input characters, so that a running hash key can be computed from the
699 *    previous key instead of complete recalculation each time.
700 */
701#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
702
703
704/* ===========================================================================
705 * Insert string str in the dictionary and set match_head to the previous head
706 * of the hash chain (the most recent string with same hash key). Return
707 * the previous length of the hash chain.
708 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
709 *    input characters and the first MIN_MATCH bytes of str are valid
710 *    (except for the last MIN_MATCH-1 bytes of the input file).
711 */
712#define INSERT_STRING(s, str, match_head) \
713   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
714    s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
715    s->head[s->ins_h] = (Pos)(str))
716
717/* ===========================================================================
718 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
719 * prev[] will be initialized on the fly.
720 */
721#define CLEAR_HASH(s) \
722    s->head[s->hash_size-1] = NIL; \
723    zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
724
725/* ========================================================================= */
726int deflateInit_(strm, level, version, stream_size)
727    z_streamp strm;
728    int level;
729    const char *version;
730    int stream_size;
731{
732    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
733			 Z_DEFAULT_STRATEGY, version, stream_size);
734    /* To do: ignore strm->next_in if we use it as window */
735}
736
737/* ========================================================================= */
738int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
739		  version, stream_size)
740    z_streamp strm;
741    int  level;
742    int  method;
743    int  windowBits;
744    int  memLevel;
745    int  strategy;
746    const char *version;
747    int stream_size;
748{
749    deflate_state *s;
750    int noheader = 0;
751    static char* my_version = ZLIB_VERSION;
752
753    ushf *overlay;
754    /* We overlay pending_buf and d_buf+l_buf. This works since the average
755     * output size for (length,distance) codes is <= 24 bits.
756     */
757
758    if (version == Z_NULL || version[0] != my_version[0] ||
759        stream_size != sizeof(z_stream)) {
760	return Z_VERSION_ERROR;
761    }
762    if (strm == Z_NULL) return Z_STREAM_ERROR;
763
764    strm->msg = Z_NULL;
765#ifndef NO_ZCFUNCS
766    if (strm->zalloc == Z_NULL) {
767	strm->zalloc = zcalloc;
768	strm->opaque = (voidpf)0;
769    }
770    if (strm->zfree == Z_NULL) strm->zfree = zcfree;
771#endif
772
773    if (level == Z_DEFAULT_COMPRESSION) level = 6;
774
775    if (windowBits < 0) { /* undocumented feature: suppress zlib header */
776        noheader = 1;
777        windowBits = -windowBits;
778    }
779    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
780        windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
781	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
782        return Z_STREAM_ERROR;
783    }
784    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
785    if (s == Z_NULL) return Z_MEM_ERROR;
786    strm->state = (struct internal_state FAR *)s;
787    s->strm = strm;
788
789    s->noheader = noheader;
790    s->w_bits = windowBits;
791    s->w_size = 1 << s->w_bits;
792    s->w_mask = s->w_size - 1;
793
794    s->hash_bits = memLevel + 7;
795    s->hash_size = 1 << s->hash_bits;
796    s->hash_mask = s->hash_size - 1;
797    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
798
799    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
800    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
801    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
802
803    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
804
805    overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
806    s->pending_buf = (uchf *) overlay;
807    s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
808
809    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
810        s->pending_buf == Z_NULL) {
811        strm->msg = (const char*)ERR_MSG(Z_MEM_ERROR);
812        deflateEnd (strm);
813        return Z_MEM_ERROR;
814    }
815    s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
816    s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
817
818    s->level = level;
819    s->strategy = strategy;
820    s->method = (Byte)method;
821
822    return deflateReset(strm);
823}
824
825/* ========================================================================= */
826int deflateSetDictionary (strm, dictionary, dictLength)
827    z_streamp strm;
828    const Bytef *dictionary;
829    uInt  dictLength;
830{
831    deflate_state *s;
832    uInt length = dictLength;
833    uInt n;
834    IPos hash_head = 0;
835
836    if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
837	return Z_STREAM_ERROR;
838
839    s = (deflate_state *) strm->state;
840    if (s->status != INIT_STATE) return Z_STREAM_ERROR;
841
842    strm->adler = adler32(strm->adler, dictionary, dictLength);
843
844    if (length < MIN_MATCH) return Z_OK;
845    if (length > MAX_DIST(s)) {
846	length = MAX_DIST(s);
847#ifndef USE_DICT_HEAD
848	dictionary += dictLength - length; /* use the tail of the dictionary */
849#endif
850    }
851    zmemcpy((charf *)s->window, dictionary, length);
852    s->strstart = length;
853    s->block_start = (long)length;
854
855    /* Insert all strings in the hash table (except for the last two bytes).
856     * s->lookahead stays null, so s->ins_h will be recomputed at the next
857     * call of fill_window.
858     */
859    s->ins_h = s->window[0];
860    UPDATE_HASH(s, s->ins_h, s->window[1]);
861    for (n = 0; n <= length - MIN_MATCH; n++) {
862	INSERT_STRING(s, n, hash_head);
863    }
864    if (hash_head) hash_head = 0;  /* to make compiler happy */
865    return Z_OK;
866}
867
868/* ========================================================================= */
869int deflateReset (strm)
870    z_streamp strm;
871{
872    deflate_state *s;
873
874    if (strm == Z_NULL || strm->state == Z_NULL ||
875        strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
876
877    strm->total_in = strm->total_out = 0;
878    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
879    strm->data_type = Z_UNKNOWN;
880
881    s = (deflate_state *)strm->state;
882    s->pending = 0;
883    s->pending_out = s->pending_buf;
884
885    if (s->noheader < 0) {
886        s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
887    }
888    s->status = s->noheader ? BUSY_STATE : INIT_STATE;
889    strm->adler = 1;
890    s->last_flush = Z_NO_FLUSH;
891
892    _tr_init(s);
893    lm_init(s);
894
895    return Z_OK;
896}
897
898/* ========================================================================= */
899int deflateParams(strm, level, strategy)
900    z_streamp strm;
901    int level;
902    int strategy;
903{
904    deflate_state *s;
905    compress_func func;
906    int err = Z_OK;
907
908    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
909    s = (deflate_state *) strm->state;
910
911    if (level == Z_DEFAULT_COMPRESSION) {
912	level = 6;
913    }
914    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
915	return Z_STREAM_ERROR;
916    }
917    func = configuration_table[s->level].func;
918
919    if (func != configuration_table[level].func && strm->total_in != 0) {
920	/* Flush the last buffer: */
921	err = deflate(strm, Z_PARTIAL_FLUSH);
922    }
923    if (s->level != level) {
924	s->level = level;
925	s->max_lazy_match   = configuration_table[level].max_lazy;
926	s->good_match       = configuration_table[level].good_length;
927	s->nice_match       = configuration_table[level].nice_length;
928	s->max_chain_length = configuration_table[level].max_chain;
929    }
930    s->strategy = strategy;
931    return err;
932}
933
934/* =========================================================================
935 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
936 * IN assertion: the stream state is correct and there is enough room in
937 * pending_buf.
938 */
939local void putShortMSB (s, b)
940    deflate_state *s;
941    uInt b;
942{
943    put_byte(s, (Byte)(b >> 8));
944    put_byte(s, (Byte)(b & 0xff));
945}
946
947/* =========================================================================
948 * Flush as much pending output as possible. All deflate() output goes
949 * through this function so some applications may wish to modify it
950 * to avoid allocating a large strm->next_out buffer and copying into it.
951 * (See also read_buf()).
952 */
953local void flush_pending(strm)
954    z_streamp strm;
955{
956    deflate_state *s = (deflate_state *) strm->state;
957    unsigned len = s->pending;
958
959    if (len > strm->avail_out) len = strm->avail_out;
960    if (len == 0) return;
961
962    if (strm->next_out != Z_NULL) {
963	zmemcpy(strm->next_out, s->pending_out, len);
964	strm->next_out += len;
965    }
966    s->pending_out += len;
967    strm->total_out += len;
968    strm->avail_out  -= len;
969    s->pending -= len;
970    if (s->pending == 0) {
971        s->pending_out = s->pending_buf;
972    }
973}
974
975/* ========================================================================= */
976int deflate (strm, flush)
977    z_streamp strm;
978    int flush;
979{
980    int old_flush; /* value of flush param for previous deflate call */
981    deflate_state *s;
982
983    if (strm == Z_NULL || strm->state == Z_NULL ||
984	flush > Z_FINISH || flush < 0) {
985        return Z_STREAM_ERROR;
986    }
987    s = (deflate_state *) strm->state;
988
989    if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
990	(s->status == FINISH_STATE && flush != Z_FINISH)) {
991        ERR_RETURN(strm, Z_STREAM_ERROR);
992    }
993    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
994
995    s->strm = strm; /* just in case */
996    old_flush = s->last_flush;
997    s->last_flush = flush;
998
999    /* Write the zlib header */
1000    if (s->status == INIT_STATE) {
1001
1002        uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1003        uInt level_flags = (s->level-1) >> 1;
1004
1005        if (level_flags > 3) level_flags = 3;
1006        header |= (level_flags << 6);
1007	if (s->strstart != 0) header |= PRESET_DICT;
1008        header += 31 - (header % 31);
1009
1010        s->status = BUSY_STATE;
1011        putShortMSB(s, header);
1012
1013	/* Save the adler32 of the preset dictionary: */
1014	if (s->strstart != 0) {
1015	    putShortMSB(s, (uInt)(strm->adler >> 16));
1016	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
1017	}
1018	strm->adler = 1L;
1019    }
1020
1021    /* Flush as much pending output as possible */
1022    if (s->pending != 0) {
1023        flush_pending(strm);
1024        if (strm->avail_out == 0) {
1025	    /* Since avail_out is 0, deflate will be called again with
1026	     * more output space, but possibly with both pending and
1027	     * avail_in equal to zero. There won't be anything to do,
1028	     * but this is not an error situation so make sure we
1029	     * return OK instead of BUF_ERROR at next call of deflate:
1030             */
1031	    s->last_flush = -1;
1032	    return Z_OK;
1033	}
1034
1035    /* Make sure there is something to do and avoid duplicate consecutive
1036     * flushes. For repeated and useless calls with Z_FINISH, we keep
1037     * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1038     */
1039    } else if (strm->avail_in == 0 && flush <= old_flush &&
1040	       flush != Z_FINISH) {
1041        ERR_RETURN(strm, Z_BUF_ERROR);
1042    }
1043
1044    /* User must not provide more input after the first FINISH: */
1045    if (s->status == FINISH_STATE && strm->avail_in != 0) {
1046        ERR_RETURN(strm, Z_BUF_ERROR);
1047    }
1048
1049    /* Start a new block or continue the current one.
1050     */
1051    if (strm->avail_in != 0 || s->lookahead != 0 ||
1052        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1053        block_state bstate;
1054
1055	bstate = (*(configuration_table[s->level].func))(s, flush);
1056
1057        if (bstate == finish_started || bstate == finish_done) {
1058            s->status = FINISH_STATE;
1059        }
1060        if (bstate == need_more || bstate == finish_started) {
1061	    if (strm->avail_out == 0) {
1062	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1063	    }
1064	    return Z_OK;
1065	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1066	     * of deflate should use the same flush parameter to make sure
1067	     * that the flush is complete. So we don't have to output an
1068	     * empty block here, this will be done at next call. This also
1069	     * ensures that for a very small output buffer, we emit at most
1070	     * one empty block.
1071	     */
1072	}
1073        if (bstate == block_done) {
1074            if (flush == Z_PARTIAL_FLUSH) {
1075                _tr_align(s);
1076	    } else if (flush == Z_PACKET_FLUSH) {
1077		/* Output just the 3-bit `stored' block type value,
1078		   but not a zero length. */
1079		_tr_stored_type_only(s);
1080            } else { /* FULL_FLUSH or SYNC_FLUSH */
1081                _tr_stored_block(s, (char*)0, 0L, 0);
1082                /* For a full flush, this empty block will be recognized
1083                 * as a special marker by inflate_sync().
1084                 */
1085                if (flush == Z_FULL_FLUSH) {
1086                    CLEAR_HASH(s);             /* forget history */
1087                }
1088            }
1089            flush_pending(strm);
1090	    if (strm->avail_out == 0) {
1091	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1092	      return Z_OK;
1093	    }
1094        }
1095    }
1096    Assert(strm->avail_out > 0, "bug2");
1097
1098    if (flush != Z_FINISH) return Z_OK;
1099    if (s->noheader) return Z_STREAM_END;
1100
1101    /* Write the zlib trailer (adler32) */
1102    putShortMSB(s, (uInt)(strm->adler >> 16));
1103    putShortMSB(s, (uInt)(strm->adler & 0xffff));
1104    flush_pending(strm);
1105    /* If avail_out is zero, the application will call deflate again
1106     * to flush the rest.
1107     */
1108    s->noheader = -1; /* write the trailer only once! */
1109    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1110}
1111
1112/* ========================================================================= */
1113int deflateEnd (strm)
1114    z_streamp strm;
1115{
1116    int status;
1117    deflate_state *s;
1118
1119    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1120    s = (deflate_state *) strm->state;
1121
1122    status = s->status;
1123    if (status != INIT_STATE && status != BUSY_STATE &&
1124	status != FINISH_STATE) {
1125      return Z_STREAM_ERROR;
1126    }
1127
1128    /* Deallocate in reverse order of allocations: */
1129    TRY_FREE(strm, s->pending_buf);
1130    TRY_FREE(strm, s->head);
1131    TRY_FREE(strm, s->prev);
1132    TRY_FREE(strm, s->window);
1133
1134    ZFREE(strm, s);
1135    strm->state = Z_NULL;
1136
1137    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1138}
1139
1140/* =========================================================================
1141 * Copy the source state to the destination state.
1142 */
1143int deflateCopy (dest, source)
1144    z_streamp dest;
1145    z_streamp source;
1146{
1147    deflate_state *ds;
1148    deflate_state *ss;
1149    ushf *overlay;
1150
1151    if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1152        return Z_STREAM_ERROR;
1153    ss = (deflate_state *) source->state;
1154
1155    zmemcpy(dest, source, sizeof(*dest));
1156
1157    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1158    if (ds == Z_NULL) return Z_MEM_ERROR;
1159    dest->state = (struct internal_state FAR *) ds;
1160    zmemcpy(ds, ss, sizeof(*ds));
1161    ds->strm = dest;
1162
1163    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1164    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1165    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1166    overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1167    ds->pending_buf = (uchf *) overlay;
1168
1169    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1170        ds->pending_buf == Z_NULL) {
1171        deflateEnd (dest);
1172        return Z_MEM_ERROR;
1173    }
1174    /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1175    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1176    zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1177    zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1178    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1179
1180    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1181    ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1182    ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1183
1184    ds->l_desc.dyn_tree = ds->dyn_ltree;
1185    ds->d_desc.dyn_tree = ds->dyn_dtree;
1186    ds->bl_desc.dyn_tree = ds->bl_tree;
1187
1188    return Z_OK;
1189}
1190
1191/* ===========================================================================
1192 * Return the number of bytes of output which are immediately available
1193 * for output from the decompressor.
1194 */
1195int deflateOutputPending (strm)
1196    z_streamp strm;
1197{
1198    if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1199
1200    return ((deflate_state *)(strm->state))->pending;
1201}
1202
1203/* ===========================================================================
1204 * Read a new buffer from the current input stream, update the adler32
1205 * and total number of bytes read.  All deflate() input goes through
1206 * this function so some applications may wish to modify it to avoid
1207 * allocating a large strm->next_in buffer and copying from it.
1208 * (See also flush_pending()).
1209 */
1210local int read_buf(strm, buf, size)
1211    z_streamp strm;
1212    charf *buf;
1213    unsigned size;
1214{
1215    unsigned len = strm->avail_in;
1216
1217    if (len > size) len = size;
1218    if (len == 0) return 0;
1219
1220    strm->avail_in  -= len;
1221
1222    if (!((deflate_state *)(strm->state))->noheader) {
1223        strm->adler = adler32(strm->adler, strm->next_in, len);
1224    }
1225    zmemcpy(buf, strm->next_in, len);
1226    strm->next_in  += len;
1227    strm->total_in += len;
1228
1229    return (int)len;
1230}
1231
1232/* ===========================================================================
1233 * Initialize the "longest match" routines for a new zlib stream
1234 */
1235local void lm_init (s)
1236    deflate_state *s;
1237{
1238    s->window_size = (ulg)2L*s->w_size;
1239
1240    CLEAR_HASH(s);
1241
1242    /* Set the default configuration parameters:
1243     */
1244    s->max_lazy_match   = configuration_table[s->level].max_lazy;
1245    s->good_match       = configuration_table[s->level].good_length;
1246    s->nice_match       = configuration_table[s->level].nice_length;
1247    s->max_chain_length = configuration_table[s->level].max_chain;
1248
1249    s->strstart = 0;
1250    s->block_start = 0L;
1251    s->lookahead = 0;
1252    s->match_length = s->prev_length = MIN_MATCH-1;
1253    s->match_available = 0;
1254    s->ins_h = 0;
1255#ifdef ASMV
1256    match_init(); /* initialize the asm code */
1257#endif
1258}
1259
1260/* ===========================================================================
1261 * Set match_start to the longest match starting at the given string and
1262 * return its length. Matches shorter or equal to prev_length are discarded,
1263 * in which case the result is equal to prev_length and match_start is
1264 * garbage.
1265 * IN assertions: cur_match is the head of the hash chain for the current
1266 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1267 * OUT assertion: the match length is not greater than s->lookahead.
1268 */
1269#ifndef ASMV
1270/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1271 * match.S. The code will be functionally equivalent.
1272 */
1273local uInt longest_match(s, cur_match)
1274    deflate_state *s;
1275    IPos cur_match;                             /* current match */
1276{
1277    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1278    register Bytef *scan = s->window + s->strstart; /* current string */
1279    register Bytef *match;                       /* matched string */
1280    register int len;                           /* length of current match */
1281    int best_len = s->prev_length;              /* best match length so far */
1282    int nice_match = s->nice_match;             /* stop if match long enough */
1283    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1284        s->strstart - (IPos)MAX_DIST(s) : NIL;
1285    /* Stop when cur_match becomes <= limit. To simplify the code,
1286     * we prevent matches with the string of window index 0.
1287     */
1288    Posf *prev = s->prev;
1289    uInt wmask = s->w_mask;
1290
1291#ifdef UNALIGNED_OK
1292    /* Compare two bytes at a time. Note: this is not always beneficial.
1293     * Try with and without -DUNALIGNED_OK to check.
1294     */
1295    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1296    register ush scan_start = *(ushf*)scan;
1297    register ush scan_end   = *(ushf*)(scan+best_len-1);
1298#else
1299    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1300    register Byte scan_end1  = scan[best_len-1];
1301    register Byte scan_end   = scan[best_len];
1302#endif
1303
1304    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1305     * It is easy to get rid of this optimization if necessary.
1306     */
1307    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1308
1309    /* Do not waste too much time if we already have a good match: */
1310    if (s->prev_length >= s->good_match) {
1311        chain_length >>= 2;
1312    }
1313    /* Do not look for matches beyond the end of the input. This is necessary
1314     * to make deflate deterministic.
1315     */
1316    if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1317
1318    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1319
1320    do {
1321        Assert(cur_match < s->strstart, "no future");
1322        match = s->window + cur_match;
1323
1324        /* Skip to next match if the match length cannot increase
1325         * or if the match length is less than 2:
1326         */
1327#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1328        /* This code assumes sizeof(unsigned short) == 2. Do not use
1329         * UNALIGNED_OK if your compiler uses a different size.
1330         */
1331        if (*(ushf*)(match+best_len-1) != scan_end ||
1332            *(ushf*)match != scan_start) continue;
1333
1334        /* It is not necessary to compare scan[2] and match[2] since they are
1335         * always equal when the other bytes match, given that the hash keys
1336         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1337         * strstart+3, +5, ... up to strstart+257. We check for insufficient
1338         * lookahead only every 4th comparison; the 128th check will be made
1339         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1340         * necessary to put more guard bytes at the end of the window, or
1341         * to check more often for insufficient lookahead.
1342         */
1343        Assert(scan[2] == match[2], "scan[2]?");
1344        scan++, match++;
1345        do {
1346        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1347                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1348                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1349                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1350                 scan < strend);
1351        /* The funny "do {}" generates better code on most compilers */
1352
1353        /* Here, scan <= window+strstart+257 */
1354        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1355        if (*scan == *match) scan++;
1356
1357        len = (MAX_MATCH - 1) - (int)(strend-scan);
1358        scan = strend - (MAX_MATCH-1);
1359
1360#else /* UNALIGNED_OK */
1361
1362        if (match[best_len]   != scan_end  ||
1363            match[best_len-1] != scan_end1 ||
1364            *match            != *scan     ||
1365            *++match          != scan[1])      continue;
1366
1367        /* The check at best_len-1 can be removed because it will be made
1368         * again later. (This heuristic is not always a win.)
1369         * It is not necessary to compare scan[2] and match[2] since they
1370         * are always equal when the other bytes match, given that
1371         * the hash keys are equal and that HASH_BITS >= 8.
1372         */
1373        scan += 2, match++;
1374        Assert(*scan == *match, "match[2]?");
1375
1376        /* We check for insufficient lookahead only every 8th comparison;
1377         * the 256th check will be made at strstart+258.
1378         */
1379        do {
1380        } while (*++scan == *++match && *++scan == *++match &&
1381                 *++scan == *++match && *++scan == *++match &&
1382                 *++scan == *++match && *++scan == *++match &&
1383                 *++scan == *++match && *++scan == *++match &&
1384                 scan < strend);
1385
1386        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1387
1388        len = MAX_MATCH - (int)(strend - scan);
1389        scan = strend - MAX_MATCH;
1390
1391#endif /* UNALIGNED_OK */
1392
1393        if (len > best_len) {
1394            s->match_start = cur_match;
1395            best_len = len;
1396            if (len >= nice_match) break;
1397#ifdef UNALIGNED_OK
1398            scan_end = *(ushf*)(scan+best_len-1);
1399#else
1400            scan_end1  = scan[best_len-1];
1401            scan_end   = scan[best_len];
1402#endif
1403        }
1404    } while ((cur_match = prev[cur_match & wmask]) > limit
1405             && --chain_length != 0);
1406
1407    if ((uInt)best_len <= s->lookahead) return best_len;
1408    return s->lookahead;
1409}
1410#endif /* ASMV */
1411
1412#ifdef DEBUG_ZLIB
1413/* ===========================================================================
1414 * Check that the match at match_start is indeed a match.
1415 */
1416local void check_match(s, start, match, length)
1417    deflate_state *s;
1418    IPos start, match;
1419    int length;
1420{
1421    /* check that the match is indeed a match */
1422    if (zmemcmp((charf *)s->window + match,
1423                (charf *)s->window + start, length) != EQUAL) {
1424        fprintf(stderr, " start %u, match %u, length %d\n",
1425		start, match, length);
1426        do {
1427	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1428	} while (--length != 0);
1429        z_error("invalid match");
1430    }
1431    if (z_verbose > 1) {
1432        fprintf(stderr,"\\[%d,%d]", start-match, length);
1433        do { putc(s->window[start++], stderr); } while (--length != 0);
1434    }
1435}
1436#else
1437#  define check_match(s, start, match, length)
1438#endif
1439
1440/* ===========================================================================
1441 * Fill the window when the lookahead becomes insufficient.
1442 * Updates strstart and lookahead.
1443 *
1444 * IN assertion: lookahead < MIN_LOOKAHEAD
1445 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1446 *    At least one byte has been read, or avail_in == 0; reads are
1447 *    performed for at least two bytes (required for the zip translate_eol
1448 *    option -- not supported here).
1449 */
1450local void fill_window(s)
1451    deflate_state *s;
1452{
1453    register unsigned n, m;
1454    register Posf *p;
1455    unsigned more;    /* Amount of free space at the end of the window. */
1456    uInt wsize = s->w_size;
1457
1458    do {
1459        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1460
1461        /* Deal with !@#$% 64K limit: */
1462        if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1463            more = wsize;
1464
1465        } else if (more == (unsigned)(-1)) {
1466            /* Very unlikely, but possible on 16 bit machine if strstart == 0
1467             * and lookahead == 1 (input done one byte at time)
1468             */
1469            more--;
1470
1471        /* If the window is almost full and there is insufficient lookahead,
1472         * move the upper half to the lower one to make room in the upper half.
1473         */
1474        } else if (s->strstart >= wsize+MAX_DIST(s)) {
1475
1476            zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1477                   (unsigned)wsize);
1478            s->match_start -= wsize;
1479            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1480            s->block_start -= (long) wsize;
1481
1482            /* Slide the hash table (could be avoided with 32 bit values
1483               at the expense of memory usage). We slide even when level == 0
1484               to keep the hash table consistent if we switch back to level > 0
1485               later. (Using level 0 permanently is not an optimal usage of
1486               zlib, so we don't care about this pathological case.)
1487             */
1488            n = s->hash_size;
1489            p = &s->head[n];
1490            do {
1491                m = *--p;
1492                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1493            } while (--n);
1494
1495            n = wsize;
1496            p = &s->prev[n];
1497            do {
1498                m = *--p;
1499                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1500                /* If n is not on any hash chain, prev[n] is garbage but
1501                 * its value will never be used.
1502                 */
1503            } while (--n);
1504            more += wsize;
1505        }
1506        if (s->strm->avail_in == 0) return;
1507
1508        /* If there was no sliding:
1509         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1510         *    more == window_size - lookahead - strstart
1511         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1512         * => more >= window_size - 2*WSIZE + 2
1513         * In the BIG_MEM or MMAP case (not yet supported),
1514         *   window_size == input_size + MIN_LOOKAHEAD  &&
1515         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1516         * Otherwise, window_size == 2*WSIZE so more >= 2.
1517         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1518         */
1519        Assert(more >= 2, "more < 2");
1520
1521        n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1522                     more);
1523        s->lookahead += n;
1524
1525        /* Initialize the hash value now that we have some input: */
1526        if (s->lookahead >= MIN_MATCH) {
1527            s->ins_h = s->window[s->strstart];
1528            UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1529#if MIN_MATCH != 3
1530            Call UPDATE_HASH() MIN_MATCH-3 more times
1531#endif
1532        }
1533        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1534         * but this is not important since only literal bytes will be emitted.
1535         */
1536
1537    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1538}
1539
1540/* ===========================================================================
1541 * Flush the current block, with given end-of-file flag.
1542 * IN assertion: strstart is set to the end of the current match.
1543 */
1544#define FLUSH_BLOCK_ONLY(s, eof) { \
1545   _tr_flush_block(s, (s->block_start >= 0L ? \
1546                   (charf *)&s->window[(unsigned)s->block_start] : \
1547                   (charf *)Z_NULL), \
1548		(ulg)((long)s->strstart - s->block_start), \
1549		(eof)); \
1550   s->block_start = s->strstart; \
1551   flush_pending(s->strm); \
1552   Tracev((stderr,"[FLUSH]")); \
1553}
1554
1555/* Same but force premature exit if necessary. */
1556#define FLUSH_BLOCK(s, eof) { \
1557   FLUSH_BLOCK_ONLY(s, eof); \
1558   if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1559}
1560
1561/* ===========================================================================
1562 * Copy without compression as much as possible from the input stream, return
1563 * the current block state.
1564 * This function does not insert new strings in the dictionary since
1565 * uncompressible data is probably not useful. This function is used
1566 * only for the level=0 compression option.
1567 * NOTE: this function should be optimized to avoid extra copying from
1568 * window to pending_buf.
1569 */
1570local block_state deflate_stored(s, flush)
1571    deflate_state *s;
1572    int flush;
1573{
1574    /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1575     * to pending_buf_size, and each stored block has a 5 byte header:
1576     */
1577    ulg max_block_size = 0xffff;
1578    ulg max_start;
1579
1580    if (max_block_size > s->pending_buf_size - 5) {
1581        max_block_size = s->pending_buf_size - 5;
1582    }
1583
1584    /* Copy as much as possible from input to output: */
1585    for (;;) {
1586        /* Fill the window as much as possible: */
1587        if (s->lookahead <= 1) {
1588
1589            Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1590		   s->block_start >= (long)s->w_size, "slide too late");
1591
1592            fill_window(s);
1593            if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1594
1595            if (s->lookahead == 0) break; /* flush the current block */
1596        }
1597	Assert(s->block_start >= 0L, "block gone");
1598
1599	s->strstart += s->lookahead;
1600	s->lookahead = 0;
1601
1602	/* Emit a stored block if pending_buf will be full: */
1603 	max_start = s->block_start + max_block_size;
1604        if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1605	    /* strstart == 0 is possible when wraparound on 16-bit machine */
1606	    s->lookahead = (uInt)(s->strstart - max_start);
1607	    s->strstart = (uInt)max_start;
1608            FLUSH_BLOCK(s, 0);
1609	}
1610	/* Flush if we may have to slide, otherwise block_start may become
1611         * negative and the data will be gone:
1612         */
1613        if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1614            FLUSH_BLOCK(s, 0);
1615	}
1616    }
1617    FLUSH_BLOCK(s, flush == Z_FINISH);
1618    return flush == Z_FINISH ? finish_done : block_done;
1619}
1620
1621/* ===========================================================================
1622 * Compress as much as possible from the input stream, return the current
1623 * block state.
1624 * This function does not perform lazy evaluation of matches and inserts
1625 * new strings in the dictionary only for unmatched strings or for short
1626 * matches. It is used only for the fast compression options.
1627 */
1628local block_state deflate_fast(s, flush)
1629    deflate_state *s;
1630    int flush;
1631{
1632    IPos hash_head = NIL; /* head of the hash chain */
1633    int bflush;           /* set if current block must be flushed */
1634
1635    for (;;) {
1636        /* Make sure that we always have enough lookahead, except
1637         * at the end of the input file. We need MAX_MATCH bytes
1638         * for the next match, plus MIN_MATCH bytes to insert the
1639         * string following the next match.
1640         */
1641        if (s->lookahead < MIN_LOOKAHEAD) {
1642            fill_window(s);
1643            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1644	        return need_more;
1645	    }
1646            if (s->lookahead == 0) break; /* flush the current block */
1647        }
1648
1649        /* Insert the string window[strstart .. strstart+2] in the
1650         * dictionary, and set hash_head to the head of the hash chain:
1651         */
1652        if (s->lookahead >= MIN_MATCH) {
1653            INSERT_STRING(s, s->strstart, hash_head);
1654        }
1655
1656        /* Find the longest match, discarding those <= prev_length.
1657         * At this point we have always match_length < MIN_MATCH
1658         */
1659        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1660            /* To simplify the code, we prevent matches with the string
1661             * of window index 0 (in particular we have to avoid a match
1662             * of the string with itself at the start of the input file).
1663             */
1664            if (s->strategy != Z_HUFFMAN_ONLY) {
1665                s->match_length = longest_match (s, hash_head);
1666            }
1667            /* longest_match() sets match_start */
1668        }
1669        if (s->match_length >= MIN_MATCH) {
1670            check_match(s, s->strstart, s->match_start, s->match_length);
1671
1672            bflush = _tr_tally(s, s->strstart - s->match_start,
1673                               s->match_length - MIN_MATCH);
1674
1675            s->lookahead -= s->match_length;
1676
1677            /* Insert new strings in the hash table only if the match length
1678             * is not too large. This saves time but degrades compression.
1679             */
1680            if (s->match_length <= s->max_insert_length &&
1681                s->lookahead >= MIN_MATCH) {
1682                s->match_length--; /* string at strstart already in hash table */
1683                do {
1684                    s->strstart++;
1685                    INSERT_STRING(s, s->strstart, hash_head);
1686                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1687                     * always MIN_MATCH bytes ahead.
1688                     */
1689                } while (--s->match_length != 0);
1690                s->strstart++;
1691            } else {
1692                s->strstart += s->match_length;
1693                s->match_length = 0;
1694                s->ins_h = s->window[s->strstart];
1695                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1696#if MIN_MATCH != 3
1697                Call UPDATE_HASH() MIN_MATCH-3 more times
1698#endif
1699                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1700                 * matter since it will be recomputed at next deflate call.
1701                 */
1702            }
1703        } else {
1704            /* No match, output a literal byte */
1705            Tracevv((stderr,"%c", s->window[s->strstart]));
1706            bflush = _tr_tally (s, 0, s->window[s->strstart]);
1707            s->lookahead--;
1708            s->strstart++;
1709        }
1710        if (bflush) FLUSH_BLOCK(s, 0);
1711    }
1712    FLUSH_BLOCK(s, flush == Z_FINISH);
1713    return flush == Z_FINISH ? finish_done : block_done;
1714}
1715
1716/* ===========================================================================
1717 * Same as above, but achieves better compression. We use a lazy
1718 * evaluation for matches: a match is finally adopted only if there is
1719 * no better match at the next window position.
1720 */
1721local block_state deflate_slow(s, flush)
1722    deflate_state *s;
1723    int flush;
1724{
1725    IPos hash_head = NIL;    /* head of hash chain */
1726    int bflush;              /* set if current block must be flushed */
1727
1728    /* Process the input block. */
1729    for (;;) {
1730        /* Make sure that we always have enough lookahead, except
1731         * at the end of the input file. We need MAX_MATCH bytes
1732         * for the next match, plus MIN_MATCH bytes to insert the
1733         * string following the next match.
1734         */
1735        if (s->lookahead < MIN_LOOKAHEAD) {
1736            fill_window(s);
1737            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1738	        return need_more;
1739	    }
1740            if (s->lookahead == 0) break; /* flush the current block */
1741        }
1742
1743        /* Insert the string window[strstart .. strstart+2] in the
1744         * dictionary, and set hash_head to the head of the hash chain:
1745         */
1746        if (s->lookahead >= MIN_MATCH) {
1747            INSERT_STRING(s, s->strstart, hash_head);
1748        }
1749
1750        /* Find the longest match, discarding those <= prev_length.
1751         */
1752        s->prev_length = s->match_length, s->prev_match = s->match_start;
1753        s->match_length = MIN_MATCH-1;
1754
1755        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1756            s->strstart - hash_head <= MAX_DIST(s)) {
1757            /* To simplify the code, we prevent matches with the string
1758             * of window index 0 (in particular we have to avoid a match
1759             * of the string with itself at the start of the input file).
1760             */
1761            if (s->strategy != Z_HUFFMAN_ONLY) {
1762                s->match_length = longest_match (s, hash_head);
1763            }
1764            /* longest_match() sets match_start */
1765
1766            if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1767                 (s->match_length == MIN_MATCH &&
1768                  s->strstart - s->match_start > TOO_FAR))) {
1769
1770                /* If prev_match is also MIN_MATCH, match_start is garbage
1771                 * but we will ignore the current match anyway.
1772                 */
1773                s->match_length = MIN_MATCH-1;
1774            }
1775        }
1776        /* If there was a match at the previous step and the current
1777         * match is not better, output the previous match:
1778         */
1779        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1780            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1781            /* Do not insert strings in hash table beyond this. */
1782
1783            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1784
1785            bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1786                               s->prev_length - MIN_MATCH);
1787
1788            /* Insert in hash table all strings up to the end of the match.
1789             * strstart-1 and strstart are already inserted. If there is not
1790             * enough lookahead, the last two strings are not inserted in
1791             * the hash table.
1792             */
1793            s->lookahead -= s->prev_length-1;
1794            s->prev_length -= 2;
1795            do {
1796                if (++s->strstart <= max_insert) {
1797                    INSERT_STRING(s, s->strstart, hash_head);
1798                }
1799            } while (--s->prev_length != 0);
1800            s->match_available = 0;
1801            s->match_length = MIN_MATCH-1;
1802            s->strstart++;
1803
1804            if (bflush) FLUSH_BLOCK(s, 0);
1805
1806        } else if (s->match_available) {
1807            /* If there was no match at the previous position, output a
1808             * single literal. If there was a match but the current match
1809             * is longer, truncate the previous match to a single literal.
1810             */
1811            Tracevv((stderr,"%c", s->window[s->strstart-1]));
1812            if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1813                FLUSH_BLOCK_ONLY(s, 0);
1814            }
1815            s->strstart++;
1816            s->lookahead--;
1817            if (s->strm->avail_out == 0) return need_more;
1818        } else {
1819            /* There is no previous match to compare with, wait for
1820             * the next step to decide.
1821             */
1822            s->match_available = 1;
1823            s->strstart++;
1824            s->lookahead--;
1825        }
1826    }
1827    Assert (flush != Z_NO_FLUSH, "no flush?");
1828    if (s->match_available) {
1829        Tracevv((stderr,"%c", s->window[s->strstart-1]));
1830        _tr_tally (s, 0, s->window[s->strstart-1]);
1831        s->match_available = 0;
1832    }
1833    FLUSH_BLOCK(s, flush == Z_FINISH);
1834    return flush == Z_FINISH ? finish_done : block_done;
1835}
1836/* --- deflate.c */
1837
1838/* +++ trees.c */
1839/* trees.c -- output deflated data using Huffman coding
1840 * Copyright (C) 1995-1996 Jean-loup Gailly
1841 * For conditions of distribution and use, see copyright notice in zlib.h
1842 */
1843
1844/*
1845 *  ALGORITHM
1846 *
1847 *      The "deflation" process uses several Huffman trees. The more
1848 *      common source values are represented by shorter bit sequences.
1849 *
1850 *      Each code tree is stored in a compressed form which is itself
1851 * a Huffman encoding of the lengths of all the code strings (in
1852 * ascending order by source values).  The actual code strings are
1853 * reconstructed from the lengths in the inflate process, as described
1854 * in the deflate specification.
1855 *
1856 *  REFERENCES
1857 *
1858 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1859 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1860 *
1861 *      Storer, James A.
1862 *          Data Compression:  Methods and Theory, pp. 49-50.
1863 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1864 *
1865 *      Sedgewick, R.
1866 *          Algorithms, p290.
1867 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
1868 */
1869
1870/* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1871
1872/* #include "deflate.h" */
1873
1874#ifdef DEBUG_ZLIB
1875#  include <ctype.h>
1876#endif
1877
1878/* ===========================================================================
1879 * Constants
1880 */
1881
1882#define MAX_BL_BITS 7
1883/* Bit length codes must not exceed MAX_BL_BITS bits */
1884
1885#define END_BLOCK 256
1886/* end of block literal code */
1887
1888#define REP_3_6      16
1889/* repeat previous bit length 3-6 times (2 bits of repeat count) */
1890
1891#define REPZ_3_10    17
1892/* repeat a zero length 3-10 times  (3 bits of repeat count) */
1893
1894#define REPZ_11_138  18
1895/* repeat a zero length 11-138 times  (7 bits of repeat count) */
1896
1897local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1898   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1899
1900local int extra_dbits[D_CODES] /* extra bits for each distance code */
1901   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1902
1903local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1904   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1905
1906local uch bl_order[BL_CODES]
1907   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1908/* The lengths of the bit length codes are sent in order of decreasing
1909 * probability, to avoid transmitting the lengths for unused bit length codes.
1910 */
1911
1912#define Buf_size (8 * 2*sizeof(char))
1913/* Number of bits used within bi_buf. (bi_buf might be implemented on
1914 * more than 16 bits on some systems.)
1915 */
1916
1917/* ===========================================================================
1918 * Local data. These are initialized only once.
1919 */
1920
1921local ct_data static_ltree[L_CODES+2];
1922/* The static literal tree. Since the bit lengths are imposed, there is no
1923 * need for the L_CODES extra codes used during heap construction. However
1924 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1925 * below).
1926 */
1927
1928local ct_data static_dtree[D_CODES];
1929/* The static distance tree. (Actually a trivial tree since all codes use
1930 * 5 bits.)
1931 */
1932
1933local uch dist_code[512];
1934/* distance codes. The first 256 values correspond to the distances
1935 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1936 * the 15 bit distances.
1937 */
1938
1939local uch length_code[MAX_MATCH-MIN_MATCH+1];
1940/* length code for each normalized match length (0 == MIN_MATCH) */
1941
1942local int base_length[LENGTH_CODES];
1943/* First normalized length for each code (0 = MIN_MATCH) */
1944
1945local int base_dist[D_CODES];
1946/* First normalized distance for each code (0 = distance of 1) */
1947
1948struct static_tree_desc_s {
1949    ct_data *static_tree;        /* static tree or NULL */
1950    intf    *extra_bits;         /* extra bits for each code or NULL */
1951    int     extra_base;          /* base index for extra_bits */
1952    int     elems;               /* max number of elements in the tree */
1953    int     max_length;          /* max bit length for the codes */
1954};
1955
1956local static_tree_desc  static_l_desc =
1957{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1958
1959local static_tree_desc  static_d_desc =
1960{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
1961
1962local static_tree_desc  static_bl_desc =
1963{(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
1964
1965/* ===========================================================================
1966 * Local (static) routines in this file.
1967 */
1968
1969local void tr_static_init OF((void));
1970local void init_block     OF((deflate_state *s));
1971local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
1972local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
1973local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
1974local void build_tree     OF((deflate_state *s, tree_desc *desc));
1975local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1976local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1977local int  build_bl_tree  OF((deflate_state *s));
1978local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1979                              int blcodes));
1980local void compress_block OF((deflate_state *s, ct_data *ltree,
1981                              ct_data *dtree));
1982local void set_data_type  OF((deflate_state *s));
1983local unsigned bi_reverse OF((unsigned value, int length));
1984local void bi_windup      OF((deflate_state *s));
1985local void bi_flush       OF((deflate_state *s));
1986local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
1987                              int header));
1988
1989#ifndef DEBUG_ZLIB
1990#  define send_code(s, c, tree) send_bits(s, tree[(c)].Code, tree[(c)].Len)
1991   /* Send a code of the given tree. c and tree must not have side effects */
1992
1993#else /* DEBUG_ZLIB */
1994#  define send_code(s, c, tree) \
1995     { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1996       send_bits(s, tree[c].Code, tree[c].Len); }
1997#endif
1998
1999#define d_code(dist) \
2000   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
2001/* Mapping from a distance to a distance code. dist is the distance - 1 and
2002 * must not have side effects. dist_code[256] and dist_code[257] are never
2003 * used.
2004 */
2005
2006/* ===========================================================================
2007 * Output a short LSB first on the stream.
2008 * IN assertion: there is enough room in pendingBuf.
2009 */
2010#define put_short(s, w) { \
2011    put_byte(s, (uch)((w) & 0xff)); \
2012    put_byte(s, (uch)((ush)(w) >> 8)); \
2013}
2014
2015/* ===========================================================================
2016 * Send a value on a given number of bits.
2017 * IN assertion: length <= 16 and value fits in length bits.
2018 */
2019#ifdef DEBUG_ZLIB
2020local void send_bits      OF((deflate_state *s, int value, int length));
2021
2022local void send_bits(s, value, length)
2023    deflate_state *s;
2024    int value;  /* value to send */
2025    int length; /* number of bits */
2026{
2027    Tracevv((stderr," l %2d v %4x ", length, value));
2028    Assert(length > 0 && length <= 15, "invalid length");
2029    s->bits_sent += (ulg)length;
2030
2031    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2032     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2033     * unused bits in value.
2034     */
2035    if (s->bi_valid > (int)Buf_size - length) {
2036        s->bi_buf |= (value << s->bi_valid);
2037        put_short(s, s->bi_buf);
2038        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2039        s->bi_valid += length - Buf_size;
2040    } else {
2041        s->bi_buf |= value << s->bi_valid;
2042        s->bi_valid += length;
2043    }
2044}
2045#else /* !DEBUG_ZLIB */
2046
2047#define send_bits(s, value, length) \
2048{ int len = (length);\
2049  if ((s)->bi_valid > (int)Buf_size - len) {\
2050    int val = (value);\
2051    (s)->bi_buf |= (val << (s)->bi_valid);\
2052    put_short((s), (s)->bi_buf);\
2053    (s)->bi_buf = (ush)val >> (Buf_size - (s)->bi_valid);\
2054    (s)->bi_valid += len - Buf_size;\
2055  } else {\
2056    (s)->bi_buf |= (value) << (s)->bi_valid;\
2057    (s)->bi_valid += len;\
2058  }\
2059}
2060#endif /* DEBUG_ZLIB */
2061
2062/* the arguments must not have side effects */
2063
2064/* ===========================================================================
2065 * Initialize the various 'constant' tables. In a multi-threaded environment,
2066 * this function may be called by two threads concurrently, but this is
2067 * harmless since both invocations do exactly the same thing.
2068 */
2069local void tr_static_init()
2070{
2071    static int static_init_done = 0;
2072    int n;        /* iterates over tree elements */
2073    int bits;     /* bit counter */
2074    int length;   /* length value */
2075    int code;     /* code value */
2076    int dist;     /* distance index */
2077    ush bl_count[MAX_BITS+1];
2078    /* number of codes at each bit length for an optimal tree */
2079
2080    if (static_init_done) return;
2081
2082    /* Initialize the mapping length (0..255) -> length code (0..28) */
2083    length = 0;
2084    for (code = 0; code < LENGTH_CODES-1; code++) {
2085        base_length[code] = length;
2086        for (n = 0; n < (1<<extra_lbits[code]); n++) {
2087            length_code[length++] = (uch)code;
2088        }
2089    }
2090    Assert (length == 256, "tr_static_init: length != 256");
2091    /* Note that the length 255 (match length 258) can be represented
2092     * in two different ways: code 284 + 5 bits or code 285, so we
2093     * overwrite length_code[255] to use the best encoding:
2094     */
2095    length_code[length-1] = (uch)code;
2096
2097    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2098    dist = 0;
2099    for (code = 0 ; code < 16; code++) {
2100        base_dist[code] = dist;
2101        for (n = 0; n < (1<<extra_dbits[code]); n++) {
2102            dist_code[dist++] = (uch)code;
2103        }
2104    }
2105    Assert (dist == 256, "tr_static_init: dist != 256");
2106    dist >>= 7; /* from now on, all distances are divided by 128 */
2107    for ( ; code < D_CODES; code++) {
2108        base_dist[code] = dist << 7;
2109        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2110            dist_code[256 + dist++] = (uch)code;
2111        }
2112    }
2113    Assert (dist == 256, "tr_static_init: 256+dist != 512");
2114
2115    /* Construct the codes of the static literal tree */
2116    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2117    n = 0;
2118    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2119    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2120    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2121    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2122    /* Codes 286 and 287 do not exist, but we must include them in the
2123     * tree construction to get a canonical Huffman tree (longest code
2124     * all ones)
2125     */
2126    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2127
2128    /* The static distance tree is trivial: */
2129    for (n = 0; n < D_CODES; n++) {
2130        static_dtree[n].Len = 5;
2131        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2132    }
2133    static_init_done = 1;
2134}
2135
2136/* ===========================================================================
2137 * Initialize the tree data structures for a new zlib stream.
2138 */
2139void _tr_init(s)
2140    deflate_state *s;
2141{
2142    tr_static_init();
2143
2144    s->compressed_len = 0L;
2145
2146    s->l_desc.dyn_tree = s->dyn_ltree;
2147    s->l_desc.stat_desc = &static_l_desc;
2148
2149    s->d_desc.dyn_tree = s->dyn_dtree;
2150    s->d_desc.stat_desc = &static_d_desc;
2151
2152    s->bl_desc.dyn_tree = s->bl_tree;
2153    s->bl_desc.stat_desc = &static_bl_desc;
2154
2155    s->bi_buf = 0;
2156    s->bi_valid = 0;
2157    s->last_eob_len = 8; /* enough lookahead for inflate */
2158#ifdef DEBUG_ZLIB
2159    s->bits_sent = 0L;
2160#endif
2161
2162    /* Initialize the first block of the first file: */
2163    init_block(s);
2164}
2165
2166/* ===========================================================================
2167 * Initialize a new block.
2168 */
2169local void init_block(s)
2170    deflate_state *s;
2171{
2172    int n; /* iterates over tree elements */
2173
2174    /* Initialize the trees. */
2175    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2176    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2177    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2178
2179    s->dyn_ltree[END_BLOCK].Freq = 1;
2180    s->opt_len = s->static_len = 0L;
2181    s->last_lit = s->matches = 0;
2182}
2183
2184#define SMALLEST 1
2185/* Index within the heap array of least frequent node in the Huffman tree */
2186
2187
2188/* ===========================================================================
2189 * Remove the smallest element from the heap and recreate the heap with
2190 * one less element. Updates heap and heap_len.
2191 */
2192#define pqremove(s, tree, top) \
2193{\
2194    top = s->heap[SMALLEST]; \
2195    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2196    pqdownheap(s, tree, SMALLEST); \
2197}
2198
2199/* ===========================================================================
2200 * Compares to subtrees, using the tree depth as tie breaker when
2201 * the subtrees have equal frequency. This minimizes the worst case length.
2202 */
2203#define smaller(tree, n, m, depth) \
2204   (tree[n].Freq < tree[m].Freq || \
2205   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2206
2207/* ===========================================================================
2208 * Restore the heap property by moving down the tree starting at node k,
2209 * exchanging a node with the smallest of its two sons if necessary, stopping
2210 * when the heap property is re-established (each father smaller than its
2211 * two sons).
2212 */
2213local void pqdownheap(s, tree, k)
2214    deflate_state *s;
2215    ct_data *tree;  /* the tree to restore */
2216    int k;               /* node to move down */
2217{
2218    int v = s->heap[k];
2219    int j = k << 1;  /* left son of k */
2220    while (j <= s->heap_len) {
2221        /* Set j to the smallest of the two sons: */
2222        if (j < s->heap_len &&
2223            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2224            j++;
2225        }
2226        /* Exit if v is smaller than both sons */
2227        if (smaller(tree, v, s->heap[j], s->depth)) break;
2228
2229        /* Exchange v with the smallest son */
2230        s->heap[k] = s->heap[j];  k = j;
2231
2232        /* And continue down the tree, setting j to the left son of k */
2233        j <<= 1;
2234    }
2235    s->heap[k] = v;
2236}
2237
2238/* ===========================================================================
2239 * Compute the optimal bit lengths for a tree and update the total bit length
2240 * for the current block.
2241 * IN assertion: the fields freq and dad are set, heap[heap_max] and
2242 *    above are the tree nodes sorted by increasing frequency.
2243 * OUT assertions: the field len is set to the optimal bit length, the
2244 *     array bl_count contains the frequencies for each bit length.
2245 *     The length opt_len is updated; static_len is also updated if stree is
2246 *     not null.
2247 */
2248local void gen_bitlen(s, desc)
2249    deflate_state *s;
2250    tree_desc *desc;    /* the tree descriptor */
2251{
2252    ct_data *tree  = desc->dyn_tree;
2253    int max_code   = desc->max_code;
2254    ct_data *stree = desc->stat_desc->static_tree;
2255    intf *extra    = desc->stat_desc->extra_bits;
2256    int base       = desc->stat_desc->extra_base;
2257    int max_length = desc->stat_desc->max_length;
2258    int h;              /* heap index */
2259    int n, m;           /* iterate over the tree elements */
2260    int bits;           /* bit length */
2261    int xbits;          /* extra bits */
2262    ush f;              /* frequency */
2263    int overflow = 0;   /* number of elements with bit length too large */
2264
2265    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2266
2267    /* In a first pass, compute the optimal bit lengths (which may
2268     * overflow in the case of the bit length tree).
2269     */
2270    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2271
2272    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2273        n = s->heap[h];
2274        bits = tree[tree[n].Dad].Len + 1;
2275        if (bits > max_length) bits = max_length, overflow++;
2276        tree[n].Len = (ush)bits;
2277        /* We overwrite tree[n].Dad which is no longer needed */
2278
2279        if (n > max_code) continue; /* not a leaf node */
2280
2281        s->bl_count[bits]++;
2282        xbits = 0;
2283        if (n >= base) xbits = extra[n-base];
2284        f = tree[n].Freq;
2285        s->opt_len += (ulg)f * (bits + xbits);
2286        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2287    }
2288    if (overflow == 0) return;
2289
2290    Trace((stderr,"\nbit length overflow\n"));
2291    /* This happens for example on obj2 and pic of the Calgary corpus */
2292
2293    /* Find the first bit length which could increase: */
2294    do {
2295        bits = max_length-1;
2296        while (s->bl_count[bits] == 0) bits--;
2297        s->bl_count[bits]--;      /* move one leaf down the tree */
2298        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2299        s->bl_count[max_length]--;
2300        /* The brother of the overflow item also moves one step up,
2301         * but this does not affect bl_count[max_length]
2302         */
2303        overflow -= 2;
2304    } while (overflow > 0);
2305
2306    /* Now recompute all bit lengths, scanning in increasing frequency.
2307     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2308     * lengths instead of fixing only the wrong ones. This idea is taken
2309     * from 'ar' written by Haruhiko Okumura.)
2310     */
2311    for (bits = max_length; bits != 0; bits--) {
2312        n = s->bl_count[bits];
2313        while (n != 0) {
2314            m = s->heap[--h];
2315            if (m > max_code) continue;
2316            if (tree[m].Len != (unsigned) bits) {
2317                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2318                s->opt_len += ((long)bits - (long)tree[m].Len)
2319                              *(long)tree[m].Freq;
2320                tree[m].Len = (ush)bits;
2321            }
2322            n--;
2323        }
2324    }
2325}
2326
2327/* ===========================================================================
2328 * Generate the codes for a given tree and bit counts (which need not be
2329 * optimal).
2330 * IN assertion: the array bl_count contains the bit length statistics for
2331 * the given tree and the field len is set for all tree elements.
2332 * OUT assertion: the field code is set for all tree elements of non
2333 *     zero code length.
2334 */
2335local void gen_codes (tree, max_code, bl_count)
2336    ct_data *tree;             /* the tree to decorate */
2337    int max_code;              /* largest code with non zero frequency */
2338    ushf *bl_count;            /* number of codes at each bit length */
2339{
2340    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2341    ush code = 0;              /* running code value */
2342    int bits;                  /* bit index */
2343    int n;                     /* code index */
2344
2345    /* The distribution counts are first used to generate the code values
2346     * without bit reversal.
2347     */
2348    for (bits = 1; bits <= MAX_BITS; bits++) {
2349        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2350    }
2351    /* Check that the bit counts in bl_count are consistent. The last code
2352     * must be all ones.
2353     */
2354    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2355            "inconsistent bit counts");
2356    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2357
2358    for (n = 0;  n <= max_code; n++) {
2359        int len = tree[n].Len;
2360        if (len == 0) continue;
2361        /* Now reverse the bits */
2362        tree[n].Code = bi_reverse(next_code[len]++, len);
2363
2364        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2365             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2366    }
2367}
2368
2369/* ===========================================================================
2370 * Construct one Huffman tree and assigns the code bit strings and lengths.
2371 * Update the total bit length for the current block.
2372 * IN assertion: the field freq is set for all tree elements.
2373 * OUT assertions: the fields len and code are set to the optimal bit length
2374 *     and corresponding code. The length opt_len is updated; static_len is
2375 *     also updated if stree is not null. The field max_code is set.
2376 */
2377local void build_tree(s, desc)
2378    deflate_state *s;
2379    tree_desc *desc; /* the tree descriptor */
2380{
2381    ct_data *tree   = desc->dyn_tree;
2382    ct_data *stree  = desc->stat_desc->static_tree;
2383    int elems       = desc->stat_desc->elems;
2384    int n, m;          /* iterate over heap elements */
2385    int max_code = -1; /* largest code with non zero frequency */
2386    int node;          /* new node being created */
2387
2388    /* Construct the initial heap, with least frequent element in
2389     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2390     * heap[0] is not used.
2391     */
2392    s->heap_len = 0, s->heap_max = HEAP_SIZE;
2393
2394    for (n = 0; n < elems; n++) {
2395        if (tree[n].Freq != 0) {
2396            s->heap[++(s->heap_len)] = max_code = n;
2397            s->depth[n] = 0;
2398        } else {
2399            tree[n].Len = 0;
2400        }
2401    }
2402
2403    /* The pkzip format requires that at least one distance code exists,
2404     * and that at least one bit should be sent even if there is only one
2405     * possible code. So to avoid special checks later on we force at least
2406     * two codes of non zero frequency.
2407     */
2408    while (s->heap_len < 2) {
2409        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2410        tree[node].Freq = 1;
2411        s->depth[node] = 0;
2412        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2413        /* node is 0 or 1 so it does not have extra bits */
2414    }
2415    desc->max_code = max_code;
2416
2417    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2418     * establish sub-heaps of increasing lengths:
2419     */
2420    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2421
2422    /* Construct the Huffman tree by repeatedly combining the least two
2423     * frequent nodes.
2424     */
2425    node = elems;              /* next internal node of the tree */
2426    do {
2427        pqremove(s, tree, n);  /* n = node of least frequency */
2428        m = s->heap[SMALLEST]; /* m = node of next least frequency */
2429
2430        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2431        s->heap[--(s->heap_max)] = m;
2432
2433        /* Create a new node father of n and m */
2434        tree[node].Freq = tree[n].Freq + tree[m].Freq;
2435        s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2436        tree[n].Dad = tree[m].Dad = (ush)node;
2437#ifdef DUMP_BL_TREE
2438        if (tree == s->bl_tree) {
2439            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2440                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2441        }
2442#endif
2443        /* and insert the new node in the heap */
2444        s->heap[SMALLEST] = node++;
2445        pqdownheap(s, tree, SMALLEST);
2446
2447    } while (s->heap_len >= 2);
2448
2449    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2450
2451    /* At this point, the fields freq and dad are set. We can now
2452     * generate the bit lengths.
2453     */
2454    gen_bitlen(s, (tree_desc *)desc);
2455
2456    /* The field len is now set, we can generate the bit codes */
2457    gen_codes ((ct_data *)tree, max_code, s->bl_count);
2458}
2459
2460/* ===========================================================================
2461 * Scan a literal or distance tree to determine the frequencies of the codes
2462 * in the bit length tree.
2463 */
2464local void scan_tree (s, tree, max_code)
2465    deflate_state *s;
2466    ct_data *tree;   /* the tree to be scanned */
2467    int max_code;    /* and its largest code of non zero frequency */
2468{
2469    int n;                     /* iterates over all tree elements */
2470    int prevlen = -1;          /* last emitted length */
2471    int curlen;                /* length of current code */
2472    int nextlen = tree[0].Len; /* length of next code */
2473    int count = 0;             /* repeat count of the current code */
2474    int max_count = 7;         /* max repeat count */
2475    int min_count = 4;         /* min repeat count */
2476
2477    if (nextlen == 0) max_count = 138, min_count = 3;
2478    tree[max_code+1].Len = (ush)0xffff; /* guard */
2479
2480    for (n = 0; n <= max_code; n++) {
2481        curlen = nextlen; nextlen = tree[n+1].Len;
2482        if (++count < max_count && curlen == nextlen) {
2483            continue;
2484        } else if (count < min_count) {
2485            s->bl_tree[curlen].Freq += count;
2486        } else if (curlen != 0) {
2487            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2488            s->bl_tree[REP_3_6].Freq++;
2489        } else if (count <= 10) {
2490            s->bl_tree[REPZ_3_10].Freq++;
2491        } else {
2492            s->bl_tree[REPZ_11_138].Freq++;
2493        }
2494        count = 0; prevlen = curlen;
2495        if (nextlen == 0) {
2496            max_count = 138, min_count = 3;
2497        } else if (curlen == nextlen) {
2498            max_count = 6, min_count = 3;
2499        } else {
2500            max_count = 7, min_count = 4;
2501        }
2502    }
2503}
2504
2505/* ===========================================================================
2506 * Send a literal or distance tree in compressed form, using the codes in
2507 * bl_tree.
2508 */
2509local void send_tree (s, tree, max_code)
2510    deflate_state *s;
2511    ct_data *tree; /* the tree to be scanned */
2512    int max_code;       /* and its largest code of non zero frequency */
2513{
2514    int n;                     /* iterates over all tree elements */
2515    int prevlen = -1;          /* last emitted length */
2516    int curlen;                /* length of current code */
2517    int nextlen = tree[0].Len; /* length of next code */
2518    int count = 0;             /* repeat count of the current code */
2519    int max_count = 7;         /* max repeat count */
2520    int min_count = 4;         /* min repeat count */
2521
2522    /* tree[max_code+1].Len = -1; */  /* guard already set */
2523    if (nextlen == 0) max_count = 138, min_count = 3;
2524
2525    for (n = 0; n <= max_code; n++) {
2526        curlen = nextlen; nextlen = tree[n+1].Len;
2527        if (++count < max_count && curlen == nextlen) {
2528            continue;
2529        } else if (count < min_count) {
2530            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2531
2532        } else if (curlen != 0) {
2533            if (curlen != prevlen) {
2534                send_code(s, curlen, s->bl_tree); count--;
2535            }
2536            Assert(count >= 3 && count <= 6, " 3_6?");
2537            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2538
2539        } else if (count <= 10) {
2540            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2541
2542        } else {
2543            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2544        }
2545        count = 0; prevlen = curlen;
2546        if (nextlen == 0) {
2547            max_count = 138, min_count = 3;
2548        } else if (curlen == nextlen) {
2549            max_count = 6, min_count = 3;
2550        } else {
2551            max_count = 7, min_count = 4;
2552        }
2553    }
2554}
2555
2556/* ===========================================================================
2557 * Construct the Huffman tree for the bit lengths and return the index in
2558 * bl_order of the last bit length code to send.
2559 */
2560local int build_bl_tree(s)
2561    deflate_state *s;
2562{
2563    int max_blindex;  /* index of last bit length code of non zero freq */
2564
2565    /* Determine the bit length frequencies for literal and distance trees */
2566    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2567    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2568
2569    /* Build the bit length tree: */
2570    build_tree(s, (tree_desc *)(&(s->bl_desc)));
2571    /* opt_len now includes the length of the tree representations, except
2572     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2573     */
2574
2575    /* Determine the number of bit length codes to send. The pkzip format
2576     * requires that at least 4 bit length codes be sent. (appnote.txt says
2577     * 3 but the actual value used is 4.)
2578     */
2579    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2580        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2581    }
2582    /* Update opt_len to include the bit length tree and counts */
2583    s->opt_len += 3*(max_blindex+1) + 5+5+4;
2584    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2585            s->opt_len, s->static_len));
2586
2587    return max_blindex;
2588}
2589
2590/* ===========================================================================
2591 * Send the header for a block using dynamic Huffman trees: the counts, the
2592 * lengths of the bit length codes, the literal tree and the distance tree.
2593 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2594 */
2595local void send_all_trees(s, lcodes, dcodes, blcodes)
2596    deflate_state *s;
2597    int lcodes, dcodes, blcodes; /* number of codes for each tree */
2598{
2599    int rank;                    /* index in bl_order */
2600
2601    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2602    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2603            "too many codes");
2604    Tracev((stderr, "\nbl counts: "));
2605    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2606    send_bits(s, dcodes-1,   5);
2607    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2608    for (rank = 0; rank < blcodes; rank++) {
2609        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2610        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2611    }
2612    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2613
2614    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2615    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2616
2617    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2618    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2619}
2620
2621/* ===========================================================================
2622 * Send a stored block
2623 */
2624void _tr_stored_block(s, buf, stored_len, eof)
2625    deflate_state *s;
2626    charf *buf;       /* input block */
2627    ulg stored_len;   /* length of input block */
2628    int eof;          /* true if this is the last block for a file */
2629{
2630    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2631    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2632    s->compressed_len += (stored_len + 4) << 3;
2633
2634    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2635}
2636
2637/* Send just the `stored block' type code without any length bytes or data.
2638 */
2639void _tr_stored_type_only(s)
2640    deflate_state *s;
2641{
2642    send_bits(s, (STORED_BLOCK << 1), 3);
2643    bi_windup(s);
2644    s->compressed_len = (s->compressed_len + 3) & ~7L;
2645}
2646
2647
2648/* ===========================================================================
2649 * Send one empty static block to give enough lookahead for inflate.
2650 * This takes 10 bits, of which 7 may remain in the bit buffer.
2651 * The current inflate code requires 9 bits of lookahead. If the
2652 * last two codes for the previous block (real code plus EOB) were coded
2653 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2654 * the last real code. In this case we send two empty static blocks instead
2655 * of one. (There are no problems if the previous block is stored or fixed.)
2656 * To simplify the code, we assume the worst case of last real code encoded
2657 * on one bit only.
2658 */
2659void _tr_align(s)
2660    deflate_state *s;
2661{
2662    send_bits(s, STATIC_TREES<<1, 3);
2663    send_code(s, END_BLOCK, static_ltree);
2664    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2665    bi_flush(s);
2666    /* Of the 10 bits for the empty block, we have already sent
2667     * (10 - bi_valid) bits. The lookahead for the last real code (before
2668     * the EOB of the previous block) was thus at least one plus the length
2669     * of the EOB plus what we have just sent of the empty static block.
2670     */
2671    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2672        send_bits(s, STATIC_TREES<<1, 3);
2673        send_code(s, END_BLOCK, static_ltree);
2674        s->compressed_len += 10L;
2675        bi_flush(s);
2676    }
2677    s->last_eob_len = 7;
2678}
2679
2680/* ===========================================================================
2681 * Determine the best encoding for the current block: dynamic trees, static
2682 * trees or store, and output the encoded block to the zip file. This function
2683 * returns the total compressed length for the file so far.
2684 */
2685ulg _tr_flush_block(s, buf, stored_len, eof)
2686    deflate_state *s;
2687    charf *buf;       /* input block, or NULL if too old */
2688    ulg stored_len;   /* length of input block */
2689    int eof;          /* true if this is the last block for a file */
2690{
2691    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2692    int max_blindex = 0;  /* index of last bit length code of non zero freq */
2693
2694    /* Build the Huffman trees unless a stored block is forced */
2695    if (s->level > 0) {
2696
2697	 /* Check if the file is ascii or binary */
2698	if (s->data_type == Z_UNKNOWN) set_data_type(s);
2699
2700	/* Construct the literal and distance trees */
2701	build_tree(s, (tree_desc *)(&(s->l_desc)));
2702	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2703		s->static_len));
2704
2705	build_tree(s, (tree_desc *)(&(s->d_desc)));
2706	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2707		s->static_len));
2708	/* At this point, opt_len and static_len are the total bit lengths of
2709	 * the compressed block data, excluding the tree representations.
2710	 */
2711
2712	/* Build the bit length tree for the above two trees, and get the index
2713	 * in bl_order of the last bit length code to send.
2714	 */
2715	max_blindex = build_bl_tree(s);
2716
2717	/* Determine the best encoding. Compute first the block length in bytes*/
2718	opt_lenb = (s->opt_len+3+7)>>3;
2719	static_lenb = (s->static_len+3+7)>>3;
2720
2721	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2722		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2723		s->last_lit));
2724
2725	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2726
2727    } else {
2728        Assert(buf != (char*)0, "lost buf");
2729	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2730    }
2731
2732    /* If compression failed and this is the first and last block,
2733     * and if the .zip file can be seeked (to rewrite the local header),
2734     * the whole file is transformed into a stored file:
2735     */
2736#ifdef STORED_FILE_OK
2737#  ifdef FORCE_STORED_FILE
2738    if (eof && s->compressed_len == 0L) { /* force stored file */
2739#  else
2740    if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2741#  endif
2742        /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2743        if (buf == (charf*)0) error ("block vanished");
2744
2745        copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2746        s->compressed_len = stored_len << 3;
2747        s->method = STORED;
2748    } else
2749#endif /* STORED_FILE_OK */
2750
2751#ifdef FORCE_STORED
2752    if (buf != (char*)0) { /* force stored block */
2753#else
2754    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2755                       /* 4: two words for the lengths */
2756#endif
2757        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2758         * Otherwise we can't have processed more than WSIZE input bytes since
2759         * the last block flush, because compression would have been
2760         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2761         * transform a block into a stored block.
2762         */
2763        _tr_stored_block(s, buf, stored_len, eof);
2764
2765#ifdef FORCE_STATIC
2766    } else if (static_lenb >= 0) { /* force static trees */
2767#else
2768    } else if (static_lenb == opt_lenb) {
2769#endif
2770        send_bits(s, (STATIC_TREES<<1)+eof, 3);
2771        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2772        s->compressed_len += 3 + s->static_len;
2773    } else {
2774        send_bits(s, (DYN_TREES<<1)+eof, 3);
2775        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2776                       max_blindex+1);
2777        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2778        s->compressed_len += 3 + s->opt_len;
2779    }
2780    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2781    init_block(s);
2782
2783    if (eof) {
2784        bi_windup(s);
2785        s->compressed_len += 7;  /* align on byte boundary */
2786    }
2787    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2788           s->compressed_len-7*eof));
2789
2790    return s->compressed_len >> 3;
2791}
2792
2793/* ===========================================================================
2794 * Save the match info and tally the frequency counts. Return true if
2795 * the current block must be flushed.
2796 */
2797int _tr_tally (s, dist, lc)
2798    deflate_state *s;
2799    unsigned dist;  /* distance of matched string */
2800    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
2801{
2802    s->d_buf[s->last_lit] = (ush)dist;
2803    s->l_buf[s->last_lit++] = (uch)lc;
2804    if (dist == 0) {
2805        /* lc is the unmatched char */
2806        s->dyn_ltree[lc].Freq++;
2807    } else {
2808        s->matches++;
2809        /* Here, lc is the match length - MIN_MATCH */
2810        dist--;             /* dist = match distance - 1 */
2811        Assert((ush)dist < (ush)MAX_DIST(s) &&
2812               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2813               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
2814
2815        s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2816        s->dyn_dtree[d_code(dist)].Freq++;
2817    }
2818
2819    /* Try to guess if it is profitable to stop the current block here */
2820    if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2821        /* Compute an upper bound for the compressed length */
2822        ulg out_length = (ulg)s->last_lit*8L;
2823        ulg in_length = (ulg)((long)s->strstart - s->block_start);
2824        int dcode;
2825        for (dcode = 0; dcode < D_CODES; dcode++) {
2826            out_length += (ulg)s->dyn_dtree[dcode].Freq *
2827                (5L+extra_dbits[dcode]);
2828        }
2829        out_length >>= 3;
2830        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2831               s->last_lit, in_length, out_length,
2832               100L - out_length*100L/in_length));
2833        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2834    }
2835    return (s->last_lit == s->lit_bufsize-1);
2836    /* We avoid equality with lit_bufsize because of wraparound at 64K
2837     * on 16 bit machines and because stored blocks are restricted to
2838     * 64K-1 bytes.
2839     */
2840}
2841
2842/* ===========================================================================
2843 * Send the block data compressed using the given Huffman trees
2844 */
2845local void compress_block(s, ltree, dtree)
2846    deflate_state *s;
2847    ct_data *ltree; /* literal tree */
2848    ct_data *dtree; /* distance tree */
2849{
2850    unsigned dist;      /* distance of matched string */
2851    int lc;             /* match length or unmatched char (if dist == 0) */
2852    unsigned lx = 0;    /* running index in l_buf */
2853    unsigned code;      /* the code to send */
2854    int extra;          /* number of extra bits to send */
2855
2856    if (s->last_lit != 0) do {
2857        dist = s->d_buf[lx];
2858        lc = s->l_buf[lx++];
2859        if (dist == 0) {
2860            send_code(s, lc, ltree); /* send a literal byte */
2861            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2862        } else {
2863            /* Here, lc is the match length - MIN_MATCH */
2864            code = length_code[lc];
2865            send_code(s, code+LITERALS+1, ltree); /* send the length code */
2866            extra = extra_lbits[code];
2867            if (extra != 0) {
2868                lc -= base_length[code];
2869                send_bits(s, lc, extra);       /* send the extra length bits */
2870            }
2871            dist--; /* dist is now the match distance - 1 */
2872            code = d_code(dist);
2873            Assert (code < D_CODES, "bad d_code");
2874
2875            send_code(s, code, dtree);       /* send the distance code */
2876            extra = extra_dbits[code];
2877            if (extra != 0) {
2878                dist -= base_dist[code];
2879                send_bits(s, dist, extra);   /* send the extra distance bits */
2880            }
2881        } /* literal or match pair ? */
2882
2883        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2884        Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2885
2886    } while (lx < s->last_lit);
2887
2888    send_code(s, END_BLOCK, ltree);
2889    s->last_eob_len = ltree[END_BLOCK].Len;
2890}
2891
2892/* ===========================================================================
2893 * Set the data type to ASCII or BINARY, using a crude approximation:
2894 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2895 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2896 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2897 */
2898local void set_data_type(s)
2899    deflate_state *s;
2900{
2901    int n = 0;
2902    unsigned ascii_freq = 0;
2903    unsigned bin_freq = 0;
2904    while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
2905    while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
2906    while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2907    s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2908}
2909
2910/* ===========================================================================
2911 * Reverse the first len bits of a code, using straightforward code (a faster
2912 * method would use a table)
2913 * IN assertion: 1 <= len <= 15
2914 */
2915local unsigned bi_reverse(code, len)
2916    unsigned code; /* the value to invert */
2917    int len;       /* its bit length */
2918{
2919    register unsigned res = 0;
2920    do {
2921        res |= code & 1;
2922        code >>= 1, res <<= 1;
2923    } while (--len > 0);
2924    return res >> 1;
2925}
2926
2927/* ===========================================================================
2928 * Flush the bit buffer, keeping at most 7 bits in it.
2929 */
2930local void bi_flush(s)
2931    deflate_state *s;
2932{
2933    if (s->bi_valid == 16) {
2934        put_short(s, s->bi_buf);
2935        s->bi_buf = 0;
2936        s->bi_valid = 0;
2937    } else if (s->bi_valid >= 8) {
2938        put_byte(s, (Byte)s->bi_buf);
2939        s->bi_buf >>= 8;
2940        s->bi_valid -= 8;
2941    }
2942}
2943
2944/* ===========================================================================
2945 * Flush the bit buffer and align the output on a byte boundary
2946 */
2947local void bi_windup(s)
2948    deflate_state *s;
2949{
2950    if (s->bi_valid > 8) {
2951        put_short(s, s->bi_buf);
2952    } else if (s->bi_valid > 0) {
2953        put_byte(s, (Byte)s->bi_buf);
2954    }
2955    s->bi_buf = 0;
2956    s->bi_valid = 0;
2957#ifdef DEBUG_ZLIB
2958    s->bits_sent = (s->bits_sent+7) & ~7;
2959#endif
2960}
2961
2962/* ===========================================================================
2963 * Copy a stored block, storing first the length and its
2964 * one's complement if requested.
2965 */
2966local void copy_block(s, buf, len, header)
2967    deflate_state *s;
2968    charf    *buf;    /* the input data */
2969    unsigned len;     /* its length */
2970    int      header;  /* true if block header must be written */
2971{
2972    bi_windup(s);        /* align on byte boundary */
2973    s->last_eob_len = 8; /* enough lookahead for inflate */
2974
2975    if (header) {
2976        put_short(s, (ush)len);
2977        put_short(s, (ush)~len);
2978#ifdef DEBUG_ZLIB
2979        s->bits_sent += 2*16;
2980#endif
2981    }
2982#ifdef DEBUG_ZLIB
2983    s->bits_sent += (ulg)len<<3;
2984#endif
2985    /* bundle up the put_byte(s, *buf++) calls */
2986    zmemcpy(&s->pending_buf[s->pending], buf, len);
2987    s->pending += len;
2988}
2989/* --- trees.c */
2990
2991/* +++ inflate.c */
2992/* inflate.c -- zlib interface to inflate modules
2993 * Copyright (C) 1995-1996 Mark Adler
2994 * For conditions of distribution and use, see copyright notice in zlib.h
2995 */
2996
2997/* #include "zutil.h" */
2998
2999/* +++ infblock.h */
3000/* infblock.h -- header to use infblock.c
3001 * Copyright (C) 1995-1996 Mark Adler
3002 * For conditions of distribution and use, see copyright notice in zlib.h
3003 */
3004
3005/* WARNING: this file should *not* be used by applications. It is
3006   part of the implementation of the compression library and is
3007   subject to change. Applications should only use zlib.h.
3008 */
3009
3010struct inflate_blocks_state;
3011typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3012
3013extern inflate_blocks_statef * inflate_blocks_new OF((
3014    z_streamp z,
3015    check_func c,               /* check function */
3016    uInt w));                   /* window size */
3017
3018extern int inflate_blocks OF((
3019    inflate_blocks_statef *,
3020    z_streamp ,
3021    int));                      /* initial return code */
3022
3023extern void inflate_blocks_reset OF((
3024    inflate_blocks_statef *,
3025    z_streamp ,
3026    uLongf *));                  /* check value on output */
3027
3028extern int inflate_blocks_free OF((
3029    inflate_blocks_statef *,
3030    z_streamp ,
3031    uLongf *));                  /* check value on output */
3032
3033extern void inflate_set_dictionary OF((
3034    inflate_blocks_statef *s,
3035    const Bytef *d,  /* dictionary */
3036    uInt  n));       /* dictionary length */
3037
3038extern int inflate_addhistory OF((
3039    inflate_blocks_statef *,
3040    z_streamp));
3041
3042extern int inflate_packet_flush OF((
3043    inflate_blocks_statef *));
3044/* --- infblock.h */
3045
3046#ifndef NO_DUMMY_DECL
3047struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3048#endif
3049
3050/* inflate private state */
3051struct internal_state {
3052
3053  /* mode */
3054  enum {
3055      METHOD,   /* waiting for method byte */
3056      FLAG,     /* waiting for flag byte */
3057      DICT4,    /* four dictionary check bytes to go */
3058      DICT3,    /* three dictionary check bytes to go */
3059      DICT2,    /* two dictionary check bytes to go */
3060      DICT1,    /* one dictionary check byte to go */
3061      DICT0,    /* waiting for inflateSetDictionary */
3062      BLOCKS,   /* decompressing blocks */
3063      CHECK4,   /* four check bytes to go */
3064      CHECK3,   /* three check bytes to go */
3065      CHECK2,   /* two check bytes to go */
3066      CHECK1,   /* one check byte to go */
3067      DONE,     /* finished check, done */
3068      BAD}      /* got an error--stay here */
3069    mode;               /* current inflate mode */
3070
3071  /* mode dependent information */
3072  union {
3073    uInt method;        /* if FLAGS, method byte */
3074    struct {
3075      uLong was;                /* computed check value */
3076      uLong need;               /* stream check value */
3077    } check;            /* if CHECK, check values to compare */
3078    uInt marker;        /* if BAD, inflateSync's marker bytes count */
3079  } sub;        /* submode */
3080
3081  /* mode independent information */
3082  int  nowrap;          /* flag for no wrapper */
3083  uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
3084  inflate_blocks_statef
3085    *blocks;            /* current inflate_blocks state */
3086
3087};
3088
3089
3090int inflateReset(z)
3091z_streamp z;
3092{
3093  uLong c;
3094
3095  if (z == Z_NULL || z->state == Z_NULL)
3096    return Z_STREAM_ERROR;
3097  z->total_in = z->total_out = 0;
3098  z->msg = Z_NULL;
3099  z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3100  inflate_blocks_reset(z->state->blocks, z, &c);
3101  Trace((stderr, "inflate: reset\n"));
3102  return Z_OK;
3103}
3104
3105
3106int inflateEnd(z)
3107z_streamp z;
3108{
3109  uLong c;
3110
3111  if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3112    return Z_STREAM_ERROR;
3113  if (z->state->blocks != Z_NULL)
3114    inflate_blocks_free(z->state->blocks, z, &c);
3115  ZFREE(z, z->state);
3116  z->state = Z_NULL;
3117  Trace((stderr, "inflate: end\n"));
3118  return Z_OK;
3119}
3120
3121
3122int inflateInit2_(z, w, version, stream_size)
3123z_streamp z;
3124int w;
3125const char *version;
3126int stream_size;
3127{
3128  if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3129      stream_size != sizeof(z_stream))
3130      return Z_VERSION_ERROR;
3131
3132  /* initialize state */
3133  if (z == Z_NULL)
3134    return Z_STREAM_ERROR;
3135  z->msg = Z_NULL;
3136#ifndef NO_ZCFUNCS
3137  if (z->zalloc == Z_NULL)
3138  {
3139    z->zalloc = zcalloc;
3140    z->opaque = (voidpf)0;
3141  }
3142  if (z->zfree == Z_NULL) z->zfree = zcfree;
3143#endif
3144  if ((z->state = (struct internal_state FAR *)
3145       ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3146    return Z_MEM_ERROR;
3147  z->state->blocks = Z_NULL;
3148
3149  /* handle undocumented nowrap option (no zlib header or check) */
3150  z->state->nowrap = 0;
3151  if (w < 0)
3152  {
3153    w = - w;
3154    z->state->nowrap = 1;
3155  }
3156
3157  /* set window size */
3158  if (w < 8 || w > 15)
3159  {
3160    inflateEnd(z);
3161    return Z_STREAM_ERROR;
3162  }
3163  z->state->wbits = (uInt)w;
3164
3165  /* create inflate_blocks state */
3166  if ((z->state->blocks =
3167      inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3168      == Z_NULL)
3169  {
3170    inflateEnd(z);
3171    return Z_MEM_ERROR;
3172  }
3173  Trace((stderr, "inflate: allocated\n"));
3174
3175  /* reset state */
3176  inflateReset(z);
3177  return Z_OK;
3178}
3179
3180
3181int inflateInit_(z, version, stream_size)
3182z_streamp z;
3183const char *version;
3184int stream_size;
3185{
3186  return inflateInit2_(z, DEF_WBITS, version, stream_size);
3187}
3188
3189
3190#define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3191#define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3192
3193int inflate(z, f)
3194z_streamp z;
3195int f;
3196{
3197  int r;
3198  uInt b;
3199
3200  if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3201    return Z_STREAM_ERROR;
3202  r = Z_BUF_ERROR;
3203  while (1) switch (z->state->mode)
3204  {
3205    case METHOD:
3206      NEEDBYTE
3207      if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3208      {
3209        z->state->mode = BAD;
3210        z->msg = (char*)"unknown compression method";
3211        z->state->sub.marker = 5;       /* can't try inflateSync */
3212        break;
3213      }
3214      if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3215      {
3216        z->state->mode = BAD;
3217        z->msg = (char*)"invalid window size";
3218        z->state->sub.marker = 5;       /* can't try inflateSync */
3219        break;
3220      }
3221      z->state->mode = FLAG;
3222    case FLAG:
3223      NEEDBYTE
3224      b = NEXTBYTE;
3225      if (((z->state->sub.method << 8) + b) % 31)
3226      {
3227        z->state->mode = BAD;
3228        z->msg = (char*)"incorrect header check";
3229        z->state->sub.marker = 5;       /* can't try inflateSync */
3230        break;
3231      }
3232      Trace((stderr, "inflate: zlib header ok\n"));
3233      if (!(b & PRESET_DICT))
3234      {
3235        z->state->mode = BLOCKS;
3236	break;
3237      }
3238      z->state->mode = DICT4;
3239    case DICT4:
3240      NEEDBYTE
3241      z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3242      z->state->mode = DICT3;
3243    case DICT3:
3244      NEEDBYTE
3245      z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3246      z->state->mode = DICT2;
3247    case DICT2:
3248      NEEDBYTE
3249      z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3250      z->state->mode = DICT1;
3251    case DICT1:
3252      NEEDBYTE
3253      z->state->sub.check.need += (uLong)NEXTBYTE;
3254      z->adler = z->state->sub.check.need;
3255      z->state->mode = DICT0;
3256      return Z_NEED_DICT;
3257    case DICT0:
3258      z->state->mode = BAD;
3259      z->msg = (char*)"need dictionary";
3260      z->state->sub.marker = 0;       /* can try inflateSync */
3261      return Z_STREAM_ERROR;
3262    case BLOCKS:
3263      r = inflate_blocks(z->state->blocks, z, r);
3264      if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3265	  r = inflate_packet_flush(z->state->blocks);
3266      if (r == Z_DATA_ERROR)
3267      {
3268        z->state->mode = BAD;
3269        z->state->sub.marker = 0;       /* can try inflateSync */
3270        break;
3271      }
3272      if (r != Z_STREAM_END)
3273        return r;
3274      r = Z_OK;
3275      inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3276      if (z->state->nowrap)
3277      {
3278        z->state->mode = DONE;
3279        break;
3280      }
3281      z->state->mode = CHECK4;
3282    case CHECK4:
3283      NEEDBYTE
3284      z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3285      z->state->mode = CHECK3;
3286    case CHECK3:
3287      NEEDBYTE
3288      z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3289      z->state->mode = CHECK2;
3290    case CHECK2:
3291      NEEDBYTE
3292      z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3293      z->state->mode = CHECK1;
3294    case CHECK1:
3295      NEEDBYTE
3296      z->state->sub.check.need += (uLong)NEXTBYTE;
3297
3298      if (z->state->sub.check.was != z->state->sub.check.need)
3299      {
3300        z->state->mode = BAD;
3301        z->msg = (char*)"incorrect data check";
3302        z->state->sub.marker = 5;       /* can't try inflateSync */
3303        break;
3304      }
3305      Trace((stderr, "inflate: zlib check ok\n"));
3306      z->state->mode = DONE;
3307    case DONE:
3308      return Z_STREAM_END;
3309    case BAD:
3310      return Z_DATA_ERROR;
3311    default:
3312      return Z_STREAM_ERROR;
3313  }
3314
3315 empty:
3316  if (f != Z_PACKET_FLUSH)
3317    return r;
3318  z->state->mode = BAD;
3319  z->msg = (char *)"need more for packet flush";
3320  z->state->sub.marker = 0;       /* can try inflateSync */
3321  return Z_DATA_ERROR;
3322}
3323
3324
3325int inflateSetDictionary(z, dictionary, dictLength)
3326z_streamp z;
3327const Bytef *dictionary;
3328uInt  dictLength;
3329{
3330  uInt length = dictLength;
3331
3332  if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3333    return Z_STREAM_ERROR;
3334
3335  if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3336  z->adler = 1L;
3337
3338  if (length >= ((uInt)1<<z->state->wbits))
3339  {
3340    length = (1<<z->state->wbits)-1;
3341    dictionary += dictLength - length;
3342  }
3343  inflate_set_dictionary(z->state->blocks, dictionary, length);
3344  z->state->mode = BLOCKS;
3345  return Z_OK;
3346}
3347
3348/*
3349 * This subroutine adds the data at next_in/avail_in to the output history
3350 * without performing any output.  The output buffer must be "caught up";
3351 * i.e. no pending output (hence s->read equals s->write), and the state must
3352 * be BLOCKS (i.e. we should be willing to see the start of a series of
3353 * BLOCKS).  On exit, the output will also be caught up, and the checksum
3354 * will have been updated if need be.
3355 */
3356
3357int inflateIncomp(z)
3358z_stream *z;
3359{
3360    if (z->state->mode != BLOCKS)
3361	return Z_DATA_ERROR;
3362    return inflate_addhistory(z->state->blocks, z);
3363}
3364
3365
3366int inflateSync(z)
3367z_streamp z;
3368{
3369  uInt n;       /* number of bytes to look at */
3370  Bytef *p;     /* pointer to bytes */
3371  uInt m;       /* number of marker bytes found in a row */
3372  uLong r, w;   /* temporaries to save total_in and total_out */
3373
3374  /* set up */
3375  if (z == Z_NULL || z->state == Z_NULL)
3376    return Z_STREAM_ERROR;
3377  if (z->state->mode != BAD)
3378  {
3379    z->state->mode = BAD;
3380    z->state->sub.marker = 0;
3381  }
3382  if ((n = z->avail_in) == 0)
3383    return Z_BUF_ERROR;
3384  p = z->next_in;
3385  m = z->state->sub.marker;
3386
3387  /* search */
3388  while (n && m < 4)
3389  {
3390    if (*p == (Byte)(m < 2 ? 0 : 0xff))
3391      m++;
3392    else if (*p)
3393      m = 0;
3394    else
3395      m = 4 - m;
3396    p++, n--;
3397  }
3398
3399  /* restore */
3400  z->total_in += p - z->next_in;
3401  z->next_in = p;
3402  z->avail_in = n;
3403  z->state->sub.marker = m;
3404
3405  /* return no joy or set up to restart on a new block */
3406  if (m != 4)
3407    return Z_DATA_ERROR;
3408  r = z->total_in;  w = z->total_out;
3409  inflateReset(z);
3410  z->total_in = r;  z->total_out = w;
3411  z->state->mode = BLOCKS;
3412  return Z_OK;
3413}
3414
3415#undef NEEDBYTE
3416#undef NEXTBYTE
3417/* --- inflate.c */
3418
3419/* +++ infblock.c */
3420/* infblock.c -- interpret and process block types to last block
3421 * Copyright (C) 1995-1996 Mark Adler
3422 * For conditions of distribution and use, see copyright notice in zlib.h
3423 */
3424
3425/* #include "zutil.h" */
3426/* #include "infblock.h" */
3427
3428/* +++ inftrees.h */
3429/* inftrees.h -- header to use inftrees.c
3430 * Copyright (C) 1995-1996 Mark Adler
3431 * For conditions of distribution and use, see copyright notice in zlib.h
3432 */
3433
3434/* WARNING: this file should *not* be used by applications. It is
3435   part of the implementation of the compression library and is
3436   subject to change. Applications should only use zlib.h.
3437 */
3438
3439/* Huffman code lookup table entry--this entry is four bytes for machines
3440   that have 16-bit pointers (e.g. PC's in the small or medium model). */
3441
3442typedef struct inflate_huft_s FAR inflate_huft;
3443
3444struct inflate_huft_s {
3445  union {
3446    struct {
3447      Byte Exop;        /* number of extra bits or operation */
3448      Byte Bits;        /* number of bits in this code or subcode */
3449    } what;
3450    Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
3451  } word;               /*  16-bit, 8 bytes for 32-bit machines) */
3452  union {
3453    uInt Base;          /* literal, length base, or distance base */
3454    inflate_huft *Next; /* pointer to next level of table */
3455  } more;
3456};
3457
3458#ifdef DEBUG_ZLIB
3459  extern uInt inflate_hufts;
3460#endif
3461
3462extern int inflate_trees_bits OF((
3463    uIntf *,                    /* 19 code lengths */
3464    uIntf *,                    /* bits tree desired/actual depth */
3465    inflate_huft * FAR *,       /* bits tree result */
3466    z_streamp ));               /* for zalloc, zfree functions */
3467
3468extern int inflate_trees_dynamic OF((
3469    uInt,                       /* number of literal/length codes */
3470    uInt,                       /* number of distance codes */
3471    uIntf *,                    /* that many (total) code lengths */
3472    uIntf *,                    /* literal desired/actual bit depth */
3473    uIntf *,                    /* distance desired/actual bit depth */
3474    inflate_huft * FAR *,       /* literal/length tree result */
3475    inflate_huft * FAR *,       /* distance tree result */
3476    z_streamp ));               /* for zalloc, zfree functions */
3477
3478extern int inflate_trees_fixed OF((
3479    uIntf *,                    /* literal desired/actual bit depth */
3480    uIntf *,                    /* distance desired/actual bit depth */
3481    inflate_huft * FAR *,       /* literal/length tree result */
3482    inflate_huft * FAR *));     /* distance tree result */
3483
3484extern int inflate_trees_free OF((
3485    inflate_huft *,             /* tables to free */
3486    z_streamp ));               /* for zfree function */
3487
3488/* --- inftrees.h */
3489
3490/* +++ infcodes.h */
3491/* infcodes.h -- header to use infcodes.c
3492 * Copyright (C) 1995-1996 Mark Adler
3493 * For conditions of distribution and use, see copyright notice in zlib.h
3494 */
3495
3496/* WARNING: this file should *not* be used by applications. It is
3497   part of the implementation of the compression library and is
3498   subject to change. Applications should only use zlib.h.
3499 */
3500
3501struct inflate_codes_state;
3502typedef struct inflate_codes_state FAR inflate_codes_statef;
3503
3504extern inflate_codes_statef *inflate_codes_new OF((
3505    uInt, uInt,
3506    inflate_huft *, inflate_huft *,
3507    z_streamp ));
3508
3509extern int inflate_codes OF((
3510    inflate_blocks_statef *,
3511    z_streamp ,
3512    int));
3513
3514extern void inflate_codes_free OF((
3515    inflate_codes_statef *,
3516    z_streamp ));
3517
3518/* --- infcodes.h */
3519
3520/* +++ infutil.h */
3521/* infutil.h -- types and macros common to blocks and codes
3522 * Copyright (C) 1995-1996 Mark Adler
3523 * For conditions of distribution and use, see copyright notice in zlib.h
3524 */
3525
3526/* WARNING: this file should *not* be used by applications. It is
3527   part of the implementation of the compression library and is
3528   subject to change. Applications should only use zlib.h.
3529 */
3530
3531#ifndef _INFUTIL_H
3532#define _INFUTIL_H
3533
3534typedef enum {
3535      TYPE,     /* get type bits (3, including end bit) */
3536      LENS,     /* get lengths for stored */
3537      STORED,   /* processing stored block */
3538      TABLE,    /* get table lengths */
3539      BTREE,    /* get bit lengths tree for a dynamic block */
3540      DTREE,    /* get length, distance trees for a dynamic block */
3541      CODES,    /* processing fixed or dynamic block */
3542      DRY,      /* output remaining window bytes */
3543      DONEB,    /* finished last block, done */
3544      BADB}     /* got a data error--stuck here */
3545inflate_block_mode;
3546
3547/* inflate blocks semi-private state */
3548struct inflate_blocks_state {
3549
3550  /* mode */
3551  inflate_block_mode  mode;     /* current inflate_block mode */
3552
3553  /* mode dependent information */
3554  union {
3555    uInt left;          /* if STORED, bytes left to copy */
3556    struct {
3557      uInt table;               /* table lengths (14 bits) */
3558      uInt index;               /* index into blens (or border) */
3559      uIntf *blens;             /* bit lengths of codes */
3560      uInt bb;                  /* bit length tree depth */
3561      inflate_huft *tb;         /* bit length decoding tree */
3562    } trees;            /* if DTREE, decoding info for trees */
3563    struct {
3564      inflate_huft *tl;
3565      inflate_huft *td;         /* trees to free */
3566      inflate_codes_statef
3567         *codes;
3568    } decode;           /* if CODES, current state */
3569  } sub;                /* submode */
3570  uInt last;            /* true if this block is the last block */
3571
3572  /* mode independent information */
3573  uInt bitk;            /* bits in bit buffer */
3574  uLong bitb;           /* bit buffer */
3575  Bytef *window;        /* sliding window */
3576  Bytef *end;           /* one byte after sliding window */
3577  Bytef *read;          /* window read pointer */
3578  Bytef *write;         /* window write pointer */
3579  check_func checkfn;   /* check function */
3580  uLong check;          /* check on output */
3581
3582};
3583
3584
3585/* defines for inflate input/output */
3586/*   update pointers and return */
3587#define UPDBITS {s->bitb=b;s->bitk=k;}
3588#define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3589#define UPDOUT {s->write=q;}
3590#define UPDATE {UPDBITS UPDIN UPDOUT}
3591#define LEAVE {UPDATE return inflate_flush(s,z,r);}
3592/*   get bytes and bits */
3593#define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3594#define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3595#define NEXTBYTE (n--,*p++)
3596#define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3597#define DUMPBITS(j) {b>>=(j);k-=(j);}
3598/*   output bytes */
3599#define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3600#define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3601#define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3602#define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3603#define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3604#define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3605/*   load local pointers */
3606#define LOAD {LOADIN LOADOUT}
3607
3608/* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3609extern uInt inflate_mask[17];
3610
3611/* copy as much as possible from the sliding window to the output area */
3612extern int inflate_flush OF((
3613    inflate_blocks_statef *,
3614    z_streamp ,
3615    int));
3616
3617#ifndef NO_DUMMY_DECL
3618struct internal_state      {int dummy;}; /* for buggy compilers */
3619#endif
3620
3621#endif
3622/* --- infutil.h */
3623
3624#ifndef NO_DUMMY_DECL
3625struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3626#endif
3627
3628/* Table for deflate from PKZIP's appnote.txt. */
3629local const uInt border[] = { /* Order of the bit length code lengths */
3630        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3631
3632/*
3633   Notes beyond the 1.93a appnote.txt:
3634
3635   1. Distance pointers never point before the beginning of the output
3636      stream.
3637   2. Distance pointers can point back across blocks, up to 32k away.
3638   3. There is an implied maximum of 7 bits for the bit length table and
3639      15 bits for the actual data.
3640   4. If only one code exists, then it is encoded using one bit.  (Zero
3641      would be more efficient, but perhaps a little confusing.)  If two
3642      codes exist, they are coded using one bit each (0 and 1).
3643   5. There is no way of sending zero distance codes--a dummy must be
3644      sent if there are none.  (History: a pre 2.0 version of PKZIP would
3645      store blocks with no distance codes, but this was discovered to be
3646      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3647      zero distance codes, which is sent as one code of zero bits in
3648      length.
3649   6. There are up to 286 literal/length codes.  Code 256 represents the
3650      end-of-block.  Note however that the static length tree defines
3651      288 codes just to fill out the Huffman codes.  Codes 286 and 287
3652      cannot be used though, since there is no length base or extra bits
3653      defined for them.  Similarily, there are up to 30 distance codes.
3654      However, static trees define 32 codes (all 5 bits) to fill out the
3655      Huffman codes, but the last two had better not show up in the data.
3656   7. Unzip can check dynamic Huffman blocks for complete code sets.
3657      The exception is that a single code would not be complete (see #4).
3658   8. The five bits following the block type is really the number of
3659      literal codes sent minus 257.
3660   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3661      (1+6+6).  Therefore, to output three times the length, you output
3662      three codes (1+1+1), whereas to output four times the same length,
3663      you only need two codes (1+3).  Hmm.
3664  10. In the tree reconstruction algorithm, Code = Code + Increment
3665      only if BitLength(i) is not zero.  (Pretty obvious.)
3666  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
3667  12. Note: length code 284 can represent 227-258, but length code 285
3668      really is 258.  The last length deserves its own, short code
3669      since it gets used a lot in very redundant files.  The length
3670      258 is special since 258 - 3 (the min match length) is 255.
3671  13. The literal/length and distance code bit lengths are read as a
3672      single stream of lengths.  It is possible (and advantageous) for
3673      a repeat code (16, 17, or 18) to go across the boundary between
3674      the two sets of lengths.
3675 */
3676
3677
3678void inflate_blocks_reset(s, z, c)
3679inflate_blocks_statef *s;
3680z_streamp z;
3681uLongf *c;
3682{
3683  if (s->checkfn != Z_NULL)
3684    *c = s->check;
3685  if (s->mode == BTREE || s->mode == DTREE)
3686    ZFREE(z, s->sub.trees.blens);
3687  if (s->mode == CODES)
3688  {
3689    inflate_codes_free(s->sub.decode.codes, z);
3690    inflate_trees_free(s->sub.decode.td, z);
3691    inflate_trees_free(s->sub.decode.tl, z);
3692  }
3693  s->mode = TYPE;
3694  s->bitk = 0;
3695  s->bitb = 0;
3696  s->read = s->write = s->window;
3697  if (s->checkfn != Z_NULL)
3698    z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3699  Trace((stderr, "inflate:   blocks reset\n"));
3700}
3701
3702
3703inflate_blocks_statef *inflate_blocks_new(z, c, w)
3704z_streamp z;
3705check_func c;
3706uInt w;
3707{
3708  inflate_blocks_statef *s;
3709
3710  if ((s = (inflate_blocks_statef *)ZALLOC
3711       (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3712    return s;
3713  if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3714  {
3715    ZFREE(z, s);
3716    return Z_NULL;
3717  }
3718  s->end = s->window + w;
3719  s->checkfn = c;
3720  s->mode = TYPE;
3721  Trace((stderr, "inflate:   blocks allocated\n"));
3722  inflate_blocks_reset(s, z, &s->check);
3723  return s;
3724}
3725
3726
3727#ifdef DEBUG_ZLIB
3728  extern uInt inflate_hufts;
3729#endif
3730int inflate_blocks(s, z, r)
3731inflate_blocks_statef *s;
3732z_streamp z;
3733int r;
3734{
3735  uInt t;               /* temporary storage */
3736  uLong b;              /* bit buffer */
3737  uInt k;               /* bits in bit buffer */
3738  Bytef *p;             /* input data pointer */
3739  uInt n;               /* bytes available there */
3740  Bytef *q;             /* output window write pointer */
3741  uInt m;               /* bytes to end of window or read pointer */
3742
3743  /* copy input/output information to locals (UPDATE macro restores) */
3744  LOAD
3745
3746  /* process input based on current state */
3747  while (1) switch (s->mode)
3748  {
3749    case TYPE:
3750      NEEDBITS(3)
3751      t = (uInt)b & 7;
3752      s->last = t & 1;
3753      switch (t >> 1)
3754      {
3755        case 0:                         /* stored */
3756          Trace((stderr, "inflate:     stored block%s\n",
3757                 s->last ? " (last)" : ""));
3758          DUMPBITS(3)
3759          t = k & 7;                    /* go to byte boundary */
3760          DUMPBITS(t)
3761          s->mode = LENS;               /* get length of stored block */
3762          break;
3763        case 1:                         /* fixed */
3764          Trace((stderr, "inflate:     fixed codes block%s\n",
3765                 s->last ? " (last)" : ""));
3766          {
3767            uInt bl, bd;
3768            inflate_huft *tl, *td;
3769
3770            inflate_trees_fixed(&bl, &bd, &tl, &td);
3771            s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3772            if (s->sub.decode.codes == Z_NULL)
3773            {
3774              r = Z_MEM_ERROR;
3775              LEAVE
3776            }
3777            s->sub.decode.tl = Z_NULL;  /* don't try to free these */
3778            s->sub.decode.td = Z_NULL;
3779          }
3780          DUMPBITS(3)
3781          s->mode = CODES;
3782          break;
3783        case 2:                         /* dynamic */
3784          Trace((stderr, "inflate:     dynamic codes block%s\n",
3785                 s->last ? " (last)" : ""));
3786          DUMPBITS(3)
3787          s->mode = TABLE;
3788          break;
3789        case 3:                         /* illegal */
3790          DUMPBITS(3)
3791          s->mode = BADB;
3792          z->msg = (char*)"invalid block type";
3793          r = Z_DATA_ERROR;
3794          LEAVE
3795      }
3796      break;
3797    case LENS:
3798      NEEDBITS(32)
3799      if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3800      {
3801        s->mode = BADB;
3802        z->msg = (char*)"invalid stored block lengths";
3803        r = Z_DATA_ERROR;
3804        LEAVE
3805      }
3806      s->sub.left = (uInt)b & 0xffff;
3807      b = k = 0;                      /* dump bits */
3808      Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
3809      s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3810      break;
3811    case STORED:
3812      if (n == 0)
3813        LEAVE
3814      NEEDOUT
3815      t = s->sub.left;
3816      if (t > n) t = n;
3817      if (t > m) t = m;
3818      zmemcpy(q, p, t);
3819      p += t;  n -= t;
3820      q += t;  m -= t;
3821      if ((s->sub.left -= t) != 0)
3822        break;
3823      Tracev((stderr, "inflate:       stored end, %lu total out\n",
3824              z->total_out + (q >= s->read ? q - s->read :
3825              (s->end - s->read) + (q - s->window))));
3826      s->mode = s->last ? DRY : TYPE;
3827      break;
3828    case TABLE:
3829      NEEDBITS(14)
3830      s->sub.trees.table = t = (uInt)b & 0x3fff;
3831#ifndef PKZIP_BUG_WORKAROUND
3832      if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3833      {
3834        s->mode = BADB;
3835        z->msg = (char*)"too many length or distance symbols";
3836        r = Z_DATA_ERROR;
3837        LEAVE
3838      }
3839#endif
3840      t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3841      if (t < 19)
3842        t = 19;
3843      if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3844      {
3845        r = Z_MEM_ERROR;
3846        LEAVE
3847      }
3848      DUMPBITS(14)
3849      s->sub.trees.index = 0;
3850      Tracev((stderr, "inflate:       table sizes ok\n"));
3851      s->mode = BTREE;
3852    case BTREE:
3853      while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3854      {
3855        NEEDBITS(3)
3856        s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3857        DUMPBITS(3)
3858      }
3859      while (s->sub.trees.index < 19)
3860        s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3861      s->sub.trees.bb = 7;
3862      t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3863                             &s->sub.trees.tb, z);
3864      if (t != Z_OK)
3865      {
3866        r = t;
3867        if (r == Z_DATA_ERROR) {
3868          ZFREE(z, s->sub.trees.blens);
3869          s->mode = BADB;
3870        }
3871        LEAVE
3872      }
3873      s->sub.trees.index = 0;
3874      Tracev((stderr, "inflate:       bits tree ok\n"));
3875      s->mode = DTREE;
3876    case DTREE:
3877      while (t = s->sub.trees.table,
3878             s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3879      {
3880        inflate_huft *h;
3881        uInt i, j, c;
3882
3883        t = s->sub.trees.bb;
3884        NEEDBITS(t)
3885        h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3886        t = h->word.what.Bits;
3887        c = h->more.Base;
3888        if (c < 16)
3889        {
3890          DUMPBITS(t)
3891          s->sub.trees.blens[s->sub.trees.index++] = c;
3892        }
3893        else /* c == 16..18 */
3894        {
3895          i = c == 18 ? 7 : c - 14;
3896          j = c == 18 ? 11 : 3;
3897          NEEDBITS(t + i)
3898          DUMPBITS(t)
3899          j += (uInt)b & inflate_mask[i];
3900          DUMPBITS(i)
3901          i = s->sub.trees.index;
3902          t = s->sub.trees.table;
3903          if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3904              (c == 16 && i < 1))
3905          {
3906            inflate_trees_free(s->sub.trees.tb, z);
3907            ZFREE(z, s->sub.trees.blens);
3908            s->mode = BADB;
3909            z->msg = (char*)"invalid bit length repeat";
3910            r = Z_DATA_ERROR;
3911            LEAVE
3912          }
3913          c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3914          do {
3915            s->sub.trees.blens[i++] = c;
3916          } while (--j);
3917          s->sub.trees.index = i;
3918        }
3919      }
3920      inflate_trees_free(s->sub.trees.tb, z);
3921      s->sub.trees.tb = Z_NULL;
3922      {
3923        uInt bl, bd;
3924        inflate_huft *tl, *td;
3925        inflate_codes_statef *c;
3926
3927        bl = 9;         /* must be <= 9 for lookahead assumptions */
3928        bd = 6;         /* must be <= 9 for lookahead assumptions */
3929        t = s->sub.trees.table;
3930#ifdef DEBUG_ZLIB
3931      inflate_hufts = 0;
3932#endif
3933        t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3934                                  s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3935        if (t != Z_OK)
3936        {
3937          if (t == (uInt)Z_DATA_ERROR) {
3938            ZFREE(z, s->sub.trees.blens);
3939            s->mode = BADB;
3940          }
3941          r = t;
3942          LEAVE
3943        }
3944        Tracev((stderr, "inflate:       trees ok, %d * %d bytes used\n",
3945              inflate_hufts, sizeof(inflate_huft)));
3946        if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3947        {
3948          inflate_trees_free(td, z);
3949          inflate_trees_free(tl, z);
3950          r = Z_MEM_ERROR;
3951          LEAVE
3952        }
3953	/*
3954	 * this ZFREE must occur *BEFORE* we mess with sub.decode, because
3955	 * sub.trees is union'd with sub.decode.
3956	 */
3957        ZFREE(z, s->sub.trees.blens);
3958        s->sub.decode.codes = c;
3959        s->sub.decode.tl = tl;
3960        s->sub.decode.td = td;
3961      }
3962      s->mode = CODES;
3963    case CODES:
3964      UPDATE
3965      if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3966        return inflate_flush(s, z, r);
3967      r = Z_OK;
3968      inflate_codes_free(s->sub.decode.codes, z);
3969      inflate_trees_free(s->sub.decode.td, z);
3970      inflate_trees_free(s->sub.decode.tl, z);
3971      LOAD
3972      Tracev((stderr, "inflate:       codes end, %lu total out\n",
3973              z->total_out + (q >= s->read ? q - s->read :
3974              (s->end - s->read) + (q - s->window))));
3975      if (!s->last)
3976      {
3977        s->mode = TYPE;
3978        break;
3979      }
3980      if (k > 7)              /* return unused byte, if any */
3981      {
3982        Assert(k < 16, "inflate_codes grabbed too many bytes")
3983        k -= 8;
3984        n++;
3985        p--;                    /* can always return one */
3986      }
3987      s->mode = DRY;
3988    case DRY:
3989      FLUSH
3990      if (s->read != s->write)
3991        LEAVE
3992      s->mode = DONEB;
3993    case DONEB:
3994      r = Z_STREAM_END;
3995      LEAVE
3996    case BADB:
3997      r = Z_DATA_ERROR;
3998      LEAVE
3999    default:
4000      r = Z_STREAM_ERROR;
4001      LEAVE
4002  }
4003}
4004
4005
4006int inflate_blocks_free(s, z, c)
4007inflate_blocks_statef *s;
4008z_streamp z;
4009uLongf *c;
4010{
4011  inflate_blocks_reset(s, z, c);
4012  ZFREE(z, s->window);
4013  ZFREE(z, s);
4014  Trace((stderr, "inflate:   blocks freed\n"));
4015  return Z_OK;
4016}
4017
4018
4019void inflate_set_dictionary(s, d, n)
4020inflate_blocks_statef *s;
4021const Bytef *d;
4022uInt  n;
4023{
4024  zmemcpy((charf *)s->window, d, n);
4025  s->read = s->write = s->window + n;
4026}
4027
4028/*
4029 * This subroutine adds the data at next_in/avail_in to the output history
4030 * without performing any output.  The output buffer must be "caught up";
4031 * i.e. no pending output (hence s->read equals s->write), and the state must
4032 * be BLOCKS (i.e. we should be willing to see the start of a series of
4033 * BLOCKS).  On exit, the output will also be caught up, and the checksum
4034 * will have been updated if need be.
4035 */
4036int inflate_addhistory(s, z)
4037inflate_blocks_statef *s;
4038z_stream *z;
4039{
4040    uLong b;              /* bit buffer */  /* NOT USED HERE */
4041    uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
4042    uInt t;               /* temporary storage */
4043    Bytef *p;             /* input data pointer */
4044    uInt n;               /* bytes available there */
4045    Bytef *q;             /* output window write pointer */
4046    uInt m;               /* bytes to end of window or read pointer */
4047
4048    if (s->read != s->write)
4049	return Z_STREAM_ERROR;
4050    if (s->mode != TYPE)
4051	return Z_DATA_ERROR;
4052
4053    /* we're ready to rock */
4054    LOAD
4055    /* while there is input ready, copy to output buffer, moving
4056     * pointers as needed.
4057     */
4058    while (n) {
4059	t = n;  /* how many to do */
4060	/* is there room until end of buffer? */
4061	if (t > m) t = m;
4062	/* update check information */
4063	if (s->checkfn != Z_NULL)
4064	    s->check = (*s->checkfn)(s->check, q, t);
4065	zmemcpy(q, p, t);
4066	q += t;
4067	p += t;
4068	n -= t;
4069	z->total_out += t;
4070	s->read = q;    /* drag read pointer forward */
4071/*      WWRAP  */ 	/* expand WWRAP macro by hand to handle s->read */
4072	if (q == s->end) {
4073	    s->read = q = s->window;
4074	    m = WAVAIL;
4075	}
4076    }
4077    UPDATE
4078    return Z_OK;
4079}
4080
4081
4082/*
4083 * At the end of a Deflate-compressed PPP packet, we expect to have seen
4084 * a `stored' block type value but not the (zero) length bytes.
4085 */
4086int inflate_packet_flush(s)
4087    inflate_blocks_statef *s;
4088{
4089    if (s->mode != LENS)
4090	return Z_DATA_ERROR;
4091    s->mode = TYPE;
4092    return Z_OK;
4093}
4094/* --- infblock.c */
4095
4096/* +++ inftrees.c */
4097/* inftrees.c -- generate Huffman trees for efficient decoding
4098 * Copyright (C) 1995-1996 Mark Adler
4099 * For conditions of distribution and use, see copyright notice in zlib.h
4100 */
4101
4102/* #include "zutil.h" */
4103/* #include "inftrees.h" */
4104
4105char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4106/*
4107  If you use the zlib library in a product, an acknowledgment is welcome
4108  in the documentation of your product. If for some reason you cannot
4109  include such an acknowledgment, I would appreciate that you keep this
4110  copyright string in the executable of your product.
4111 */
4112
4113#ifndef NO_DUMMY_DECL
4114struct internal_state  {int dummy;}; /* for buggy compilers */
4115#endif
4116
4117/* simplify the use of the inflate_huft type with some defines */
4118#define base more.Base
4119#define next more.Next
4120#define exop word.what.Exop
4121#define bits word.what.Bits
4122
4123
4124local int huft_build OF((
4125    uIntf *,            /* code lengths in bits */
4126    uInt,               /* number of codes */
4127    uInt,               /* number of "simple" codes */
4128    const uIntf *,      /* list of base values for non-simple codes */
4129    const uIntf *,      /* list of extra bits for non-simple codes */
4130    inflate_huft * FAR*,/* result: starting table */
4131    uIntf *,            /* maximum lookup bits (returns actual) */
4132    z_streamp ));       /* for zalloc function */
4133
4134local voidpf falloc OF((
4135    voidpf,             /* opaque pointer (not used) */
4136    uInt,               /* number of items */
4137    uInt));             /* size of item */
4138
4139/* Tables for deflate from PKZIP's appnote.txt. */
4140local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4141        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4142        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4143        /* see note #13 above about 258 */
4144local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4145        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4146        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4147local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4148        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4149        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4150        8193, 12289, 16385, 24577};
4151local const uInt cpdext[30] = { /* Extra bits for distance codes */
4152        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4153        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4154        12, 12, 13, 13};
4155
4156/*
4157   Huffman code decoding is performed using a multi-level table lookup.
4158   The fastest way to decode is to simply build a lookup table whose
4159   size is determined by the longest code.  However, the time it takes
4160   to build this table can also be a factor if the data being decoded
4161   is not very long.  The most common codes are necessarily the
4162   shortest codes, so those codes dominate the decoding time, and hence
4163   the speed.  The idea is you can have a shorter table that decodes the
4164   shorter, more probable codes, and then point to subsidiary tables for
4165   the longer codes.  The time it costs to decode the longer codes is
4166   then traded against the time it takes to make longer tables.
4167
4168   This results of this trade are in the variables lbits and dbits
4169   below.  lbits is the number of bits the first level table for literal/
4170   length codes can decode in one step, and dbits is the same thing for
4171   the distance codes.  Subsequent tables are also less than or equal to
4172   those sizes.  These values may be adjusted either when all of the
4173   codes are shorter than that, in which case the longest code length in
4174   bits is used, or when the shortest code is *longer* than the requested
4175   table size, in which case the length of the shortest code in bits is
4176   used.
4177
4178   There are two different values for the two tables, since they code a
4179   different number of possibilities each.  The literal/length table
4180   codes 286 possible values, or in a flat code, a little over eight
4181   bits.  The distance table codes 30 possible values, or a little less
4182   than five bits, flat.  The optimum values for speed end up being
4183   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4184   The optimum values may differ though from machine to machine, and
4185   possibly even between compilers.  Your mileage may vary.
4186 */
4187
4188
4189/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4190#define BMAX 15         /* maximum bit length of any code */
4191#define N_MAX 288       /* maximum number of codes in any set */
4192
4193#ifdef DEBUG_ZLIB
4194  uInt inflate_hufts;
4195#endif
4196
4197local int huft_build(b, n, s, d, e, t, m, zs)
4198uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
4199uInt n;                 /* number of codes (assumed <= N_MAX) */
4200uInt s;                 /* number of simple-valued codes (0..s-1) */
4201const uIntf *d;         /* list of base values for non-simple codes */
4202const uIntf *e;         /* list of extra bits for non-simple codes */
4203inflate_huft * FAR *t;  /* result: starting table */
4204uIntf *m;               /* maximum lookup bits, returns actual */
4205z_streamp zs;           /* for zalloc function */
4206/* Given a list of code lengths and a maximum table size, make a set of
4207   tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
4208   if the given code set is incomplete (the tables are still built in this
4209   case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4210   lengths), or Z_MEM_ERROR if not enough memory. */
4211{
4212
4213  uInt a;                       /* counter for codes of length k */
4214  uInt c[BMAX+1];               /* bit length count table */
4215  uInt f;                       /* i repeats in table every f entries */
4216  int g;                        /* maximum code length */
4217  int h;                        /* table level */
4218  register uInt i;              /* counter, current code */
4219  register uInt j;              /* counter */
4220  register int k;               /* number of bits in current code */
4221  int l;                        /* bits per table (returned in m) */
4222  register uIntf *p;            /* pointer into c[], b[], or v[] */
4223  inflate_huft *q;              /* points to current table */
4224  struct inflate_huft_s r;      /* table entry for structure assignment */
4225  inflate_huft *u[BMAX];        /* table stack */
4226  uInt v[N_MAX];                /* values in order of bit length */
4227  register int w;               /* bits before this table == (l * h) */
4228  uInt x[BMAX+1];               /* bit offsets, then code stack */
4229  uIntf *xp;                    /* pointer into x */
4230  int y;                        /* number of dummy codes added */
4231  uInt z;                       /* number of entries in current table */
4232
4233
4234  /* Generate counts for each bit length */
4235  p = c;
4236#define C0 *p++ = 0;
4237#define C2 C0 C0 C0 C0
4238#define C4 C2 C2 C2 C2
4239  C4                            /* clear c[]--assume BMAX+1 is 16 */
4240  p = b;  i = n;
4241  do {
4242    c[*p++]++;                  /* assume all entries <= BMAX */
4243  } while (--i);
4244  if (c[0] == n)                /* null input--all zero length codes */
4245  {
4246    *t = (inflate_huft *)Z_NULL;
4247    *m = 0;
4248    return Z_OK;
4249  }
4250
4251
4252  /* Find minimum and maximum length, bound *m by those */
4253  l = *m;
4254  for (j = 1; j <= BMAX; j++)
4255    if (c[j])
4256      break;
4257  k = j;                        /* minimum code length */
4258  if ((uInt)l < j)
4259    l = j;
4260  for (i = BMAX; i; i--)
4261    if (c[i])
4262      break;
4263  g = i;                        /* maximum code length */
4264  if ((uInt)l > i)
4265    l = i;
4266  *m = l;
4267
4268
4269  /* Adjust last length count to fill out codes, if needed */
4270  for (y = 1 << j; j < i; j++, y <<= 1)
4271    if ((y -= c[j]) < 0)
4272      return Z_DATA_ERROR;
4273  if ((y -= c[i]) < 0)
4274    return Z_DATA_ERROR;
4275  c[i] += y;
4276
4277
4278  /* Generate starting offsets into the value table for each length */
4279  x[1] = j = 0;
4280  p = c + 1;  xp = x + 2;
4281  while (--i) {                 /* note that i == g from above */
4282    *xp++ = (j += *p++);
4283  }
4284
4285
4286  /* Make a table of values in order of bit lengths */
4287  p = b;  i = 0;
4288  do {
4289    if ((j = *p++) != 0)
4290      v[x[j]++] = i;
4291  } while (++i < n);
4292  n = x[g];                   /* set n to length of v */
4293
4294
4295  /* Generate the Huffman codes and for each, make the table entries */
4296  x[0] = i = 0;                 /* first Huffman code is zero */
4297  p = v;                        /* grab values in bit order */
4298  h = -1;                       /* no tables yet--level -1 */
4299  w = -l;                       /* bits decoded == (l * h) */
4300  u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
4301  q = (inflate_huft *)Z_NULL;   /* ditto */
4302  z = 0;                        /* ditto */
4303
4304  /* go through the bit lengths (k already is bits in shortest code) */
4305  for (; k <= g; k++)
4306  {
4307    a = c[k];
4308    while (a--)
4309    {
4310      /* here i is the Huffman code of length k bits for value *p */
4311      /* make tables up to required level */
4312      while (k > w + l)
4313      {
4314        h++;
4315        w += l;                 /* previous table always l bits */
4316
4317        /* compute minimum size table less than or equal to l bits */
4318        z = g - w;
4319        z = z > (uInt)l ? l : z;        /* table size upper limit */
4320        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
4321        {                       /* too few codes for k-w bit table */
4322          f -= a + 1;           /* deduct codes from patterns left */
4323          xp = c + k;
4324          if (j < z)
4325            while (++j < z)     /* try smaller tables up to z bits */
4326            {
4327              if ((f <<= 1) <= *++xp)
4328                break;          /* enough codes to use up j bits */
4329              f -= *xp;         /* else deduct codes from patterns */
4330            }
4331        }
4332        z = 1 << j;             /* table entries for j-bit table */
4333
4334        /* allocate and link in new table */
4335        if ((q = (inflate_huft *)ZALLOC
4336             (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4337        {
4338          if (h)
4339            inflate_trees_free(u[0], zs);
4340          return Z_MEM_ERROR;   /* not enough memory */
4341        }
4342#ifdef DEBUG_ZLIB
4343        inflate_hufts += z + 1;
4344#endif
4345        *t = q + 1;             /* link to list for huft_free() */
4346        *(t = &(q->next)) = Z_NULL;
4347        u[h] = ++q;             /* table starts after link */
4348
4349        /* connect to last table, if there is one */
4350        if (h)
4351        {
4352          x[h] = i;             /* save pattern for backing up */
4353          r.bits = (Byte)l;     /* bits to dump before this table */
4354          r.exop = (Byte)j;     /* bits in this table */
4355          r.next = q;           /* pointer to this table */
4356          j = i >> (w - l);     /* (get around Turbo C bug) */
4357          u[h-1][j] = r;        /* connect to last table */
4358        }
4359      }
4360
4361      /* set up table entry in r */
4362      r.bits = (Byte)(k - w);
4363      if (p >= v + n)
4364        r.exop = 128 + 64;      /* out of values--invalid code */
4365      else if (*p < s)
4366      {
4367        r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
4368        r.base = *p++;          /* simple code is just the value */
4369      }
4370      else
4371      {
4372        r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4373        r.base = d[*p++ - s];
4374      }
4375
4376      /* fill code-like entries with r */
4377      f = 1 << (k - w);
4378      for (j = i >> w; j < z; j += f)
4379        q[j] = r;
4380
4381      /* backwards increment the k-bit code i */
4382      for (j = 1 << (k - 1); i & j; j >>= 1)
4383        i ^= j;
4384      i ^= j;
4385
4386      /* backup over finished tables */
4387      while ((i & ((1 << w) - 1)) != x[h])
4388      {
4389        h--;                    /* don't need to update q */
4390        w -= l;
4391      }
4392    }
4393  }
4394
4395
4396  /* Return Z_BUF_ERROR if we were given an incomplete table */
4397  return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4398}
4399
4400
4401int inflate_trees_bits(c, bb, tb, z)
4402uIntf *c;               /* 19 code lengths */
4403uIntf *bb;              /* bits tree desired/actual depth */
4404inflate_huft * FAR *tb; /* bits tree result */
4405z_streamp z;            /* for zfree function */
4406{
4407  int r;
4408
4409  r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4410  if (r == Z_DATA_ERROR)
4411    z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4412  else if (r == Z_BUF_ERROR || *bb == 0)
4413  {
4414    inflate_trees_free(*tb, z);
4415    z->msg = (char*)"incomplete dynamic bit lengths tree";
4416    r = Z_DATA_ERROR;
4417  }
4418  return r;
4419}
4420
4421
4422int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
4423uInt nl;                /* number of literal/length codes */
4424uInt nd;                /* number of distance codes */
4425uIntf *c;               /* that many (total) code lengths */
4426uIntf *bl;              /* literal desired/actual bit depth */
4427uIntf *bd;              /* distance desired/actual bit depth */
4428inflate_huft * FAR *tl; /* literal/length tree result */
4429inflate_huft * FAR *td; /* distance tree result */
4430z_streamp z;            /* for zfree function */
4431{
4432  int r;
4433
4434  /* build literal/length tree */
4435  r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4436  if (r != Z_OK || *bl == 0)
4437  {
4438    if (r == Z_DATA_ERROR)
4439      z->msg = (char*)"oversubscribed literal/length tree";
4440    else if (r != Z_MEM_ERROR)
4441    {
4442      inflate_trees_free(*tl, z);
4443      z->msg = (char*)"incomplete literal/length tree";
4444      r = Z_DATA_ERROR;
4445    }
4446    return r;
4447  }
4448
4449  /* build distance tree */
4450  r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4451  if (r != Z_OK || (*bd == 0 && nl > 257))
4452  {
4453    if (r == Z_DATA_ERROR)
4454      z->msg = (char*)"oversubscribed distance tree";
4455    else if (r == Z_BUF_ERROR) {
4456#ifdef PKZIP_BUG_WORKAROUND
4457      r = Z_OK;
4458    }
4459#else
4460      inflate_trees_free(*td, z);
4461      z->msg = (char*)"incomplete distance tree";
4462      r = Z_DATA_ERROR;
4463    }
4464    else if (r != Z_MEM_ERROR)
4465    {
4466      z->msg = (char*)"empty distance tree with lengths";
4467      r = Z_DATA_ERROR;
4468    }
4469    inflate_trees_free(*tl, z);
4470    return r;
4471#endif
4472  }
4473
4474  /* done */
4475  return Z_OK;
4476}
4477
4478
4479/* build fixed tables only once--keep them here */
4480local int fixed_built = 0;
4481#define FIXEDH 530      /* number of hufts used by fixed tables */
4482local inflate_huft fixed_mem[FIXEDH];
4483local uInt fixed_bl;
4484local uInt fixed_bd;
4485local inflate_huft *fixed_tl;
4486local inflate_huft *fixed_td;
4487
4488
4489local voidpf falloc(q, n, s)
4490voidpf q;       /* opaque pointer */
4491uInt n;         /* number of items */
4492uInt s;         /* size of item */
4493{
4494  Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4495         "inflate_trees falloc overflow");
4496  *(intf *)q -= n+s-s; /* s-s to avoid warning */
4497  return (voidpf)(fixed_mem + *(intf *)q);
4498}
4499
4500
4501int inflate_trees_fixed(bl, bd, tl, td)
4502uIntf *bl;               /* literal desired/actual bit depth */
4503uIntf *bd;               /* distance desired/actual bit depth */
4504inflate_huft * FAR *tl;  /* literal/length tree result */
4505inflate_huft * FAR *td;  /* distance tree result */
4506{
4507  /* build fixed tables if not already (multiple overlapped executions ok) */
4508  if (!fixed_built)
4509  {
4510    int k;              /* temporary variable */
4511    unsigned c[288];    /* length list for huft_build */
4512    z_stream z;         /* for falloc function */
4513    int f = FIXEDH;     /* number of hufts left in fixed_mem */
4514
4515    /* set up fake z_stream for memory routines */
4516    z.zalloc = falloc;
4517    z.zfree = Z_NULL;
4518    z.opaque = (voidpf)&f;
4519
4520    /* literal table */
4521    for (k = 0; k < 144; k++)
4522      c[k] = 8;
4523    for (; k < 256; k++)
4524      c[k] = 9;
4525    for (; k < 280; k++)
4526      c[k] = 7;
4527    for (; k < 288; k++)
4528      c[k] = 8;
4529    fixed_bl = 7;
4530    huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4531
4532    /* distance table */
4533    for (k = 0; k < 30; k++)
4534      c[k] = 5;
4535    fixed_bd = 5;
4536    huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4537
4538    /* done */
4539    Assert(f == 0, "invalid build of fixed tables");
4540    fixed_built = 1;
4541  }
4542  *bl = fixed_bl;
4543  *bd = fixed_bd;
4544  *tl = fixed_tl;
4545  *td = fixed_td;
4546  return Z_OK;
4547}
4548
4549
4550int inflate_trees_free(t, z)
4551inflate_huft *t;        /* table to free */
4552z_streamp z;            /* for zfree function */
4553/* Free the malloc'ed tables built by huft_build(), which makes a linked
4554   list of the tables it made, with the links in a dummy first entry of
4555   each table. */
4556{
4557  register inflate_huft *p, *q, *r;
4558
4559  /* Reverse linked list */
4560  p = Z_NULL;
4561  q = t;
4562  while (q != Z_NULL)
4563  {
4564    r = (q - 1)->next;
4565    (q - 1)->next = p;
4566    p = q;
4567    q = r;
4568  }
4569  /* Go through linked list, freeing from the malloced (t[-1]) address. */
4570  while (p != Z_NULL)
4571  {
4572    q = (--p)->next;
4573    ZFREE(z,p);
4574    p = q;
4575  }
4576  return Z_OK;
4577}
4578/* --- inftrees.c */
4579
4580/* +++ infcodes.c */
4581/* infcodes.c -- process literals and length/distance pairs
4582 * Copyright (C) 1995-1996 Mark Adler
4583 * For conditions of distribution and use, see copyright notice in zlib.h
4584 */
4585
4586/* #include "zutil.h" */
4587/* #include "inftrees.h" */
4588/* #include "infblock.h" */
4589/* #include "infcodes.h" */
4590/* #include "infutil.h" */
4591
4592/* +++ inffast.h */
4593/* inffast.h -- header to use inffast.c
4594 * Copyright (C) 1995-1996 Mark Adler
4595 * For conditions of distribution and use, see copyright notice in zlib.h
4596 */
4597
4598/* WARNING: this file should *not* be used by applications. It is
4599   part of the implementation of the compression library and is
4600   subject to change. Applications should only use zlib.h.
4601 */
4602
4603extern int inflate_fast OF((
4604    uInt,
4605    uInt,
4606    inflate_huft *,
4607    inflate_huft *,
4608    inflate_blocks_statef *,
4609    z_streamp ));
4610/* --- inffast.h */
4611
4612/* simplify the use of the inflate_huft type with some defines */
4613#define base more.Base
4614#define next more.Next
4615#define exop word.what.Exop
4616#define bits word.what.Bits
4617
4618/* inflate codes private state */
4619struct inflate_codes_state {
4620
4621  /* mode */
4622  enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4623      START,    /* x: set up for LEN */
4624      LEN,      /* i: get length/literal/eob next */
4625      LENEXT,   /* i: getting length extra (have base) */
4626      DIST,     /* i: get distance next */
4627      DISTEXT,  /* i: getting distance extra */
4628      COPY,     /* o: copying bytes in window, waiting for space */
4629      LIT,      /* o: got literal, waiting for output space */
4630      WASH,     /* o: got eob, possibly still output waiting */
4631      END,      /* x: got eob and all data flushed */
4632      BADCODE}  /* x: got error */
4633    mode;               /* current inflate_codes mode */
4634
4635  /* mode dependent information */
4636  uInt len;
4637  union {
4638    struct {
4639      inflate_huft *tree;       /* pointer into tree */
4640      uInt need;                /* bits needed */
4641    } code;             /* if LEN or DIST, where in tree */
4642    uInt lit;           /* if LIT, literal */
4643    struct {
4644      uInt get;                 /* bits to get for extra */
4645      uInt dist;                /* distance back to copy from */
4646    } copy;             /* if EXT or COPY, where and how much */
4647  } sub;                /* submode */
4648
4649  /* mode independent information */
4650  Byte lbits;           /* ltree bits decoded per branch */
4651  Byte dbits;           /* dtree bits decoder per branch */
4652  inflate_huft *ltree;          /* literal/length/eob tree */
4653  inflate_huft *dtree;          /* distance tree */
4654
4655};
4656
4657
4658inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4659uInt bl, bd;
4660inflate_huft *tl;
4661inflate_huft *td; /* need separate declaration for Borland C++ */
4662z_streamp z;
4663{
4664  inflate_codes_statef *c;
4665
4666  if ((c = (inflate_codes_statef *)
4667       ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4668  {
4669    c->mode = START;
4670    c->lbits = (Byte)bl;
4671    c->dbits = (Byte)bd;
4672    c->ltree = tl;
4673    c->dtree = td;
4674    Tracev((stderr, "inflate:       codes new\n"));
4675  }
4676  return c;
4677}
4678
4679
4680int inflate_codes(s, z, r)
4681inflate_blocks_statef *s;
4682z_streamp z;
4683int r;
4684{
4685  uInt j;               /* temporary storage */
4686  inflate_huft *t;      /* temporary pointer */
4687  uInt e;               /* extra bits or operation */
4688  uLong b;              /* bit buffer */
4689  uInt k;               /* bits in bit buffer */
4690  Bytef *p;             /* input data pointer */
4691  uInt n;               /* bytes available there */
4692  Bytef *q;             /* output window write pointer */
4693  uInt m;               /* bytes to end of window or read pointer */
4694  Bytef *f;             /* pointer to copy strings from */
4695  inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
4696
4697  /* copy input/output information to locals (UPDATE macro restores) */
4698  LOAD
4699
4700  /* process input and output based on current state */
4701  while (1) switch (c->mode)
4702  {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4703    case START:         /* x: set up for LEN */
4704#ifndef SLOW
4705      if (m >= 258 && n >= 10)
4706      {
4707        UPDATE
4708        r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4709        LOAD
4710        if (r != Z_OK)
4711        {
4712          c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4713          break;
4714        }
4715      }
4716#endif /* !SLOW */
4717      c->sub.code.need = c->lbits;
4718      c->sub.code.tree = c->ltree;
4719      c->mode = LEN;
4720    case LEN:           /* i: get length/literal/eob next */
4721      j = c->sub.code.need;
4722      NEEDBITS(j)
4723      t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4724      DUMPBITS(t->bits)
4725      e = (uInt)(t->exop);
4726      if (e == 0)               /* literal */
4727      {
4728        c->sub.lit = t->base;
4729        Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4730                 "inflate:         literal '%c'\n" :
4731                 "inflate:         literal 0x%02x\n", t->base));
4732        c->mode = LIT;
4733        break;
4734      }
4735      if (e & 16)               /* length */
4736      {
4737        c->sub.copy.get = e & 15;
4738        c->len = t->base;
4739        c->mode = LENEXT;
4740        break;
4741      }
4742      if ((e & 64) == 0)        /* next table */
4743      {
4744        c->sub.code.need = e;
4745        c->sub.code.tree = t->next;
4746        break;
4747      }
4748      if (e & 32)               /* end of block */
4749      {
4750        Tracevv((stderr, "inflate:         end of block\n"));
4751        c->mode = WASH;
4752        break;
4753      }
4754      c->mode = BADCODE;        /* invalid code */
4755      z->msg = (char*)"invalid literal/length code";
4756      r = Z_DATA_ERROR;
4757      LEAVE
4758    case LENEXT:        /* i: getting length extra (have base) */
4759      j = c->sub.copy.get;
4760      NEEDBITS(j)
4761      c->len += (uInt)b & inflate_mask[j];
4762      DUMPBITS(j)
4763      c->sub.code.need = c->dbits;
4764      c->sub.code.tree = c->dtree;
4765      Tracevv((stderr, "inflate:         length %u\n", c->len));
4766      c->mode = DIST;
4767    case DIST:          /* i: get distance next */
4768      j = c->sub.code.need;
4769      NEEDBITS(j)
4770      t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4771      DUMPBITS(t->bits)
4772      e = (uInt)(t->exop);
4773      if (e & 16)               /* distance */
4774      {
4775        c->sub.copy.get = e & 15;
4776        c->sub.copy.dist = t->base;
4777        c->mode = DISTEXT;
4778        break;
4779      }
4780      if ((e & 64) == 0)        /* next table */
4781      {
4782        c->sub.code.need = e;
4783        c->sub.code.tree = t->next;
4784        break;
4785      }
4786      c->mode = BADCODE;        /* invalid code */
4787      z->msg = (char*)"invalid distance code";
4788      r = Z_DATA_ERROR;
4789      LEAVE
4790    case DISTEXT:       /* i: getting distance extra */
4791      j = c->sub.copy.get;
4792      NEEDBITS(j)
4793      c->sub.copy.dist += (uInt)b & inflate_mask[j];
4794      DUMPBITS(j)
4795      Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
4796      c->mode = COPY;
4797    case COPY:          /* o: copying bytes in window, waiting for space */
4798#ifndef __TURBOC__ /* Turbo C bug for following expression */
4799      f = (uInt)(q - s->window) < c->sub.copy.dist ?
4800          s->end - (c->sub.copy.dist - (q - s->window)) :
4801          q - c->sub.copy.dist;
4802#else
4803      f = q - c->sub.copy.dist;
4804      if ((uInt)(q - s->window) < c->sub.copy.dist)
4805        f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4806#endif
4807      while (c->len)
4808      {
4809        NEEDOUT
4810        OUTBYTE(*f++)
4811        if (f == s->end)
4812          f = s->window;
4813        c->len--;
4814      }
4815      c->mode = START;
4816      break;
4817    case LIT:           /* o: got literal, waiting for output space */
4818      NEEDOUT
4819      OUTBYTE(c->sub.lit)
4820      c->mode = START;
4821      break;
4822    case WASH:          /* o: got eob, possibly more output */
4823      FLUSH
4824      if (s->read != s->write)
4825        LEAVE
4826      c->mode = END;
4827    case END:
4828      r = Z_STREAM_END;
4829      LEAVE
4830    case BADCODE:       /* x: got error */
4831      r = Z_DATA_ERROR;
4832      LEAVE
4833    default:
4834      r = Z_STREAM_ERROR;
4835      LEAVE
4836  }
4837}
4838
4839
4840void inflate_codes_free(c, z)
4841inflate_codes_statef *c;
4842z_streamp z;
4843{
4844  ZFREE(z, c);
4845  Tracev((stderr, "inflate:       codes free\n"));
4846}
4847/* --- infcodes.c */
4848
4849/* +++ infutil.c */
4850/* inflate_util.c -- data and routines common to blocks and codes
4851 * Copyright (C) 1995-1996 Mark Adler
4852 * For conditions of distribution and use, see copyright notice in zlib.h
4853 */
4854
4855/* #include "zutil.h" */
4856/* #include "infblock.h" */
4857/* #include "inftrees.h" */
4858/* #include "infcodes.h" */
4859/* #include "infutil.h" */
4860
4861#ifndef NO_DUMMY_DECL
4862struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4863#endif
4864
4865/* And'ing with mask[n] masks the lower n bits */
4866uInt inflate_mask[17] = {
4867    0x0000,
4868    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4869    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4870};
4871
4872
4873/* copy as much as possible from the sliding window to the output area */
4874int inflate_flush(s, z, r)
4875inflate_blocks_statef *s;
4876z_streamp z;
4877int r;
4878{
4879  uInt n;
4880  Bytef *p;
4881  Bytef *q;
4882
4883  /* local copies of source and destination pointers */
4884  p = z->next_out;
4885  q = s->read;
4886
4887  /* compute number of bytes to copy as far as end of window */
4888  n = (uInt)((q <= s->write ? s->write : s->end) - q);
4889  if (n > z->avail_out) n = z->avail_out;
4890  if (n && r == Z_BUF_ERROR) r = Z_OK;
4891
4892  /* update counters */
4893  z->avail_out -= n;
4894  z->total_out += n;
4895
4896  /* update check information */
4897  if (s->checkfn != Z_NULL)
4898    z->adler = s->check = (*s->checkfn)(s->check, q, n);
4899
4900  /* copy as far as end of window */
4901  if (p != Z_NULL) {
4902    zmemcpy(p, q, n);
4903    p += n;
4904  }
4905  q += n;
4906
4907  /* see if more to copy at beginning of window */
4908  if (q == s->end)
4909  {
4910    /* wrap pointers */
4911    q = s->window;
4912    if (s->write == s->end)
4913      s->write = s->window;
4914
4915    /* compute bytes to copy */
4916    n = (uInt)(s->write - q);
4917    if (n > z->avail_out) n = z->avail_out;
4918    if (n && r == Z_BUF_ERROR) r = Z_OK;
4919
4920    /* update counters */
4921    z->avail_out -= n;
4922    z->total_out += n;
4923
4924    /* update check information */
4925    if (s->checkfn != Z_NULL)
4926      z->adler = s->check = (*s->checkfn)(s->check, q, n);
4927
4928    /* copy */
4929    if (p != Z_NULL) {
4930      zmemcpy(p, q, n);
4931      p += n;
4932    }
4933    q += n;
4934  }
4935
4936  /* update pointers */
4937  z->next_out = p;
4938  s->read = q;
4939
4940  /* done */
4941  return r;
4942}
4943/* --- infutil.c */
4944
4945/* +++ inffast.c */
4946/* inffast.c -- process literals and length/distance pairs fast
4947 * Copyright (C) 1995-1996 Mark Adler
4948 * For conditions of distribution and use, see copyright notice in zlib.h
4949 */
4950
4951/* #include "zutil.h" */
4952/* #include "inftrees.h" */
4953/* #include "infblock.h" */
4954/* #include "infcodes.h" */
4955/* #include "infutil.h" */
4956/* #include "inffast.h" */
4957
4958#ifndef NO_DUMMY_DECL
4959struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4960#endif
4961
4962/* simplify the use of the inflate_huft type with some defines */
4963#define base more.Base
4964#define next more.Next
4965#define exop word.what.Exop
4966#define bits word.what.Bits
4967
4968/* macros for bit input with no checking and for returning unused bytes */
4969#define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4970#define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4971
4972/* Called with number of bytes left to write in window at least 258
4973   (the maximum string length) and number of input bytes available
4974   at least ten.  The ten bytes are six bytes for the longest length/
4975   distance pair plus four bytes for overloading the bit buffer. */
4976
4977int inflate_fast(bl, bd, tl, td, s, z)
4978uInt bl, bd;
4979inflate_huft *tl;
4980inflate_huft *td; /* need separate declaration for Borland C++ */
4981inflate_blocks_statef *s;
4982z_streamp z;
4983{
4984  inflate_huft *t;      /* temporary pointer */
4985  uInt e;               /* extra bits or operation */
4986  uLong b;              /* bit buffer */
4987  uInt k;               /* bits in bit buffer */
4988  Bytef *p;             /* input data pointer */
4989  uInt n;               /* bytes available there */
4990  Bytef *q;             /* output window write pointer */
4991  uInt m;               /* bytes to end of window or read pointer */
4992  uInt ml;              /* mask for literal/length tree */
4993  uInt md;              /* mask for distance tree */
4994  uInt c;               /* bytes to copy */
4995  uInt d;               /* distance back to copy from */
4996  Bytef *r;             /* copy source pointer */
4997
4998  /* load input, output, bit values */
4999  LOAD
5000
5001  /* initialize masks */
5002  ml = inflate_mask[bl];
5003  md = inflate_mask[bd];
5004
5005  /* do until not enough input or output space for fast loop */
5006  do {                          /* assume called with m >= 258 && n >= 10 */
5007    /* get literal/length code */
5008    GRABBITS(20)                /* max bits for literal/length code */
5009    if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5010    {
5011      DUMPBITS(t->bits)
5012      Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5013                "inflate:         * literal '%c'\n" :
5014                "inflate:         * literal 0x%02x\n", t->base));
5015      *q++ = (Byte)t->base;
5016      m--;
5017      continue;
5018    }
5019    do {
5020      DUMPBITS(t->bits)
5021      if (e & 16)
5022      {
5023        /* get extra bits for length */
5024        e &= 15;
5025        c = t->base + ((uInt)b & inflate_mask[e]);
5026        DUMPBITS(e)
5027        Tracevv((stderr, "inflate:         * length %u\n", c));
5028
5029        /* decode distance base of block to copy */
5030        GRABBITS(15);           /* max bits for distance code */
5031        e = (t = td + ((uInt)b & md))->exop;
5032        do {
5033          DUMPBITS(t->bits)
5034          if (e & 16)
5035          {
5036            /* get extra bits to add to distance base */
5037            e &= 15;
5038            GRABBITS(e)         /* get extra bits (up to 13) */
5039            d = t->base + ((uInt)b & inflate_mask[e]);
5040            DUMPBITS(e)
5041            Tracevv((stderr, "inflate:         * distance %u\n", d));
5042
5043            /* do the copy */
5044            m -= c;
5045            if ((uInt)(q - s->window) >= d)     /* offset before dest */
5046            {                                   /*  just copy */
5047              r = q - d;
5048              *q++ = *r++;  c--;        /* minimum count is three, */
5049              *q++ = *r++;  c--;        /*  so unroll loop a little */
5050            }
5051            else                        /* else offset after destination */
5052            {
5053              e = d - (uInt)(q - s->window); /* bytes from offset to end */
5054              r = s->end - e;           /* pointer to offset */
5055              if (c > e)                /* if source crosses, */
5056              {
5057                c -= e;                 /* copy to end of window */
5058                do {
5059                  *q++ = *r++;
5060                } while (--e);
5061                r = s->window;          /* copy rest from start of window */
5062              }
5063            }
5064            do {                        /* copy all or what's left */
5065              *q++ = *r++;
5066            } while (--c);
5067            break;
5068          }
5069          else if ((e & 64) == 0)
5070            e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5071          else
5072          {
5073            z->msg = (char*)"invalid distance code";
5074            UNGRAB
5075            UPDATE
5076            return Z_DATA_ERROR;
5077          }
5078        } while (1);
5079        break;
5080      }
5081      if ((e & 64) == 0)
5082      {
5083        if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5084        {
5085          DUMPBITS(t->bits)
5086          Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5087                    "inflate:         * literal '%c'\n" :
5088                    "inflate:         * literal 0x%02x\n", t->base));
5089          *q++ = (Byte)t->base;
5090          m--;
5091          break;
5092        }
5093      }
5094      else if (e & 32)
5095      {
5096        Tracevv((stderr, "inflate:         * end of block\n"));
5097        UNGRAB
5098        UPDATE
5099        return Z_STREAM_END;
5100      }
5101      else
5102      {
5103        z->msg = (char*)"invalid literal/length code";
5104        UNGRAB
5105        UPDATE
5106        return Z_DATA_ERROR;
5107      }
5108    } while (1);
5109  } while (m >= 258 && n >= 10);
5110
5111  /* not enough input or output--restore pointers and return */
5112  UNGRAB
5113  UPDATE
5114  return Z_OK;
5115}
5116/* --- inffast.c */
5117
5118/* +++ zutil.c */
5119/* zutil.c -- target dependent utility functions for the compression library
5120 * Copyright (C) 1995-1996 Jean-loup Gailly.
5121 * For conditions of distribution and use, see copyright notice in zlib.h
5122 */
5123
5124/* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5125
5126#ifdef DEBUG_ZLIB
5127#include <stdio.h>
5128#endif
5129
5130/* #include "zutil.h" */
5131
5132#ifndef NO_DUMMY_DECL
5133struct internal_state      {int dummy;}; /* for buggy compilers */
5134#endif
5135
5136#ifndef STDC
5137extern void exit OF((int));
5138#endif
5139
5140static const char *z_errmsg[10] = {
5141"need dictionary",     /* Z_NEED_DICT       2  */
5142"stream end",          /* Z_STREAM_END      1  */
5143"",                    /* Z_OK              0  */
5144"file error",          /* Z_ERRNO         (-1) */
5145"stream error",        /* Z_STREAM_ERROR  (-2) */
5146"data error",          /* Z_DATA_ERROR    (-3) */
5147"insufficient memory", /* Z_MEM_ERROR     (-4) */
5148"buffer error",        /* Z_BUF_ERROR     (-5) */
5149"incompatible version",/* Z_VERSION_ERROR (-6) */
5150""};
5151
5152
5153const char *zlibVersion()
5154{
5155    return ZLIB_VERSION;
5156}
5157
5158#ifdef DEBUG_ZLIB
5159void z_error (m)
5160    char *m;
5161{
5162    fprintf(stderr, "%s\n", m);
5163    exit(1);
5164}
5165#endif
5166
5167#ifndef HAVE_MEMCPY
5168
5169void zmemcpy(dest, source, len)
5170    Bytef* dest;
5171    Bytef* source;
5172    uInt  len;
5173{
5174    if (len == 0) return;
5175    do {
5176        *dest++ = *source++; /* ??? to be unrolled */
5177    } while (--len != 0);
5178}
5179
5180int zmemcmp(s1, s2, len)
5181    Bytef* s1;
5182    Bytef* s2;
5183    uInt  len;
5184{
5185    uInt j;
5186
5187    for (j = 0; j < len; j++) {
5188        if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5189    }
5190    return 0;
5191}
5192
5193void zmemzero(dest, len)
5194    Bytef* dest;
5195    uInt  len;
5196{
5197    if (len == 0) return;
5198    do {
5199        *dest++ = 0;  /* ??? to be unrolled */
5200    } while (--len != 0);
5201}
5202#endif
5203
5204#ifdef __TURBOC__
5205#if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5206/* Small and medium model in Turbo C are for now limited to near allocation
5207 * with reduced MAX_WBITS and MAX_MEM_LEVEL
5208 */
5209#  define MY_ZCALLOC
5210
5211/* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5212 * and farmalloc(64K) returns a pointer with an offset of 8, so we
5213 * must fix the pointer. Warning: the pointer must be put back to its
5214 * original form in order to free it, use zcfree().
5215 */
5216
5217#define MAX_PTR 10
5218/* 10*64K = 640K */
5219
5220local int next_ptr = 0;
5221
5222typedef struct ptr_table_s {
5223    voidpf org_ptr;
5224    voidpf new_ptr;
5225} ptr_table;
5226
5227local ptr_table table[MAX_PTR];
5228/* This table is used to remember the original form of pointers
5229 * to large buffers (64K). Such pointers are normalized with a zero offset.
5230 * Since MSDOS is not a preemptive multitasking OS, this table is not
5231 * protected from concurrent access. This hack doesn't work anyway on
5232 * a protected system like OS/2. Use Microsoft C instead.
5233 */
5234
5235voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5236{
5237    voidpf buf = opaque; /* just to make some compilers happy */
5238    ulg bsize = (ulg)items*size;
5239
5240    /* If we allocate less than 65520 bytes, we assume that farmalloc
5241     * will return a usable pointer which doesn't have to be normalized.
5242     */
5243    if (bsize < 65520L) {
5244        buf = farmalloc(bsize);
5245        if (*(ush*)&buf != 0) return buf;
5246    } else {
5247        buf = farmalloc(bsize + 16L);
5248    }
5249    if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5250    table[next_ptr].org_ptr = buf;
5251
5252    /* Normalize the pointer to seg:0 */
5253    *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5254    *(ush*)&buf = 0;
5255    table[next_ptr++].new_ptr = buf;
5256    return buf;
5257}
5258
5259void  zcfree (voidpf opaque, voidpf ptr)
5260{
5261    int n;
5262    if (*(ush*)&ptr != 0) { /* object < 64K */
5263        farfree(ptr);
5264        return;
5265    }
5266    /* Find the original pointer */
5267    for (n = 0; n < next_ptr; n++) {
5268        if (ptr != table[n].new_ptr) continue;
5269
5270        farfree(table[n].org_ptr);
5271        while (++n < next_ptr) {
5272            table[n-1] = table[n];
5273        }
5274        next_ptr--;
5275        return;
5276    }
5277    ptr = opaque; /* just to make some compilers happy */
5278    Assert(0, "zcfree: ptr not found");
5279}
5280#endif
5281#endif /* __TURBOC__ */
5282
5283
5284#if defined(M_I86) && !defined(__32BIT__)
5285/* Microsoft C in 16-bit mode */
5286
5287#  define MY_ZCALLOC
5288
5289#if (!defined(_MSC_VER) || (_MSC_VER < 600))
5290#  define _halloc  halloc
5291#  define _hfree   hfree
5292#endif
5293
5294voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5295{
5296    if (opaque) opaque = 0; /* to make compiler happy */
5297    return _halloc((long)items, size);
5298}
5299
5300void  zcfree (voidpf opaque, voidpf ptr)
5301{
5302    if (opaque) opaque = 0; /* to make compiler happy */
5303    _hfree(ptr);
5304}
5305
5306#endif /* MSC */
5307
5308
5309#ifndef MY_ZCALLOC /* Any system without a special alloc function */
5310
5311#ifndef STDC
5312extern voidp  calloc OF((uInt items, uInt size));
5313extern void   free   OF((voidpf ptr));
5314#endif
5315
5316voidpf zcalloc (opaque, items, size)
5317    voidpf opaque;
5318    unsigned items;
5319    unsigned size;
5320{
5321    if (opaque) items += size - size; /* make compiler happy */
5322    return (voidpf)calloc(items, size);
5323}
5324
5325void  zcfree (opaque, ptr)
5326    voidpf opaque;
5327    voidpf ptr;
5328{
5329    free(ptr);
5330    if (opaque) return; /* make compiler happy */
5331}
5332
5333#endif /* MY_ZCALLOC */
5334/* --- zutil.c */
5335
5336/* +++ adler32.c */
5337/* adler32.c -- compute the Adler-32 checksum of a data stream
5338 * Copyright (C) 1995-1996 Mark Adler
5339 * For conditions of distribution and use, see copyright notice in zlib.h
5340 */
5341
5342/* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5343
5344/* #include "zlib.h" */
5345
5346#define BASE 65521L /* largest prime smaller than 65536 */
5347#define NMAX 5552
5348/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5349
5350#define DO1(buf,i)  {s1 += buf[(i)]; s2 += s1;}
5351#define DO2(buf,i)  DO1(buf,i); DO1(buf,(i)+1);
5352#define DO4(buf,i)  DO2(buf,i); DO2(buf,(i)+2);
5353#define DO8(buf,i)  DO4(buf,i); DO4(buf,(i)+4);
5354#define DO16(buf)   DO8(buf,0); DO8(buf,8);
5355
5356/* ========================================================================= */
5357uLong adler32(adler, buf, len)
5358    uLong adler;
5359    const Bytef *buf;
5360    uInt len;
5361{
5362    unsigned long s1 = adler & 0xffff;
5363    unsigned long s2 = (adler >> 16) & 0xffff;
5364    int k;
5365
5366    if (buf == Z_NULL) return 1L;
5367
5368    while (len > 0) {
5369        k = len < NMAX ? len : NMAX;
5370        len -= k;
5371        while (k >= 16) {
5372            DO16(buf);
5373	    buf += 16;
5374            k -= 16;
5375        }
5376        if (k != 0) do {
5377            s1 += *buf++;
5378	    s2 += s1;
5379        } while (--k);
5380        s1 %= BASE;
5381        s2 %= BASE;
5382    }
5383    return (s2 << 16) | s1;
5384}
5385/* --- adler32.c */
5386
5387#ifdef _KERNEL
5388static int
5389zlib_modevent(module_t mod, int type, void *unused)
5390{
5391	switch (type) {
5392	case MOD_LOAD:
5393		return 0;
5394	case MOD_UNLOAD:
5395		return 0;
5396	}
5397	return EINVAL;
5398}
5399
5400static moduledata_t zlib_mod = {
5401	"zlib",
5402	zlib_modevent,
5403	0
5404};
5405DECLARE_MODULE(zlib, zlib_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5406MODULE_VERSION(zlib, 1);
5407#endif /* _KERNEL */
5408