1/*-
2 * Copyright (c) 1988, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
30 * $FreeBSD$
31 */
32#include "opt_compat.h"
33#include "opt_mpath.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36
37#include <sys/param.h>
38#include <sys/jail.h>
39#include <sys/kernel.h>
40#include <sys/domain.h>
41#include <sys/lock.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/priv.h>
45#include <sys/proc.h>
46#include <sys/protosw.h>
47#include <sys/rwlock.h>
48#include <sys/signalvar.h>
49#include <sys/socket.h>
50#include <sys/socketvar.h>
51#include <sys/sysctl.h>
52#include <sys/systm.h>
53
54#include <net/if.h>
55#include <net/if_dl.h>
56#include <net/if_llatbl.h>
57#include <net/if_types.h>
58#include <net/netisr.h>
59#include <net/raw_cb.h>
60#include <net/route.h>
61#include <net/vnet.h>
62
63#include <netinet/in.h>
64#include <netinet/if_ether.h>
65#ifdef INET6
66#include <netinet6/scope6_var.h>
67#endif
68
69#ifdef COMPAT_FREEBSD32
70#include <sys/mount.h>
71#include <compat/freebsd32/freebsd32.h>
72
73struct if_data32 {
74	uint8_t	ifi_type;
75	uint8_t	ifi_physical;
76	uint8_t	ifi_addrlen;
77	uint8_t	ifi_hdrlen;
78	uint8_t	ifi_link_state;
79	uint8_t	ifi_spare_char1;
80	uint8_t	ifi_spare_char2;
81	uint8_t	ifi_datalen;
82	uint32_t ifi_mtu;
83	uint32_t ifi_metric;
84	uint32_t ifi_baudrate;
85	uint32_t ifi_ipackets;
86	uint32_t ifi_ierrors;
87	uint32_t ifi_opackets;
88	uint32_t ifi_oerrors;
89	uint32_t ifi_collisions;
90	uint32_t ifi_ibytes;
91	uint32_t ifi_obytes;
92	uint32_t ifi_imcasts;
93	uint32_t ifi_omcasts;
94	uint32_t ifi_iqdrops;
95	uint32_t ifi_noproto;
96	uint32_t ifi_hwassist;
97	int32_t	ifi_epoch;
98	struct	timeval32 ifi_lastchange;
99};
100
101struct if_msghdr32 {
102	uint16_t ifm_msglen;
103	uint8_t	ifm_version;
104	uint8_t	ifm_type;
105	int32_t	ifm_addrs;
106	int32_t	ifm_flags;
107	uint16_t ifm_index;
108	struct	if_data32 ifm_data;
109};
110
111struct if_msghdrl32 {
112	uint16_t ifm_msglen;
113	uint8_t	ifm_version;
114	uint8_t	ifm_type;
115	int32_t	ifm_addrs;
116	int32_t	ifm_flags;
117	uint16_t ifm_index;
118	uint16_t _ifm_spare1;
119	uint16_t ifm_len;
120	uint16_t ifm_data_off;
121	struct	if_data32 ifm_data;
122};
123
124struct ifa_msghdrl32 {
125	uint16_t ifam_msglen;
126	uint8_t	ifam_version;
127	uint8_t	ifam_type;
128	int32_t	ifam_addrs;
129	int32_t	ifam_flags;
130	uint16_t ifam_index;
131	uint16_t _ifam_spare1;
132	uint16_t ifam_len;
133	uint16_t ifam_data_off;
134	int32_t	ifam_metric;
135	struct	if_data32 ifam_data;
136};
137#endif /* COMPAT_FREEBSD32 */
138
139MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
140
141/* NB: these are not modified */
142static struct	sockaddr route_src = { 2, PF_ROUTE, };
143static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
144
145/*
146 * Used by rtsock/raw_input callback code to decide whether to filter the update
147 * notification to a socket bound to a particular FIB.
148 */
149#define	RTS_FILTER_FIB	M_PROTO8
150
151static struct {
152	int	ip_count;	/* attached w/ AF_INET */
153	int	ip6_count;	/* attached w/ AF_INET6 */
154	int	ipx_count;	/* attached w/ AF_IPX */
155	int	any_count;	/* total attached */
156} route_cb;
157
158struct mtx rtsock_mtx;
159MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
160
161#define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
162#define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
163#define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
164
165static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
166
167struct walkarg {
168	int	w_tmemsize;
169	int	w_op, w_arg;
170	caddr_t	w_tmem;
171	struct sysctl_req *w_req;
172};
173
174static void	rts_input(struct mbuf *m);
175static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo);
176static int	rt_msg2(int type, struct rt_addrinfo *rtinfo,
177			caddr_t cp, struct walkarg *w);
178static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
179			struct rt_addrinfo *rtinfo);
180static int	sysctl_dumpentry(struct radix_node *rn, void *vw);
181static int	sysctl_iflist(int af, struct walkarg *w);
182static int	sysctl_ifmalist(int af, struct walkarg *w);
183static int	route_output(struct mbuf *m, struct socket *so);
184static void	rt_setmetrics(u_long which, const struct rt_metrics *in,
185			struct rt_metrics_lite *out);
186static void	rt_getmetrics(const struct rt_metrics_lite *in,
187			struct rt_metrics *out);
188static void	rt_dispatch(struct mbuf *, sa_family_t);
189
190static struct netisr_handler rtsock_nh = {
191	.nh_name = "rtsock",
192	.nh_handler = rts_input,
193	.nh_proto = NETISR_ROUTE,
194	.nh_policy = NETISR_POLICY_SOURCE,
195};
196
197static int
198sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
199{
200	int error, qlimit;
201
202	netisr_getqlimit(&rtsock_nh, &qlimit);
203	error = sysctl_handle_int(oidp, &qlimit, 0, req);
204        if (error || !req->newptr)
205                return (error);
206	if (qlimit < 1)
207		return (EINVAL);
208	return (netisr_setqlimit(&rtsock_nh, qlimit));
209}
210SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW,
211    0, 0, sysctl_route_netisr_maxqlen, "I",
212    "maximum routing socket dispatch queue length");
213
214static void
215rts_init(void)
216{
217	int tmp;
218
219	if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
220		rtsock_nh.nh_qlimit = tmp;
221	netisr_register(&rtsock_nh);
222}
223SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0);
224
225static int
226raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
227    struct rawcb *rp)
228{
229	int fibnum;
230
231	KASSERT(m != NULL, ("%s: m is NULL", __func__));
232	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
233	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
234
235	/* No filtering requested. */
236	if ((m->m_flags & RTS_FILTER_FIB) == 0)
237		return (0);
238
239	/* Check if it is a rts and the fib matches the one of the socket. */
240	fibnum = M_GETFIB(m);
241	if (proto->sp_family != PF_ROUTE ||
242	    rp->rcb_socket == NULL ||
243	    rp->rcb_socket->so_fibnum == fibnum)
244		return (0);
245
246	/* Filtering requested and no match, the socket shall be skipped. */
247	return (1);
248}
249
250static void
251rts_input(struct mbuf *m)
252{
253	struct sockproto route_proto;
254	unsigned short *family;
255	struct m_tag *tag;
256
257	route_proto.sp_family = PF_ROUTE;
258	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
259	if (tag != NULL) {
260		family = (unsigned short *)(tag + 1);
261		route_proto.sp_protocol = *family;
262		m_tag_delete(m, tag);
263	} else
264		route_proto.sp_protocol = 0;
265
266	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
267}
268
269/*
270 * It really doesn't make any sense at all for this code to share much
271 * with raw_usrreq.c, since its functionality is so restricted.  XXX
272 */
273static void
274rts_abort(struct socket *so)
275{
276
277	raw_usrreqs.pru_abort(so);
278}
279
280static void
281rts_close(struct socket *so)
282{
283
284	raw_usrreqs.pru_close(so);
285}
286
287/* pru_accept is EOPNOTSUPP */
288
289static int
290rts_attach(struct socket *so, int proto, struct thread *td)
291{
292	struct rawcb *rp;
293	int s, error;
294
295	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
296
297	/* XXX */
298	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
299	if (rp == NULL)
300		return ENOBUFS;
301
302	/*
303	 * The splnet() is necessary to block protocols from sending
304	 * error notifications (like RTM_REDIRECT or RTM_LOSING) while
305	 * this PCB is extant but incompletely initialized.
306	 * Probably we should try to do more of this work beforehand and
307	 * eliminate the spl.
308	 */
309	s = splnet();
310	so->so_pcb = (caddr_t)rp;
311	so->so_fibnum = td->td_proc->p_fibnum;
312	error = raw_attach(so, proto);
313	rp = sotorawcb(so);
314	if (error) {
315		splx(s);
316		so->so_pcb = NULL;
317		free(rp, M_PCB);
318		return error;
319	}
320	RTSOCK_LOCK();
321	switch(rp->rcb_proto.sp_protocol) {
322	case AF_INET:
323		route_cb.ip_count++;
324		break;
325	case AF_INET6:
326		route_cb.ip6_count++;
327		break;
328	case AF_IPX:
329		route_cb.ipx_count++;
330		break;
331	}
332	route_cb.any_count++;
333	RTSOCK_UNLOCK();
334	soisconnected(so);
335	so->so_options |= SO_USELOOPBACK;
336	splx(s);
337	return 0;
338}
339
340static int
341rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
342{
343
344	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
345}
346
347static int
348rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
349{
350
351	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
352}
353
354/* pru_connect2 is EOPNOTSUPP */
355/* pru_control is EOPNOTSUPP */
356
357static void
358rts_detach(struct socket *so)
359{
360	struct rawcb *rp = sotorawcb(so);
361
362	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
363
364	RTSOCK_LOCK();
365	switch(rp->rcb_proto.sp_protocol) {
366	case AF_INET:
367		route_cb.ip_count--;
368		break;
369	case AF_INET6:
370		route_cb.ip6_count--;
371		break;
372	case AF_IPX:
373		route_cb.ipx_count--;
374		break;
375	}
376	route_cb.any_count--;
377	RTSOCK_UNLOCK();
378	raw_usrreqs.pru_detach(so);
379}
380
381static int
382rts_disconnect(struct socket *so)
383{
384
385	return (raw_usrreqs.pru_disconnect(so));
386}
387
388/* pru_listen is EOPNOTSUPP */
389
390static int
391rts_peeraddr(struct socket *so, struct sockaddr **nam)
392{
393
394	return (raw_usrreqs.pru_peeraddr(so, nam));
395}
396
397/* pru_rcvd is EOPNOTSUPP */
398/* pru_rcvoob is EOPNOTSUPP */
399
400static int
401rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
402	 struct mbuf *control, struct thread *td)
403{
404
405	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
406}
407
408/* pru_sense is null */
409
410static int
411rts_shutdown(struct socket *so)
412{
413
414	return (raw_usrreqs.pru_shutdown(so));
415}
416
417static int
418rts_sockaddr(struct socket *so, struct sockaddr **nam)
419{
420
421	return (raw_usrreqs.pru_sockaddr(so, nam));
422}
423
424static struct pr_usrreqs route_usrreqs = {
425	.pru_abort =		rts_abort,
426	.pru_attach =		rts_attach,
427	.pru_bind =		rts_bind,
428	.pru_connect =		rts_connect,
429	.pru_detach =		rts_detach,
430	.pru_disconnect =	rts_disconnect,
431	.pru_peeraddr =		rts_peeraddr,
432	.pru_send =		rts_send,
433	.pru_shutdown =		rts_shutdown,
434	.pru_sockaddr =		rts_sockaddr,
435	.pru_close =		rts_close,
436};
437
438#ifndef _SOCKADDR_UNION_DEFINED
439#define	_SOCKADDR_UNION_DEFINED
440/*
441 * The union of all possible address formats we handle.
442 */
443union sockaddr_union {
444	struct sockaddr		sa;
445	struct sockaddr_in	sin;
446	struct sockaddr_in6	sin6;
447};
448#endif /* _SOCKADDR_UNION_DEFINED */
449
450static int
451rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
452    struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
453{
454
455	/* First, see if the returned address is part of the jail. */
456	if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
457		info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
458		return (0);
459	}
460
461	switch (info->rti_info[RTAX_DST]->sa_family) {
462#ifdef INET
463	case AF_INET:
464	{
465		struct in_addr ia;
466		struct ifaddr *ifa;
467		int found;
468
469		found = 0;
470		/*
471		 * Try to find an address on the given outgoing interface
472		 * that belongs to the jail.
473		 */
474		IF_ADDR_RLOCK(ifp);
475		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
476			struct sockaddr *sa;
477			sa = ifa->ifa_addr;
478			if (sa->sa_family != AF_INET)
479				continue;
480			ia = ((struct sockaddr_in *)sa)->sin_addr;
481			if (prison_check_ip4(cred, &ia) == 0) {
482				found = 1;
483				break;
484			}
485		}
486		IF_ADDR_RUNLOCK(ifp);
487		if (!found) {
488			/*
489			 * As a last resort return the 'default' jail address.
490			 */
491			ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
492			    sin_addr;
493			if (prison_get_ip4(cred, &ia) != 0)
494				return (ESRCH);
495		}
496		bzero(&saun->sin, sizeof(struct sockaddr_in));
497		saun->sin.sin_len = sizeof(struct sockaddr_in);
498		saun->sin.sin_family = AF_INET;
499		saun->sin.sin_addr.s_addr = ia.s_addr;
500		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
501		break;
502	}
503#endif
504#ifdef INET6
505	case AF_INET6:
506	{
507		struct in6_addr ia6;
508		struct ifaddr *ifa;
509		int found;
510
511		found = 0;
512		/*
513		 * Try to find an address on the given outgoing interface
514		 * that belongs to the jail.
515		 */
516		IF_ADDR_RLOCK(ifp);
517		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
518			struct sockaddr *sa;
519			sa = ifa->ifa_addr;
520			if (sa->sa_family != AF_INET6)
521				continue;
522			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
523			    &ia6, sizeof(struct in6_addr));
524			if (prison_check_ip6(cred, &ia6) == 0) {
525				found = 1;
526				break;
527			}
528		}
529		IF_ADDR_RUNLOCK(ifp);
530		if (!found) {
531			/*
532			 * As a last resort return the 'default' jail address.
533			 */
534			ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
535			    sin6_addr;
536			if (prison_get_ip6(cred, &ia6) != 0)
537				return (ESRCH);
538		}
539		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
540		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
541		saun->sin6.sin6_family = AF_INET6;
542		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
543		if (sa6_recoverscope(&saun->sin6) != 0)
544			return (ESRCH);
545		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
546		break;
547	}
548#endif
549	default:
550		return (ESRCH);
551	}
552	return (0);
553}
554
555/*ARGSUSED*/
556static int
557route_output(struct mbuf *m, struct socket *so)
558{
559#define	sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0)
560	struct rt_msghdr *rtm = NULL;
561	struct rtentry *rt = NULL;
562	struct radix_node_head *rnh;
563	struct rt_addrinfo info;
564	int len, error = 0;
565	struct ifnet *ifp = NULL;
566	union sockaddr_union saun;
567	sa_family_t saf = AF_UNSPEC;
568
569#define senderr(e) { error = e; goto flush;}
570	if (m == NULL || ((m->m_len < sizeof(long)) &&
571		       (m = m_pullup(m, sizeof(long))) == NULL))
572		return (ENOBUFS);
573	if ((m->m_flags & M_PKTHDR) == 0)
574		panic("route_output");
575	len = m->m_pkthdr.len;
576	if (len < sizeof(*rtm) ||
577	    len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
578		info.rti_info[RTAX_DST] = NULL;
579		senderr(EINVAL);
580	}
581	R_Malloc(rtm, struct rt_msghdr *, len);
582	if (rtm == NULL) {
583		info.rti_info[RTAX_DST] = NULL;
584		senderr(ENOBUFS);
585	}
586	m_copydata(m, 0, len, (caddr_t)rtm);
587	if (rtm->rtm_version != RTM_VERSION) {
588		info.rti_info[RTAX_DST] = NULL;
589		senderr(EPROTONOSUPPORT);
590	}
591	rtm->rtm_pid = curproc->p_pid;
592	bzero(&info, sizeof(info));
593	info.rti_addrs = rtm->rtm_addrs;
594	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
595		info.rti_info[RTAX_DST] = NULL;
596		senderr(EINVAL);
597	}
598	info.rti_flags = rtm->rtm_flags;
599	if (info.rti_info[RTAX_DST] == NULL ||
600	    info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
601	    (info.rti_info[RTAX_GATEWAY] != NULL &&
602	     info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
603		senderr(EINVAL);
604	saf = info.rti_info[RTAX_DST]->sa_family;
605	/*
606	 * Verify that the caller has the appropriate privilege; RTM_GET
607	 * is the only operation the non-superuser is allowed.
608	 */
609	if (rtm->rtm_type != RTM_GET) {
610		error = priv_check(curthread, PRIV_NET_ROUTE);
611		if (error)
612			senderr(error);
613	}
614
615	/*
616	 * The given gateway address may be an interface address.
617	 * For example, issuing a "route change" command on a route
618	 * entry that was created from a tunnel, and the gateway
619	 * address given is the local end point. In this case the
620	 * RTF_GATEWAY flag must be cleared or the destination will
621	 * not be reachable even though there is no error message.
622	 */
623	if (info.rti_info[RTAX_GATEWAY] != NULL &&
624	    info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
625		struct route gw_ro;
626
627		bzero(&gw_ro, sizeof(gw_ro));
628		gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY];
629		rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum);
630		/*
631		 * A host route through the loopback interface is
632		 * installed for each interface adddress. In pre 8.0
633		 * releases the interface address of a PPP link type
634		 * is not reachable locally. This behavior is fixed as
635		 * part of the new L2/L3 redesign and rewrite work. The
636		 * signature of this interface address route is the
637		 * AF_LINK sa_family type of the rt_gateway, and the
638		 * rt_ifp has the IFF_LOOPBACK flag set.
639		 */
640		if (gw_ro.ro_rt != NULL &&
641		    gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK &&
642		    gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)
643			info.rti_flags &= ~RTF_GATEWAY;
644		if (gw_ro.ro_rt != NULL)
645			RTFREE(gw_ro.ro_rt);
646	}
647
648	switch (rtm->rtm_type) {
649		struct rtentry *saved_nrt;
650
651	case RTM_ADD:
652		if (info.rti_info[RTAX_GATEWAY] == NULL)
653			senderr(EINVAL);
654		saved_nrt = NULL;
655
656		/* support for new ARP code */
657		if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK &&
658		    (rtm->rtm_flags & RTF_LLDATA) != 0) {
659			error = lla_rt_output(rtm, &info);
660			break;
661		}
662		error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt,
663		    so->so_fibnum);
664		if (error == 0 && saved_nrt) {
665			RT_LOCK(saved_nrt);
666			rt_setmetrics(rtm->rtm_inits,
667				&rtm->rtm_rmx, &saved_nrt->rt_rmx);
668			rtm->rtm_index = saved_nrt->rt_ifp->if_index;
669			RT_REMREF(saved_nrt);
670			RT_UNLOCK(saved_nrt);
671		}
672		break;
673
674	case RTM_DELETE:
675		saved_nrt = NULL;
676		/* support for new ARP code */
677		if (info.rti_info[RTAX_GATEWAY] &&
678		    (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) &&
679		    (rtm->rtm_flags & RTF_LLDATA) != 0) {
680			error = lla_rt_output(rtm, &info);
681			break;
682		}
683		error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt,
684		    so->so_fibnum);
685		if (error == 0) {
686			RT_LOCK(saved_nrt);
687			rt = saved_nrt;
688			goto report;
689		}
690		break;
691
692	case RTM_GET:
693	case RTM_CHANGE:
694	case RTM_LOCK:
695		rnh = rt_tables_get_rnh(so->so_fibnum,
696		    info.rti_info[RTAX_DST]->sa_family);
697		if (rnh == NULL)
698			senderr(EAFNOSUPPORT);
699
700		RADIX_NODE_HEAD_RLOCK(rnh);
701
702		if (info.rti_info[RTAX_NETMASK] == NULL &&
703		    rtm->rtm_type == RTM_GET) {
704			/*
705			 * Provide logest prefix match for
706			 * address lookup (no mask).
707			 * 'route -n get addr'
708			 */
709			rt = (struct rtentry *) rnh->rnh_matchaddr(
710			    info.rti_info[RTAX_DST], rnh);
711		} else
712			rt = (struct rtentry *) rnh->rnh_lookup(
713			    info.rti_info[RTAX_DST],
714			    info.rti_info[RTAX_NETMASK], rnh);
715
716		if (rt == NULL) {
717			RADIX_NODE_HEAD_RUNLOCK(rnh);
718			senderr(ESRCH);
719		}
720#ifdef RADIX_MPATH
721		/*
722		 * for RTM_CHANGE/LOCK, if we got multipath routes,
723		 * we require users to specify a matching RTAX_GATEWAY.
724		 *
725		 * for RTM_GET, gate is optional even with multipath.
726		 * if gate == NULL the first match is returned.
727		 * (no need to call rt_mpath_matchgate if gate == NULL)
728		 */
729		if (rn_mpath_capable(rnh) &&
730		    (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) {
731			rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]);
732			if (!rt) {
733				RADIX_NODE_HEAD_RUNLOCK(rnh);
734				senderr(ESRCH);
735			}
736		}
737#endif
738		/*
739		 * If performing proxied L2 entry insertion, and
740		 * the actual PPP host entry is found, perform
741		 * another search to retrieve the prefix route of
742		 * the local end point of the PPP link.
743		 */
744		if (rtm->rtm_flags & RTF_ANNOUNCE) {
745			struct sockaddr laddr;
746
747			if (rt->rt_ifp != NULL &&
748			    rt->rt_ifp->if_type == IFT_PROPVIRTUAL) {
749				struct ifaddr *ifa;
750
751				ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1);
752				if (ifa != NULL)
753					rt_maskedcopy(ifa->ifa_addr,
754						      &laddr,
755						      ifa->ifa_netmask);
756			} else
757				rt_maskedcopy(rt->rt_ifa->ifa_addr,
758					      &laddr,
759					      rt->rt_ifa->ifa_netmask);
760			/*
761			 * refactor rt and no lock operation necessary
762			 */
763			rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh);
764			if (rt == NULL) {
765				RADIX_NODE_HEAD_RUNLOCK(rnh);
766				senderr(ESRCH);
767			}
768		}
769		RT_LOCK(rt);
770		RT_ADDREF(rt);
771		RADIX_NODE_HEAD_RUNLOCK(rnh);
772
773		switch(rtm->rtm_type) {
774
775		case RTM_GET:
776		report:
777			RT_LOCK_ASSERT(rt);
778			if ((rt->rt_flags & RTF_HOST) == 0
779			    ? jailed_without_vnet(curthread->td_ucred)
780			    : prison_if(curthread->td_ucred,
781			    rt_key(rt)) != 0) {
782				RT_UNLOCK(rt);
783				senderr(ESRCH);
784			}
785			info.rti_info[RTAX_DST] = rt_key(rt);
786			info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
787			info.rti_info[RTAX_NETMASK] = rt_mask(rt);
788			info.rti_info[RTAX_GENMASK] = 0;
789			if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
790				ifp = rt->rt_ifp;
791				if (ifp) {
792					info.rti_info[RTAX_IFP] =
793					    ifp->if_addr->ifa_addr;
794					error = rtm_get_jailed(&info, ifp, rt,
795					    &saun, curthread->td_ucred);
796					if (error != 0) {
797						RT_UNLOCK(rt);
798						senderr(error);
799					}
800					if (ifp->if_flags & IFF_POINTOPOINT)
801						info.rti_info[RTAX_BRD] =
802						    rt->rt_ifa->ifa_dstaddr;
803					rtm->rtm_index = ifp->if_index;
804				} else {
805					info.rti_info[RTAX_IFP] = NULL;
806					info.rti_info[RTAX_IFA] = NULL;
807				}
808			} else if ((ifp = rt->rt_ifp) != NULL) {
809				rtm->rtm_index = ifp->if_index;
810			}
811			len = rt_msg2(rtm->rtm_type, &info, NULL, NULL);
812			if (len > rtm->rtm_msglen) {
813				struct rt_msghdr *new_rtm;
814				R_Malloc(new_rtm, struct rt_msghdr *, len);
815				if (new_rtm == NULL) {
816					RT_UNLOCK(rt);
817					senderr(ENOBUFS);
818				}
819				bcopy(rtm, new_rtm, rtm->rtm_msglen);
820				Free(rtm); rtm = new_rtm;
821			}
822			(void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL);
823			rtm->rtm_flags = rt->rt_flags;
824			rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
825			rtm->rtm_addrs = info.rti_addrs;
826			break;
827
828		case RTM_CHANGE:
829			/*
830			 * New gateway could require new ifaddr, ifp;
831			 * flags may also be different; ifp may be specified
832			 * by ll sockaddr when protocol address is ambiguous
833			 */
834			if (((rt->rt_flags & RTF_GATEWAY) &&
835			     info.rti_info[RTAX_GATEWAY] != NULL) ||
836			    info.rti_info[RTAX_IFP] != NULL ||
837			    (info.rti_info[RTAX_IFA] != NULL &&
838			     !sa_equal(info.rti_info[RTAX_IFA],
839				       rt->rt_ifa->ifa_addr))) {
840				RT_UNLOCK(rt);
841				RADIX_NODE_HEAD_LOCK(rnh);
842				error = rt_getifa_fib(&info, rt->rt_fibnum);
843				/*
844				 * XXXRW: Really we should release this
845				 * reference later, but this maintains
846				 * historical behavior.
847				 */
848				if (info.rti_ifa != NULL)
849					ifa_free(info.rti_ifa);
850				RADIX_NODE_HEAD_UNLOCK(rnh);
851				if (error != 0)
852					senderr(error);
853				RT_LOCK(rt);
854			}
855			if (info.rti_ifa != NULL &&
856			    info.rti_ifa != rt->rt_ifa &&
857			    rt->rt_ifa != NULL &&
858			    rt->rt_ifa->ifa_rtrequest != NULL) {
859				rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt,
860				    &info);
861				ifa_free(rt->rt_ifa);
862			}
863			if (info.rti_info[RTAX_GATEWAY] != NULL) {
864				RT_UNLOCK(rt);
865				RADIX_NODE_HEAD_LOCK(rnh);
866				RT_LOCK(rt);
867
868				error = rt_setgate(rt, rt_key(rt),
869				    info.rti_info[RTAX_GATEWAY]);
870				RADIX_NODE_HEAD_UNLOCK(rnh);
871				if (error != 0) {
872					RT_UNLOCK(rt);
873					senderr(error);
874				}
875				rt->rt_flags |= (RTF_GATEWAY & info.rti_flags);
876			}
877			if (info.rti_ifa != NULL &&
878			    info.rti_ifa != rt->rt_ifa) {
879				ifa_ref(info.rti_ifa);
880				rt->rt_ifa = info.rti_ifa;
881				rt->rt_ifp = info.rti_ifp;
882			}
883			/* Allow some flags to be toggled on change. */
884			rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) |
885				    (rtm->rtm_flags & RTF_FMASK);
886			rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
887					&rt->rt_rmx);
888			rtm->rtm_index = rt->rt_ifp->if_index;
889			if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
890			       rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
891			/* FALLTHROUGH */
892		case RTM_LOCK:
893			/* We don't support locks anymore */
894			break;
895		}
896		RT_UNLOCK(rt);
897		break;
898
899	default:
900		senderr(EOPNOTSUPP);
901	}
902
903flush:
904	if (rtm) {
905		if (error)
906			rtm->rtm_errno = error;
907		else
908			rtm->rtm_flags |= RTF_DONE;
909	}
910	if (rt)		/* XXX can this be true? */
911		RTFREE(rt);
912    {
913	struct rawcb *rp = NULL;
914	/*
915	 * Check to see if we don't want our own messages.
916	 */
917	if ((so->so_options & SO_USELOOPBACK) == 0) {
918		if (route_cb.any_count <= 1) {
919			if (rtm)
920				Free(rtm);
921			m_freem(m);
922			return (error);
923		}
924		/* There is another listener, so construct message */
925		rp = sotorawcb(so);
926	}
927	if (rtm) {
928		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
929		if (m->m_pkthdr.len < rtm->rtm_msglen) {
930			m_freem(m);
931			m = NULL;
932		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
933			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
934	}
935	if (m) {
936		M_SETFIB(m, so->so_fibnum);
937		m->m_flags |= RTS_FILTER_FIB;
938		if (rp) {
939			/*
940			 * XXX insure we don't get a copy by
941			 * invalidating our protocol
942			 */
943			unsigned short family = rp->rcb_proto.sp_family;
944			rp->rcb_proto.sp_family = 0;
945			rt_dispatch(m, saf);
946			rp->rcb_proto.sp_family = family;
947		} else
948			rt_dispatch(m, saf);
949	}
950	/* info.rti_info[RTAX_DST] (used above) can point inside of rtm */
951	if (rtm)
952		Free(rtm);
953    }
954	return (error);
955#undef	sa_equal
956}
957
958static void
959rt_setmetrics(u_long which, const struct rt_metrics *in,
960	struct rt_metrics_lite *out)
961{
962#define metric(f, e) if (which & (f)) out->e = in->e;
963	/*
964	 * Only these are stored in the routing entry since introduction
965	 * of tcp hostcache. The rest is ignored.
966	 */
967	metric(RTV_MTU, rmx_mtu);
968	metric(RTV_WEIGHT, rmx_weight);
969	/* Userland -> kernel timebase conversion. */
970	if (which & RTV_EXPIRE)
971		out->rmx_expire = in->rmx_expire ?
972		    in->rmx_expire - time_second + time_uptime : 0;
973#undef metric
974}
975
976static void
977rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out)
978{
979#define metric(e) out->e = in->e;
980	bzero(out, sizeof(*out));
981	metric(rmx_mtu);
982	metric(rmx_weight);
983	/* Kernel -> userland timebase conversion. */
984	out->rmx_expire = in->rmx_expire ?
985	    in->rmx_expire - time_uptime + time_second : 0;
986#undef metric
987}
988
989/*
990 * Extract the addresses of the passed sockaddrs.
991 * Do a little sanity checking so as to avoid bad memory references.
992 * This data is derived straight from userland.
993 */
994static int
995rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
996{
997	struct sockaddr *sa;
998	int i;
999
1000	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1001		if ((rtinfo->rti_addrs & (1 << i)) == 0)
1002			continue;
1003		sa = (struct sockaddr *)cp;
1004		/*
1005		 * It won't fit.
1006		 */
1007		if (cp + sa->sa_len > cplim)
1008			return (EINVAL);
1009		/*
1010		 * there are no more.. quit now
1011		 * If there are more bits, they are in error.
1012		 * I've seen this. route(1) can evidently generate these.
1013		 * This causes kernel to core dump.
1014		 * for compatibility, If we see this, point to a safe address.
1015		 */
1016		if (sa->sa_len == 0) {
1017			rtinfo->rti_info[i] = &sa_zero;
1018			return (0); /* should be EINVAL but for compat */
1019		}
1020		/* accept it */
1021		rtinfo->rti_info[i] = sa;
1022		cp += SA_SIZE(sa);
1023	}
1024	return (0);
1025}
1026
1027/*
1028 * Used by the routing socket.
1029 */
1030static struct mbuf *
1031rt_msg1(int type, struct rt_addrinfo *rtinfo)
1032{
1033	struct rt_msghdr *rtm;
1034	struct mbuf *m;
1035	int i;
1036	struct sockaddr *sa;
1037	int len, dlen;
1038
1039	switch (type) {
1040
1041	case RTM_DELADDR:
1042	case RTM_NEWADDR:
1043		len = sizeof(struct ifa_msghdr);
1044		break;
1045
1046	case RTM_DELMADDR:
1047	case RTM_NEWMADDR:
1048		len = sizeof(struct ifma_msghdr);
1049		break;
1050
1051	case RTM_IFINFO:
1052		len = sizeof(struct if_msghdr);
1053		break;
1054
1055	case RTM_IFANNOUNCE:
1056	case RTM_IEEE80211:
1057		len = sizeof(struct if_announcemsghdr);
1058		break;
1059
1060	default:
1061		len = sizeof(struct rt_msghdr);
1062	}
1063	if (len > MCLBYTES)
1064		panic("rt_msg1");
1065	m = m_gethdr(M_DONTWAIT, MT_DATA);
1066	if (m && len > MHLEN) {
1067		MCLGET(m, M_DONTWAIT);
1068		if ((m->m_flags & M_EXT) == 0) {
1069			m_free(m);
1070			m = NULL;
1071		}
1072	}
1073	if (m == NULL)
1074		return (m);
1075	m->m_pkthdr.len = m->m_len = len;
1076	m->m_pkthdr.rcvif = NULL;
1077	rtm = mtod(m, struct rt_msghdr *);
1078	bzero((caddr_t)rtm, len);
1079	for (i = 0; i < RTAX_MAX; i++) {
1080		if ((sa = rtinfo->rti_info[i]) == NULL)
1081			continue;
1082		rtinfo->rti_addrs |= (1 << i);
1083		dlen = SA_SIZE(sa);
1084		m_copyback(m, len, dlen, (caddr_t)sa);
1085		len += dlen;
1086	}
1087	if (m->m_pkthdr.len != len) {
1088		m_freem(m);
1089		return (NULL);
1090	}
1091	rtm->rtm_msglen = len;
1092	rtm->rtm_version = RTM_VERSION;
1093	rtm->rtm_type = type;
1094	return (m);
1095}
1096
1097/*
1098 * Used by the sysctl code and routing socket.
1099 */
1100static int
1101rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w)
1102{
1103	int i;
1104	int len, dlen, second_time = 0;
1105	caddr_t cp0;
1106
1107	rtinfo->rti_addrs = 0;
1108again:
1109	switch (type) {
1110
1111	case RTM_DELADDR:
1112	case RTM_NEWADDR:
1113		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1114#ifdef COMPAT_FREEBSD32
1115			if (w->w_req->flags & SCTL_MASK32)
1116				len = sizeof(struct ifa_msghdrl32);
1117			else
1118#endif
1119				len = sizeof(struct ifa_msghdrl);
1120		} else
1121			len = sizeof(struct ifa_msghdr);
1122		break;
1123
1124	case RTM_IFINFO:
1125#ifdef COMPAT_FREEBSD32
1126		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1127			if (w->w_op == NET_RT_IFLISTL)
1128				len = sizeof(struct if_msghdrl32);
1129			else
1130				len = sizeof(struct if_msghdr32);
1131			break;
1132		}
1133#endif
1134		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1135			len = sizeof(struct if_msghdrl);
1136		else
1137			len = sizeof(struct if_msghdr);
1138		break;
1139
1140	case RTM_NEWMADDR:
1141		len = sizeof(struct ifma_msghdr);
1142		break;
1143
1144	default:
1145		len = sizeof(struct rt_msghdr);
1146	}
1147	cp0 = cp;
1148	if (cp0)
1149		cp += len;
1150	for (i = 0; i < RTAX_MAX; i++) {
1151		struct sockaddr *sa;
1152
1153		if ((sa = rtinfo->rti_info[i]) == NULL)
1154			continue;
1155		rtinfo->rti_addrs |= (1 << i);
1156		dlen = SA_SIZE(sa);
1157		if (cp) {
1158			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1159			cp += dlen;
1160		}
1161		len += dlen;
1162	}
1163	len = ALIGN(len);
1164	if (cp == NULL && w != NULL && !second_time) {
1165		struct walkarg *rw = w;
1166
1167		if (rw->w_req) {
1168			if (rw->w_tmemsize < len) {
1169				if (rw->w_tmem)
1170					free(rw->w_tmem, M_RTABLE);
1171				rw->w_tmem = (caddr_t)
1172					malloc(len, M_RTABLE, M_NOWAIT);
1173				if (rw->w_tmem)
1174					rw->w_tmemsize = len;
1175			}
1176			if (rw->w_tmem) {
1177				cp = rw->w_tmem;
1178				second_time = 1;
1179				goto again;
1180			}
1181		}
1182	}
1183	if (cp) {
1184		struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
1185
1186		rtm->rtm_version = RTM_VERSION;
1187		rtm->rtm_type = type;
1188		rtm->rtm_msglen = len;
1189	}
1190	return (len);
1191}
1192
1193/*
1194 * This routine is called to generate a message from the routing
1195 * socket indicating that a redirect has occured, a routing lookup
1196 * has failed, or that a protocol has detected timeouts to a particular
1197 * destination.
1198 */
1199void
1200rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1201    int fibnum)
1202{
1203	struct rt_msghdr *rtm;
1204	struct mbuf *m;
1205	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1206
1207	if (route_cb.any_count == 0)
1208		return;
1209	m = rt_msg1(type, rtinfo);
1210	if (m == NULL)
1211		return;
1212
1213	if (fibnum != RT_ALL_FIBS) {
1214		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1215		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1216		M_SETFIB(m, fibnum);
1217		m->m_flags |= RTS_FILTER_FIB;
1218	}
1219
1220	rtm = mtod(m, struct rt_msghdr *);
1221	rtm->rtm_flags = RTF_DONE | flags;
1222	rtm->rtm_errno = error;
1223	rtm->rtm_addrs = rtinfo->rti_addrs;
1224	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1225}
1226
1227void
1228rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1229{
1230
1231	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1232}
1233
1234/*
1235 * This routine is called to generate a message from the routing
1236 * socket indicating that the status of a network interface has changed.
1237 */
1238void
1239rt_ifmsg(struct ifnet *ifp)
1240{
1241	struct if_msghdr *ifm;
1242	struct mbuf *m;
1243	struct rt_addrinfo info;
1244
1245	if (route_cb.any_count == 0)
1246		return;
1247	bzero((caddr_t)&info, sizeof(info));
1248	m = rt_msg1(RTM_IFINFO, &info);
1249	if (m == NULL)
1250		return;
1251	ifm = mtod(m, struct if_msghdr *);
1252	ifm->ifm_index = ifp->if_index;
1253	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1254	ifm->ifm_data = ifp->if_data;
1255	ifm->ifm_addrs = 0;
1256	rt_dispatch(m, AF_UNSPEC);
1257}
1258
1259/*
1260 * Announce interface address arrival/withdraw.
1261 * Please do not call directly, use rt_addrmsg().
1262 * Assume input data to be valid.
1263 * Returns 0 on success.
1264 */
1265int
1266rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1267{
1268	struct rt_addrinfo info;
1269	struct sockaddr *sa;
1270	int ncmd;
1271	struct mbuf *m;
1272	struct ifa_msghdr *ifam;
1273	struct ifnet *ifp = ifa->ifa_ifp;
1274
1275	if (route_cb.any_count == 0)
1276		return (0);
1277
1278	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1279
1280	bzero((caddr_t)&info, sizeof(info));
1281	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1282	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1283	info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1284	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1285	if ((m = rt_msg1(ncmd, &info)) == NULL)
1286		return (ENOBUFS);
1287	ifam = mtod(m, struct ifa_msghdr *);
1288	ifam->ifam_index = ifp->if_index;
1289	ifam->ifam_metric = ifa->ifa_metric;
1290	ifam->ifam_flags = ifa->ifa_flags;
1291	ifam->ifam_addrs = info.rti_addrs;
1292
1293	if (fibnum != RT_ALL_FIBS) {
1294		M_SETFIB(m, fibnum);
1295		m->m_flags |= RTS_FILTER_FIB;
1296	}
1297
1298	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1299
1300	return (0);
1301}
1302
1303/*
1304 * Announce route addition/removal.
1305 * Please do not call directly, use rt_routemsg().
1306 * Note that @rt data MAY be inconsistent/invalid:
1307 * if some userland app sends us "invalid" route message (invalid mask,
1308 * no dst, wrong address families, etc...) we need to pass it back
1309 * to app (and any other rtsock consumers) with rtm_errno field set to
1310 * non-zero value.
1311 *
1312 * Returns 0 on success.
1313 */
1314int
1315rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt,
1316    int fibnum)
1317{
1318	struct rt_addrinfo info;
1319	struct sockaddr *sa;
1320	struct mbuf *m;
1321	struct rt_msghdr *rtm;
1322
1323	if (route_cb.any_count == 0)
1324		return (0);
1325
1326	bzero((caddr_t)&info, sizeof(info));
1327	info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1328	info.rti_info[RTAX_DST] = sa = rt_key(rt);
1329	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1330	if ((m = rt_msg1(cmd, &info)) == NULL)
1331		return (ENOBUFS);
1332	rtm = mtod(m, struct rt_msghdr *);
1333	rtm->rtm_index = ifp->if_index;
1334	rtm->rtm_flags |= rt->rt_flags;
1335	rtm->rtm_errno = error;
1336	rtm->rtm_addrs = info.rti_addrs;
1337
1338	if (fibnum != RT_ALL_FIBS) {
1339		M_SETFIB(m, fibnum);
1340		m->m_flags |= RTS_FILTER_FIB;
1341	}
1342
1343	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1344
1345	return (0);
1346}
1347
1348/*
1349 * This is the analogue to the rt_newaddrmsg which performs the same
1350 * function but for multicast group memberhips.  This is easier since
1351 * there is no route state to worry about.
1352 */
1353void
1354rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1355{
1356	struct rt_addrinfo info;
1357	struct mbuf *m = NULL;
1358	struct ifnet *ifp = ifma->ifma_ifp;
1359	struct ifma_msghdr *ifmam;
1360
1361	if (route_cb.any_count == 0)
1362		return;
1363
1364	bzero((caddr_t)&info, sizeof(info));
1365	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1366	info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
1367	/*
1368	 * If a link-layer address is present, present it as a ``gateway''
1369	 * (similarly to how ARP entries, e.g., are presented).
1370	 */
1371	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1372	m = rt_msg1(cmd, &info);
1373	if (m == NULL)
1374		return;
1375	ifmam = mtod(m, struct ifma_msghdr *);
1376	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1377	    __func__));
1378	ifmam->ifmam_index = ifp->if_index;
1379	ifmam->ifmam_addrs = info.rti_addrs;
1380	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1381}
1382
1383static struct mbuf *
1384rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1385	struct rt_addrinfo *info)
1386{
1387	struct if_announcemsghdr *ifan;
1388	struct mbuf *m;
1389
1390	if (route_cb.any_count == 0)
1391		return NULL;
1392	bzero((caddr_t)info, sizeof(*info));
1393	m = rt_msg1(type, info);
1394	if (m != NULL) {
1395		ifan = mtod(m, struct if_announcemsghdr *);
1396		ifan->ifan_index = ifp->if_index;
1397		strlcpy(ifan->ifan_name, ifp->if_xname,
1398			sizeof(ifan->ifan_name));
1399		ifan->ifan_what = what;
1400	}
1401	return m;
1402}
1403
1404/*
1405 * This is called to generate routing socket messages indicating
1406 * IEEE80211 wireless events.
1407 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1408 */
1409void
1410rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1411{
1412	struct mbuf *m;
1413	struct rt_addrinfo info;
1414
1415	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1416	if (m != NULL) {
1417		/*
1418		 * Append the ieee80211 data.  Try to stick it in the
1419		 * mbuf containing the ifannounce msg; otherwise allocate
1420		 * a new mbuf and append.
1421		 *
1422		 * NB: we assume m is a single mbuf.
1423		 */
1424		if (data_len > M_TRAILINGSPACE(m)) {
1425			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1426			if (n == NULL) {
1427				m_freem(m);
1428				return;
1429			}
1430			bcopy(data, mtod(n, void *), data_len);
1431			n->m_len = data_len;
1432			m->m_next = n;
1433		} else if (data_len > 0) {
1434			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1435			m->m_len += data_len;
1436		}
1437		if (m->m_flags & M_PKTHDR)
1438			m->m_pkthdr.len += data_len;
1439		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1440		rt_dispatch(m, AF_UNSPEC);
1441	}
1442}
1443
1444/*
1445 * This is called to generate routing socket messages indicating
1446 * network interface arrival and departure.
1447 */
1448void
1449rt_ifannouncemsg(struct ifnet *ifp, int what)
1450{
1451	struct mbuf *m;
1452	struct rt_addrinfo info;
1453
1454	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1455	if (m != NULL)
1456		rt_dispatch(m, AF_UNSPEC);
1457}
1458
1459static void
1460rt_dispatch(struct mbuf *m, sa_family_t saf)
1461{
1462	struct m_tag *tag;
1463
1464	/*
1465	 * Preserve the family from the sockaddr, if any, in an m_tag for
1466	 * use when injecting the mbuf into the routing socket buffer from
1467	 * the netisr.
1468	 */
1469	if (saf != AF_UNSPEC) {
1470		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1471		    M_NOWAIT);
1472		if (tag == NULL) {
1473			m_freem(m);
1474			return;
1475		}
1476		*(unsigned short *)(tag + 1) = saf;
1477		m_tag_prepend(m, tag);
1478	}
1479#ifdef VIMAGE
1480	if (V_loif)
1481		m->m_pkthdr.rcvif = V_loif;
1482	else {
1483		m_freem(m);
1484		return;
1485	}
1486#endif
1487	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1488}
1489
1490/*
1491 * This is used in dumping the kernel table via sysctl().
1492 */
1493static int
1494sysctl_dumpentry(struct radix_node *rn, void *vw)
1495{
1496	struct walkarg *w = vw;
1497	struct rtentry *rt = (struct rtentry *)rn;
1498	int error = 0, size;
1499	struct rt_addrinfo info;
1500
1501	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1502		return 0;
1503	if ((rt->rt_flags & RTF_HOST) == 0
1504	    ? jailed_without_vnet(w->w_req->td->td_ucred)
1505	    : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0)
1506		return (0);
1507	bzero((caddr_t)&info, sizeof(info));
1508	info.rti_info[RTAX_DST] = rt_key(rt);
1509	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1510	info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1511	info.rti_info[RTAX_GENMASK] = 0;
1512	if (rt->rt_ifp) {
1513		info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1514		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1515		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1516			info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1517	}
1518	size = rt_msg2(RTM_GET, &info, NULL, w);
1519	if (w->w_req && w->w_tmem) {
1520		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1521
1522		rtm->rtm_flags = rt->rt_flags;
1523		/*
1524		 * let's be honest about this being a retarded hack
1525		 */
1526		rtm->rtm_fmask = rt->rt_rmx.rmx_pksent;
1527		rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
1528		rtm->rtm_index = rt->rt_ifp->if_index;
1529		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1530		rtm->rtm_addrs = info.rti_addrs;
1531		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1532		return (error);
1533	}
1534	return (error);
1535}
1536
1537#ifdef COMPAT_FREEBSD32
1538static void
1539copy_ifdata32(struct if_data *src, struct if_data32 *dst)
1540{
1541
1542	bzero(dst, sizeof(*dst));
1543	CP(*src, *dst, ifi_type);
1544	CP(*src, *dst, ifi_physical);
1545	CP(*src, *dst, ifi_addrlen);
1546	CP(*src, *dst, ifi_hdrlen);
1547	CP(*src, *dst, ifi_link_state);
1548	dst->ifi_datalen = sizeof(struct if_data32);
1549	CP(*src, *dst, ifi_mtu);
1550	CP(*src, *dst, ifi_metric);
1551	CP(*src, *dst, ifi_baudrate);
1552	CP(*src, *dst, ifi_ipackets);
1553	CP(*src, *dst, ifi_ierrors);
1554	CP(*src, *dst, ifi_opackets);
1555	CP(*src, *dst, ifi_oerrors);
1556	CP(*src, *dst, ifi_collisions);
1557	CP(*src, *dst, ifi_ibytes);
1558	CP(*src, *dst, ifi_obytes);
1559	CP(*src, *dst, ifi_imcasts);
1560	CP(*src, *dst, ifi_omcasts);
1561	CP(*src, *dst, ifi_iqdrops);
1562	CP(*src, *dst, ifi_noproto);
1563	CP(*src, *dst, ifi_hwassist);
1564	CP(*src, *dst, ifi_epoch);
1565	TV_CP(*src, *dst, ifi_lastchange);
1566}
1567#endif
1568
1569static int
1570sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info,
1571    struct walkarg *w, int len)
1572{
1573	struct if_msghdrl *ifm;
1574
1575#ifdef COMPAT_FREEBSD32
1576	if (w->w_req->flags & SCTL_MASK32) {
1577		struct if_msghdrl32 *ifm32;
1578
1579		ifm32 = (struct if_msghdrl32 *)w->w_tmem;
1580		ifm32->ifm_addrs = info->rti_addrs;
1581		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1582		ifm32->ifm_index = ifp->if_index;
1583		ifm32->_ifm_spare1 = 0;
1584		ifm32->ifm_len = sizeof(*ifm32);
1585		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1586
1587		copy_ifdata32(&ifp->if_data, &ifm32->ifm_data);
1588
1589		return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len));
1590	}
1591#endif
1592	ifm = (struct if_msghdrl *)w->w_tmem;
1593	ifm->ifm_addrs = info->rti_addrs;
1594	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1595	ifm->ifm_index = ifp->if_index;
1596	ifm->_ifm_spare1 = 0;
1597	ifm->ifm_len = sizeof(*ifm);
1598	ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1599
1600	ifm->ifm_data = ifp->if_data;
1601
1602	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1603}
1604
1605static int
1606sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info,
1607    struct walkarg *w, int len)
1608{
1609	struct if_msghdr *ifm;
1610
1611#ifdef COMPAT_FREEBSD32
1612	if (w->w_req->flags & SCTL_MASK32) {
1613		struct if_msghdr32 *ifm32;
1614
1615		ifm32 = (struct if_msghdr32 *)w->w_tmem;
1616		ifm32->ifm_addrs = info->rti_addrs;
1617		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1618		ifm32->ifm_index = ifp->if_index;
1619
1620		copy_ifdata32(&ifp->if_data, &ifm32->ifm_data);
1621
1622		return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len));
1623	}
1624#endif
1625	ifm = (struct if_msghdr *)w->w_tmem;
1626	ifm->ifm_addrs = info->rti_addrs;
1627	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1628	ifm->ifm_index = ifp->if_index;
1629
1630	ifm->ifm_data = ifp->if_data;
1631
1632	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1633}
1634
1635static int
1636sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1637    struct walkarg *w, int len)
1638{
1639	struct ifa_msghdrl *ifam;
1640
1641#ifdef COMPAT_FREEBSD32
1642	if (w->w_req->flags & SCTL_MASK32) {
1643		struct ifa_msghdrl32 *ifam32;
1644
1645		ifam32 = (struct ifa_msghdrl32 *)w->w_tmem;
1646		ifam32->ifam_addrs = info->rti_addrs;
1647		ifam32->ifam_flags = ifa->ifa_flags;
1648		ifam32->ifam_index = ifa->ifa_ifp->if_index;
1649		ifam32->_ifam_spare1 = 0;
1650		ifam32->ifam_len = sizeof(*ifam32);
1651		ifam32->ifam_data_off =
1652		    offsetof(struct ifa_msghdrl32, ifam_data);
1653		ifam32->ifam_metric = ifa->ifa_metric;
1654
1655		copy_ifdata32(&ifa->ifa_ifp->if_data, &ifam32->ifam_data);
1656
1657		return (SYSCTL_OUT(w->w_req, (caddr_t)ifam32, len));
1658	}
1659#endif
1660
1661	ifam = (struct ifa_msghdrl *)w->w_tmem;
1662	ifam->ifam_addrs = info->rti_addrs;
1663	ifam->ifam_flags = ifa->ifa_flags;
1664	ifam->ifam_index = ifa->ifa_ifp->if_index;
1665	ifam->_ifam_spare1 = 0;
1666	ifam->ifam_len = sizeof(*ifam);
1667	ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1668	ifam->ifam_metric = ifa->ifa_metric;
1669
1670	ifam->ifam_data = ifa->if_data;
1671
1672	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1673}
1674
1675static int
1676sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1677    struct walkarg *w, int len)
1678{
1679	struct ifa_msghdr *ifam;
1680
1681	ifam = (struct ifa_msghdr *)w->w_tmem;
1682	ifam->ifam_addrs = info->rti_addrs;
1683	ifam->ifam_flags = ifa->ifa_flags;
1684	ifam->ifam_index = ifa->ifa_ifp->if_index;
1685	ifam->ifam_metric = ifa->ifa_metric;
1686
1687	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1688}
1689
1690static int
1691sysctl_iflist(int af, struct walkarg *w)
1692{
1693	struct ifnet *ifp;
1694	struct ifaddr *ifa;
1695	struct rt_addrinfo info;
1696	int len, error = 0;
1697
1698	bzero((caddr_t)&info, sizeof(info));
1699	IFNET_RLOCK();
1700	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1701		if (w->w_arg && w->w_arg != ifp->if_index)
1702			continue;
1703		IF_ADDR_RLOCK(ifp);
1704		ifa = ifp->if_addr;
1705		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1706		len = rt_msg2(RTM_IFINFO, &info, NULL, w);
1707		info.rti_info[RTAX_IFP] = NULL;
1708		if (w->w_req && w->w_tmem) {
1709			if (w->w_op == NET_RT_IFLISTL)
1710				error = sysctl_iflist_ifml(ifp, &info, w, len);
1711			else
1712				error = sysctl_iflist_ifm(ifp, &info, w, len);
1713			if (error)
1714				goto done;
1715		}
1716		while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
1717			if (af && af != ifa->ifa_addr->sa_family)
1718				continue;
1719			if (prison_if(w->w_req->td->td_ucred,
1720			    ifa->ifa_addr) != 0)
1721				continue;
1722			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1723			info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1724			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1725			len = rt_msg2(RTM_NEWADDR, &info, NULL, w);
1726			if (w->w_req && w->w_tmem) {
1727				if (w->w_op == NET_RT_IFLISTL)
1728					error = sysctl_iflist_ifaml(ifa, &info,
1729					    w, len);
1730				else
1731					error = sysctl_iflist_ifam(ifa, &info,
1732					    w, len);
1733				if (error)
1734					goto done;
1735			}
1736		}
1737		IF_ADDR_RUNLOCK(ifp);
1738		info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1739			info.rti_info[RTAX_BRD] = NULL;
1740	}
1741done:
1742	if (ifp != NULL)
1743		IF_ADDR_RUNLOCK(ifp);
1744	IFNET_RUNLOCK();
1745	return (error);
1746}
1747
1748static int
1749sysctl_ifmalist(int af, struct walkarg *w)
1750{
1751	struct ifnet *ifp;
1752	struct ifmultiaddr *ifma;
1753	struct	rt_addrinfo info;
1754	int	len, error = 0;
1755	struct ifaddr *ifa;
1756
1757	bzero((caddr_t)&info, sizeof(info));
1758	IFNET_RLOCK();
1759	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1760		if (w->w_arg && w->w_arg != ifp->if_index)
1761			continue;
1762		ifa = ifp->if_addr;
1763		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1764		IF_ADDR_RLOCK(ifp);
1765		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1766			if (af && af != ifma->ifma_addr->sa_family)
1767				continue;
1768			if (prison_if(w->w_req->td->td_ucred,
1769			    ifma->ifma_addr) != 0)
1770				continue;
1771			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1772			info.rti_info[RTAX_GATEWAY] =
1773			    (ifma->ifma_addr->sa_family != AF_LINK) ?
1774			    ifma->ifma_lladdr : NULL;
1775			len = rt_msg2(RTM_NEWMADDR, &info, NULL, w);
1776			if (w->w_req && w->w_tmem) {
1777				struct ifma_msghdr *ifmam;
1778
1779				ifmam = (struct ifma_msghdr *)w->w_tmem;
1780				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1781				ifmam->ifmam_flags = 0;
1782				ifmam->ifmam_addrs = info.rti_addrs;
1783				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1784				if (error) {
1785					IF_ADDR_RUNLOCK(ifp);
1786					goto done;
1787				}
1788			}
1789		}
1790		IF_ADDR_RUNLOCK(ifp);
1791	}
1792done:
1793	IFNET_RUNLOCK();
1794	return (error);
1795}
1796
1797static int
1798sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1799{
1800	int	*name = (int *)arg1;
1801	u_int	namelen = arg2;
1802	struct radix_node_head *rnh = NULL; /* silence compiler. */
1803	int	i, lim, error = EINVAL;
1804	int	fib = 0;
1805	u_char	af;
1806	struct	walkarg w;
1807
1808	name ++;
1809	namelen--;
1810	if (req->newptr)
1811		return (EPERM);
1812	if (name[1] == NET_RT_DUMP) {
1813		if (namelen == 3)
1814			fib = req->td->td_proc->p_fibnum;
1815		else if (namelen == 4)
1816			fib = (name[3] == RT_ALL_FIBS) ?
1817			    req->td->td_proc->p_fibnum : name[3];
1818		else
1819			return ((namelen < 3) ? EISDIR : ENOTDIR);
1820		if (fib < 0 || fib >= rt_numfibs)
1821			return (EINVAL);
1822	} else if (namelen != 3)
1823		return ((namelen < 3) ? EISDIR : ENOTDIR);
1824	af = name[0];
1825	if (af > AF_MAX)
1826		return (EINVAL);
1827	bzero(&w, sizeof(w));
1828	w.w_op = name[1];
1829	w.w_arg = name[2];
1830	w.w_req = req;
1831
1832	error = sysctl_wire_old_buffer(req, 0);
1833	if (error)
1834		return (error);
1835	switch (w.w_op) {
1836
1837	case NET_RT_DUMP:
1838	case NET_RT_FLAGS:
1839		if (af == 0) {			/* dump all tables */
1840			i = 1;
1841			lim = AF_MAX;
1842		} else				/* dump only one table */
1843			i = lim = af;
1844
1845		/*
1846		 * take care of llinfo entries, the caller must
1847		 * specify an AF
1848		 */
1849		if (w.w_op == NET_RT_FLAGS &&
1850		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
1851			if (af != 0)
1852				error = lltable_sysctl_dumparp(af, w.w_req);
1853			else
1854				error = EINVAL;
1855			break;
1856		}
1857		/*
1858		 * take care of routing entries
1859		 */
1860		for (error = 0; error == 0 && i <= lim; i++) {
1861			rnh = rt_tables_get_rnh(fib, i);
1862			if (rnh != NULL) {
1863				RADIX_NODE_HEAD_RLOCK(rnh);
1864			    	error = rnh->rnh_walktree(rnh,
1865				    sysctl_dumpentry, &w);
1866				RADIX_NODE_HEAD_RUNLOCK(rnh);
1867			} else if (af != 0)
1868				error = EAFNOSUPPORT;
1869		}
1870		break;
1871
1872	case NET_RT_IFLIST:
1873	case NET_RT_IFLISTL:
1874		error = sysctl_iflist(af, &w);
1875		break;
1876
1877	case NET_RT_IFMALIST:
1878		error = sysctl_ifmalist(af, &w);
1879		break;
1880	}
1881	if (w.w_tmem)
1882		free(w.w_tmem, M_RTABLE);
1883	return (error);
1884}
1885
1886static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1887
1888/*
1889 * Definitions of protocols supported in the ROUTE domain.
1890 */
1891
1892static struct domain routedomain;		/* or at least forward */
1893
1894static struct protosw routesw[] = {
1895{
1896	.pr_type =		SOCK_RAW,
1897	.pr_domain =		&routedomain,
1898	.pr_flags =		PR_ATOMIC|PR_ADDR,
1899	.pr_output =		route_output,
1900	.pr_ctlinput =		raw_ctlinput,
1901	.pr_init =		raw_init,
1902	.pr_usrreqs =		&route_usrreqs
1903}
1904};
1905
1906static struct domain routedomain = {
1907	.dom_family =		PF_ROUTE,
1908	.dom_name =		 "route",
1909	.dom_protosw =		routesw,
1910	.dom_protoswNPROTOSW =	&routesw[sizeof(routesw)/sizeof(routesw[0])]
1911};
1912
1913VNET_DOMAIN_SET(route);
1914