1/*-
2 * Copyright (c) 2009, Oleksandr Tymoshenko
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD$");
30
31/*
32 * AR71XX gigabit ethernet driver
33 */
34#ifdef HAVE_KERNEL_OPTION_HEADERS
35#include "opt_device_polling.h"
36#endif
37
38#include <sys/param.h>
39#include <sys/endian.h>
40#include <sys/systm.h>
41#include <sys/sockio.h>
42#include <sys/mbuf.h>
43#include <sys/malloc.h>
44#include <sys/kernel.h>
45#include <sys/module.h>
46#include <sys/socket.h>
47#include <sys/taskqueue.h>
48#include <sys/sysctl.h>
49
50#include <net/if.h>
51#include <net/if_arp.h>
52#include <net/ethernet.h>
53#include <net/if_dl.h>
54#include <net/if_media.h>
55#include <net/if_types.h>
56
57#include <net/bpf.h>
58
59#include <machine/bus.h>
60#include <machine/cache.h>
61#include <machine/resource.h>
62#include <vm/vm_param.h>
63#include <vm/vm.h>
64#include <vm/pmap.h>
65#include <machine/pmap.h>
66#include <sys/bus.h>
67#include <sys/rman.h>
68
69#include <dev/mii/mii.h>
70#include <dev/mii/miivar.h>
71
72#include <dev/pci/pcireg.h>
73#include <dev/pci/pcivar.h>
74
75MODULE_DEPEND(arge, ether, 1, 1, 1);
76MODULE_DEPEND(arge, miibus, 1, 1, 1);
77
78#include "miibus_if.h"
79
80#include <mips/atheros/ar71xxreg.h>
81#include <mips/atheros/if_argevar.h>
82#include <mips/atheros/ar71xx_setup.h>
83#include <mips/atheros/ar71xx_cpudef.h>
84
85typedef enum {
86	ARGE_DBG_MII 	=	0x00000001,
87	ARGE_DBG_INTR	=	0x00000002,
88	ARGE_DBG_TX	=	0x00000004,
89	ARGE_DBG_RX	=	0x00000008,
90	ARGE_DBG_ERR	=	0x00000010,
91	ARGE_DBG_RESET	=	0x00000020,
92} arge_debug_flags;
93
94#ifdef ARGE_DEBUG
95#define	ARGEDEBUG(_sc, _m, ...) 					\
96	do {								\
97		if ((_m) & (_sc)->arge_debug)				\
98			device_printf((_sc)->arge_dev, __VA_ARGS__);	\
99	} while (0)
100#else
101#define	ARGEDEBUG(_sc, _m, ...)
102#endif
103
104static int arge_attach(device_t);
105static int arge_detach(device_t);
106static void arge_flush_ddr(struct arge_softc *);
107static int arge_ifmedia_upd(struct ifnet *);
108static void arge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109static int arge_ioctl(struct ifnet *, u_long, caddr_t);
110static void arge_init(void *);
111static void arge_init_locked(struct arge_softc *);
112static void arge_link_task(void *, int);
113static void arge_set_pll(struct arge_softc *, int, int);
114static int arge_miibus_readreg(device_t, int, int);
115static void arge_miibus_statchg(device_t);
116static int arge_miibus_writereg(device_t, int, int, int);
117static int arge_probe(device_t);
118static void arge_reset_dma(struct arge_softc *);
119static int arge_resume(device_t);
120static int arge_rx_ring_init(struct arge_softc *);
121static int arge_tx_ring_init(struct arge_softc *);
122#ifdef DEVICE_POLLING
123static int arge_poll(struct ifnet *, enum poll_cmd, int);
124#endif
125static int arge_shutdown(device_t);
126static void arge_start(struct ifnet *);
127static void arge_start_locked(struct ifnet *);
128static void arge_stop(struct arge_softc *);
129static int arge_suspend(device_t);
130
131static int arge_rx_locked(struct arge_softc *);
132static void arge_tx_locked(struct arge_softc *);
133static void arge_intr(void *);
134static int arge_intr_filter(void *);
135static void arge_tick(void *);
136
137/*
138 * ifmedia callbacks for multiPHY MAC
139 */
140void arge_multiphy_mediastatus(struct ifnet *, struct ifmediareq *);
141int arge_multiphy_mediachange(struct ifnet *);
142
143static void arge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
144static int arge_dma_alloc(struct arge_softc *);
145static void arge_dma_free(struct arge_softc *);
146static int arge_newbuf(struct arge_softc *, int);
147static __inline void arge_fixup_rx(struct mbuf *);
148
149static device_method_t arge_methods[] = {
150	/* Device interface */
151	DEVMETHOD(device_probe,		arge_probe),
152	DEVMETHOD(device_attach,	arge_attach),
153	DEVMETHOD(device_detach,	arge_detach),
154	DEVMETHOD(device_suspend,	arge_suspend),
155	DEVMETHOD(device_resume,	arge_resume),
156	DEVMETHOD(device_shutdown,	arge_shutdown),
157
158	/* MII interface */
159	DEVMETHOD(miibus_readreg,	arge_miibus_readreg),
160	DEVMETHOD(miibus_writereg,	arge_miibus_writereg),
161	DEVMETHOD(miibus_statchg,	arge_miibus_statchg),
162
163	DEVMETHOD_END
164};
165
166static driver_t arge_driver = {
167	"arge",
168	arge_methods,
169	sizeof(struct arge_softc)
170};
171
172static devclass_t arge_devclass;
173
174DRIVER_MODULE(arge, nexus, arge_driver, arge_devclass, 0, 0);
175DRIVER_MODULE(miibus, arge, miibus_driver, miibus_devclass, 0, 0);
176
177/*
178 * RedBoot passes MAC address to entry point as environment
179 * variable. platfrom_start parses it and stores in this variable
180 */
181extern uint32_t ar711_base_mac[ETHER_ADDR_LEN];
182
183static struct mtx miibus_mtx;
184
185MTX_SYSINIT(miibus_mtx, &miibus_mtx, "arge mii lock", MTX_DEF);
186
187
188/*
189 * Flushes all
190 */
191static void
192arge_flush_ddr(struct arge_softc *sc)
193{
194	if (sc->arge_mac_unit == 0)
195		ar71xx_device_flush_ddr_ge0();
196	else
197		ar71xx_device_flush_ddr_ge1();
198}
199
200static int
201arge_probe(device_t dev)
202{
203
204	device_set_desc(dev, "Atheros AR71xx built-in ethernet interface");
205	return (0);
206}
207
208static void
209arge_attach_sysctl(device_t dev)
210{
211	struct arge_softc *sc = device_get_softc(dev);
212	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
213	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
214
215#ifdef	ARGE_DEBUG
216	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
217		"debug", CTLFLAG_RW, &sc->arge_debug, 0,
218		"arge interface debugging flags");
219#endif
220
221	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
222		"tx_pkts_aligned", CTLFLAG_RW, &sc->stats.tx_pkts_aligned, 0,
223		"number of TX aligned packets");
224
225	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
226		"tx_pkts_unaligned", CTLFLAG_RW, &sc->stats.tx_pkts_unaligned, 0,
227		"number of TX unaligned packets");
228
229#ifdef	ARGE_DEBUG
230	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_prod",
231	    CTLFLAG_RW, &sc->arge_cdata.arge_tx_prod, 0, "");
232	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_cons",
233	    CTLFLAG_RW, &sc->arge_cdata.arge_tx_cons, 0, "");
234	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_cnt",
235	    CTLFLAG_RW, &sc->arge_cdata.arge_tx_cnt, 0, "");
236#endif
237}
238
239static int
240arge_attach(device_t dev)
241{
242	uint8_t			eaddr[ETHER_ADDR_LEN];
243	struct ifnet		*ifp;
244	struct arge_softc	*sc;
245	int			error = 0, rid, phymask;
246	uint32_t		reg, rnd;
247	int			is_base_mac_empty, i, phys_total;
248	uint32_t		hint;
249	long			eeprom_mac_addr = 0;
250
251	sc = device_get_softc(dev);
252	sc->arge_dev = dev;
253	sc->arge_mac_unit = device_get_unit(dev);
254
255	/*
256	 * Some units (eg the TP-Link WR-1043ND) do not have a convenient
257	 * EEPROM location to read the ethernet MAC address from.
258	 * OpenWRT simply snaffles it from a fixed location.
259	 *
260	 * Since multiple units seem to use this feature, include
261	 * a method of setting the MAC address based on an flash location
262	 * in CPU address space.
263	 */
264	if (sc->arge_mac_unit == 0 &&
265	    resource_long_value(device_get_name(dev), device_get_unit(dev),
266	    "eeprommac", &eeprom_mac_addr) == 0) {
267		int i;
268		const char *mac = (const char *) MIPS_PHYS_TO_KSEG1(eeprom_mac_addr);
269		device_printf(dev, "Overriding MAC from EEPROM\n");
270		for (i = 0; i < 6; i++) {
271			ar711_base_mac[i] = mac[i];
272		}
273	}
274
275	KASSERT(((sc->arge_mac_unit == 0) || (sc->arge_mac_unit == 1)),
276	    ("if_arge: Only MAC0 and MAC1 supported"));
277
278	/*
279	 *  Get which PHY of 5 available we should use for this unit
280	 */
281	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
282	    "phymask", &phymask) != 0) {
283		/*
284		 * Use port 4 (WAN) for GE0. For any other port use
285		 * its PHY the same as its unit number
286		 */
287		if (sc->arge_mac_unit == 0)
288			phymask = (1 << 4);
289		else
290			/* Use all phys up to 4 */
291			phymask = (1 << 4) - 1;
292
293		device_printf(dev, "No PHY specified, using mask %d\n", phymask);
294	}
295
296	/*
297	 *  Get default media & duplex mode, by default its Base100T
298	 *  and full duplex
299	 */
300	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
301	    "media", &hint) != 0)
302		hint = 0;
303
304	if (hint == 1000)
305		sc->arge_media_type = IFM_1000_T;
306	else
307		sc->arge_media_type = IFM_100_TX;
308
309	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
310	    "fduplex", &hint) != 0)
311		hint = 1;
312
313	if (hint)
314		sc->arge_duplex_mode = IFM_FDX;
315	else
316		sc->arge_duplex_mode = 0;
317
318	sc->arge_phymask = phymask;
319
320	mtx_init(&sc->arge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
321	    MTX_DEF);
322	callout_init_mtx(&sc->arge_stat_callout, &sc->arge_mtx, 0);
323	TASK_INIT(&sc->arge_link_task, 0, arge_link_task, sc);
324
325	/* Map control/status registers. */
326	sc->arge_rid = 0;
327	sc->arge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
328	    &sc->arge_rid, RF_ACTIVE);
329
330	if (sc->arge_res == NULL) {
331		device_printf(dev, "couldn't map memory\n");
332		error = ENXIO;
333		goto fail;
334	}
335
336	/* Allocate interrupts */
337	rid = 0;
338	sc->arge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
339	    RF_SHAREABLE | RF_ACTIVE);
340
341	if (sc->arge_irq == NULL) {
342		device_printf(dev, "couldn't map interrupt\n");
343		error = ENXIO;
344		goto fail;
345	}
346
347	/* Allocate ifnet structure. */
348	ifp = sc->arge_ifp = if_alloc(IFT_ETHER);
349
350	if (ifp == NULL) {
351		device_printf(dev, "couldn't allocate ifnet structure\n");
352		error = ENOSPC;
353		goto fail;
354	}
355
356	ifp->if_softc = sc;
357	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
358	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
359	ifp->if_ioctl = arge_ioctl;
360	ifp->if_start = arge_start;
361	ifp->if_init = arge_init;
362	sc->arge_if_flags = ifp->if_flags;
363
364	/* XXX: add real size */
365	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
366	ifp->if_snd.ifq_maxlen = ifqmaxlen;
367	IFQ_SET_READY(&ifp->if_snd);
368
369	ifp->if_capenable = ifp->if_capabilities;
370#ifdef DEVICE_POLLING
371	ifp->if_capabilities |= IFCAP_POLLING;
372#endif
373
374	is_base_mac_empty = 1;
375	for (i = 0; i < ETHER_ADDR_LEN; i++) {
376		eaddr[i] = ar711_base_mac[i] & 0xff;
377		if (eaddr[i] != 0)
378			is_base_mac_empty = 0;
379	}
380
381	if (is_base_mac_empty) {
382		/*
383		 * No MAC address configured. Generate the random one.
384		 */
385		if  (bootverbose)
386			device_printf(dev,
387			    "Generating random ethernet address.\n");
388
389		rnd = arc4random();
390		eaddr[0] = 'b';
391		eaddr[1] = 's';
392		eaddr[2] = 'd';
393		eaddr[3] = (rnd >> 24) & 0xff;
394		eaddr[4] = (rnd >> 16) & 0xff;
395		eaddr[5] = (rnd >> 8) & 0xff;
396	}
397
398	if (sc->arge_mac_unit != 0)
399		eaddr[5] +=  sc->arge_mac_unit;
400
401	if (arge_dma_alloc(sc) != 0) {
402		error = ENXIO;
403		goto fail;
404	}
405
406	/* Initialize the MAC block */
407
408	/* Step 1. Soft-reset MAC */
409	ARGE_SET_BITS(sc, AR71XX_MAC_CFG1, MAC_CFG1_SOFT_RESET);
410	DELAY(20);
411
412	/* Step 2. Punt the MAC core from the central reset register */
413	ar71xx_device_stop(sc->arge_mac_unit == 0 ? RST_RESET_GE0_MAC : RST_RESET_GE1_MAC);
414	DELAY(100);
415	ar71xx_device_start(sc->arge_mac_unit == 0 ? RST_RESET_GE0_MAC : RST_RESET_GE1_MAC);
416
417	/* Step 3. Reconfigure MAC block */
418	ARGE_WRITE(sc, AR71XX_MAC_CFG1,
419		MAC_CFG1_SYNC_RX | MAC_CFG1_RX_ENABLE |
420		MAC_CFG1_SYNC_TX | MAC_CFG1_TX_ENABLE);
421
422	reg = ARGE_READ(sc, AR71XX_MAC_CFG2);
423	reg |= MAC_CFG2_ENABLE_PADCRC | MAC_CFG2_LENGTH_FIELD ;
424	ARGE_WRITE(sc, AR71XX_MAC_CFG2, reg);
425
426	ARGE_WRITE(sc, AR71XX_MAC_MAX_FRAME_LEN, 1536);
427
428	/* Reset MII bus */
429	ARGE_WRITE(sc, AR71XX_MAC_MII_CFG, MAC_MII_CFG_RESET);
430	DELAY(100);
431	ARGE_WRITE(sc, AR71XX_MAC_MII_CFG, MAC_MII_CFG_CLOCK_DIV_28);
432	DELAY(100);
433
434	/*
435	 * Set all Ethernet address registers to the same initial values
436	 * set all four addresses to 66-88-aa-cc-dd-ee
437	 */
438	ARGE_WRITE(sc, AR71XX_MAC_STA_ADDR1,
439	    (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8)  | eaddr[5]);
440	ARGE_WRITE(sc, AR71XX_MAC_STA_ADDR2, (eaddr[0] << 8) | eaddr[1]);
441
442	ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG0,
443	    FIFO_CFG0_ALL << FIFO_CFG0_ENABLE_SHIFT);
444
445	switch (ar71xx_soc) {
446		case AR71XX_SOC_AR7240:
447		case AR71XX_SOC_AR7241:
448		case AR71XX_SOC_AR7242:
449			ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG1, 0x0010ffff);
450			ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG2, 0x015500aa);
451			break;
452		default:
453			ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG1, 0x0fff0000);
454			ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG2, 0x00001fff);
455	}
456
457	ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMATCH,
458	    FIFO_RX_FILTMATCH_DEFAULT);
459
460	ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMASK,
461	    FIFO_RX_FILTMASK_DEFAULT);
462
463	/*
464	 * Check if we have single-PHY MAC or multi-PHY
465	 */
466	phys_total = 0;
467	for (i = 0; i < ARGE_NPHY; i++)
468		if (phymask & (1 << i))
469			phys_total ++;
470
471	if (phys_total == 0) {
472		error = EINVAL;
473		goto fail;
474	}
475
476	if (phys_total == 1) {
477		/* Do MII setup. */
478		error = mii_attach(dev, &sc->arge_miibus, ifp,
479		    arge_ifmedia_upd, arge_ifmedia_sts, BMSR_DEFCAPMASK,
480		    MII_PHY_ANY, MII_OFFSET_ANY, 0);
481		if (error != 0) {
482			device_printf(dev, "attaching PHYs failed\n");
483			goto fail;
484		}
485	}
486	else {
487		ifmedia_init(&sc->arge_ifmedia, 0,
488		    arge_multiphy_mediachange,
489		    arge_multiphy_mediastatus);
490		ifmedia_add(&sc->arge_ifmedia,
491		    IFM_ETHER | sc->arge_media_type  | sc->arge_duplex_mode,
492		    0, NULL);
493		ifmedia_set(&sc->arge_ifmedia,
494		    IFM_ETHER | sc->arge_media_type  | sc->arge_duplex_mode);
495		arge_set_pll(sc, sc->arge_media_type, sc->arge_duplex_mode);
496	}
497
498	/* Call MI attach routine. */
499	ether_ifattach(ifp, eaddr);
500
501	/* Hook interrupt last to avoid having to lock softc */
502	error = bus_setup_intr(dev, sc->arge_irq, INTR_TYPE_NET | INTR_MPSAFE,
503	    arge_intr_filter, arge_intr, sc, &sc->arge_intrhand);
504
505	if (error) {
506		device_printf(dev, "couldn't set up irq\n");
507		ether_ifdetach(ifp);
508		goto fail;
509	}
510
511	/* setup sysctl variables */
512	arge_attach_sysctl(dev);
513
514fail:
515	if (error)
516		arge_detach(dev);
517
518	return (error);
519}
520
521static int
522arge_detach(device_t dev)
523{
524	struct arge_softc	*sc = device_get_softc(dev);
525	struct ifnet		*ifp = sc->arge_ifp;
526
527	KASSERT(mtx_initialized(&sc->arge_mtx), ("arge mutex not initialized"));
528
529	/* These should only be active if attach succeeded */
530	if (device_is_attached(dev)) {
531		ARGE_LOCK(sc);
532		sc->arge_detach = 1;
533#ifdef DEVICE_POLLING
534		if (ifp->if_capenable & IFCAP_POLLING)
535			ether_poll_deregister(ifp);
536#endif
537
538		arge_stop(sc);
539		ARGE_UNLOCK(sc);
540		taskqueue_drain(taskqueue_swi, &sc->arge_link_task);
541		ether_ifdetach(ifp);
542	}
543
544	if (sc->arge_miibus)
545		device_delete_child(dev, sc->arge_miibus);
546
547	bus_generic_detach(dev);
548
549	if (sc->arge_intrhand)
550		bus_teardown_intr(dev, sc->arge_irq, sc->arge_intrhand);
551
552	if (sc->arge_res)
553		bus_release_resource(dev, SYS_RES_MEMORY, sc->arge_rid,
554		    sc->arge_res);
555
556	if (ifp)
557		if_free(ifp);
558
559	arge_dma_free(sc);
560
561	mtx_destroy(&sc->arge_mtx);
562
563	return (0);
564
565}
566
567static int
568arge_suspend(device_t dev)
569{
570
571	panic("%s", __func__);
572	return 0;
573}
574
575static int
576arge_resume(device_t dev)
577{
578
579	panic("%s", __func__);
580	return 0;
581}
582
583static int
584arge_shutdown(device_t dev)
585{
586	struct arge_softc	*sc;
587
588	sc = device_get_softc(dev);
589
590	ARGE_LOCK(sc);
591	arge_stop(sc);
592	ARGE_UNLOCK(sc);
593
594	return (0);
595}
596
597static int
598arge_miibus_readreg(device_t dev, int phy, int reg)
599{
600	struct arge_softc * sc = device_get_softc(dev);
601	int i, result;
602	uint32_t addr = (phy << MAC_MII_PHY_ADDR_SHIFT)
603	    | (reg & MAC_MII_REG_MASK);
604
605	if ((sc->arge_phymask  & (1 << phy)) == 0)
606		return (0);
607
608	mtx_lock(&miibus_mtx);
609	ARGE_MII_WRITE(AR71XX_MAC_MII_CMD, MAC_MII_CMD_WRITE);
610	ARGE_MII_WRITE(AR71XX_MAC_MII_ADDR, addr);
611	ARGE_MII_WRITE(AR71XX_MAC_MII_CMD, MAC_MII_CMD_READ);
612
613	i = ARGE_MII_TIMEOUT;
614	while ((ARGE_MII_READ(AR71XX_MAC_MII_INDICATOR) &
615	    MAC_MII_INDICATOR_BUSY) && (i--))
616		DELAY(5);
617
618	if (i < 0) {
619		mtx_unlock(&miibus_mtx);
620		ARGEDEBUG(sc, ARGE_DBG_MII, "%s timedout\n", __func__);
621		/* XXX: return ERRNO istead? */
622		return (-1);
623	}
624
625	result = ARGE_MII_READ(AR71XX_MAC_MII_STATUS) & MAC_MII_STATUS_MASK;
626	ARGE_MII_WRITE(AR71XX_MAC_MII_CMD, MAC_MII_CMD_WRITE);
627	mtx_unlock(&miibus_mtx);
628
629	ARGEDEBUG(sc, ARGE_DBG_MII, "%s: phy=%d, reg=%02x, value[%08x]=%04x\n", __func__,
630		 phy, reg, addr, result);
631
632	return (result);
633}
634
635static int
636arge_miibus_writereg(device_t dev, int phy, int reg, int data)
637{
638	struct arge_softc * sc = device_get_softc(dev);
639	int i;
640	uint32_t addr =
641	    (phy << MAC_MII_PHY_ADDR_SHIFT) | (reg & MAC_MII_REG_MASK);
642
643
644	if ((sc->arge_phymask  & (1 << phy)) == 0)
645		return (-1);
646
647	ARGEDEBUG(sc, ARGE_DBG_MII, "%s: phy=%d, reg=%02x, value=%04x\n", __func__,
648	    phy, reg, data);
649
650	mtx_lock(&miibus_mtx);
651	ARGE_MII_WRITE(AR71XX_MAC_MII_ADDR, addr);
652	ARGE_MII_WRITE(AR71XX_MAC_MII_CONTROL, data);
653
654	i = ARGE_MII_TIMEOUT;
655	while ((ARGE_MII_READ(AR71XX_MAC_MII_INDICATOR) &
656	    MAC_MII_INDICATOR_BUSY) && (i--))
657		DELAY(5);
658
659	mtx_unlock(&miibus_mtx);
660
661	if (i < 0) {
662		ARGEDEBUG(sc, ARGE_DBG_MII, "%s timedout\n", __func__);
663		/* XXX: return ERRNO istead? */
664		return (-1);
665	}
666
667	return (0);
668}
669
670static void
671arge_miibus_statchg(device_t dev)
672{
673	struct arge_softc		*sc;
674
675	sc = device_get_softc(dev);
676	taskqueue_enqueue(taskqueue_swi, &sc->arge_link_task);
677}
678
679static void
680arge_link_task(void *arg, int pending)
681{
682	struct arge_softc	*sc;
683	struct mii_data		*mii;
684	struct ifnet		*ifp;
685	uint32_t		media, duplex;
686
687	sc = (struct arge_softc *)arg;
688
689	ARGE_LOCK(sc);
690	mii = device_get_softc(sc->arge_miibus);
691	ifp = sc->arge_ifp;
692	if (mii == NULL || ifp == NULL ||
693	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
694		ARGE_UNLOCK(sc);
695		return;
696	}
697
698	if (mii->mii_media_status & IFM_ACTIVE) {
699
700		media = IFM_SUBTYPE(mii->mii_media_active);
701
702		if (media != IFM_NONE) {
703			sc->arge_link_status = 1;
704			duplex = mii->mii_media_active & IFM_GMASK;
705			arge_set_pll(sc, media, duplex);
706		}
707	} else
708		sc->arge_link_status = 0;
709
710	ARGE_UNLOCK(sc);
711}
712
713static void
714arge_set_pll(struct arge_softc *sc, int media, int duplex)
715{
716	uint32_t		cfg, ifcontrol, rx_filtmask;
717	uint32_t		fifo_tx;
718	int if_speed;
719
720	cfg = ARGE_READ(sc, AR71XX_MAC_CFG2);
721	cfg &= ~(MAC_CFG2_IFACE_MODE_1000
722	    | MAC_CFG2_IFACE_MODE_10_100
723	    | MAC_CFG2_FULL_DUPLEX);
724
725	if (duplex == IFM_FDX)
726		cfg |= MAC_CFG2_FULL_DUPLEX;
727
728	ifcontrol = ARGE_READ(sc, AR71XX_MAC_IFCONTROL);
729	ifcontrol &= ~MAC_IFCONTROL_SPEED;
730	rx_filtmask =
731	    ARGE_READ(sc, AR71XX_MAC_FIFO_RX_FILTMASK);
732	rx_filtmask &= ~FIFO_RX_MASK_BYTE_MODE;
733
734	switch(media) {
735	case IFM_10_T:
736		cfg |= MAC_CFG2_IFACE_MODE_10_100;
737		if_speed = 10;
738		break;
739	case IFM_100_TX:
740		cfg |= MAC_CFG2_IFACE_MODE_10_100;
741		ifcontrol |= MAC_IFCONTROL_SPEED;
742		if_speed = 100;
743		break;
744	case IFM_1000_T:
745	case IFM_1000_SX:
746		cfg |= MAC_CFG2_IFACE_MODE_1000;
747		rx_filtmask |= FIFO_RX_MASK_BYTE_MODE;
748		if_speed = 1000;
749		break;
750	default:
751		if_speed = 100;
752		device_printf(sc->arge_dev,
753		    "Unknown media %d\n", media);
754	}
755
756	switch (ar71xx_soc) {
757		case AR71XX_SOC_AR7240:
758		case AR71XX_SOC_AR7241:
759		case AR71XX_SOC_AR7242:
760			fifo_tx = 0x01f00140;
761			break;
762		case AR71XX_SOC_AR9130:
763		case AR71XX_SOC_AR9132:
764			fifo_tx = 0x00780fff;
765			break;
766		default:
767			fifo_tx = 0x008001ff;
768	}
769
770	ARGE_WRITE(sc, AR71XX_MAC_CFG2, cfg);
771	ARGE_WRITE(sc, AR71XX_MAC_IFCONTROL, ifcontrol);
772	ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMASK,
773	    rx_filtmask);
774	ARGE_WRITE(sc, AR71XX_MAC_FIFO_TX_THRESHOLD, fifo_tx);
775
776	/* set PLL registers */
777	if (sc->arge_mac_unit == 0)
778		ar71xx_device_set_pll_ge0(if_speed);
779	else
780		ar71xx_device_set_pll_ge1(if_speed);
781}
782
783
784static void
785arge_reset_dma(struct arge_softc *sc)
786{
787	ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, 0);
788	ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL, 0);
789
790	ARGE_WRITE(sc, AR71XX_DMA_RX_DESC, 0);
791	ARGE_WRITE(sc, AR71XX_DMA_TX_DESC, 0);
792
793	/* Clear all possible RX interrupts */
794	while(ARGE_READ(sc, AR71XX_DMA_RX_STATUS) & DMA_RX_STATUS_PKT_RECVD)
795		ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_PKT_RECVD);
796
797	/*
798	 * Clear all possible TX interrupts
799	 */
800	while(ARGE_READ(sc, AR71XX_DMA_TX_STATUS) & DMA_TX_STATUS_PKT_SENT)
801		ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_PKT_SENT);
802
803	/*
804	 * Now Rx/Tx errors
805	 */
806	ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS,
807	    DMA_RX_STATUS_BUS_ERROR | DMA_RX_STATUS_OVERFLOW);
808	ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS,
809	    DMA_TX_STATUS_BUS_ERROR | DMA_TX_STATUS_UNDERRUN);
810}
811
812
813
814static void
815arge_init(void *xsc)
816{
817	struct arge_softc	 *sc = xsc;
818
819	ARGE_LOCK(sc);
820	arge_init_locked(sc);
821	ARGE_UNLOCK(sc);
822}
823
824static void
825arge_init_locked(struct arge_softc *sc)
826{
827	struct ifnet		*ifp = sc->arge_ifp;
828	struct mii_data		*mii;
829
830	ARGE_LOCK_ASSERT(sc);
831
832	arge_stop(sc);
833
834	/* Init circular RX list. */
835	if (arge_rx_ring_init(sc) != 0) {
836		device_printf(sc->arge_dev,
837		    "initialization failed: no memory for rx buffers\n");
838		arge_stop(sc);
839		return;
840	}
841
842	/* Init tx descriptors. */
843	arge_tx_ring_init(sc);
844
845	arge_reset_dma(sc);
846
847
848	if (sc->arge_miibus) {
849		sc->arge_link_status = 0;
850		mii = device_get_softc(sc->arge_miibus);
851		mii_mediachg(mii);
852	}
853	else {
854		/*
855		 * Sun always shines over multiPHY interface
856		 */
857		sc->arge_link_status = 1;
858	}
859
860	ifp->if_drv_flags |= IFF_DRV_RUNNING;
861	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
862
863	if (sc->arge_miibus)
864		callout_reset(&sc->arge_stat_callout, hz, arge_tick, sc);
865
866	ARGE_WRITE(sc, AR71XX_DMA_TX_DESC, ARGE_TX_RING_ADDR(sc, 0));
867	ARGE_WRITE(sc, AR71XX_DMA_RX_DESC, ARGE_RX_RING_ADDR(sc, 0));
868
869	/* Start listening */
870	ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, DMA_RX_CONTROL_EN);
871
872	/* Enable interrupts */
873	ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
874}
875
876/*
877 * Return whether the mbuf chain is correctly aligned
878 * for the arge TX engine.
879 *
880 * The TX engine requires each fragment to be aligned to a
881 * 4 byte boundary and the size of each fragment except
882 * the last to be a multiple of 4 bytes.
883 */
884static int
885arge_mbuf_chain_is_tx_aligned(struct mbuf *m0)
886{
887	struct mbuf *m;
888
889	for (m = m0; m != NULL; m = m->m_next) {
890		if((mtod(m, intptr_t) & 3) != 0)
891			return 0;
892		if ((m->m_next != NULL) && ((m->m_len & 0x03) != 0))
893			return 0;
894	}
895	return 1;
896}
897
898/*
899 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
900 * pointers to the fragment pointers.
901 */
902static int
903arge_encap(struct arge_softc *sc, struct mbuf **m_head)
904{
905	struct arge_txdesc	*txd;
906	struct arge_desc	*desc, *prev_desc;
907	bus_dma_segment_t	txsegs[ARGE_MAXFRAGS];
908	int			error, i, nsegs, prod, prev_prod;
909	struct mbuf		*m;
910
911	ARGE_LOCK_ASSERT(sc);
912
913	/*
914	 * Fix mbuf chain, all fragments should be 4 bytes aligned and
915	 * even 4 bytes
916	 */
917	m = *m_head;
918	if (! arge_mbuf_chain_is_tx_aligned(m)) {
919		sc->stats.tx_pkts_unaligned++;
920		m = m_defrag(*m_head, M_DONTWAIT);
921		if (m == NULL) {
922			*m_head = NULL;
923			return (ENOBUFS);
924		}
925		*m_head = m;
926	} else
927		sc->stats.tx_pkts_aligned++;
928
929	prod = sc->arge_cdata.arge_tx_prod;
930	txd = &sc->arge_cdata.arge_txdesc[prod];
931	error = bus_dmamap_load_mbuf_sg(sc->arge_cdata.arge_tx_tag,
932	    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
933
934	if (error == EFBIG) {
935		panic("EFBIG");
936	} else if (error != 0)
937		return (error);
938
939	if (nsegs == 0) {
940		m_freem(*m_head);
941		*m_head = NULL;
942		return (EIO);
943	}
944
945	/* Check number of available descriptors. */
946	if (sc->arge_cdata.arge_tx_cnt + nsegs >= (ARGE_TX_RING_COUNT - 1)) {
947		bus_dmamap_unload(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap);
948		return (ENOBUFS);
949	}
950
951	txd->tx_m = *m_head;
952	bus_dmamap_sync(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap,
953	    BUS_DMASYNC_PREWRITE);
954
955	/*
956	 * Make a list of descriptors for this packet. DMA controller will
957	 * walk through it while arge_link is not zero.
958	 */
959	prev_prod = prod;
960	desc = prev_desc = NULL;
961	for (i = 0; i < nsegs; i++) {
962		desc = &sc->arge_rdata.arge_tx_ring[prod];
963		desc->packet_ctrl = ARGE_DMASIZE(txsegs[i].ds_len);
964
965		if (txsegs[i].ds_addr & 3)
966			panic("TX packet address unaligned\n");
967
968		desc->packet_addr = txsegs[i].ds_addr;
969
970		/* link with previous descriptor */
971		if (prev_desc)
972			prev_desc->packet_ctrl |= ARGE_DESC_MORE;
973
974		sc->arge_cdata.arge_tx_cnt++;
975		prev_desc = desc;
976		ARGE_INC(prod, ARGE_TX_RING_COUNT);
977	}
978
979	/* Update producer index. */
980	sc->arge_cdata.arge_tx_prod = prod;
981
982	/* Sync descriptors. */
983	bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
984	    sc->arge_cdata.arge_tx_ring_map,
985	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
986
987	/* Start transmitting */
988	ARGEDEBUG(sc, ARGE_DBG_TX, "%s: setting DMA_TX_CONTROL_EN\n", __func__);
989	ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL, DMA_TX_CONTROL_EN);
990	return (0);
991}
992
993static void
994arge_start(struct ifnet *ifp)
995{
996	struct arge_softc	 *sc;
997
998	sc = ifp->if_softc;
999
1000	ARGE_LOCK(sc);
1001	arge_start_locked(ifp);
1002	ARGE_UNLOCK(sc);
1003}
1004
1005static void
1006arge_start_locked(struct ifnet *ifp)
1007{
1008	struct arge_softc	*sc;
1009	struct mbuf		*m_head;
1010	int			enq = 0;
1011
1012	sc = ifp->if_softc;
1013
1014	ARGE_LOCK_ASSERT(sc);
1015
1016	ARGEDEBUG(sc, ARGE_DBG_TX, "%s: beginning\n", __func__);
1017
1018	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1019	    IFF_DRV_RUNNING || sc->arge_link_status == 0 )
1020		return;
1021
1022	/*
1023	 * Before we go any further, check whether we're already full.
1024	 * The below check errors out immediately if the ring is full
1025	 * and never gets a chance to set this flag. Although it's
1026	 * likely never needed, this at least avoids an unexpected
1027	 * situation.
1028	 */
1029	if (sc->arge_cdata.arge_tx_cnt >= ARGE_TX_RING_COUNT - 2) {
1030		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1031		ARGEDEBUG(sc, ARGE_DBG_ERR, "%s: tx_cnt %d >= max %d; setting IFF_DRV_OACTIVE\n",
1032		    __func__, sc->arge_cdata.arge_tx_cnt, ARGE_TX_RING_COUNT - 2);
1033		return;
1034	}
1035
1036	arge_flush_ddr(sc);
1037
1038	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1039	    sc->arge_cdata.arge_tx_cnt < ARGE_TX_RING_COUNT - 2; ) {
1040		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1041		if (m_head == NULL)
1042			break;
1043
1044
1045		/*
1046		 * Pack the data into the transmit ring.
1047		 */
1048		if (arge_encap(sc, &m_head)) {
1049			if (m_head == NULL)
1050				break;
1051			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1052			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1053			break;
1054		}
1055
1056		enq++;
1057		/*
1058		 * If there's a BPF listener, bounce a copy of this frame
1059		 * to him.
1060		 */
1061		ETHER_BPF_MTAP(ifp, m_head);
1062	}
1063	ARGEDEBUG(sc, ARGE_DBG_TX, "%s: finished; queued %d packets\n", __func__, enq);
1064}
1065
1066static void
1067arge_stop(struct arge_softc *sc)
1068{
1069	struct ifnet	    *ifp;
1070
1071	ARGE_LOCK_ASSERT(sc);
1072
1073	ifp = sc->arge_ifp;
1074	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1075	if (sc->arge_miibus)
1076		callout_stop(&sc->arge_stat_callout);
1077
1078	/* mask out interrupts */
1079	ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
1080
1081	arge_reset_dma(sc);
1082}
1083
1084
1085static int
1086arge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1087{
1088	struct arge_softc		*sc = ifp->if_softc;
1089	struct ifreq		*ifr = (struct ifreq *) data;
1090	struct mii_data		*mii;
1091	int			error;
1092#ifdef DEVICE_POLLING
1093	int			mask;
1094#endif
1095
1096	switch (command) {
1097	case SIOCSIFFLAGS:
1098		ARGE_LOCK(sc);
1099		if ((ifp->if_flags & IFF_UP) != 0) {
1100			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1101				if (((ifp->if_flags ^ sc->arge_if_flags)
1102				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1103					/* XXX: handle promisc & multi flags */
1104				}
1105
1106			} else {
1107				if (!sc->arge_detach)
1108					arge_init_locked(sc);
1109			}
1110		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1111			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1112			arge_stop(sc);
1113		}
1114		sc->arge_if_flags = ifp->if_flags;
1115		ARGE_UNLOCK(sc);
1116		error = 0;
1117		break;
1118	case SIOCADDMULTI:
1119	case SIOCDELMULTI:
1120		/* XXX: implement SIOCDELMULTI */
1121		error = 0;
1122		break;
1123	case SIOCGIFMEDIA:
1124	case SIOCSIFMEDIA:
1125		if (sc->arge_miibus) {
1126			mii = device_get_softc(sc->arge_miibus);
1127			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1128		}
1129		else
1130			error = ifmedia_ioctl(ifp, ifr, &sc->arge_ifmedia, command);
1131		break;
1132	case SIOCSIFCAP:
1133		/* XXX: Check other capabilities */
1134#ifdef DEVICE_POLLING
1135		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
1136		if (mask & IFCAP_POLLING) {
1137			if (ifr->ifr_reqcap & IFCAP_POLLING) {
1138				ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
1139				error = ether_poll_register(arge_poll, ifp);
1140				if (error)
1141					return error;
1142				ARGE_LOCK(sc);
1143				ifp->if_capenable |= IFCAP_POLLING;
1144				ARGE_UNLOCK(sc);
1145			} else {
1146				ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
1147				error = ether_poll_deregister(ifp);
1148				ARGE_LOCK(sc);
1149				ifp->if_capenable &= ~IFCAP_POLLING;
1150				ARGE_UNLOCK(sc);
1151			}
1152		}
1153		error = 0;
1154		break;
1155#endif
1156	default:
1157		error = ether_ioctl(ifp, command, data);
1158		break;
1159	}
1160
1161	return (error);
1162}
1163
1164/*
1165 * Set media options.
1166 */
1167static int
1168arge_ifmedia_upd(struct ifnet *ifp)
1169{
1170	struct arge_softc		*sc;
1171	struct mii_data		*mii;
1172	struct mii_softc	*miisc;
1173	int			error;
1174
1175	sc = ifp->if_softc;
1176	ARGE_LOCK(sc);
1177	mii = device_get_softc(sc->arge_miibus);
1178	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1179		PHY_RESET(miisc);
1180	error = mii_mediachg(mii);
1181	ARGE_UNLOCK(sc);
1182
1183	return (error);
1184}
1185
1186/*
1187 * Report current media status.
1188 */
1189static void
1190arge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1191{
1192	struct arge_softc		*sc = ifp->if_softc;
1193	struct mii_data		*mii;
1194
1195	mii = device_get_softc(sc->arge_miibus);
1196	ARGE_LOCK(sc);
1197	mii_pollstat(mii);
1198	ifmr->ifm_active = mii->mii_media_active;
1199	ifmr->ifm_status = mii->mii_media_status;
1200	ARGE_UNLOCK(sc);
1201}
1202
1203struct arge_dmamap_arg {
1204	bus_addr_t	arge_busaddr;
1205};
1206
1207static void
1208arge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1209{
1210	struct arge_dmamap_arg	*ctx;
1211
1212	if (error != 0)
1213		return;
1214	ctx = arg;
1215	ctx->arge_busaddr = segs[0].ds_addr;
1216}
1217
1218static int
1219arge_dma_alloc(struct arge_softc *sc)
1220{
1221	struct arge_dmamap_arg	ctx;
1222	struct arge_txdesc	*txd;
1223	struct arge_rxdesc	*rxd;
1224	int			error, i;
1225
1226	/* Create parent DMA tag. */
1227	error = bus_dma_tag_create(
1228	    bus_get_dma_tag(sc->arge_dev),	/* parent */
1229	    1, 0,			/* alignment, boundary */
1230	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1231	    BUS_SPACE_MAXADDR,		/* highaddr */
1232	    NULL, NULL,			/* filter, filterarg */
1233	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1234	    0,				/* nsegments */
1235	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1236	    0,				/* flags */
1237	    NULL, NULL,			/* lockfunc, lockarg */
1238	    &sc->arge_cdata.arge_parent_tag);
1239	if (error != 0) {
1240		device_printf(sc->arge_dev, "failed to create parent DMA tag\n");
1241		goto fail;
1242	}
1243	/* Create tag for Tx ring. */
1244	error = bus_dma_tag_create(
1245	    sc->arge_cdata.arge_parent_tag,	/* parent */
1246	    ARGE_RING_ALIGN, 0,		/* alignment, boundary */
1247	    BUS_SPACE_MAXADDR,		/* lowaddr */
1248	    BUS_SPACE_MAXADDR,		/* highaddr */
1249	    NULL, NULL,			/* filter, filterarg */
1250	    ARGE_TX_DMA_SIZE,		/* maxsize */
1251	    1,				/* nsegments */
1252	    ARGE_TX_DMA_SIZE,		/* maxsegsize */
1253	    0,				/* flags */
1254	    NULL, NULL,			/* lockfunc, lockarg */
1255	    &sc->arge_cdata.arge_tx_ring_tag);
1256	if (error != 0) {
1257		device_printf(sc->arge_dev, "failed to create Tx ring DMA tag\n");
1258		goto fail;
1259	}
1260
1261	/* Create tag for Rx ring. */
1262	error = bus_dma_tag_create(
1263	    sc->arge_cdata.arge_parent_tag,	/* parent */
1264	    ARGE_RING_ALIGN, 0,		/* alignment, boundary */
1265	    BUS_SPACE_MAXADDR,		/* lowaddr */
1266	    BUS_SPACE_MAXADDR,		/* highaddr */
1267	    NULL, NULL,			/* filter, filterarg */
1268	    ARGE_RX_DMA_SIZE,		/* maxsize */
1269	    1,				/* nsegments */
1270	    ARGE_RX_DMA_SIZE,		/* maxsegsize */
1271	    0,				/* flags */
1272	    NULL, NULL,			/* lockfunc, lockarg */
1273	    &sc->arge_cdata.arge_rx_ring_tag);
1274	if (error != 0) {
1275		device_printf(sc->arge_dev, "failed to create Rx ring DMA tag\n");
1276		goto fail;
1277	}
1278
1279	/* Create tag for Tx buffers. */
1280	error = bus_dma_tag_create(
1281	    sc->arge_cdata.arge_parent_tag,	/* parent */
1282	    sizeof(uint32_t), 0,	/* alignment, boundary */
1283	    BUS_SPACE_MAXADDR,		/* lowaddr */
1284	    BUS_SPACE_MAXADDR,		/* highaddr */
1285	    NULL, NULL,			/* filter, filterarg */
1286	    MCLBYTES * ARGE_MAXFRAGS,	/* maxsize */
1287	    ARGE_MAXFRAGS,		/* nsegments */
1288	    MCLBYTES,			/* maxsegsize */
1289	    0,				/* flags */
1290	    NULL, NULL,			/* lockfunc, lockarg */
1291	    &sc->arge_cdata.arge_tx_tag);
1292	if (error != 0) {
1293		device_printf(sc->arge_dev, "failed to create Tx DMA tag\n");
1294		goto fail;
1295	}
1296
1297	/* Create tag for Rx buffers. */
1298	error = bus_dma_tag_create(
1299	    sc->arge_cdata.arge_parent_tag,	/* parent */
1300	    ARGE_RX_ALIGN, 0,		/* alignment, boundary */
1301	    BUS_SPACE_MAXADDR,		/* lowaddr */
1302	    BUS_SPACE_MAXADDR,		/* highaddr */
1303	    NULL, NULL,			/* filter, filterarg */
1304	    MCLBYTES,			/* maxsize */
1305	    ARGE_MAXFRAGS,		/* nsegments */
1306	    MCLBYTES,			/* maxsegsize */
1307	    0,				/* flags */
1308	    NULL, NULL,			/* lockfunc, lockarg */
1309	    &sc->arge_cdata.arge_rx_tag);
1310	if (error != 0) {
1311		device_printf(sc->arge_dev, "failed to create Rx DMA tag\n");
1312		goto fail;
1313	}
1314
1315	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1316	error = bus_dmamem_alloc(sc->arge_cdata.arge_tx_ring_tag,
1317	    (void **)&sc->arge_rdata.arge_tx_ring, BUS_DMA_WAITOK |
1318	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->arge_cdata.arge_tx_ring_map);
1319	if (error != 0) {
1320		device_printf(sc->arge_dev,
1321		    "failed to allocate DMA'able memory for Tx ring\n");
1322		goto fail;
1323	}
1324
1325	ctx.arge_busaddr = 0;
1326	error = bus_dmamap_load(sc->arge_cdata.arge_tx_ring_tag,
1327	    sc->arge_cdata.arge_tx_ring_map, sc->arge_rdata.arge_tx_ring,
1328	    ARGE_TX_DMA_SIZE, arge_dmamap_cb, &ctx, 0);
1329	if (error != 0 || ctx.arge_busaddr == 0) {
1330		device_printf(sc->arge_dev,
1331		    "failed to load DMA'able memory for Tx ring\n");
1332		goto fail;
1333	}
1334	sc->arge_rdata.arge_tx_ring_paddr = ctx.arge_busaddr;
1335
1336	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1337	error = bus_dmamem_alloc(sc->arge_cdata.arge_rx_ring_tag,
1338	    (void **)&sc->arge_rdata.arge_rx_ring, BUS_DMA_WAITOK |
1339	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->arge_cdata.arge_rx_ring_map);
1340	if (error != 0) {
1341		device_printf(sc->arge_dev,
1342		    "failed to allocate DMA'able memory for Rx ring\n");
1343		goto fail;
1344	}
1345
1346	ctx.arge_busaddr = 0;
1347	error = bus_dmamap_load(sc->arge_cdata.arge_rx_ring_tag,
1348	    sc->arge_cdata.arge_rx_ring_map, sc->arge_rdata.arge_rx_ring,
1349	    ARGE_RX_DMA_SIZE, arge_dmamap_cb, &ctx, 0);
1350	if (error != 0 || ctx.arge_busaddr == 0) {
1351		device_printf(sc->arge_dev,
1352		    "failed to load DMA'able memory for Rx ring\n");
1353		goto fail;
1354	}
1355	sc->arge_rdata.arge_rx_ring_paddr = ctx.arge_busaddr;
1356
1357	/* Create DMA maps for Tx buffers. */
1358	for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
1359		txd = &sc->arge_cdata.arge_txdesc[i];
1360		txd->tx_m = NULL;
1361		txd->tx_dmamap = NULL;
1362		error = bus_dmamap_create(sc->arge_cdata.arge_tx_tag, 0,
1363		    &txd->tx_dmamap);
1364		if (error != 0) {
1365			device_printf(sc->arge_dev,
1366			    "failed to create Tx dmamap\n");
1367			goto fail;
1368		}
1369	}
1370	/* Create DMA maps for Rx buffers. */
1371	if ((error = bus_dmamap_create(sc->arge_cdata.arge_rx_tag, 0,
1372	    &sc->arge_cdata.arge_rx_sparemap)) != 0) {
1373		device_printf(sc->arge_dev,
1374		    "failed to create spare Rx dmamap\n");
1375		goto fail;
1376	}
1377	for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
1378		rxd = &sc->arge_cdata.arge_rxdesc[i];
1379		rxd->rx_m = NULL;
1380		rxd->rx_dmamap = NULL;
1381		error = bus_dmamap_create(sc->arge_cdata.arge_rx_tag, 0,
1382		    &rxd->rx_dmamap);
1383		if (error != 0) {
1384			device_printf(sc->arge_dev,
1385			    "failed to create Rx dmamap\n");
1386			goto fail;
1387		}
1388	}
1389
1390fail:
1391	return (error);
1392}
1393
1394static void
1395arge_dma_free(struct arge_softc *sc)
1396{
1397	struct arge_txdesc	*txd;
1398	struct arge_rxdesc	*rxd;
1399	int			i;
1400
1401	/* Tx ring. */
1402	if (sc->arge_cdata.arge_tx_ring_tag) {
1403		if (sc->arge_cdata.arge_tx_ring_map)
1404			bus_dmamap_unload(sc->arge_cdata.arge_tx_ring_tag,
1405			    sc->arge_cdata.arge_tx_ring_map);
1406		if (sc->arge_cdata.arge_tx_ring_map &&
1407		    sc->arge_rdata.arge_tx_ring)
1408			bus_dmamem_free(sc->arge_cdata.arge_tx_ring_tag,
1409			    sc->arge_rdata.arge_tx_ring,
1410			    sc->arge_cdata.arge_tx_ring_map);
1411		sc->arge_rdata.arge_tx_ring = NULL;
1412		sc->arge_cdata.arge_tx_ring_map = NULL;
1413		bus_dma_tag_destroy(sc->arge_cdata.arge_tx_ring_tag);
1414		sc->arge_cdata.arge_tx_ring_tag = NULL;
1415	}
1416	/* Rx ring. */
1417	if (sc->arge_cdata.arge_rx_ring_tag) {
1418		if (sc->arge_cdata.arge_rx_ring_map)
1419			bus_dmamap_unload(sc->arge_cdata.arge_rx_ring_tag,
1420			    sc->arge_cdata.arge_rx_ring_map);
1421		if (sc->arge_cdata.arge_rx_ring_map &&
1422		    sc->arge_rdata.arge_rx_ring)
1423			bus_dmamem_free(sc->arge_cdata.arge_rx_ring_tag,
1424			    sc->arge_rdata.arge_rx_ring,
1425			    sc->arge_cdata.arge_rx_ring_map);
1426		sc->arge_rdata.arge_rx_ring = NULL;
1427		sc->arge_cdata.arge_rx_ring_map = NULL;
1428		bus_dma_tag_destroy(sc->arge_cdata.arge_rx_ring_tag);
1429		sc->arge_cdata.arge_rx_ring_tag = NULL;
1430	}
1431	/* Tx buffers. */
1432	if (sc->arge_cdata.arge_tx_tag) {
1433		for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
1434			txd = &sc->arge_cdata.arge_txdesc[i];
1435			if (txd->tx_dmamap) {
1436				bus_dmamap_destroy(sc->arge_cdata.arge_tx_tag,
1437				    txd->tx_dmamap);
1438				txd->tx_dmamap = NULL;
1439			}
1440		}
1441		bus_dma_tag_destroy(sc->arge_cdata.arge_tx_tag);
1442		sc->arge_cdata.arge_tx_tag = NULL;
1443	}
1444	/* Rx buffers. */
1445	if (sc->arge_cdata.arge_rx_tag) {
1446		for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
1447			rxd = &sc->arge_cdata.arge_rxdesc[i];
1448			if (rxd->rx_dmamap) {
1449				bus_dmamap_destroy(sc->arge_cdata.arge_rx_tag,
1450				    rxd->rx_dmamap);
1451				rxd->rx_dmamap = NULL;
1452			}
1453		}
1454		if (sc->arge_cdata.arge_rx_sparemap) {
1455			bus_dmamap_destroy(sc->arge_cdata.arge_rx_tag,
1456			    sc->arge_cdata.arge_rx_sparemap);
1457			sc->arge_cdata.arge_rx_sparemap = 0;
1458		}
1459		bus_dma_tag_destroy(sc->arge_cdata.arge_rx_tag);
1460		sc->arge_cdata.arge_rx_tag = NULL;
1461	}
1462
1463	if (sc->arge_cdata.arge_parent_tag) {
1464		bus_dma_tag_destroy(sc->arge_cdata.arge_parent_tag);
1465		sc->arge_cdata.arge_parent_tag = NULL;
1466	}
1467}
1468
1469/*
1470 * Initialize the transmit descriptors.
1471 */
1472static int
1473arge_tx_ring_init(struct arge_softc *sc)
1474{
1475	struct arge_ring_data	*rd;
1476	struct arge_txdesc	*txd;
1477	bus_addr_t		addr;
1478	int			i;
1479
1480	sc->arge_cdata.arge_tx_prod = 0;
1481	sc->arge_cdata.arge_tx_cons = 0;
1482	sc->arge_cdata.arge_tx_cnt = 0;
1483
1484	rd = &sc->arge_rdata;
1485	bzero(rd->arge_tx_ring, sizeof(rd->arge_tx_ring));
1486	for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
1487		if (i == ARGE_TX_RING_COUNT - 1)
1488			addr = ARGE_TX_RING_ADDR(sc, 0);
1489		else
1490			addr = ARGE_TX_RING_ADDR(sc, i + 1);
1491		rd->arge_tx_ring[i].packet_ctrl = ARGE_DESC_EMPTY;
1492		rd->arge_tx_ring[i].next_desc = addr;
1493		txd = &sc->arge_cdata.arge_txdesc[i];
1494		txd->tx_m = NULL;
1495	}
1496
1497	bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
1498	    sc->arge_cdata.arge_tx_ring_map,
1499	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1500
1501	return (0);
1502}
1503
1504/*
1505 * Initialize the RX descriptors and allocate mbufs for them. Note that
1506 * we arrange the descriptors in a closed ring, so that the last descriptor
1507 * points back to the first.
1508 */
1509static int
1510arge_rx_ring_init(struct arge_softc *sc)
1511{
1512	struct arge_ring_data	*rd;
1513	struct arge_rxdesc	*rxd;
1514	bus_addr_t		addr;
1515	int			i;
1516
1517	sc->arge_cdata.arge_rx_cons = 0;
1518
1519	rd = &sc->arge_rdata;
1520	bzero(rd->arge_rx_ring, sizeof(rd->arge_rx_ring));
1521	for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
1522		rxd = &sc->arge_cdata.arge_rxdesc[i];
1523		rxd->rx_m = NULL;
1524		rxd->desc = &rd->arge_rx_ring[i];
1525		if (i == ARGE_RX_RING_COUNT - 1)
1526			addr = ARGE_RX_RING_ADDR(sc, 0);
1527		else
1528			addr = ARGE_RX_RING_ADDR(sc, i + 1);
1529		rd->arge_rx_ring[i].next_desc = addr;
1530		if (arge_newbuf(sc, i) != 0) {
1531			return (ENOBUFS);
1532		}
1533	}
1534
1535	bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
1536	    sc->arge_cdata.arge_rx_ring_map,
1537	    BUS_DMASYNC_PREWRITE);
1538
1539	return (0);
1540}
1541
1542/*
1543 * Initialize an RX descriptor and attach an MBUF cluster.
1544 */
1545static int
1546arge_newbuf(struct arge_softc *sc, int idx)
1547{
1548	struct arge_desc		*desc;
1549	struct arge_rxdesc	*rxd;
1550	struct mbuf		*m;
1551	bus_dma_segment_t	segs[1];
1552	bus_dmamap_t		map;
1553	int			nsegs;
1554
1555	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1556	if (m == NULL)
1557		return (ENOBUFS);
1558	m->m_len = m->m_pkthdr.len = MCLBYTES;
1559	m_adj(m, sizeof(uint64_t));
1560
1561	if (bus_dmamap_load_mbuf_sg(sc->arge_cdata.arge_rx_tag,
1562	    sc->arge_cdata.arge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1563		m_freem(m);
1564		return (ENOBUFS);
1565	}
1566	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1567
1568	rxd = &sc->arge_cdata.arge_rxdesc[idx];
1569	if (rxd->rx_m != NULL) {
1570		bus_dmamap_unload(sc->arge_cdata.arge_rx_tag, rxd->rx_dmamap);
1571	}
1572	map = rxd->rx_dmamap;
1573	rxd->rx_dmamap = sc->arge_cdata.arge_rx_sparemap;
1574	sc->arge_cdata.arge_rx_sparemap = map;
1575	rxd->rx_m = m;
1576	desc = rxd->desc;
1577	if (segs[0].ds_addr & 3)
1578		panic("RX packet address unaligned");
1579	desc->packet_addr = segs[0].ds_addr;
1580	desc->packet_ctrl = ARGE_DESC_EMPTY | ARGE_DMASIZE(segs[0].ds_len);
1581
1582	bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
1583	    sc->arge_cdata.arge_rx_ring_map,
1584	    BUS_DMASYNC_PREWRITE);
1585
1586	return (0);
1587}
1588
1589static __inline void
1590arge_fixup_rx(struct mbuf *m)
1591{
1592	int		i;
1593	uint16_t	*src, *dst;
1594
1595	src = mtod(m, uint16_t *);
1596	dst = src - 1;
1597
1598	for (i = 0; i < m->m_len / sizeof(uint16_t); i++) {
1599		*dst++ = *src++;
1600	}
1601
1602	if (m->m_len % sizeof(uint16_t))
1603		*(uint8_t *)dst = *(uint8_t *)src;
1604
1605	m->m_data -= ETHER_ALIGN;
1606}
1607
1608#ifdef DEVICE_POLLING
1609static int
1610arge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1611{
1612	struct arge_softc *sc = ifp->if_softc;
1613	int rx_npkts = 0;
1614
1615	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1616		ARGE_LOCK(sc);
1617		arge_tx_locked(sc);
1618		rx_npkts = arge_rx_locked(sc);
1619		ARGE_UNLOCK(sc);
1620	}
1621
1622	return (rx_npkts);
1623}
1624#endif /* DEVICE_POLLING */
1625
1626
1627static void
1628arge_tx_locked(struct arge_softc *sc)
1629{
1630	struct arge_txdesc	*txd;
1631	struct arge_desc	*cur_tx;
1632	struct ifnet		*ifp;
1633	uint32_t		ctrl;
1634	int			cons, prod;
1635
1636	ARGE_LOCK_ASSERT(sc);
1637
1638	cons = sc->arge_cdata.arge_tx_cons;
1639	prod = sc->arge_cdata.arge_tx_prod;
1640
1641	ARGEDEBUG(sc, ARGE_DBG_TX, "%s: cons=%d, prod=%d\n", __func__, cons, prod);
1642
1643	if (cons == prod)
1644		return;
1645
1646	bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
1647	    sc->arge_cdata.arge_tx_ring_map,
1648	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1649
1650	ifp = sc->arge_ifp;
1651	/*
1652	 * Go through our tx list and free mbufs for those
1653	 * frames that have been transmitted.
1654	 */
1655	for (; cons != prod; ARGE_INC(cons, ARGE_TX_RING_COUNT)) {
1656		cur_tx = &sc->arge_rdata.arge_tx_ring[cons];
1657		ctrl = cur_tx->packet_ctrl;
1658		/* Check if descriptor has "finished" flag */
1659		if ((ctrl & ARGE_DESC_EMPTY) == 0)
1660			break;
1661
1662		ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_PKT_SENT);
1663
1664		sc->arge_cdata.arge_tx_cnt--;
1665		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1666
1667		txd = &sc->arge_cdata.arge_txdesc[cons];
1668
1669		ifp->if_opackets++;
1670
1671		bus_dmamap_sync(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap,
1672		    BUS_DMASYNC_POSTWRITE);
1673		bus_dmamap_unload(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap);
1674
1675		/* Free only if it's first descriptor in list */
1676		if (txd->tx_m)
1677			m_freem(txd->tx_m);
1678		txd->tx_m = NULL;
1679
1680		/* reset descriptor */
1681		cur_tx->packet_addr = 0;
1682	}
1683
1684	sc->arge_cdata.arge_tx_cons = cons;
1685
1686	bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
1687	    sc->arge_cdata.arge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1688}
1689
1690
1691static int
1692arge_rx_locked(struct arge_softc *sc)
1693{
1694	struct arge_rxdesc	*rxd;
1695	struct ifnet		*ifp = sc->arge_ifp;
1696	int			cons, prog, packet_len, i;
1697	struct arge_desc	*cur_rx;
1698	struct mbuf		*m;
1699	int			rx_npkts = 0;
1700
1701	ARGE_LOCK_ASSERT(sc);
1702
1703	cons = sc->arge_cdata.arge_rx_cons;
1704
1705	bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
1706	    sc->arge_cdata.arge_rx_ring_map,
1707	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1708
1709	for (prog = 0; prog < ARGE_RX_RING_COUNT;
1710	    ARGE_INC(cons, ARGE_RX_RING_COUNT)) {
1711		cur_rx = &sc->arge_rdata.arge_rx_ring[cons];
1712		rxd = &sc->arge_cdata.arge_rxdesc[cons];
1713		m = rxd->rx_m;
1714
1715		if ((cur_rx->packet_ctrl & ARGE_DESC_EMPTY) != 0)
1716		       break;
1717
1718		ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_PKT_RECVD);
1719
1720		prog++;
1721
1722		packet_len = ARGE_DMASIZE(cur_rx->packet_ctrl);
1723		bus_dmamap_sync(sc->arge_cdata.arge_rx_tag, rxd->rx_dmamap,
1724		    BUS_DMASYNC_POSTREAD);
1725		m = rxd->rx_m;
1726
1727		arge_fixup_rx(m);
1728		m->m_pkthdr.rcvif = ifp;
1729		/* Skip 4 bytes of CRC */
1730		m->m_pkthdr.len = m->m_len = packet_len - ETHER_CRC_LEN;
1731		ifp->if_ipackets++;
1732		rx_npkts++;
1733
1734		ARGE_UNLOCK(sc);
1735		(*ifp->if_input)(ifp, m);
1736		ARGE_LOCK(sc);
1737		cur_rx->packet_addr = 0;
1738	}
1739
1740	if (prog > 0) {
1741
1742		i = sc->arge_cdata.arge_rx_cons;
1743		for (; prog > 0 ; prog--) {
1744			if (arge_newbuf(sc, i) != 0) {
1745				device_printf(sc->arge_dev,
1746				    "Failed to allocate buffer\n");
1747				break;
1748			}
1749			ARGE_INC(i, ARGE_RX_RING_COUNT);
1750		}
1751
1752		bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
1753		    sc->arge_cdata.arge_rx_ring_map,
1754		    BUS_DMASYNC_PREWRITE);
1755
1756		sc->arge_cdata.arge_rx_cons = cons;
1757	}
1758
1759	return (rx_npkts);
1760}
1761
1762static int
1763arge_intr_filter(void *arg)
1764{
1765	struct arge_softc	*sc = arg;
1766	uint32_t		status, ints;
1767
1768	status = ARGE_READ(sc, AR71XX_DMA_INTR_STATUS);
1769	ints = ARGE_READ(sc, AR71XX_DMA_INTR);
1770
1771	ARGEDEBUG(sc, ARGE_DBG_INTR, "int mask(filter) = %b\n", ints,
1772	    "\20\10RX_BUS_ERROR\7RX_OVERFLOW\5RX_PKT_RCVD"
1773	    "\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
1774	ARGEDEBUG(sc, ARGE_DBG_INTR, "status(filter) = %b\n", status,
1775	    "\20\10RX_BUS_ERROR\7RX_OVERFLOW\5RX_PKT_RCVD"
1776	    "\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
1777
1778	if (status & DMA_INTR_ALL) {
1779		sc->arge_intr_status |= status;
1780		ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
1781		return (FILTER_SCHEDULE_THREAD);
1782	}
1783
1784	sc->arge_intr_status = 0;
1785	return (FILTER_STRAY);
1786}
1787
1788static void
1789arge_intr(void *arg)
1790{
1791	struct arge_softc	*sc = arg;
1792	uint32_t		status;
1793	struct ifnet		*ifp = sc->arge_ifp;
1794
1795	status = ARGE_READ(sc, AR71XX_DMA_INTR_STATUS);
1796	status |= sc->arge_intr_status;
1797
1798	ARGEDEBUG(sc, ARGE_DBG_INTR, "int status(intr) = %b\n", status,
1799	    "\20\10\7RX_OVERFLOW\5RX_PKT_RCVD"
1800	    "\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
1801
1802	/*
1803	 * Is it our interrupt at all?
1804	 */
1805	if (status == 0)
1806		return;
1807
1808	if (status & DMA_INTR_RX_BUS_ERROR) {
1809		ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_BUS_ERROR);
1810		device_printf(sc->arge_dev, "RX bus error");
1811		return;
1812	}
1813
1814	if (status & DMA_INTR_TX_BUS_ERROR) {
1815		ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_BUS_ERROR);
1816		device_printf(sc->arge_dev, "TX bus error");
1817		return;
1818	}
1819
1820	ARGE_LOCK(sc);
1821
1822	if (status & DMA_INTR_RX_PKT_RCVD)
1823		arge_rx_locked(sc);
1824
1825	/*
1826	 * RX overrun disables the receiver.
1827	 * Clear indication and re-enable rx.
1828	 */
1829	if ( status & DMA_INTR_RX_OVERFLOW) {
1830		ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_OVERFLOW);
1831		ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, DMA_RX_CONTROL_EN);
1832		sc->stats.rx_overflow++;
1833	}
1834
1835	if (status & DMA_INTR_TX_PKT_SENT)
1836		arge_tx_locked(sc);
1837	/*
1838	 * Underrun turns off TX. Clear underrun indication.
1839	 * If there's anything left in the ring, reactivate the tx.
1840	 */
1841	if (status & DMA_INTR_TX_UNDERRUN) {
1842		ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_UNDERRUN);
1843		sc->stats.tx_underflow++;
1844		ARGEDEBUG(sc, ARGE_DBG_TX, "%s: TX underrun; tx_cnt=%d\n", __func__, sc->arge_cdata.arge_tx_cnt);
1845		if (sc->arge_cdata.arge_tx_cnt > 0 ) {
1846			ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL,
1847			    DMA_TX_CONTROL_EN);
1848		}
1849	}
1850
1851	/*
1852	 * If we've finished TXing and there's space for more packets
1853	 * to be queued for TX, do so. Otherwise we may end up in a
1854	 * situation where the interface send queue was filled
1855	 * whilst the hardware queue was full, then the hardware
1856	 * queue was drained by the interface send queue wasn't,
1857	 * and thus if_start() is never called to kick-start
1858	 * the send process (and all subsequent packets are simply
1859	 * discarded.
1860	 *
1861	 * XXX TODO: make sure that the hardware deals nicely
1862	 * with the possibility of the queue being enabled above
1863	 * after a TX underrun, then having the hardware queue added
1864	 * to below.
1865	 */
1866	if (status & (DMA_INTR_TX_PKT_SENT | DMA_INTR_TX_UNDERRUN) &&
1867	    (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
1868		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1869			arge_start_locked(ifp);
1870	}
1871
1872	/*
1873	 * We handled all bits, clear status
1874	 */
1875	sc->arge_intr_status = 0;
1876	ARGE_UNLOCK(sc);
1877	/*
1878	 * re-enable all interrupts
1879	 */
1880	ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
1881}
1882
1883
1884static void
1885arge_tick(void *xsc)
1886{
1887	struct arge_softc	*sc = xsc;
1888	struct mii_data		*mii;
1889
1890	ARGE_LOCK_ASSERT(sc);
1891
1892	if (sc->arge_miibus) {
1893		mii = device_get_softc(sc->arge_miibus);
1894		mii_tick(mii);
1895		callout_reset(&sc->arge_stat_callout, hz, arge_tick, sc);
1896	}
1897}
1898
1899int
1900arge_multiphy_mediachange(struct ifnet *ifp)
1901{
1902	struct arge_softc *sc = ifp->if_softc;
1903	struct ifmedia *ifm = &sc->arge_ifmedia;
1904	struct ifmedia_entry *ife = ifm->ifm_cur;
1905
1906	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1907		return (EINVAL);
1908
1909	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
1910		device_printf(sc->arge_dev,
1911		    "AUTO is not supported for multiphy MAC");
1912		return (EINVAL);
1913	}
1914
1915	/*
1916	 * Ignore everything
1917	 */
1918	return (0);
1919}
1920
1921void
1922arge_multiphy_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1923{
1924	struct arge_softc *sc = ifp->if_softc;
1925
1926	ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
1927	ifmr->ifm_active = IFM_ETHER | sc->arge_media_type |
1928	    sc->arge_duplex_mode;
1929}
1930
1931