uipc_usrreq.c revision 233803
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004-2009 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * UNIX Domain (Local) Sockets
36 *
37 * This is an implementation of UNIX (local) domain sockets.  Each socket has
38 * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39 * may be connected to 0 or 1 other socket.  Datagram sockets may be
40 * connected to 0, 1, or many other sockets.  Sockets may be created and
41 * connected in pairs (socketpair(2)), or bound/connected to using the file
42 * system name space.  For most purposes, only the receive socket buffer is
43 * used, as sending on one socket delivers directly to the receive socket
44 * buffer of a second socket.
45 *
46 * The implementation is substantially complicated by the fact that
47 * "ancillary data", such as file descriptors or credentials, may be passed
48 * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49 * over other UNIX domain sockets requires the implementation of a simple
50 * garbage collector to find and tear down cycles of disconnected sockets.
51 *
52 * TODO:
53 *	RDM
54 *	distinguish datagram size limits from flow control limits in SEQPACKET
55 *	rethink name space problems
56 *	need a proper out-of-band
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: stable/9/sys/kern/uipc_usrreq.c 233803 2012-04-02 19:01:32Z trociny $");
61
62#include "opt_ddb.h"
63
64#include <sys/param.h>
65#include <sys/domain.h>
66#include <sys/fcntl.h>
67#include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68#include <sys/eventhandler.h>
69#include <sys/file.h>
70#include <sys/filedesc.h>
71#include <sys/kernel.h>
72#include <sys/lock.h>
73#include <sys/mbuf.h>
74#include <sys/mount.h>
75#include <sys/mutex.h>
76#include <sys/namei.h>
77#include <sys/proc.h>
78#include <sys/protosw.h>
79#include <sys/queue.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/socket.h>
83#include <sys/socketvar.h>
84#include <sys/signalvar.h>
85#include <sys/stat.h>
86#include <sys/sx.h>
87#include <sys/sysctl.h>
88#include <sys/systm.h>
89#include <sys/taskqueue.h>
90#include <sys/un.h>
91#include <sys/unpcb.h>
92#include <sys/vnode.h>
93
94#include <net/vnet.h>
95
96#ifdef DDB
97#include <ddb/ddb.h>
98#endif
99
100#include <security/mac/mac_framework.h>
101
102#include <vm/uma.h>
103
104/*
105 * Locking key:
106 * (l)	Locked using list lock
107 * (g)	Locked using linkage lock
108 */
109
110static uma_zone_t	unp_zone;
111static unp_gen_t	unp_gencnt;	/* (l) */
112static u_int		unp_count;	/* (l) Count of local sockets. */
113static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
114static int		unp_rights;	/* (g) File descriptors in flight. */
115static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
116static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
117static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
118
119struct unp_defer {
120	SLIST_ENTRY(unp_defer) ud_link;
121	struct file *ud_fp;
122};
123static SLIST_HEAD(, unp_defer) unp_defers;
124static int unp_defers_count;
125
126static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
127
128/*
129 * Garbage collection of cyclic file descriptor/socket references occurs
130 * asynchronously in a taskqueue context in order to avoid recursion and
131 * reentrance in the UNIX domain socket, file descriptor, and socket layer
132 * code.  See unp_gc() for a full description.
133 */
134static struct task	unp_gc_task;
135
136/*
137 * The close of unix domain sockets attached as SCM_RIGHTS is
138 * postponed to the taskqueue, to avoid arbitrary recursion depth.
139 * The attached sockets might have another sockets attached.
140 */
141static struct task	unp_defer_task;
142
143/*
144 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145 * stream sockets, although the total for sender and receiver is actually
146 * only PIPSIZ.
147 *
148 * Datagram sockets really use the sendspace as the maximum datagram size,
149 * and don't really want to reserve the sendspace.  Their recvspace should be
150 * large enough for at least one max-size datagram plus address.
151 */
152#ifndef PIPSIZ
153#define	PIPSIZ	8192
154#endif
155static u_long	unpst_sendspace = PIPSIZ;
156static u_long	unpst_recvspace = PIPSIZ;
157static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
158static u_long	unpdg_recvspace = 4*1024;
159static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160static u_long	unpsp_recvspace = PIPSIZ;
161
162SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
163SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, "SOCK_STREAM");
164SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
165SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
166    "SOCK_SEQPACKET");
167
168SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
169	   &unpst_sendspace, 0, "Default stream send space.");
170SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
171	   &unpst_recvspace, 0, "Default stream receive space.");
172SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
173	   &unpdg_sendspace, 0, "Default datagram send space.");
174SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
175	   &unpdg_recvspace, 0, "Default datagram receive space.");
176SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
177	   &unpsp_sendspace, 0, "Default seqpacket send space.");
178SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
179	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
180SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
181    "File descriptors in flight.");
182SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
183    &unp_defers_count, 0,
184    "File descriptors deferred to taskqueue for close.");
185
186/*
187 * Locking and synchronization:
188 *
189 * Three types of locks exit in the local domain socket implementation: a
190 * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
191 * global locks, the list lock protects the socket count, global generation
192 * number, and stream/datagram global lists.  The linkage lock protects the
193 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
194 * held exclusively over the acquisition of multiple unpcb locks to prevent
195 * deadlock.
196 *
197 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
198 * allocated in pru_attach() and freed in pru_detach().  The validity of that
199 * pointer is an invariant, so no lock is required to dereference the so_pcb
200 * pointer if a valid socket reference is held by the caller.  In practice,
201 * this is always true during operations performed on a socket.  Each unpcb
202 * has a back-pointer to its socket, unp_socket, which will be stable under
203 * the same circumstances.
204 *
205 * This pointer may only be safely dereferenced as long as a valid reference
206 * to the unpcb is held.  Typically, this reference will be from the socket,
207 * or from another unpcb when the referring unpcb's lock is held (in order
208 * that the reference not be invalidated during use).  For example, to follow
209 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
210 * as unp_socket remains valid as long as the reference to unp_conn is valid.
211 *
212 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
213 * atomic reads without the lock may be performed "lockless", but more
214 * complex reads and read-modify-writes require the mutex to be held.  No
215 * lock order is defined between unpcb locks -- multiple unpcb locks may be
216 * acquired at the same time only when holding the linkage rwlock
217 * exclusively, which prevents deadlocks.
218 *
219 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
220 * protocols, bind() is a non-atomic operation, and connect() requires
221 * potential sleeping in the protocol, due to potentially waiting on local or
222 * distributed file systems.  We try to separate "lookup" operations, which
223 * may sleep, and the IPC operations themselves, which typically can occur
224 * with relative atomicity as locks can be held over the entire operation.
225 *
226 * Another tricky issue is simultaneous multi-threaded or multi-process
227 * access to a single UNIX domain socket.  These are handled by the flags
228 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
229 * binding, both of which involve dropping UNIX domain socket locks in order
230 * to perform namei() and other file system operations.
231 */
232static struct rwlock	unp_link_rwlock;
233static struct mtx	unp_list_lock;
234static struct mtx	unp_defers_lock;
235
236#define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
237					    "unp_link_rwlock")
238
239#define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
240					    RA_LOCKED)
241#define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
242					    RA_UNLOCKED)
243
244#define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
245#define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
246#define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
247#define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
248#define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
249					    RA_WLOCKED)
250
251#define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
252					    "unp_list_lock", NULL, MTX_DEF)
253#define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
254#define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
255
256#define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
257					    "unp_defer", NULL, MTX_DEF)
258#define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
259#define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
260
261#define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
262					    "unp_mtx", "unp_mtx",	\
263					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
264#define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
265#define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
266#define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
267#define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
268
269static int	uipc_connect2(struct socket *, struct socket *);
270static int	uipc_ctloutput(struct socket *, struct sockopt *);
271static int	unp_connect(struct socket *, struct sockaddr *,
272		    struct thread *);
273static int	unp_connect2(struct socket *so, struct socket *so2, int);
274static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
275static void	unp_dispose(struct mbuf *);
276static void	unp_shutdown(struct unpcb *);
277static void	unp_drop(struct unpcb *, int);
278static void	unp_gc(__unused void *, int);
279static void	unp_scan(struct mbuf *, void (*)(struct file *));
280static void	unp_discard(struct file *);
281static void	unp_freerights(struct file **, int);
282static void	unp_init(void);
283static int	unp_internalize(struct mbuf **, struct thread *);
284static void	unp_internalize_fp(struct file *);
285static int	unp_externalize(struct mbuf *, struct mbuf **);
286static int	unp_externalize_fp(struct file *);
287static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
288static void	unp_process_defers(void * __unused, int);
289
290/*
291 * Definitions of protocols supported in the LOCAL domain.
292 */
293static struct domain localdomain;
294static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
295static struct pr_usrreqs uipc_usrreqs_seqpacket;
296static struct protosw localsw[] = {
297{
298	.pr_type =		SOCK_STREAM,
299	.pr_domain =		&localdomain,
300	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
301	.pr_ctloutput =		&uipc_ctloutput,
302	.pr_usrreqs =		&uipc_usrreqs_stream
303},
304{
305	.pr_type =		SOCK_DGRAM,
306	.pr_domain =		&localdomain,
307	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
308	.pr_usrreqs =		&uipc_usrreqs_dgram
309},
310{
311	.pr_type =		SOCK_SEQPACKET,
312	.pr_domain =		&localdomain,
313
314	/*
315	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
316	 * due to our use of sbappendaddr.  A new sbappend variants is needed
317	 * that supports both atomic record writes and control data.
318	 */
319	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
320				    PR_RIGHTS,
321	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
322},
323};
324
325static struct domain localdomain = {
326	.dom_family =		AF_LOCAL,
327	.dom_name =		"local",
328	.dom_init =		unp_init,
329	.dom_externalize =	unp_externalize,
330	.dom_dispose =		unp_dispose,
331	.dom_protosw =		localsw,
332	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
333};
334DOMAIN_SET(local);
335
336static void
337uipc_abort(struct socket *so)
338{
339	struct unpcb *unp, *unp2;
340
341	unp = sotounpcb(so);
342	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
343
344	UNP_LINK_WLOCK();
345	UNP_PCB_LOCK(unp);
346	unp2 = unp->unp_conn;
347	if (unp2 != NULL) {
348		UNP_PCB_LOCK(unp2);
349		unp_drop(unp2, ECONNABORTED);
350		UNP_PCB_UNLOCK(unp2);
351	}
352	UNP_PCB_UNLOCK(unp);
353	UNP_LINK_WUNLOCK();
354}
355
356static int
357uipc_accept(struct socket *so, struct sockaddr **nam)
358{
359	struct unpcb *unp, *unp2;
360	const struct sockaddr *sa;
361
362	/*
363	 * Pass back name of connected socket, if it was bound and we are
364	 * still connected (our peer may have closed already!).
365	 */
366	unp = sotounpcb(so);
367	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
368
369	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
370	UNP_LINK_RLOCK();
371	unp2 = unp->unp_conn;
372	if (unp2 != NULL && unp2->unp_addr != NULL) {
373		UNP_PCB_LOCK(unp2);
374		sa = (struct sockaddr *) unp2->unp_addr;
375		bcopy(sa, *nam, sa->sa_len);
376		UNP_PCB_UNLOCK(unp2);
377	} else {
378		sa = &sun_noname;
379		bcopy(sa, *nam, sa->sa_len);
380	}
381	UNP_LINK_RUNLOCK();
382	return (0);
383}
384
385static int
386uipc_attach(struct socket *so, int proto, struct thread *td)
387{
388	u_long sendspace, recvspace;
389	struct unpcb *unp;
390	int error;
391
392	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
393	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
394		switch (so->so_type) {
395		case SOCK_STREAM:
396			sendspace = unpst_sendspace;
397			recvspace = unpst_recvspace;
398			break;
399
400		case SOCK_DGRAM:
401			sendspace = unpdg_sendspace;
402			recvspace = unpdg_recvspace;
403			break;
404
405		case SOCK_SEQPACKET:
406			sendspace = unpsp_sendspace;
407			recvspace = unpsp_recvspace;
408			break;
409
410		default:
411			panic("uipc_attach");
412		}
413		error = soreserve(so, sendspace, recvspace);
414		if (error)
415			return (error);
416	}
417	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
418	if (unp == NULL)
419		return (ENOBUFS);
420	LIST_INIT(&unp->unp_refs);
421	UNP_PCB_LOCK_INIT(unp);
422	unp->unp_socket = so;
423	so->so_pcb = unp;
424	unp->unp_refcount = 1;
425
426	UNP_LIST_LOCK();
427	unp->unp_gencnt = ++unp_gencnt;
428	unp_count++;
429	switch (so->so_type) {
430	case SOCK_STREAM:
431		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
432		break;
433
434	case SOCK_DGRAM:
435		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
436		break;
437
438	case SOCK_SEQPACKET:
439		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
440		break;
441
442	default:
443		panic("uipc_attach");
444	}
445	UNP_LIST_UNLOCK();
446
447	return (0);
448}
449
450static int
451uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
452{
453	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
454	struct vattr vattr;
455	int error, namelen, vfslocked;
456	struct nameidata nd;
457	struct unpcb *unp;
458	struct vnode *vp;
459	struct mount *mp;
460	char *buf;
461
462	unp = sotounpcb(so);
463	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
464
465	if (soun->sun_len > sizeof(struct sockaddr_un))
466		return (EINVAL);
467	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
468	if (namelen <= 0)
469		return (EINVAL);
470
471	/*
472	 * We don't allow simultaneous bind() calls on a single UNIX domain
473	 * socket, so flag in-progress operations, and return an error if an
474	 * operation is already in progress.
475	 *
476	 * Historically, we have not allowed a socket to be rebound, so this
477	 * also returns an error.  Not allowing re-binding simplifies the
478	 * implementation and avoids a great many possible failure modes.
479	 */
480	UNP_PCB_LOCK(unp);
481	if (unp->unp_vnode != NULL) {
482		UNP_PCB_UNLOCK(unp);
483		return (EINVAL);
484	}
485	if (unp->unp_flags & UNP_BINDING) {
486		UNP_PCB_UNLOCK(unp);
487		return (EALREADY);
488	}
489	unp->unp_flags |= UNP_BINDING;
490	UNP_PCB_UNLOCK(unp);
491
492	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
493	bcopy(soun->sun_path, buf, namelen);
494	buf[namelen] = 0;
495
496restart:
497	vfslocked = 0;
498	NDINIT(&nd, CREATE, MPSAFE | NOFOLLOW | LOCKPARENT | SAVENAME,
499	    UIO_SYSSPACE, buf, td);
500/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
501	error = namei(&nd);
502	if (error)
503		goto error;
504	vp = nd.ni_vp;
505	vfslocked = NDHASGIANT(&nd);
506	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
507		NDFREE(&nd, NDF_ONLY_PNBUF);
508		if (nd.ni_dvp == vp)
509			vrele(nd.ni_dvp);
510		else
511			vput(nd.ni_dvp);
512		if (vp != NULL) {
513			vrele(vp);
514			error = EADDRINUSE;
515			goto error;
516		}
517		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
518		if (error)
519			goto error;
520		VFS_UNLOCK_GIANT(vfslocked);
521		goto restart;
522	}
523	VATTR_NULL(&vattr);
524	vattr.va_type = VSOCK;
525	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
526#ifdef MAC
527	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
528	    &vattr);
529#endif
530	if (error == 0)
531		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
532	NDFREE(&nd, NDF_ONLY_PNBUF);
533	vput(nd.ni_dvp);
534	if (error) {
535		vn_finished_write(mp);
536		goto error;
537	}
538	vp = nd.ni_vp;
539	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
540	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
541
542	UNP_LINK_WLOCK();
543	UNP_PCB_LOCK(unp);
544	vp->v_socket = unp->unp_socket;
545	unp->unp_vnode = vp;
546	unp->unp_addr = soun;
547	unp->unp_flags &= ~UNP_BINDING;
548	UNP_PCB_UNLOCK(unp);
549	UNP_LINK_WUNLOCK();
550	VOP_UNLOCK(vp, 0);
551	vn_finished_write(mp);
552	VFS_UNLOCK_GIANT(vfslocked);
553	free(buf, M_TEMP);
554	return (0);
555
556error:
557	VFS_UNLOCK_GIANT(vfslocked);
558	UNP_PCB_LOCK(unp);
559	unp->unp_flags &= ~UNP_BINDING;
560	UNP_PCB_UNLOCK(unp);
561	free(buf, M_TEMP);
562	return (error);
563}
564
565static int
566uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
567{
568	int error;
569
570	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
571	UNP_LINK_WLOCK();
572	error = unp_connect(so, nam, td);
573	UNP_LINK_WUNLOCK();
574	return (error);
575}
576
577static void
578uipc_close(struct socket *so)
579{
580	struct unpcb *unp, *unp2;
581
582	unp = sotounpcb(so);
583	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
584
585	UNP_LINK_WLOCK();
586	UNP_PCB_LOCK(unp);
587	unp2 = unp->unp_conn;
588	if (unp2 != NULL) {
589		UNP_PCB_LOCK(unp2);
590		unp_disconnect(unp, unp2);
591		UNP_PCB_UNLOCK(unp2);
592	}
593	UNP_PCB_UNLOCK(unp);
594	UNP_LINK_WUNLOCK();
595}
596
597static int
598uipc_connect2(struct socket *so1, struct socket *so2)
599{
600	struct unpcb *unp, *unp2;
601	int error;
602
603	UNP_LINK_WLOCK();
604	unp = so1->so_pcb;
605	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
606	UNP_PCB_LOCK(unp);
607	unp2 = so2->so_pcb;
608	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
609	UNP_PCB_LOCK(unp2);
610	error = unp_connect2(so1, so2, PRU_CONNECT2);
611	UNP_PCB_UNLOCK(unp2);
612	UNP_PCB_UNLOCK(unp);
613	UNP_LINK_WUNLOCK();
614	return (error);
615}
616
617static void
618uipc_detach(struct socket *so)
619{
620	struct unpcb *unp, *unp2;
621	struct sockaddr_un *saved_unp_addr;
622	struct vnode *vp;
623	int freeunp, local_unp_rights;
624
625	unp = sotounpcb(so);
626	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
627
628	UNP_LINK_WLOCK();
629	UNP_LIST_LOCK();
630	UNP_PCB_LOCK(unp);
631	LIST_REMOVE(unp, unp_link);
632	unp->unp_gencnt = ++unp_gencnt;
633	--unp_count;
634	UNP_LIST_UNLOCK();
635
636	/*
637	 * XXXRW: Should assert vp->v_socket == so.
638	 */
639	if ((vp = unp->unp_vnode) != NULL) {
640		unp->unp_vnode->v_socket = NULL;
641		unp->unp_vnode = NULL;
642	}
643	unp2 = unp->unp_conn;
644	if (unp2 != NULL) {
645		UNP_PCB_LOCK(unp2);
646		unp_disconnect(unp, unp2);
647		UNP_PCB_UNLOCK(unp2);
648	}
649
650	/*
651	 * We hold the linkage lock exclusively, so it's OK to acquire
652	 * multiple pcb locks at a time.
653	 */
654	while (!LIST_EMPTY(&unp->unp_refs)) {
655		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
656
657		UNP_PCB_LOCK(ref);
658		unp_drop(ref, ECONNRESET);
659		UNP_PCB_UNLOCK(ref);
660	}
661	local_unp_rights = unp_rights;
662	UNP_LINK_WUNLOCK();
663	unp->unp_socket->so_pcb = NULL;
664	saved_unp_addr = unp->unp_addr;
665	unp->unp_addr = NULL;
666	unp->unp_refcount--;
667	freeunp = (unp->unp_refcount == 0);
668	if (saved_unp_addr != NULL)
669		free(saved_unp_addr, M_SONAME);
670	if (freeunp) {
671		UNP_PCB_LOCK_DESTROY(unp);
672		uma_zfree(unp_zone, unp);
673	} else
674		UNP_PCB_UNLOCK(unp);
675	if (vp) {
676		int vfslocked;
677
678		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
679		vrele(vp);
680		VFS_UNLOCK_GIANT(vfslocked);
681	}
682	if (local_unp_rights)
683		taskqueue_enqueue(taskqueue_thread, &unp_gc_task);
684}
685
686static int
687uipc_disconnect(struct socket *so)
688{
689	struct unpcb *unp, *unp2;
690
691	unp = sotounpcb(so);
692	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
693
694	UNP_LINK_WLOCK();
695	UNP_PCB_LOCK(unp);
696	unp2 = unp->unp_conn;
697	if (unp2 != NULL) {
698		UNP_PCB_LOCK(unp2);
699		unp_disconnect(unp, unp2);
700		UNP_PCB_UNLOCK(unp2);
701	}
702	UNP_PCB_UNLOCK(unp);
703	UNP_LINK_WUNLOCK();
704	return (0);
705}
706
707static int
708uipc_listen(struct socket *so, int backlog, struct thread *td)
709{
710	struct unpcb *unp;
711	int error;
712
713	unp = sotounpcb(so);
714	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
715
716	UNP_PCB_LOCK(unp);
717	if (unp->unp_vnode == NULL) {
718		UNP_PCB_UNLOCK(unp);
719		return (EINVAL);
720	}
721
722	SOCK_LOCK(so);
723	error = solisten_proto_check(so);
724	if (error == 0) {
725		cru2x(td->td_ucred, &unp->unp_peercred);
726		unp->unp_flags |= UNP_HAVEPCCACHED;
727		solisten_proto(so, backlog);
728	}
729	SOCK_UNLOCK(so);
730	UNP_PCB_UNLOCK(unp);
731	return (error);
732}
733
734static int
735uipc_peeraddr(struct socket *so, struct sockaddr **nam)
736{
737	struct unpcb *unp, *unp2;
738	const struct sockaddr *sa;
739
740	unp = sotounpcb(so);
741	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
742
743	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
744	UNP_LINK_RLOCK();
745	/*
746	 * XXX: It seems that this test always fails even when connection is
747	 * established.  So, this else clause is added as workaround to
748	 * return PF_LOCAL sockaddr.
749	 */
750	unp2 = unp->unp_conn;
751	if (unp2 != NULL) {
752		UNP_PCB_LOCK(unp2);
753		if (unp2->unp_addr != NULL)
754			sa = (struct sockaddr *) unp2->unp_addr;
755		else
756			sa = &sun_noname;
757		bcopy(sa, *nam, sa->sa_len);
758		UNP_PCB_UNLOCK(unp2);
759	} else {
760		sa = &sun_noname;
761		bcopy(sa, *nam, sa->sa_len);
762	}
763	UNP_LINK_RUNLOCK();
764	return (0);
765}
766
767static int
768uipc_rcvd(struct socket *so, int flags)
769{
770	struct unpcb *unp, *unp2;
771	struct socket *so2;
772	u_int mbcnt, sbcc;
773	u_long newhiwat;
774
775	unp = sotounpcb(so);
776	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
777
778	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
779		panic("uipc_rcvd socktype %d", so->so_type);
780
781	/*
782	 * Adjust backpressure on sender and wakeup any waiting to write.
783	 *
784	 * The unp lock is acquired to maintain the validity of the unp_conn
785	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
786	 * static as long as we don't permit unp2 to disconnect from unp,
787	 * which is prevented by the lock on unp.  We cache values from
788	 * so_rcv to avoid holding the so_rcv lock over the entire
789	 * transaction on the remote so_snd.
790	 */
791	SOCKBUF_LOCK(&so->so_rcv);
792	mbcnt = so->so_rcv.sb_mbcnt;
793	sbcc = so->so_rcv.sb_cc;
794	SOCKBUF_UNLOCK(&so->so_rcv);
795	UNP_PCB_LOCK(unp);
796	unp2 = unp->unp_conn;
797	if (unp2 == NULL) {
798		UNP_PCB_UNLOCK(unp);
799		return (0);
800	}
801	so2 = unp2->unp_socket;
802	SOCKBUF_LOCK(&so2->so_snd);
803	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
804	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
805	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
806	    newhiwat, RLIM_INFINITY);
807	sowwakeup_locked(so2);
808	unp->unp_mbcnt = mbcnt;
809	unp->unp_cc = sbcc;
810	UNP_PCB_UNLOCK(unp);
811	return (0);
812}
813
814static int
815uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
816    struct mbuf *control, struct thread *td)
817{
818	struct unpcb *unp, *unp2;
819	struct socket *so2;
820	u_int mbcnt_delta, sbcc;
821	u_int newhiwat;
822	int error = 0;
823
824	unp = sotounpcb(so);
825	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
826
827	if (flags & PRUS_OOB) {
828		error = EOPNOTSUPP;
829		goto release;
830	}
831	if (control != NULL && (error = unp_internalize(&control, td)))
832		goto release;
833	if ((nam != NULL) || (flags & PRUS_EOF))
834		UNP_LINK_WLOCK();
835	else
836		UNP_LINK_RLOCK();
837	switch (so->so_type) {
838	case SOCK_DGRAM:
839	{
840		const struct sockaddr *from;
841
842		unp2 = unp->unp_conn;
843		if (nam != NULL) {
844			UNP_LINK_WLOCK_ASSERT();
845			if (unp2 != NULL) {
846				error = EISCONN;
847				break;
848			}
849			error = unp_connect(so, nam, td);
850			if (error)
851				break;
852			unp2 = unp->unp_conn;
853		}
854
855		/*
856		 * Because connect() and send() are non-atomic in a sendto()
857		 * with a target address, it's possible that the socket will
858		 * have disconnected before the send() can run.  In that case
859		 * return the slightly counter-intuitive but otherwise
860		 * correct error that the socket is not connected.
861		 */
862		if (unp2 == NULL) {
863			error = ENOTCONN;
864			break;
865		}
866		/* Lockless read. */
867		if (unp2->unp_flags & UNP_WANTCRED)
868			control = unp_addsockcred(td, control);
869		UNP_PCB_LOCK(unp);
870		if (unp->unp_addr != NULL)
871			from = (struct sockaddr *)unp->unp_addr;
872		else
873			from = &sun_noname;
874		so2 = unp2->unp_socket;
875		SOCKBUF_LOCK(&so2->so_rcv);
876		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
877			sorwakeup_locked(so2);
878			m = NULL;
879			control = NULL;
880		} else {
881			SOCKBUF_UNLOCK(&so2->so_rcv);
882			error = ENOBUFS;
883		}
884		if (nam != NULL) {
885			UNP_LINK_WLOCK_ASSERT();
886			UNP_PCB_LOCK(unp2);
887			unp_disconnect(unp, unp2);
888			UNP_PCB_UNLOCK(unp2);
889		}
890		UNP_PCB_UNLOCK(unp);
891		break;
892	}
893
894	case SOCK_SEQPACKET:
895	case SOCK_STREAM:
896		if ((so->so_state & SS_ISCONNECTED) == 0) {
897			if (nam != NULL) {
898				UNP_LINK_WLOCK_ASSERT();
899				error = unp_connect(so, nam, td);
900				if (error)
901					break;	/* XXX */
902			} else {
903				error = ENOTCONN;
904				break;
905			}
906		}
907
908		/* Lockless read. */
909		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
910			error = EPIPE;
911			break;
912		}
913
914		/*
915		 * Because connect() and send() are non-atomic in a sendto()
916		 * with a target address, it's possible that the socket will
917		 * have disconnected before the send() can run.  In that case
918		 * return the slightly counter-intuitive but otherwise
919		 * correct error that the socket is not connected.
920		 *
921		 * Locking here must be done carefully: the linkage lock
922		 * prevents interconnections between unpcbs from changing, so
923		 * we can traverse from unp to unp2 without acquiring unp's
924		 * lock.  Socket buffer locks follow unpcb locks, so we can
925		 * acquire both remote and lock socket buffer locks.
926		 */
927		unp2 = unp->unp_conn;
928		if (unp2 == NULL) {
929			error = ENOTCONN;
930			break;
931		}
932		so2 = unp2->unp_socket;
933		UNP_PCB_LOCK(unp2);
934		SOCKBUF_LOCK(&so2->so_rcv);
935		if (unp2->unp_flags & UNP_WANTCRED) {
936			/*
937			 * Credentials are passed only once on SOCK_STREAM.
938			 */
939			unp2->unp_flags &= ~UNP_WANTCRED;
940			control = unp_addsockcred(td, control);
941		}
942		/*
943		 * Send to paired receive port, and then reduce send buffer
944		 * hiwater marks to maintain backpressure.  Wake up readers.
945		 */
946		switch (so->so_type) {
947		case SOCK_STREAM:
948			if (control != NULL) {
949				if (sbappendcontrol_locked(&so2->so_rcv, m,
950				    control))
951					control = NULL;
952			} else
953				sbappend_locked(&so2->so_rcv, m);
954			break;
955
956		case SOCK_SEQPACKET: {
957			const struct sockaddr *from;
958
959			from = &sun_noname;
960			if (sbappendaddr_locked(&so2->so_rcv, from, m,
961			    control))
962				control = NULL;
963			break;
964			}
965		}
966
967		/*
968		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
969		 * datagram size and back-pressure for SOCK_SEQPACKET, which
970		 * can lead to undesired return of EMSGSIZE on send instead
971		 * of more desirable blocking.
972		 */
973		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
974		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
975		sbcc = so2->so_rcv.sb_cc;
976		sorwakeup_locked(so2);
977
978		SOCKBUF_LOCK(&so->so_snd);
979		if ((int)so->so_snd.sb_hiwat >= (int)(sbcc - unp2->unp_cc))
980			newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
981		else
982			newhiwat = 0;
983		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
984		    newhiwat, RLIM_INFINITY);
985		so->so_snd.sb_mbmax -= mbcnt_delta;
986		SOCKBUF_UNLOCK(&so->so_snd);
987		unp2->unp_cc = sbcc;
988		UNP_PCB_UNLOCK(unp2);
989		m = NULL;
990		break;
991
992	default:
993		panic("uipc_send unknown socktype");
994	}
995
996	/*
997	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
998	 */
999	if (flags & PRUS_EOF) {
1000		UNP_PCB_LOCK(unp);
1001		socantsendmore(so);
1002		unp_shutdown(unp);
1003		UNP_PCB_UNLOCK(unp);
1004	}
1005
1006	if ((nam != NULL) || (flags & PRUS_EOF))
1007		UNP_LINK_WUNLOCK();
1008	else
1009		UNP_LINK_RUNLOCK();
1010
1011	if (control != NULL && error != 0)
1012		unp_dispose(control);
1013
1014release:
1015	if (control != NULL)
1016		m_freem(control);
1017	if (m != NULL)
1018		m_freem(m);
1019	return (error);
1020}
1021
1022static int
1023uipc_sense(struct socket *so, struct stat *sb)
1024{
1025	struct unpcb *unp, *unp2;
1026	struct socket *so2;
1027
1028	unp = sotounpcb(so);
1029	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1030
1031	sb->st_blksize = so->so_snd.sb_hiwat;
1032	UNP_LINK_RLOCK();
1033	UNP_PCB_LOCK(unp);
1034	unp2 = unp->unp_conn;
1035	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1036	    unp2 != NULL) {
1037		so2 = unp2->unp_socket;
1038		sb->st_blksize += so2->so_rcv.sb_cc;
1039	}
1040	sb->st_dev = NODEV;
1041	if (unp->unp_ino == 0)
1042		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1043	sb->st_ino = unp->unp_ino;
1044	UNP_PCB_UNLOCK(unp);
1045	UNP_LINK_RUNLOCK();
1046	return (0);
1047}
1048
1049static int
1050uipc_shutdown(struct socket *so)
1051{
1052	struct unpcb *unp;
1053
1054	unp = sotounpcb(so);
1055	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1056
1057	UNP_LINK_WLOCK();
1058	UNP_PCB_LOCK(unp);
1059	socantsendmore(so);
1060	unp_shutdown(unp);
1061	UNP_PCB_UNLOCK(unp);
1062	UNP_LINK_WUNLOCK();
1063	return (0);
1064}
1065
1066static int
1067uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1068{
1069	struct unpcb *unp;
1070	const struct sockaddr *sa;
1071
1072	unp = sotounpcb(so);
1073	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1074
1075	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1076	UNP_PCB_LOCK(unp);
1077	if (unp->unp_addr != NULL)
1078		sa = (struct sockaddr *) unp->unp_addr;
1079	else
1080		sa = &sun_noname;
1081	bcopy(sa, *nam, sa->sa_len);
1082	UNP_PCB_UNLOCK(unp);
1083	return (0);
1084}
1085
1086static struct pr_usrreqs uipc_usrreqs_dgram = {
1087	.pru_abort = 		uipc_abort,
1088	.pru_accept =		uipc_accept,
1089	.pru_attach =		uipc_attach,
1090	.pru_bind =		uipc_bind,
1091	.pru_connect =		uipc_connect,
1092	.pru_connect2 =		uipc_connect2,
1093	.pru_detach =		uipc_detach,
1094	.pru_disconnect =	uipc_disconnect,
1095	.pru_listen =		uipc_listen,
1096	.pru_peeraddr =		uipc_peeraddr,
1097	.pru_rcvd =		uipc_rcvd,
1098	.pru_send =		uipc_send,
1099	.pru_sense =		uipc_sense,
1100	.pru_shutdown =		uipc_shutdown,
1101	.pru_sockaddr =		uipc_sockaddr,
1102	.pru_soreceive =	soreceive_dgram,
1103	.pru_close =		uipc_close,
1104};
1105
1106static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1107	.pru_abort =		uipc_abort,
1108	.pru_accept =		uipc_accept,
1109	.pru_attach =		uipc_attach,
1110	.pru_bind =		uipc_bind,
1111	.pru_connect =		uipc_connect,
1112	.pru_connect2 =		uipc_connect2,
1113	.pru_detach =		uipc_detach,
1114	.pru_disconnect =	uipc_disconnect,
1115	.pru_listen =		uipc_listen,
1116	.pru_peeraddr =		uipc_peeraddr,
1117	.pru_rcvd =		uipc_rcvd,
1118	.pru_send =		uipc_send,
1119	.pru_sense =		uipc_sense,
1120	.pru_shutdown =		uipc_shutdown,
1121	.pru_sockaddr =		uipc_sockaddr,
1122	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1123	.pru_close =		uipc_close,
1124};
1125
1126static struct pr_usrreqs uipc_usrreqs_stream = {
1127	.pru_abort = 		uipc_abort,
1128	.pru_accept =		uipc_accept,
1129	.pru_attach =		uipc_attach,
1130	.pru_bind =		uipc_bind,
1131	.pru_connect =		uipc_connect,
1132	.pru_connect2 =		uipc_connect2,
1133	.pru_detach =		uipc_detach,
1134	.pru_disconnect =	uipc_disconnect,
1135	.pru_listen =		uipc_listen,
1136	.pru_peeraddr =		uipc_peeraddr,
1137	.pru_rcvd =		uipc_rcvd,
1138	.pru_send =		uipc_send,
1139	.pru_sense =		uipc_sense,
1140	.pru_shutdown =		uipc_shutdown,
1141	.pru_sockaddr =		uipc_sockaddr,
1142	.pru_soreceive =	soreceive_generic,
1143	.pru_close =		uipc_close,
1144};
1145
1146static int
1147uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1148{
1149	struct unpcb *unp;
1150	struct xucred xu;
1151	int error, optval;
1152
1153	if (sopt->sopt_level != 0)
1154		return (EINVAL);
1155
1156	unp = sotounpcb(so);
1157	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1158	error = 0;
1159	switch (sopt->sopt_dir) {
1160	case SOPT_GET:
1161		switch (sopt->sopt_name) {
1162		case LOCAL_PEERCRED:
1163			UNP_PCB_LOCK(unp);
1164			if (unp->unp_flags & UNP_HAVEPC)
1165				xu = unp->unp_peercred;
1166			else {
1167				if (so->so_type == SOCK_STREAM)
1168					error = ENOTCONN;
1169				else
1170					error = EINVAL;
1171			}
1172			UNP_PCB_UNLOCK(unp);
1173			if (error == 0)
1174				error = sooptcopyout(sopt, &xu, sizeof(xu));
1175			break;
1176
1177		case LOCAL_CREDS:
1178			/* Unlocked read. */
1179			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1180			error = sooptcopyout(sopt, &optval, sizeof(optval));
1181			break;
1182
1183		case LOCAL_CONNWAIT:
1184			/* Unlocked read. */
1185			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1186			error = sooptcopyout(sopt, &optval, sizeof(optval));
1187			break;
1188
1189		default:
1190			error = EOPNOTSUPP;
1191			break;
1192		}
1193		break;
1194
1195	case SOPT_SET:
1196		switch (sopt->sopt_name) {
1197		case LOCAL_CREDS:
1198		case LOCAL_CONNWAIT:
1199			error = sooptcopyin(sopt, &optval, sizeof(optval),
1200					    sizeof(optval));
1201			if (error)
1202				break;
1203
1204#define	OPTSET(bit) do {						\
1205	UNP_PCB_LOCK(unp);						\
1206	if (optval)							\
1207		unp->unp_flags |= bit;					\
1208	else								\
1209		unp->unp_flags &= ~bit;					\
1210	UNP_PCB_UNLOCK(unp);						\
1211} while (0)
1212
1213			switch (sopt->sopt_name) {
1214			case LOCAL_CREDS:
1215				OPTSET(UNP_WANTCRED);
1216				break;
1217
1218			case LOCAL_CONNWAIT:
1219				OPTSET(UNP_CONNWAIT);
1220				break;
1221
1222			default:
1223				break;
1224			}
1225			break;
1226#undef	OPTSET
1227		default:
1228			error = ENOPROTOOPT;
1229			break;
1230		}
1231		break;
1232
1233	default:
1234		error = EOPNOTSUPP;
1235		break;
1236	}
1237	return (error);
1238}
1239
1240static int
1241unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1242{
1243	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1244	struct vnode *vp;
1245	struct socket *so2, *so3;
1246	struct unpcb *unp, *unp2, *unp3;
1247	int error, len, vfslocked;
1248	struct nameidata nd;
1249	char buf[SOCK_MAXADDRLEN];
1250	struct sockaddr *sa;
1251
1252	UNP_LINK_WLOCK_ASSERT();
1253
1254	unp = sotounpcb(so);
1255	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1256
1257	if (nam->sa_len > sizeof(struct sockaddr_un))
1258		return (EINVAL);
1259	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1260	if (len <= 0)
1261		return (EINVAL);
1262	bcopy(soun->sun_path, buf, len);
1263	buf[len] = 0;
1264
1265	UNP_PCB_LOCK(unp);
1266	if (unp->unp_flags & UNP_CONNECTING) {
1267		UNP_PCB_UNLOCK(unp);
1268		return (EALREADY);
1269	}
1270	UNP_LINK_WUNLOCK();
1271	unp->unp_flags |= UNP_CONNECTING;
1272	UNP_PCB_UNLOCK(unp);
1273
1274	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1275	NDINIT(&nd, LOOKUP, MPSAFE | FOLLOW | LOCKSHARED | LOCKLEAF,
1276	    UIO_SYSSPACE, buf, td);
1277	error = namei(&nd);
1278	if (error)
1279		vp = NULL;
1280	else
1281		vp = nd.ni_vp;
1282	ASSERT_VOP_LOCKED(vp, "unp_connect");
1283	vfslocked = NDHASGIANT(&nd);
1284	NDFREE(&nd, NDF_ONLY_PNBUF);
1285	if (error)
1286		goto bad;
1287
1288	if (vp->v_type != VSOCK) {
1289		error = ENOTSOCK;
1290		goto bad;
1291	}
1292#ifdef MAC
1293	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1294	if (error)
1295		goto bad;
1296#endif
1297	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1298	if (error)
1299		goto bad;
1300	VFS_UNLOCK_GIANT(vfslocked);
1301
1302	unp = sotounpcb(so);
1303	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1304
1305	/*
1306	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1307	 * and to protect simultaneous locking of multiple pcbs.
1308	 */
1309	UNP_LINK_WLOCK();
1310	so2 = vp->v_socket;
1311	if (so2 == NULL) {
1312		error = ECONNREFUSED;
1313		goto bad2;
1314	}
1315	if (so->so_type != so2->so_type) {
1316		error = EPROTOTYPE;
1317		goto bad2;
1318	}
1319	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1320		if (so2->so_options & SO_ACCEPTCONN) {
1321			CURVNET_SET(so2->so_vnet);
1322			so3 = sonewconn(so2, 0);
1323			CURVNET_RESTORE();
1324		} else
1325			so3 = NULL;
1326		if (so3 == NULL) {
1327			error = ECONNREFUSED;
1328			goto bad2;
1329		}
1330		unp = sotounpcb(so);
1331		unp2 = sotounpcb(so2);
1332		unp3 = sotounpcb(so3);
1333		UNP_PCB_LOCK(unp);
1334		UNP_PCB_LOCK(unp2);
1335		UNP_PCB_LOCK(unp3);
1336		if (unp2->unp_addr != NULL) {
1337			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1338			unp3->unp_addr = (struct sockaddr_un *) sa;
1339			sa = NULL;
1340		}
1341
1342		/*
1343		 * The connecter's (client's) credentials are copied from its
1344		 * process structure at the time of connect() (which is now).
1345		 */
1346		cru2x(td->td_ucred, &unp3->unp_peercred);
1347		unp3->unp_flags |= UNP_HAVEPC;
1348
1349		/*
1350		 * The receiver's (server's) credentials are copied from the
1351		 * unp_peercred member of socket on which the former called
1352		 * listen(); uipc_listen() cached that process's credentials
1353		 * at that time so we can use them now.
1354		 */
1355		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1356		    ("unp_connect: listener without cached peercred"));
1357		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1358		    sizeof(unp->unp_peercred));
1359		unp->unp_flags |= UNP_HAVEPC;
1360		if (unp2->unp_flags & UNP_WANTCRED)
1361			unp3->unp_flags |= UNP_WANTCRED;
1362		UNP_PCB_UNLOCK(unp3);
1363		UNP_PCB_UNLOCK(unp2);
1364		UNP_PCB_UNLOCK(unp);
1365#ifdef MAC
1366		mac_socketpeer_set_from_socket(so, so3);
1367		mac_socketpeer_set_from_socket(so3, so);
1368#endif
1369
1370		so2 = so3;
1371	}
1372	unp = sotounpcb(so);
1373	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1374	unp2 = sotounpcb(so2);
1375	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1376	UNP_PCB_LOCK(unp);
1377	UNP_PCB_LOCK(unp2);
1378	error = unp_connect2(so, so2, PRU_CONNECT);
1379	UNP_PCB_UNLOCK(unp2);
1380	UNP_PCB_UNLOCK(unp);
1381bad2:
1382	UNP_LINK_WUNLOCK();
1383	if (vfslocked)
1384		/*
1385		 * Giant has been previously acquired. This means filesystem
1386		 * isn't MPSAFE.  Do it once again.
1387		 */
1388		mtx_lock(&Giant);
1389bad:
1390	if (vp != NULL)
1391		vput(vp);
1392	VFS_UNLOCK_GIANT(vfslocked);
1393	free(sa, M_SONAME);
1394	UNP_LINK_WLOCK();
1395	UNP_PCB_LOCK(unp);
1396	unp->unp_flags &= ~UNP_CONNECTING;
1397	UNP_PCB_UNLOCK(unp);
1398	return (error);
1399}
1400
1401static int
1402unp_connect2(struct socket *so, struct socket *so2, int req)
1403{
1404	struct unpcb *unp;
1405	struct unpcb *unp2;
1406
1407	unp = sotounpcb(so);
1408	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1409	unp2 = sotounpcb(so2);
1410	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1411
1412	UNP_LINK_WLOCK_ASSERT();
1413	UNP_PCB_LOCK_ASSERT(unp);
1414	UNP_PCB_LOCK_ASSERT(unp2);
1415
1416	if (so2->so_type != so->so_type)
1417		return (EPROTOTYPE);
1418	unp->unp_conn = unp2;
1419
1420	switch (so->so_type) {
1421	case SOCK_DGRAM:
1422		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1423		soisconnected(so);
1424		break;
1425
1426	case SOCK_STREAM:
1427	case SOCK_SEQPACKET:
1428		unp2->unp_conn = unp;
1429		if (req == PRU_CONNECT &&
1430		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1431			soisconnecting(so);
1432		else
1433			soisconnected(so);
1434		soisconnected(so2);
1435		break;
1436
1437	default:
1438		panic("unp_connect2");
1439	}
1440	return (0);
1441}
1442
1443static void
1444unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1445{
1446	struct socket *so;
1447
1448	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1449
1450	UNP_LINK_WLOCK_ASSERT();
1451	UNP_PCB_LOCK_ASSERT(unp);
1452	UNP_PCB_LOCK_ASSERT(unp2);
1453
1454	unp->unp_conn = NULL;
1455	switch (unp->unp_socket->so_type) {
1456	case SOCK_DGRAM:
1457		LIST_REMOVE(unp, unp_reflink);
1458		so = unp->unp_socket;
1459		SOCK_LOCK(so);
1460		so->so_state &= ~SS_ISCONNECTED;
1461		SOCK_UNLOCK(so);
1462		break;
1463
1464	case SOCK_STREAM:
1465	case SOCK_SEQPACKET:
1466		soisdisconnected(unp->unp_socket);
1467		unp2->unp_conn = NULL;
1468		soisdisconnected(unp2->unp_socket);
1469		break;
1470	}
1471}
1472
1473/*
1474 * unp_pcblist() walks the global list of struct unpcb's to generate a
1475 * pointer list, bumping the refcount on each unpcb.  It then copies them out
1476 * sequentially, validating the generation number on each to see if it has
1477 * been detached.  All of this is necessary because copyout() may sleep on
1478 * disk I/O.
1479 */
1480static int
1481unp_pcblist(SYSCTL_HANDLER_ARGS)
1482{
1483	int error, i, n;
1484	int freeunp;
1485	struct unpcb *unp, **unp_list;
1486	unp_gen_t gencnt;
1487	struct xunpgen *xug;
1488	struct unp_head *head;
1489	struct xunpcb *xu;
1490
1491	switch ((intptr_t)arg1) {
1492	case SOCK_STREAM:
1493		head = &unp_shead;
1494		break;
1495
1496	case SOCK_DGRAM:
1497		head = &unp_dhead;
1498		break;
1499
1500	case SOCK_SEQPACKET:
1501		head = &unp_sphead;
1502		break;
1503
1504	default:
1505		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1506	}
1507
1508	/*
1509	 * The process of preparing the PCB list is too time-consuming and
1510	 * resource-intensive to repeat twice on every request.
1511	 */
1512	if (req->oldptr == NULL) {
1513		n = unp_count;
1514		req->oldidx = 2 * (sizeof *xug)
1515			+ (n + n/8) * sizeof(struct xunpcb);
1516		return (0);
1517	}
1518
1519	if (req->newptr != NULL)
1520		return (EPERM);
1521
1522	/*
1523	 * OK, now we're committed to doing something.
1524	 */
1525	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1526	UNP_LIST_LOCK();
1527	gencnt = unp_gencnt;
1528	n = unp_count;
1529	UNP_LIST_UNLOCK();
1530
1531	xug->xug_len = sizeof *xug;
1532	xug->xug_count = n;
1533	xug->xug_gen = gencnt;
1534	xug->xug_sogen = so_gencnt;
1535	error = SYSCTL_OUT(req, xug, sizeof *xug);
1536	if (error) {
1537		free(xug, M_TEMP);
1538		return (error);
1539	}
1540
1541	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1542
1543	UNP_LIST_LOCK();
1544	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1545	     unp = LIST_NEXT(unp, unp_link)) {
1546		UNP_PCB_LOCK(unp);
1547		if (unp->unp_gencnt <= gencnt) {
1548			if (cr_cansee(req->td->td_ucred,
1549			    unp->unp_socket->so_cred)) {
1550				UNP_PCB_UNLOCK(unp);
1551				continue;
1552			}
1553			unp_list[i++] = unp;
1554			unp->unp_refcount++;
1555		}
1556		UNP_PCB_UNLOCK(unp);
1557	}
1558	UNP_LIST_UNLOCK();
1559	n = i;			/* In case we lost some during malloc. */
1560
1561	error = 0;
1562	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1563	for (i = 0; i < n; i++) {
1564		unp = unp_list[i];
1565		UNP_PCB_LOCK(unp);
1566		unp->unp_refcount--;
1567	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1568			xu->xu_len = sizeof *xu;
1569			xu->xu_unpp = unp;
1570			/*
1571			 * XXX - need more locking here to protect against
1572			 * connect/disconnect races for SMP.
1573			 */
1574			if (unp->unp_addr != NULL)
1575				bcopy(unp->unp_addr, &xu->xu_addr,
1576				      unp->unp_addr->sun_len);
1577			if (unp->unp_conn != NULL &&
1578			    unp->unp_conn->unp_addr != NULL)
1579				bcopy(unp->unp_conn->unp_addr,
1580				      &xu->xu_caddr,
1581				      unp->unp_conn->unp_addr->sun_len);
1582			bcopy(unp, &xu->xu_unp, sizeof *unp);
1583			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1584			UNP_PCB_UNLOCK(unp);
1585			error = SYSCTL_OUT(req, xu, sizeof *xu);
1586		} else {
1587			freeunp = (unp->unp_refcount == 0);
1588			UNP_PCB_UNLOCK(unp);
1589			if (freeunp) {
1590				UNP_PCB_LOCK_DESTROY(unp);
1591				uma_zfree(unp_zone, unp);
1592			}
1593		}
1594	}
1595	free(xu, M_TEMP);
1596	if (!error) {
1597		/*
1598		 * Give the user an updated idea of our state.  If the
1599		 * generation differs from what we told her before, she knows
1600		 * that something happened while we were processing this
1601		 * request, and it might be necessary to retry.
1602		 */
1603		xug->xug_gen = unp_gencnt;
1604		xug->xug_sogen = so_gencnt;
1605		xug->xug_count = unp_count;
1606		error = SYSCTL_OUT(req, xug, sizeof *xug);
1607	}
1608	free(unp_list, M_TEMP);
1609	free(xug, M_TEMP);
1610	return (error);
1611}
1612
1613SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1614    (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1615    "List of active local datagram sockets");
1616SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1617    (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1618    "List of active local stream sockets");
1619SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1620    CTLTYPE_OPAQUE | CTLFLAG_RD,
1621    (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1622    "List of active local seqpacket sockets");
1623
1624static void
1625unp_shutdown(struct unpcb *unp)
1626{
1627	struct unpcb *unp2;
1628	struct socket *so;
1629
1630	UNP_LINK_WLOCK_ASSERT();
1631	UNP_PCB_LOCK_ASSERT(unp);
1632
1633	unp2 = unp->unp_conn;
1634	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1635	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1636		so = unp2->unp_socket;
1637		if (so != NULL)
1638			socantrcvmore(so);
1639	}
1640}
1641
1642static void
1643unp_drop(struct unpcb *unp, int errno)
1644{
1645	struct socket *so = unp->unp_socket;
1646	struct unpcb *unp2;
1647
1648	UNP_LINK_WLOCK_ASSERT();
1649	UNP_PCB_LOCK_ASSERT(unp);
1650
1651	so->so_error = errno;
1652	unp2 = unp->unp_conn;
1653	if (unp2 == NULL)
1654		return;
1655	UNP_PCB_LOCK(unp2);
1656	unp_disconnect(unp, unp2);
1657	UNP_PCB_UNLOCK(unp2);
1658}
1659
1660static void
1661unp_freerights(struct file **rp, int fdcount)
1662{
1663	int i;
1664	struct file *fp;
1665
1666	for (i = 0; i < fdcount; i++) {
1667		fp = *rp;
1668		*rp++ = NULL;
1669		unp_discard(fp);
1670	}
1671}
1672
1673static int
1674unp_externalize(struct mbuf *control, struct mbuf **controlp)
1675{
1676	struct thread *td = curthread;		/* XXX */
1677	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1678	int i;
1679	int *fdp;
1680	struct file **rp;
1681	struct file *fp;
1682	void *data;
1683	socklen_t clen = control->m_len, datalen;
1684	int error, newfds;
1685	int f;
1686	u_int newlen;
1687
1688	UNP_LINK_UNLOCK_ASSERT();
1689
1690	error = 0;
1691	if (controlp != NULL) /* controlp == NULL => free control messages */
1692		*controlp = NULL;
1693	while (cm != NULL) {
1694		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1695			error = EINVAL;
1696			break;
1697		}
1698		data = CMSG_DATA(cm);
1699		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1700		if (cm->cmsg_level == SOL_SOCKET
1701		    && cm->cmsg_type == SCM_RIGHTS) {
1702			newfds = datalen / sizeof(struct file *);
1703			rp = data;
1704
1705			/* If we're not outputting the descriptors free them. */
1706			if (error || controlp == NULL) {
1707				unp_freerights(rp, newfds);
1708				goto next;
1709			}
1710			FILEDESC_XLOCK(td->td_proc->p_fd);
1711			/* if the new FD's will not fit free them.  */
1712			if (!fdavail(td, newfds)) {
1713				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1714				error = EMSGSIZE;
1715				unp_freerights(rp, newfds);
1716				goto next;
1717			}
1718
1719			/*
1720			 * Now change each pointer to an fd in the global
1721			 * table to an integer that is the index to the local
1722			 * fd table entry that we set up to point to the
1723			 * global one we are transferring.
1724			 */
1725			newlen = newfds * sizeof(int);
1726			*controlp = sbcreatecontrol(NULL, newlen,
1727			    SCM_RIGHTS, SOL_SOCKET);
1728			if (*controlp == NULL) {
1729				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1730				error = E2BIG;
1731				unp_freerights(rp, newfds);
1732				goto next;
1733			}
1734
1735			fdp = (int *)
1736			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1737			for (i = 0; i < newfds; i++) {
1738				if (fdalloc(td, 0, &f))
1739					panic("unp_externalize fdalloc failed");
1740				fp = *rp++;
1741				td->td_proc->p_fd->fd_ofiles[f] = fp;
1742				unp_externalize_fp(fp);
1743				*fdp++ = f;
1744			}
1745			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1746		} else {
1747			/* We can just copy anything else across. */
1748			if (error || controlp == NULL)
1749				goto next;
1750			*controlp = sbcreatecontrol(NULL, datalen,
1751			    cm->cmsg_type, cm->cmsg_level);
1752			if (*controlp == NULL) {
1753				error = ENOBUFS;
1754				goto next;
1755			}
1756			bcopy(data,
1757			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1758			    datalen);
1759		}
1760		controlp = &(*controlp)->m_next;
1761
1762next:
1763		if (CMSG_SPACE(datalen) < clen) {
1764			clen -= CMSG_SPACE(datalen);
1765			cm = (struct cmsghdr *)
1766			    ((caddr_t)cm + CMSG_SPACE(datalen));
1767		} else {
1768			clen = 0;
1769			cm = NULL;
1770		}
1771	}
1772
1773	m_freem(control);
1774	return (error);
1775}
1776
1777static void
1778unp_zone_change(void *tag)
1779{
1780
1781	uma_zone_set_max(unp_zone, maxsockets);
1782}
1783
1784static void
1785unp_init(void)
1786{
1787
1788#ifdef VIMAGE
1789	if (!IS_DEFAULT_VNET(curvnet))
1790		return;
1791#endif
1792	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1793	    NULL, NULL, UMA_ALIGN_PTR, 0);
1794	if (unp_zone == NULL)
1795		panic("unp_init");
1796	uma_zone_set_max(unp_zone, maxsockets);
1797	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1798	    NULL, EVENTHANDLER_PRI_ANY);
1799	LIST_INIT(&unp_dhead);
1800	LIST_INIT(&unp_shead);
1801	LIST_INIT(&unp_sphead);
1802	SLIST_INIT(&unp_defers);
1803	TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1804	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1805	UNP_LINK_LOCK_INIT();
1806	UNP_LIST_LOCK_INIT();
1807	UNP_DEFERRED_LOCK_INIT();
1808}
1809
1810static int
1811unp_internalize(struct mbuf **controlp, struct thread *td)
1812{
1813	struct mbuf *control = *controlp;
1814	struct proc *p = td->td_proc;
1815	struct filedesc *fdescp = p->p_fd;
1816	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1817	struct cmsgcred *cmcred;
1818	struct file **rp;
1819	struct file *fp;
1820	struct timeval *tv;
1821	int i, fd, *fdp;
1822	void *data;
1823	socklen_t clen = control->m_len, datalen;
1824	int error, oldfds;
1825	u_int newlen;
1826
1827	UNP_LINK_UNLOCK_ASSERT();
1828
1829	error = 0;
1830	*controlp = NULL;
1831	while (cm != NULL) {
1832		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1833		    || cm->cmsg_len > clen) {
1834			error = EINVAL;
1835			goto out;
1836		}
1837		data = CMSG_DATA(cm);
1838		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1839
1840		switch (cm->cmsg_type) {
1841		/*
1842		 * Fill in credential information.
1843		 */
1844		case SCM_CREDS:
1845			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1846			    SCM_CREDS, SOL_SOCKET);
1847			if (*controlp == NULL) {
1848				error = ENOBUFS;
1849				goto out;
1850			}
1851			cmcred = (struct cmsgcred *)
1852			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1853			cmcred->cmcred_pid = p->p_pid;
1854			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1855			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1856			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1857			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1858			    CMGROUP_MAX);
1859			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1860				cmcred->cmcred_groups[i] =
1861				    td->td_ucred->cr_groups[i];
1862			break;
1863
1864		case SCM_RIGHTS:
1865			oldfds = datalen / sizeof (int);
1866			/*
1867			 * Check that all the FDs passed in refer to legal
1868			 * files.  If not, reject the entire operation.
1869			 */
1870			fdp = data;
1871			FILEDESC_SLOCK(fdescp);
1872			for (i = 0; i < oldfds; i++) {
1873				fd = *fdp++;
1874				if ((unsigned)fd >= fdescp->fd_nfiles ||
1875				    fdescp->fd_ofiles[fd] == NULL) {
1876					FILEDESC_SUNLOCK(fdescp);
1877					error = EBADF;
1878					goto out;
1879				}
1880				fp = fdescp->fd_ofiles[fd];
1881				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1882					FILEDESC_SUNLOCK(fdescp);
1883					error = EOPNOTSUPP;
1884					goto out;
1885				}
1886
1887			}
1888
1889			/*
1890			 * Now replace the integer FDs with pointers to the
1891			 * associated global file table entry..
1892			 */
1893			newlen = oldfds * sizeof(struct file *);
1894			*controlp = sbcreatecontrol(NULL, newlen,
1895			    SCM_RIGHTS, SOL_SOCKET);
1896			if (*controlp == NULL) {
1897				FILEDESC_SUNLOCK(fdescp);
1898				error = E2BIG;
1899				goto out;
1900			}
1901			fdp = data;
1902			rp = (struct file **)
1903			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1904			for (i = 0; i < oldfds; i++) {
1905				fp = fdescp->fd_ofiles[*fdp++];
1906				*rp++ = fp;
1907				unp_internalize_fp(fp);
1908			}
1909			FILEDESC_SUNLOCK(fdescp);
1910			break;
1911
1912		case SCM_TIMESTAMP:
1913			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1914			    SCM_TIMESTAMP, SOL_SOCKET);
1915			if (*controlp == NULL) {
1916				error = ENOBUFS;
1917				goto out;
1918			}
1919			tv = (struct timeval *)
1920			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1921			microtime(tv);
1922			break;
1923
1924		default:
1925			error = EINVAL;
1926			goto out;
1927		}
1928
1929		controlp = &(*controlp)->m_next;
1930		if (CMSG_SPACE(datalen) < clen) {
1931			clen -= CMSG_SPACE(datalen);
1932			cm = (struct cmsghdr *)
1933			    ((caddr_t)cm + CMSG_SPACE(datalen));
1934		} else {
1935			clen = 0;
1936			cm = NULL;
1937		}
1938	}
1939
1940out:
1941	m_freem(control);
1942	return (error);
1943}
1944
1945static struct mbuf *
1946unp_addsockcred(struct thread *td, struct mbuf *control)
1947{
1948	struct mbuf *m, *n, *n_prev;
1949	struct sockcred *sc;
1950	const struct cmsghdr *cm;
1951	int ngroups;
1952	int i;
1953
1954	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1955	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1956	if (m == NULL)
1957		return (control);
1958
1959	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1960	sc->sc_uid = td->td_ucred->cr_ruid;
1961	sc->sc_euid = td->td_ucred->cr_uid;
1962	sc->sc_gid = td->td_ucred->cr_rgid;
1963	sc->sc_egid = td->td_ucred->cr_gid;
1964	sc->sc_ngroups = ngroups;
1965	for (i = 0; i < sc->sc_ngroups; i++)
1966		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1967
1968	/*
1969	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1970	 * created SCM_CREDS control message (struct sockcred) has another
1971	 * format.
1972	 */
1973	if (control != NULL)
1974		for (n = control, n_prev = NULL; n != NULL;) {
1975			cm = mtod(n, struct cmsghdr *);
1976    			if (cm->cmsg_level == SOL_SOCKET &&
1977			    cm->cmsg_type == SCM_CREDS) {
1978    				if (n_prev == NULL)
1979					control = n->m_next;
1980				else
1981					n_prev->m_next = n->m_next;
1982				n = m_free(n);
1983			} else {
1984				n_prev = n;
1985				n = n->m_next;
1986			}
1987		}
1988
1989	/* Prepend it to the head. */
1990	m->m_next = control;
1991	return (m);
1992}
1993
1994static struct unpcb *
1995fptounp(struct file *fp)
1996{
1997	struct socket *so;
1998
1999	if (fp->f_type != DTYPE_SOCKET)
2000		return (NULL);
2001	if ((so = fp->f_data) == NULL)
2002		return (NULL);
2003	if (so->so_proto->pr_domain != &localdomain)
2004		return (NULL);
2005	return sotounpcb(so);
2006}
2007
2008static void
2009unp_discard(struct file *fp)
2010{
2011	struct unp_defer *dr;
2012
2013	if (unp_externalize_fp(fp)) {
2014		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2015		dr->ud_fp = fp;
2016		UNP_DEFERRED_LOCK();
2017		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2018		UNP_DEFERRED_UNLOCK();
2019		atomic_add_int(&unp_defers_count, 1);
2020		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2021	} else
2022		(void) closef(fp, (struct thread *)NULL);
2023}
2024
2025static void
2026unp_process_defers(void *arg __unused, int pending)
2027{
2028	struct unp_defer *dr;
2029	SLIST_HEAD(, unp_defer) drl;
2030	int count;
2031
2032	SLIST_INIT(&drl);
2033	for (;;) {
2034		UNP_DEFERRED_LOCK();
2035		if (SLIST_FIRST(&unp_defers) == NULL) {
2036			UNP_DEFERRED_UNLOCK();
2037			break;
2038		}
2039		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2040		UNP_DEFERRED_UNLOCK();
2041		count = 0;
2042		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2043			SLIST_REMOVE_HEAD(&drl, ud_link);
2044			closef(dr->ud_fp, NULL);
2045			free(dr, M_TEMP);
2046			count++;
2047		}
2048		atomic_add_int(&unp_defers_count, -count);
2049	}
2050}
2051
2052static void
2053unp_internalize_fp(struct file *fp)
2054{
2055	struct unpcb *unp;
2056
2057	UNP_LINK_WLOCK();
2058	if ((unp = fptounp(fp)) != NULL) {
2059		unp->unp_file = fp;
2060		unp->unp_msgcount++;
2061	}
2062	fhold(fp);
2063	unp_rights++;
2064	UNP_LINK_WUNLOCK();
2065}
2066
2067static int
2068unp_externalize_fp(struct file *fp)
2069{
2070	struct unpcb *unp;
2071	int ret;
2072
2073	UNP_LINK_WLOCK();
2074	if ((unp = fptounp(fp)) != NULL) {
2075		unp->unp_msgcount--;
2076		ret = 1;
2077	} else
2078		ret = 0;
2079	unp_rights--;
2080	UNP_LINK_WUNLOCK();
2081	return (ret);
2082}
2083
2084/*
2085 * unp_defer indicates whether additional work has been defered for a future
2086 * pass through unp_gc().  It is thread local and does not require explicit
2087 * synchronization.
2088 */
2089static int	unp_marked;
2090static int	unp_unreachable;
2091
2092static void
2093unp_accessable(struct file *fp)
2094{
2095	struct unpcb *unp;
2096
2097	if ((unp = fptounp(fp)) == NULL)
2098		return;
2099	if (unp->unp_gcflag & UNPGC_REF)
2100		return;
2101	unp->unp_gcflag &= ~UNPGC_DEAD;
2102	unp->unp_gcflag |= UNPGC_REF;
2103	unp_marked++;
2104}
2105
2106static void
2107unp_gc_process(struct unpcb *unp)
2108{
2109	struct socket *soa;
2110	struct socket *so;
2111	struct file *fp;
2112
2113	/* Already processed. */
2114	if (unp->unp_gcflag & UNPGC_SCANNED)
2115		return;
2116	fp = unp->unp_file;
2117
2118	/*
2119	 * Check for a socket potentially in a cycle.  It must be in a
2120	 * queue as indicated by msgcount, and this must equal the file
2121	 * reference count.  Note that when msgcount is 0 the file is NULL.
2122	 */
2123	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2124	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2125		unp->unp_gcflag |= UNPGC_DEAD;
2126		unp_unreachable++;
2127		return;
2128	}
2129
2130	/*
2131	 * Mark all sockets we reference with RIGHTS.
2132	 */
2133	so = unp->unp_socket;
2134	SOCKBUF_LOCK(&so->so_rcv);
2135	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2136	SOCKBUF_UNLOCK(&so->so_rcv);
2137
2138	/*
2139	 * Mark all sockets in our accept queue.
2140	 */
2141	ACCEPT_LOCK();
2142	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2143		SOCKBUF_LOCK(&soa->so_rcv);
2144		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2145		SOCKBUF_UNLOCK(&soa->so_rcv);
2146	}
2147	ACCEPT_UNLOCK();
2148	unp->unp_gcflag |= UNPGC_SCANNED;
2149}
2150
2151static int unp_recycled;
2152SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2153    "Number of unreachable sockets claimed by the garbage collector.");
2154
2155static int unp_taskcount;
2156SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2157    "Number of times the garbage collector has run.");
2158
2159static void
2160unp_gc(__unused void *arg, int pending)
2161{
2162	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2163				    NULL };
2164	struct unp_head **head;
2165	struct file *f, **unref;
2166	struct unpcb *unp;
2167	int i, total;
2168
2169	unp_taskcount++;
2170	UNP_LIST_LOCK();
2171	/*
2172	 * First clear all gc flags from previous runs.
2173	 */
2174	for (head = heads; *head != NULL; head++)
2175		LIST_FOREACH(unp, *head, unp_link)
2176			unp->unp_gcflag = 0;
2177
2178	/*
2179	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2180	 * is reachable all of the sockets it references are reachable.
2181	 * Stop the scan once we do a complete loop without discovering
2182	 * a new reachable socket.
2183	 */
2184	do {
2185		unp_unreachable = 0;
2186		unp_marked = 0;
2187		for (head = heads; *head != NULL; head++)
2188			LIST_FOREACH(unp, *head, unp_link)
2189				unp_gc_process(unp);
2190	} while (unp_marked);
2191	UNP_LIST_UNLOCK();
2192	if (unp_unreachable == 0)
2193		return;
2194
2195	/*
2196	 * Allocate space for a local list of dead unpcbs.
2197	 */
2198	unref = malloc(unp_unreachable * sizeof(struct file *),
2199	    M_TEMP, M_WAITOK);
2200
2201	/*
2202	 * Iterate looking for sockets which have been specifically marked
2203	 * as as unreachable and store them locally.
2204	 */
2205	UNP_LINK_RLOCK();
2206	UNP_LIST_LOCK();
2207	for (total = 0, head = heads; *head != NULL; head++)
2208		LIST_FOREACH(unp, *head, unp_link)
2209			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2210				f = unp->unp_file;
2211				if (unp->unp_msgcount == 0 || f == NULL ||
2212				    f->f_count != unp->unp_msgcount)
2213					continue;
2214				unref[total++] = f;
2215				fhold(f);
2216				KASSERT(total <= unp_unreachable,
2217				    ("unp_gc: incorrect unreachable count."));
2218			}
2219	UNP_LIST_UNLOCK();
2220	UNP_LINK_RUNLOCK();
2221
2222	/*
2223	 * Now flush all sockets, free'ing rights.  This will free the
2224	 * struct files associated with these sockets but leave each socket
2225	 * with one remaining ref.
2226	 */
2227	for (i = 0; i < total; i++) {
2228		struct socket *so;
2229
2230		so = unref[i]->f_data;
2231		CURVNET_SET(so->so_vnet);
2232		sorflush(so);
2233		CURVNET_RESTORE();
2234	}
2235
2236	/*
2237	 * And finally release the sockets so they can be reclaimed.
2238	 */
2239	for (i = 0; i < total; i++)
2240		fdrop(unref[i], NULL);
2241	unp_recycled += total;
2242	free(unref, M_TEMP);
2243}
2244
2245static void
2246unp_dispose(struct mbuf *m)
2247{
2248
2249	if (m)
2250		unp_scan(m, unp_discard);
2251}
2252
2253static void
2254unp_scan(struct mbuf *m0, void (*op)(struct file *))
2255{
2256	struct mbuf *m;
2257	struct file **rp;
2258	struct cmsghdr *cm;
2259	void *data;
2260	int i;
2261	socklen_t clen, datalen;
2262	int qfds;
2263
2264	while (m0 != NULL) {
2265		for (m = m0; m; m = m->m_next) {
2266			if (m->m_type != MT_CONTROL)
2267				continue;
2268
2269			cm = mtod(m, struct cmsghdr *);
2270			clen = m->m_len;
2271
2272			while (cm != NULL) {
2273				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2274					break;
2275
2276				data = CMSG_DATA(cm);
2277				datalen = (caddr_t)cm + cm->cmsg_len
2278				    - (caddr_t)data;
2279
2280				if (cm->cmsg_level == SOL_SOCKET &&
2281				    cm->cmsg_type == SCM_RIGHTS) {
2282					qfds = datalen / sizeof (struct file *);
2283					rp = data;
2284					for (i = 0; i < qfds; i++)
2285						(*op)(*rp++);
2286				}
2287
2288				if (CMSG_SPACE(datalen) < clen) {
2289					clen -= CMSG_SPACE(datalen);
2290					cm = (struct cmsghdr *)
2291					    ((caddr_t)cm + CMSG_SPACE(datalen));
2292				} else {
2293					clen = 0;
2294					cm = NULL;
2295				}
2296			}
2297		}
2298		m0 = m0->m_act;
2299	}
2300}
2301
2302/*
2303 * A helper function called by VFS before socket-type vnode reclamation.
2304 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2305 * use count.
2306 */
2307void
2308vfs_unp_reclaim(struct vnode *vp)
2309{
2310	struct socket *so;
2311	struct unpcb *unp;
2312	int active;
2313
2314	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2315	KASSERT(vp->v_type == VSOCK,
2316	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2317
2318	active = 0;
2319	UNP_LINK_WLOCK();
2320	so = vp->v_socket;
2321	if (so == NULL)
2322		goto done;
2323	unp = sotounpcb(so);
2324	if (unp == NULL)
2325		goto done;
2326	UNP_PCB_LOCK(unp);
2327	if (unp->unp_vnode != NULL) {
2328		KASSERT(unp->unp_vnode == vp,
2329		    ("vfs_unp_reclaim: vp != unp->unp_vnode"));
2330		vp->v_socket = NULL;
2331		unp->unp_vnode = NULL;
2332		active = 1;
2333	}
2334	UNP_PCB_UNLOCK(unp);
2335done:
2336	UNP_LINK_WUNLOCK();
2337	if (active)
2338		vunref(vp);
2339}
2340
2341#ifdef DDB
2342static void
2343db_print_indent(int indent)
2344{
2345	int i;
2346
2347	for (i = 0; i < indent; i++)
2348		db_printf(" ");
2349}
2350
2351static void
2352db_print_unpflags(int unp_flags)
2353{
2354	int comma;
2355
2356	comma = 0;
2357	if (unp_flags & UNP_HAVEPC) {
2358		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2359		comma = 1;
2360	}
2361	if (unp_flags & UNP_HAVEPCCACHED) {
2362		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2363		comma = 1;
2364	}
2365	if (unp_flags & UNP_WANTCRED) {
2366		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2367		comma = 1;
2368	}
2369	if (unp_flags & UNP_CONNWAIT) {
2370		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2371		comma = 1;
2372	}
2373	if (unp_flags & UNP_CONNECTING) {
2374		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2375		comma = 1;
2376	}
2377	if (unp_flags & UNP_BINDING) {
2378		db_printf("%sUNP_BINDING", comma ? ", " : "");
2379		comma = 1;
2380	}
2381}
2382
2383static void
2384db_print_xucred(int indent, struct xucred *xu)
2385{
2386	int comma, i;
2387
2388	db_print_indent(indent);
2389	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2390	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2391	db_print_indent(indent);
2392	db_printf("cr_groups: ");
2393	comma = 0;
2394	for (i = 0; i < xu->cr_ngroups; i++) {
2395		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2396		comma = 1;
2397	}
2398	db_printf("\n");
2399}
2400
2401static void
2402db_print_unprefs(int indent, struct unp_head *uh)
2403{
2404	struct unpcb *unp;
2405	int counter;
2406
2407	counter = 0;
2408	LIST_FOREACH(unp, uh, unp_reflink) {
2409		if (counter % 4 == 0)
2410			db_print_indent(indent);
2411		db_printf("%p  ", unp);
2412		if (counter % 4 == 3)
2413			db_printf("\n");
2414		counter++;
2415	}
2416	if (counter != 0 && counter % 4 != 0)
2417		db_printf("\n");
2418}
2419
2420DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2421{
2422	struct unpcb *unp;
2423
2424        if (!have_addr) {
2425                db_printf("usage: show unpcb <addr>\n");
2426                return;
2427        }
2428        unp = (struct unpcb *)addr;
2429
2430	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2431	    unp->unp_vnode);
2432
2433	db_printf("unp_ino: %d   unp_conn: %p\n", unp->unp_ino,
2434	    unp->unp_conn);
2435
2436	db_printf("unp_refs:\n");
2437	db_print_unprefs(2, &unp->unp_refs);
2438
2439	/* XXXRW: Would be nice to print the full address, if any. */
2440	db_printf("unp_addr: %p\n", unp->unp_addr);
2441
2442	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2443	    unp->unp_cc, unp->unp_mbcnt,
2444	    (unsigned long long)unp->unp_gencnt);
2445
2446	db_printf("unp_flags: %x (", unp->unp_flags);
2447	db_print_unpflags(unp->unp_flags);
2448	db_printf(")\n");
2449
2450	db_printf("unp_peercred:\n");
2451	db_print_xucred(2, &unp->unp_peercred);
2452
2453	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2454}
2455#endif
2456