1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004-2009 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * UNIX Domain (Local) Sockets
36 *
37 * This is an implementation of UNIX (local) domain sockets.  Each socket has
38 * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39 * may be connected to 0 or 1 other socket.  Datagram sockets may be
40 * connected to 0, 1, or many other sockets.  Sockets may be created and
41 * connected in pairs (socketpair(2)), or bound/connected to using the file
42 * system name space.  For most purposes, only the receive socket buffer is
43 * used, as sending on one socket delivers directly to the receive socket
44 * buffer of a second socket.
45 *
46 * The implementation is substantially complicated by the fact that
47 * "ancillary data", such as file descriptors or credentials, may be passed
48 * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49 * over other UNIX domain sockets requires the implementation of a simple
50 * garbage collector to find and tear down cycles of disconnected sockets.
51 *
52 * TODO:
53 *	RDM
54 *	distinguish datagram size limits from flow control limits in SEQPACKET
55 *	rethink name space problems
56 *	need a proper out-of-band
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD$");
61
62#include "opt_ddb.h"
63
64#include <sys/param.h>
65#include <sys/domain.h>
66#include <sys/fcntl.h>
67#include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68#include <sys/eventhandler.h>
69#include <sys/file.h>
70#include <sys/filedesc.h>
71#include <sys/kernel.h>
72#include <sys/lock.h>
73#include <sys/mbuf.h>
74#include <sys/mount.h>
75#include <sys/mutex.h>
76#include <sys/namei.h>
77#include <sys/proc.h>
78#include <sys/protosw.h>
79#include <sys/queue.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/socket.h>
83#include <sys/socketvar.h>
84#include <sys/signalvar.h>
85#include <sys/stat.h>
86#include <sys/sx.h>
87#include <sys/sysctl.h>
88#include <sys/systm.h>
89#include <sys/taskqueue.h>
90#include <sys/un.h>
91#include <sys/unpcb.h>
92#include <sys/vnode.h>
93
94#include <net/vnet.h>
95
96#ifdef DDB
97#include <ddb/ddb.h>
98#endif
99
100#include <security/mac/mac_framework.h>
101
102#include <vm/uma.h>
103
104/*
105 * Locking key:
106 * (l)	Locked using list lock
107 * (g)	Locked using linkage lock
108 */
109
110static uma_zone_t	unp_zone;
111static unp_gen_t	unp_gencnt;	/* (l) */
112static u_int		unp_count;	/* (l) Count of local sockets. */
113static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
114static int		unp_rights;	/* (g) File descriptors in flight. */
115static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
116static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
117static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
118
119struct unp_defer {
120	SLIST_ENTRY(unp_defer) ud_link;
121	struct file *ud_fp;
122};
123static SLIST_HEAD(, unp_defer) unp_defers;
124static int unp_defers_count;
125
126static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
127
128/*
129 * Garbage collection of cyclic file descriptor/socket references occurs
130 * asynchronously in a taskqueue context in order to avoid recursion and
131 * reentrance in the UNIX domain socket, file descriptor, and socket layer
132 * code.  See unp_gc() for a full description.
133 */
134static struct timeout_task unp_gc_task;
135
136/*
137 * The close of unix domain sockets attached as SCM_RIGHTS is
138 * postponed to the taskqueue, to avoid arbitrary recursion depth.
139 * The attached sockets might have another sockets attached.
140 */
141static struct task	unp_defer_task;
142
143/*
144 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145 * stream sockets, although the total for sender and receiver is actually
146 * only PIPSIZ.
147 *
148 * Datagram sockets really use the sendspace as the maximum datagram size,
149 * and don't really want to reserve the sendspace.  Their recvspace should be
150 * large enough for at least one max-size datagram plus address.
151 */
152#ifndef PIPSIZ
153#define	PIPSIZ	8192
154#endif
155static u_long	unpst_sendspace = PIPSIZ;
156static u_long	unpst_recvspace = PIPSIZ;
157static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
158static u_long	unpdg_recvspace = 4*1024;
159static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160static u_long	unpsp_recvspace = PIPSIZ;
161
162static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
163static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
164    "SOCK_STREAM");
165static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
166static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
167    "SOCK_SEQPACKET");
168
169SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
170	   &unpst_sendspace, 0, "Default stream send space.");
171SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
172	   &unpst_recvspace, 0, "Default stream receive space.");
173SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
174	   &unpdg_sendspace, 0, "Default datagram send space.");
175SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
176	   &unpdg_recvspace, 0, "Default datagram receive space.");
177SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
178	   &unpsp_sendspace, 0, "Default seqpacket send space.");
179SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
180	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
181SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
182    "File descriptors in flight.");
183SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
184    &unp_defers_count, 0,
185    "File descriptors deferred to taskqueue for close.");
186
187/*
188 * Locking and synchronization:
189 *
190 * Three types of locks exit in the local domain socket implementation: a
191 * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
192 * global locks, the list lock protects the socket count, global generation
193 * number, and stream/datagram global lists.  The linkage lock protects the
194 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
195 * held exclusively over the acquisition of multiple unpcb locks to prevent
196 * deadlock.
197 *
198 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
199 * allocated in pru_attach() and freed in pru_detach().  The validity of that
200 * pointer is an invariant, so no lock is required to dereference the so_pcb
201 * pointer if a valid socket reference is held by the caller.  In practice,
202 * this is always true during operations performed on a socket.  Each unpcb
203 * has a back-pointer to its socket, unp_socket, which will be stable under
204 * the same circumstances.
205 *
206 * This pointer may only be safely dereferenced as long as a valid reference
207 * to the unpcb is held.  Typically, this reference will be from the socket,
208 * or from another unpcb when the referring unpcb's lock is held (in order
209 * that the reference not be invalidated during use).  For example, to follow
210 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
211 * as unp_socket remains valid as long as the reference to unp_conn is valid.
212 *
213 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
214 * atomic reads without the lock may be performed "lockless", but more
215 * complex reads and read-modify-writes require the mutex to be held.  No
216 * lock order is defined between unpcb locks -- multiple unpcb locks may be
217 * acquired at the same time only when holding the linkage rwlock
218 * exclusively, which prevents deadlocks.
219 *
220 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
221 * protocols, bind() is a non-atomic operation, and connect() requires
222 * potential sleeping in the protocol, due to potentially waiting on local or
223 * distributed file systems.  We try to separate "lookup" operations, which
224 * may sleep, and the IPC operations themselves, which typically can occur
225 * with relative atomicity as locks can be held over the entire operation.
226 *
227 * Another tricky issue is simultaneous multi-threaded or multi-process
228 * access to a single UNIX domain socket.  These are handled by the flags
229 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
230 * binding, both of which involve dropping UNIX domain socket locks in order
231 * to perform namei() and other file system operations.
232 */
233static struct rwlock	unp_link_rwlock;
234static struct mtx	unp_list_lock;
235static struct mtx	unp_defers_lock;
236
237#define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
238					    "unp_link_rwlock")
239
240#define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
241					    RA_LOCKED)
242#define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
243					    RA_UNLOCKED)
244
245#define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
246#define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
247#define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
248#define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
249#define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
250					    RA_WLOCKED)
251
252#define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
253					    "unp_list_lock", NULL, MTX_DEF)
254#define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
255#define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
256
257#define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
258					    "unp_defer", NULL, MTX_DEF)
259#define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
260#define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
261
262#define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
263					    "unp_mtx", "unp_mtx",	\
264					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
265#define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
266#define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
267#define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
268#define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
269
270static int	uipc_connect2(struct socket *, struct socket *);
271static int	uipc_ctloutput(struct socket *, struct sockopt *);
272static int	unp_connect(struct socket *, struct sockaddr *,
273		    struct thread *);
274static int	unp_connect2(struct socket *so, struct socket *so2, int);
275static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
276static void	unp_dispose(struct mbuf *);
277static void	unp_shutdown(struct unpcb *);
278static void	unp_drop(struct unpcb *, int);
279static void	unp_gc(__unused void *, int);
280static void	unp_scan(struct mbuf *, void (*)(struct file *));
281static void	unp_discard(struct file *);
282static void	unp_freerights(struct file **, int);
283static void	unp_init(void);
284static int	unp_internalize(struct mbuf **, struct thread *);
285static void	unp_internalize_fp(struct file *);
286static int	unp_externalize(struct mbuf *, struct mbuf **);
287static int	unp_externalize_fp(struct file *);
288static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
289static void	unp_process_defers(void * __unused, int);
290
291/*
292 * Definitions of protocols supported in the LOCAL domain.
293 */
294static struct domain localdomain;
295static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
296static struct pr_usrreqs uipc_usrreqs_seqpacket;
297static struct protosw localsw[] = {
298{
299	.pr_type =		SOCK_STREAM,
300	.pr_domain =		&localdomain,
301	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
302	.pr_ctloutput =		&uipc_ctloutput,
303	.pr_usrreqs =		&uipc_usrreqs_stream
304},
305{
306	.pr_type =		SOCK_DGRAM,
307	.pr_domain =		&localdomain,
308	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
309	.pr_ctloutput =		&uipc_ctloutput,
310	.pr_usrreqs =		&uipc_usrreqs_dgram
311},
312{
313	.pr_type =		SOCK_SEQPACKET,
314	.pr_domain =		&localdomain,
315
316	/*
317	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
318	 * due to our use of sbappendaddr.  A new sbappend variants is needed
319	 * that supports both atomic record writes and control data.
320	 */
321	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
322				    PR_RIGHTS,
323	.pr_ctloutput =		&uipc_ctloutput,
324	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
325},
326};
327
328static struct domain localdomain = {
329	.dom_family =		AF_LOCAL,
330	.dom_name =		"local",
331	.dom_init =		unp_init,
332	.dom_externalize =	unp_externalize,
333	.dom_dispose =		unp_dispose,
334	.dom_protosw =		localsw,
335	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
336};
337DOMAIN_SET(local);
338
339static void
340uipc_abort(struct socket *so)
341{
342	struct unpcb *unp, *unp2;
343
344	unp = sotounpcb(so);
345	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
346
347	UNP_LINK_WLOCK();
348	UNP_PCB_LOCK(unp);
349	unp2 = unp->unp_conn;
350	if (unp2 != NULL) {
351		UNP_PCB_LOCK(unp2);
352		unp_drop(unp2, ECONNABORTED);
353		UNP_PCB_UNLOCK(unp2);
354	}
355	UNP_PCB_UNLOCK(unp);
356	UNP_LINK_WUNLOCK();
357}
358
359static int
360uipc_accept(struct socket *so, struct sockaddr **nam)
361{
362	struct unpcb *unp, *unp2;
363	const struct sockaddr *sa;
364
365	/*
366	 * Pass back name of connected socket, if it was bound and we are
367	 * still connected (our peer may have closed already!).
368	 */
369	unp = sotounpcb(so);
370	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
371
372	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
373	UNP_LINK_RLOCK();
374	unp2 = unp->unp_conn;
375	if (unp2 != NULL && unp2->unp_addr != NULL) {
376		UNP_PCB_LOCK(unp2);
377		sa = (struct sockaddr *) unp2->unp_addr;
378		bcopy(sa, *nam, sa->sa_len);
379		UNP_PCB_UNLOCK(unp2);
380	} else {
381		sa = &sun_noname;
382		bcopy(sa, *nam, sa->sa_len);
383	}
384	UNP_LINK_RUNLOCK();
385	return (0);
386}
387
388static int
389uipc_attach(struct socket *so, int proto, struct thread *td)
390{
391	u_long sendspace, recvspace;
392	struct unpcb *unp;
393	int error;
394
395	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
396	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
397		switch (so->so_type) {
398		case SOCK_STREAM:
399			sendspace = unpst_sendspace;
400			recvspace = unpst_recvspace;
401			break;
402
403		case SOCK_DGRAM:
404			sendspace = unpdg_sendspace;
405			recvspace = unpdg_recvspace;
406			break;
407
408		case SOCK_SEQPACKET:
409			sendspace = unpsp_sendspace;
410			recvspace = unpsp_recvspace;
411			break;
412
413		default:
414			panic("uipc_attach");
415		}
416		error = soreserve(so, sendspace, recvspace);
417		if (error)
418			return (error);
419	}
420	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
421	if (unp == NULL)
422		return (ENOBUFS);
423	LIST_INIT(&unp->unp_refs);
424	UNP_PCB_LOCK_INIT(unp);
425	unp->unp_socket = so;
426	so->so_pcb = unp;
427	unp->unp_refcount = 1;
428
429	UNP_LIST_LOCK();
430	unp->unp_gencnt = ++unp_gencnt;
431	unp_count++;
432	switch (so->so_type) {
433	case SOCK_STREAM:
434		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
435		break;
436
437	case SOCK_DGRAM:
438		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
439		break;
440
441	case SOCK_SEQPACKET:
442		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
443		break;
444
445	default:
446		panic("uipc_attach");
447	}
448	UNP_LIST_UNLOCK();
449
450	return (0);
451}
452
453static int
454uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
455{
456	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
457	struct vattr vattr;
458	int error, namelen, vfslocked;
459	struct nameidata nd;
460	struct unpcb *unp;
461	struct vnode *vp;
462	struct mount *mp;
463	char *buf;
464
465	unp = sotounpcb(so);
466	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
467
468	if (soun->sun_len > sizeof(struct sockaddr_un))
469		return (EINVAL);
470	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
471	if (namelen <= 0)
472		return (EINVAL);
473
474	/*
475	 * We don't allow simultaneous bind() calls on a single UNIX domain
476	 * socket, so flag in-progress operations, and return an error if an
477	 * operation is already in progress.
478	 *
479	 * Historically, we have not allowed a socket to be rebound, so this
480	 * also returns an error.  Not allowing re-binding simplifies the
481	 * implementation and avoids a great many possible failure modes.
482	 */
483	UNP_PCB_LOCK(unp);
484	if (unp->unp_vnode != NULL) {
485		UNP_PCB_UNLOCK(unp);
486		return (EINVAL);
487	}
488	if (unp->unp_flags & UNP_BINDING) {
489		UNP_PCB_UNLOCK(unp);
490		return (EALREADY);
491	}
492	unp->unp_flags |= UNP_BINDING;
493	UNP_PCB_UNLOCK(unp);
494
495	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
496	bcopy(soun->sun_path, buf, namelen);
497	buf[namelen] = 0;
498
499restart:
500	vfslocked = 0;
501	NDINIT(&nd, CREATE, MPSAFE | NOFOLLOW | LOCKPARENT | SAVENAME,
502	    UIO_SYSSPACE, buf, td);
503/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
504	error = namei(&nd);
505	if (error)
506		goto error;
507	vp = nd.ni_vp;
508	vfslocked = NDHASGIANT(&nd);
509	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
510		NDFREE(&nd, NDF_ONLY_PNBUF);
511		if (nd.ni_dvp == vp)
512			vrele(nd.ni_dvp);
513		else
514			vput(nd.ni_dvp);
515		if (vp != NULL) {
516			vrele(vp);
517			error = EADDRINUSE;
518			goto error;
519		}
520		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
521		if (error)
522			goto error;
523		VFS_UNLOCK_GIANT(vfslocked);
524		goto restart;
525	}
526	VATTR_NULL(&vattr);
527	vattr.va_type = VSOCK;
528	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
529#ifdef MAC
530	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
531	    &vattr);
532#endif
533	if (error == 0)
534		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
535	NDFREE(&nd, NDF_ONLY_PNBUF);
536	vput(nd.ni_dvp);
537	if (error) {
538		vn_finished_write(mp);
539		goto error;
540	}
541	vp = nd.ni_vp;
542	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
543	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
544
545	UNP_LINK_WLOCK();
546	UNP_PCB_LOCK(unp);
547	VOP_UNP_BIND(vp, unp->unp_socket);
548	unp->unp_vnode = vp;
549	unp->unp_addr = soun;
550	unp->unp_flags &= ~UNP_BINDING;
551	UNP_PCB_UNLOCK(unp);
552	UNP_LINK_WUNLOCK();
553	VOP_UNLOCK(vp, 0);
554	vn_finished_write(mp);
555	VFS_UNLOCK_GIANT(vfslocked);
556	free(buf, M_TEMP);
557	return (0);
558
559error:
560	VFS_UNLOCK_GIANT(vfslocked);
561	UNP_PCB_LOCK(unp);
562	unp->unp_flags &= ~UNP_BINDING;
563	UNP_PCB_UNLOCK(unp);
564	free(buf, M_TEMP);
565	return (error);
566}
567
568static int
569uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
570{
571	int error;
572
573	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
574	UNP_LINK_WLOCK();
575	error = unp_connect(so, nam, td);
576	UNP_LINK_WUNLOCK();
577	return (error);
578}
579
580static void
581uipc_close(struct socket *so)
582{
583	struct unpcb *unp, *unp2;
584
585	unp = sotounpcb(so);
586	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
587
588	UNP_LINK_WLOCK();
589	UNP_PCB_LOCK(unp);
590	unp2 = unp->unp_conn;
591	if (unp2 != NULL) {
592		UNP_PCB_LOCK(unp2);
593		unp_disconnect(unp, unp2);
594		UNP_PCB_UNLOCK(unp2);
595	}
596	UNP_PCB_UNLOCK(unp);
597	UNP_LINK_WUNLOCK();
598}
599
600static int
601uipc_connect2(struct socket *so1, struct socket *so2)
602{
603	struct unpcb *unp, *unp2;
604	int error;
605
606	UNP_LINK_WLOCK();
607	unp = so1->so_pcb;
608	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
609	UNP_PCB_LOCK(unp);
610	unp2 = so2->so_pcb;
611	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
612	UNP_PCB_LOCK(unp2);
613	error = unp_connect2(so1, so2, PRU_CONNECT2);
614	UNP_PCB_UNLOCK(unp2);
615	UNP_PCB_UNLOCK(unp);
616	UNP_LINK_WUNLOCK();
617	return (error);
618}
619
620static void
621uipc_detach(struct socket *so)
622{
623	struct unpcb *unp, *unp2;
624	struct sockaddr_un *saved_unp_addr;
625	struct vnode *vp;
626	int freeunp, local_unp_rights;
627
628	unp = sotounpcb(so);
629	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
630
631	UNP_LINK_WLOCK();
632	UNP_LIST_LOCK();
633	UNP_PCB_LOCK(unp);
634	LIST_REMOVE(unp, unp_link);
635	unp->unp_gencnt = ++unp_gencnt;
636	--unp_count;
637	UNP_LIST_UNLOCK();
638
639	/*
640	 * XXXRW: Should assert vp->v_socket == so.
641	 */
642	if ((vp = unp->unp_vnode) != NULL) {
643		VOP_UNP_DETACH(vp);
644		unp->unp_vnode = NULL;
645	}
646	unp2 = unp->unp_conn;
647	if (unp2 != NULL) {
648		UNP_PCB_LOCK(unp2);
649		unp_disconnect(unp, unp2);
650		UNP_PCB_UNLOCK(unp2);
651	}
652
653	/*
654	 * We hold the linkage lock exclusively, so it's OK to acquire
655	 * multiple pcb locks at a time.
656	 */
657	while (!LIST_EMPTY(&unp->unp_refs)) {
658		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
659
660		UNP_PCB_LOCK(ref);
661		unp_drop(ref, ECONNRESET);
662		UNP_PCB_UNLOCK(ref);
663	}
664	local_unp_rights = unp_rights;
665	UNP_LINK_WUNLOCK();
666	unp->unp_socket->so_pcb = NULL;
667	saved_unp_addr = unp->unp_addr;
668	unp->unp_addr = NULL;
669	unp->unp_refcount--;
670	freeunp = (unp->unp_refcount == 0);
671	if (saved_unp_addr != NULL)
672		free(saved_unp_addr, M_SONAME);
673	if (freeunp) {
674		UNP_PCB_LOCK_DESTROY(unp);
675		uma_zfree(unp_zone, unp);
676	} else
677		UNP_PCB_UNLOCK(unp);
678	if (vp) {
679		int vfslocked;
680
681		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
682		vrele(vp);
683		VFS_UNLOCK_GIANT(vfslocked);
684	}
685	if (local_unp_rights)
686		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
687}
688
689static int
690uipc_disconnect(struct socket *so)
691{
692	struct unpcb *unp, *unp2;
693
694	unp = sotounpcb(so);
695	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
696
697	UNP_LINK_WLOCK();
698	UNP_PCB_LOCK(unp);
699	unp2 = unp->unp_conn;
700	if (unp2 != NULL) {
701		UNP_PCB_LOCK(unp2);
702		unp_disconnect(unp, unp2);
703		UNP_PCB_UNLOCK(unp2);
704	}
705	UNP_PCB_UNLOCK(unp);
706	UNP_LINK_WUNLOCK();
707	return (0);
708}
709
710static int
711uipc_listen(struct socket *so, int backlog, struct thread *td)
712{
713	struct unpcb *unp;
714	int error;
715
716	unp = sotounpcb(so);
717	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
718
719	UNP_PCB_LOCK(unp);
720	if (unp->unp_vnode == NULL) {
721		UNP_PCB_UNLOCK(unp);
722		return (EINVAL);
723	}
724
725	SOCK_LOCK(so);
726	error = solisten_proto_check(so);
727	if (error == 0) {
728		cru2x(td->td_ucred, &unp->unp_peercred);
729		unp->unp_flags |= UNP_HAVEPCCACHED;
730		solisten_proto(so, backlog);
731	}
732	SOCK_UNLOCK(so);
733	UNP_PCB_UNLOCK(unp);
734	return (error);
735}
736
737static int
738uipc_peeraddr(struct socket *so, struct sockaddr **nam)
739{
740	struct unpcb *unp, *unp2;
741	const struct sockaddr *sa;
742
743	unp = sotounpcb(so);
744	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
745
746	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
747	UNP_LINK_RLOCK();
748	/*
749	 * XXX: It seems that this test always fails even when connection is
750	 * established.  So, this else clause is added as workaround to
751	 * return PF_LOCAL sockaddr.
752	 */
753	unp2 = unp->unp_conn;
754	if (unp2 != NULL) {
755		UNP_PCB_LOCK(unp2);
756		if (unp2->unp_addr != NULL)
757			sa = (struct sockaddr *) unp2->unp_addr;
758		else
759			sa = &sun_noname;
760		bcopy(sa, *nam, sa->sa_len);
761		UNP_PCB_UNLOCK(unp2);
762	} else {
763		sa = &sun_noname;
764		bcopy(sa, *nam, sa->sa_len);
765	}
766	UNP_LINK_RUNLOCK();
767	return (0);
768}
769
770static int
771uipc_rcvd(struct socket *so, int flags)
772{
773	struct unpcb *unp, *unp2;
774	struct socket *so2;
775	u_int mbcnt, sbcc;
776	u_long newhiwat;
777
778	unp = sotounpcb(so);
779	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
780
781	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
782		panic("uipc_rcvd socktype %d", so->so_type);
783
784	/*
785	 * Adjust backpressure on sender and wakeup any waiting to write.
786	 *
787	 * The unp lock is acquired to maintain the validity of the unp_conn
788	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
789	 * static as long as we don't permit unp2 to disconnect from unp,
790	 * which is prevented by the lock on unp.  We cache values from
791	 * so_rcv to avoid holding the so_rcv lock over the entire
792	 * transaction on the remote so_snd.
793	 */
794	SOCKBUF_LOCK(&so->so_rcv);
795	mbcnt = so->so_rcv.sb_mbcnt;
796	sbcc = so->so_rcv.sb_cc;
797	SOCKBUF_UNLOCK(&so->so_rcv);
798	UNP_PCB_LOCK(unp);
799	unp2 = unp->unp_conn;
800	if (unp2 == NULL) {
801		UNP_PCB_UNLOCK(unp);
802		return (0);
803	}
804	so2 = unp2->unp_socket;
805	SOCKBUF_LOCK(&so2->so_snd);
806	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
807	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
808	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
809	    newhiwat, RLIM_INFINITY);
810	sowwakeup_locked(so2);
811	unp->unp_mbcnt = mbcnt;
812	unp->unp_cc = sbcc;
813	UNP_PCB_UNLOCK(unp);
814	return (0);
815}
816
817static int
818uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
819    struct mbuf *control, struct thread *td)
820{
821	struct unpcb *unp, *unp2;
822	struct socket *so2;
823	u_int mbcnt_delta, sbcc;
824	u_int newhiwat;
825	int error = 0;
826
827	unp = sotounpcb(so);
828	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
829
830	if (flags & PRUS_OOB) {
831		error = EOPNOTSUPP;
832		goto release;
833	}
834	if (control != NULL && (error = unp_internalize(&control, td)))
835		goto release;
836	if ((nam != NULL) || (flags & PRUS_EOF))
837		UNP_LINK_WLOCK();
838	else
839		UNP_LINK_RLOCK();
840	switch (so->so_type) {
841	case SOCK_DGRAM:
842	{
843		const struct sockaddr *from;
844
845		unp2 = unp->unp_conn;
846		if (nam != NULL) {
847			UNP_LINK_WLOCK_ASSERT();
848			if (unp2 != NULL) {
849				error = EISCONN;
850				break;
851			}
852			error = unp_connect(so, nam, td);
853			if (error)
854				break;
855			unp2 = unp->unp_conn;
856		}
857
858		/*
859		 * Because connect() and send() are non-atomic in a sendto()
860		 * with a target address, it's possible that the socket will
861		 * have disconnected before the send() can run.  In that case
862		 * return the slightly counter-intuitive but otherwise
863		 * correct error that the socket is not connected.
864		 */
865		if (unp2 == NULL) {
866			error = ENOTCONN;
867			break;
868		}
869		/* Lockless read. */
870		if (unp2->unp_flags & UNP_WANTCRED)
871			control = unp_addsockcred(td, control);
872		UNP_PCB_LOCK(unp);
873		if (unp->unp_addr != NULL)
874			from = (struct sockaddr *)unp->unp_addr;
875		else
876			from = &sun_noname;
877		so2 = unp2->unp_socket;
878		SOCKBUF_LOCK(&so2->so_rcv);
879		if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, from, m,
880		    control)) {
881			sorwakeup_locked(so2);
882			m = NULL;
883			control = NULL;
884		} else {
885			SOCKBUF_UNLOCK(&so2->so_rcv);
886			error = ENOBUFS;
887		}
888		if (nam != NULL) {
889			UNP_LINK_WLOCK_ASSERT();
890			UNP_PCB_LOCK(unp2);
891			unp_disconnect(unp, unp2);
892			UNP_PCB_UNLOCK(unp2);
893		}
894		UNP_PCB_UNLOCK(unp);
895		break;
896	}
897
898	case SOCK_SEQPACKET:
899	case SOCK_STREAM:
900		if ((so->so_state & SS_ISCONNECTED) == 0) {
901			if (nam != NULL) {
902				UNP_LINK_WLOCK_ASSERT();
903				error = unp_connect(so, nam, td);
904				if (error)
905					break;	/* XXX */
906			} else {
907				error = ENOTCONN;
908				break;
909			}
910		}
911
912		/* Lockless read. */
913		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
914			error = EPIPE;
915			break;
916		}
917
918		/*
919		 * Because connect() and send() are non-atomic in a sendto()
920		 * with a target address, it's possible that the socket will
921		 * have disconnected before the send() can run.  In that case
922		 * return the slightly counter-intuitive but otherwise
923		 * correct error that the socket is not connected.
924		 *
925		 * Locking here must be done carefully: the linkage lock
926		 * prevents interconnections between unpcbs from changing, so
927		 * we can traverse from unp to unp2 without acquiring unp's
928		 * lock.  Socket buffer locks follow unpcb locks, so we can
929		 * acquire both remote and lock socket buffer locks.
930		 */
931		unp2 = unp->unp_conn;
932		if (unp2 == NULL) {
933			error = ENOTCONN;
934			break;
935		}
936		so2 = unp2->unp_socket;
937		UNP_PCB_LOCK(unp2);
938		SOCKBUF_LOCK(&so2->so_rcv);
939		if (unp2->unp_flags & UNP_WANTCRED) {
940			/*
941			 * Credentials are passed only once on SOCK_STREAM
942			 * and SOCK_SEQPACKET.
943			 */
944			unp2->unp_flags &= ~UNP_WANTCRED;
945			control = unp_addsockcred(td, control);
946		}
947		/*
948		 * Send to paired receive port, and then reduce send buffer
949		 * hiwater marks to maintain backpressure.  Wake up readers.
950		 */
951		switch (so->so_type) {
952		case SOCK_STREAM:
953			if (control != NULL) {
954				if (sbappendcontrol_locked(&so2->so_rcv, m,
955				    control))
956					control = NULL;
957			} else
958				sbappend_locked(&so2->so_rcv, m);
959			break;
960
961		case SOCK_SEQPACKET: {
962			const struct sockaddr *from;
963
964			from = &sun_noname;
965			/*
966			 * Don't check for space available in so2->so_rcv.
967			 * Unix domain sockets only check for space in the
968			 * sending sockbuf, and that check is performed one
969			 * level up the stack.
970			 */
971			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
972				from, m, control))
973				control = NULL;
974			break;
975			}
976		}
977
978		/*
979		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
980		 * datagram size and back-pressure for SOCK_SEQPACKET, which
981		 * can lead to undesired return of EMSGSIZE on send instead
982		 * of more desirable blocking.
983		 */
984		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
985		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
986		sbcc = so2->so_rcv.sb_cc;
987		sorwakeup_locked(so2);
988
989		SOCKBUF_LOCK(&so->so_snd);
990		if ((int)so->so_snd.sb_hiwat >= (int)(sbcc - unp2->unp_cc))
991			newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
992		else
993			newhiwat = 0;
994		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
995		    newhiwat, RLIM_INFINITY);
996		so->so_snd.sb_mbmax -= mbcnt_delta;
997		SOCKBUF_UNLOCK(&so->so_snd);
998		unp2->unp_cc = sbcc;
999		UNP_PCB_UNLOCK(unp2);
1000		m = NULL;
1001		break;
1002
1003	default:
1004		panic("uipc_send unknown socktype");
1005	}
1006
1007	/*
1008	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1009	 */
1010	if (flags & PRUS_EOF) {
1011		UNP_PCB_LOCK(unp);
1012		socantsendmore(so);
1013		unp_shutdown(unp);
1014		UNP_PCB_UNLOCK(unp);
1015	}
1016
1017	if ((nam != NULL) || (flags & PRUS_EOF))
1018		UNP_LINK_WUNLOCK();
1019	else
1020		UNP_LINK_RUNLOCK();
1021
1022	if (control != NULL && error != 0)
1023		unp_dispose(control);
1024
1025release:
1026	if (control != NULL)
1027		m_freem(control);
1028	if (m != NULL)
1029		m_freem(m);
1030	return (error);
1031}
1032
1033static int
1034uipc_sense(struct socket *so, struct stat *sb)
1035{
1036	struct unpcb *unp, *unp2;
1037	struct socket *so2;
1038
1039	unp = sotounpcb(so);
1040	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1041
1042	sb->st_blksize = so->so_snd.sb_hiwat;
1043	UNP_LINK_RLOCK();
1044	UNP_PCB_LOCK(unp);
1045	unp2 = unp->unp_conn;
1046	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1047	    unp2 != NULL) {
1048		so2 = unp2->unp_socket;
1049		sb->st_blksize += so2->so_rcv.sb_cc;
1050	}
1051	sb->st_dev = NODEV;
1052	if (unp->unp_ino == 0)
1053		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1054	sb->st_ino = unp->unp_ino;
1055	UNP_PCB_UNLOCK(unp);
1056	UNP_LINK_RUNLOCK();
1057	return (0);
1058}
1059
1060static int
1061uipc_shutdown(struct socket *so)
1062{
1063	struct unpcb *unp;
1064
1065	unp = sotounpcb(so);
1066	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1067
1068	UNP_LINK_WLOCK();
1069	UNP_PCB_LOCK(unp);
1070	socantsendmore(so);
1071	unp_shutdown(unp);
1072	UNP_PCB_UNLOCK(unp);
1073	UNP_LINK_WUNLOCK();
1074	return (0);
1075}
1076
1077static int
1078uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1079{
1080	struct unpcb *unp;
1081	const struct sockaddr *sa;
1082
1083	unp = sotounpcb(so);
1084	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1085
1086	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1087	UNP_PCB_LOCK(unp);
1088	if (unp->unp_addr != NULL)
1089		sa = (struct sockaddr *) unp->unp_addr;
1090	else
1091		sa = &sun_noname;
1092	bcopy(sa, *nam, sa->sa_len);
1093	UNP_PCB_UNLOCK(unp);
1094	return (0);
1095}
1096
1097static struct pr_usrreqs uipc_usrreqs_dgram = {
1098	.pru_abort = 		uipc_abort,
1099	.pru_accept =		uipc_accept,
1100	.pru_attach =		uipc_attach,
1101	.pru_bind =		uipc_bind,
1102	.pru_connect =		uipc_connect,
1103	.pru_connect2 =		uipc_connect2,
1104	.pru_detach =		uipc_detach,
1105	.pru_disconnect =	uipc_disconnect,
1106	.pru_listen =		uipc_listen,
1107	.pru_peeraddr =		uipc_peeraddr,
1108	.pru_rcvd =		uipc_rcvd,
1109	.pru_send =		uipc_send,
1110	.pru_sense =		uipc_sense,
1111	.pru_shutdown =		uipc_shutdown,
1112	.pru_sockaddr =		uipc_sockaddr,
1113	.pru_soreceive =	soreceive_dgram,
1114	.pru_close =		uipc_close,
1115};
1116
1117static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1118	.pru_abort =		uipc_abort,
1119	.pru_accept =		uipc_accept,
1120	.pru_attach =		uipc_attach,
1121	.pru_bind =		uipc_bind,
1122	.pru_connect =		uipc_connect,
1123	.pru_connect2 =		uipc_connect2,
1124	.pru_detach =		uipc_detach,
1125	.pru_disconnect =	uipc_disconnect,
1126	.pru_listen =		uipc_listen,
1127	.pru_peeraddr =		uipc_peeraddr,
1128	.pru_rcvd =		uipc_rcvd,
1129	.pru_send =		uipc_send,
1130	.pru_sense =		uipc_sense,
1131	.pru_shutdown =		uipc_shutdown,
1132	.pru_sockaddr =		uipc_sockaddr,
1133	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1134	.pru_close =		uipc_close,
1135};
1136
1137static struct pr_usrreqs uipc_usrreqs_stream = {
1138	.pru_abort = 		uipc_abort,
1139	.pru_accept =		uipc_accept,
1140	.pru_attach =		uipc_attach,
1141	.pru_bind =		uipc_bind,
1142	.pru_connect =		uipc_connect,
1143	.pru_connect2 =		uipc_connect2,
1144	.pru_detach =		uipc_detach,
1145	.pru_disconnect =	uipc_disconnect,
1146	.pru_listen =		uipc_listen,
1147	.pru_peeraddr =		uipc_peeraddr,
1148	.pru_rcvd =		uipc_rcvd,
1149	.pru_send =		uipc_send,
1150	.pru_sense =		uipc_sense,
1151	.pru_shutdown =		uipc_shutdown,
1152	.pru_sockaddr =		uipc_sockaddr,
1153	.pru_soreceive =	soreceive_generic,
1154	.pru_close =		uipc_close,
1155};
1156
1157static int
1158uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1159{
1160	struct unpcb *unp;
1161	struct xucred xu;
1162	int error, optval;
1163
1164	if (sopt->sopt_level != 0)
1165		return (EINVAL);
1166
1167	unp = sotounpcb(so);
1168	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1169	error = 0;
1170	switch (sopt->sopt_dir) {
1171	case SOPT_GET:
1172		switch (sopt->sopt_name) {
1173		case LOCAL_PEERCRED:
1174			UNP_PCB_LOCK(unp);
1175			if (unp->unp_flags & UNP_HAVEPC)
1176				xu = unp->unp_peercred;
1177			else {
1178				if (so->so_type == SOCK_STREAM)
1179					error = ENOTCONN;
1180				else
1181					error = EINVAL;
1182			}
1183			UNP_PCB_UNLOCK(unp);
1184			if (error == 0)
1185				error = sooptcopyout(sopt, &xu, sizeof(xu));
1186			break;
1187
1188		case LOCAL_CREDS:
1189			/* Unlocked read. */
1190			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1191			error = sooptcopyout(sopt, &optval, sizeof(optval));
1192			break;
1193
1194		case LOCAL_CONNWAIT:
1195			/* Unlocked read. */
1196			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1197			error = sooptcopyout(sopt, &optval, sizeof(optval));
1198			break;
1199
1200		default:
1201			error = EOPNOTSUPP;
1202			break;
1203		}
1204		break;
1205
1206	case SOPT_SET:
1207		switch (sopt->sopt_name) {
1208		case LOCAL_CREDS:
1209		case LOCAL_CONNWAIT:
1210			error = sooptcopyin(sopt, &optval, sizeof(optval),
1211					    sizeof(optval));
1212			if (error)
1213				break;
1214
1215#define	OPTSET(bit) do {						\
1216	UNP_PCB_LOCK(unp);						\
1217	if (optval)							\
1218		unp->unp_flags |= bit;					\
1219	else								\
1220		unp->unp_flags &= ~bit;					\
1221	UNP_PCB_UNLOCK(unp);						\
1222} while (0)
1223
1224			switch (sopt->sopt_name) {
1225			case LOCAL_CREDS:
1226				OPTSET(UNP_WANTCRED);
1227				break;
1228
1229			case LOCAL_CONNWAIT:
1230				OPTSET(UNP_CONNWAIT);
1231				break;
1232
1233			default:
1234				break;
1235			}
1236			break;
1237#undef	OPTSET
1238		default:
1239			error = ENOPROTOOPT;
1240			break;
1241		}
1242		break;
1243
1244	default:
1245		error = EOPNOTSUPP;
1246		break;
1247	}
1248	return (error);
1249}
1250
1251static int
1252unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1253{
1254	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1255	struct vnode *vp;
1256	struct socket *so2, *so3;
1257	struct unpcb *unp, *unp2, *unp3;
1258	int error, len, vfslocked;
1259	struct nameidata nd;
1260	char buf[SOCK_MAXADDRLEN];
1261	struct sockaddr *sa;
1262
1263	UNP_LINK_WLOCK_ASSERT();
1264
1265	unp = sotounpcb(so);
1266	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1267
1268	if (nam->sa_len > sizeof(struct sockaddr_un))
1269		return (EINVAL);
1270	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1271	if (len <= 0)
1272		return (EINVAL);
1273	bcopy(soun->sun_path, buf, len);
1274	buf[len] = 0;
1275
1276	UNP_PCB_LOCK(unp);
1277	if (unp->unp_flags & UNP_CONNECTING) {
1278		UNP_PCB_UNLOCK(unp);
1279		return (EALREADY);
1280	}
1281	UNP_LINK_WUNLOCK();
1282	unp->unp_flags |= UNP_CONNECTING;
1283	UNP_PCB_UNLOCK(unp);
1284
1285	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1286	NDINIT(&nd, LOOKUP, MPSAFE | FOLLOW | LOCKSHARED | LOCKLEAF,
1287	    UIO_SYSSPACE, buf, td);
1288	error = namei(&nd);
1289	if (error)
1290		vp = NULL;
1291	else
1292		vp = nd.ni_vp;
1293	ASSERT_VOP_LOCKED(vp, "unp_connect");
1294	vfslocked = NDHASGIANT(&nd);
1295	NDFREE(&nd, NDF_ONLY_PNBUF);
1296	if (error)
1297		goto bad;
1298
1299	if (vp->v_type != VSOCK) {
1300		error = ENOTSOCK;
1301		goto bad;
1302	}
1303#ifdef MAC
1304	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1305	if (error)
1306		goto bad;
1307#endif
1308	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1309	if (error)
1310		goto bad;
1311	VFS_UNLOCK_GIANT(vfslocked);
1312
1313	unp = sotounpcb(so);
1314	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1315
1316	/*
1317	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1318	 * and to protect simultaneous locking of multiple pcbs.
1319	 */
1320	UNP_LINK_WLOCK();
1321	VOP_UNP_CONNECT(vp, &so2);
1322	if (so2 == NULL) {
1323		error = ECONNREFUSED;
1324		goto bad2;
1325	}
1326	if (so->so_type != so2->so_type) {
1327		error = EPROTOTYPE;
1328		goto bad2;
1329	}
1330	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1331		if (so2->so_options & SO_ACCEPTCONN) {
1332			CURVNET_SET(so2->so_vnet);
1333			so3 = sonewconn(so2, 0);
1334			CURVNET_RESTORE();
1335		} else
1336			so3 = NULL;
1337		if (so3 == NULL) {
1338			error = ECONNREFUSED;
1339			goto bad2;
1340		}
1341		unp = sotounpcb(so);
1342		unp2 = sotounpcb(so2);
1343		unp3 = sotounpcb(so3);
1344		UNP_PCB_LOCK(unp);
1345		UNP_PCB_LOCK(unp2);
1346		UNP_PCB_LOCK(unp3);
1347		if (unp2->unp_addr != NULL) {
1348			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1349			unp3->unp_addr = (struct sockaddr_un *) sa;
1350			sa = NULL;
1351		}
1352
1353		/*
1354		 * The connector's (client's) credentials are copied from its
1355		 * process structure at the time of connect() (which is now).
1356		 */
1357		cru2x(td->td_ucred, &unp3->unp_peercred);
1358		unp3->unp_flags |= UNP_HAVEPC;
1359
1360		/*
1361		 * The receiver's (server's) credentials are copied from the
1362		 * unp_peercred member of socket on which the former called
1363		 * listen(); uipc_listen() cached that process's credentials
1364		 * at that time so we can use them now.
1365		 */
1366		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1367		    ("unp_connect: listener without cached peercred"));
1368		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1369		    sizeof(unp->unp_peercred));
1370		unp->unp_flags |= UNP_HAVEPC;
1371		if (unp2->unp_flags & UNP_WANTCRED)
1372			unp3->unp_flags |= UNP_WANTCRED;
1373		UNP_PCB_UNLOCK(unp3);
1374		UNP_PCB_UNLOCK(unp2);
1375		UNP_PCB_UNLOCK(unp);
1376#ifdef MAC
1377		mac_socketpeer_set_from_socket(so, so3);
1378		mac_socketpeer_set_from_socket(so3, so);
1379#endif
1380
1381		so2 = so3;
1382	}
1383	unp = sotounpcb(so);
1384	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1385	unp2 = sotounpcb(so2);
1386	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1387	UNP_PCB_LOCK(unp);
1388	UNP_PCB_LOCK(unp2);
1389	error = unp_connect2(so, so2, PRU_CONNECT);
1390	UNP_PCB_UNLOCK(unp2);
1391	UNP_PCB_UNLOCK(unp);
1392bad2:
1393	UNP_LINK_WUNLOCK();
1394	if (vfslocked)
1395		/*
1396		 * Giant has been previously acquired. This means filesystem
1397		 * isn't MPSAFE.  Do it once again.
1398		 */
1399		mtx_lock(&Giant);
1400bad:
1401	if (vp != NULL)
1402		vput(vp);
1403	VFS_UNLOCK_GIANT(vfslocked);
1404	free(sa, M_SONAME);
1405	UNP_LINK_WLOCK();
1406	UNP_PCB_LOCK(unp);
1407	unp->unp_flags &= ~UNP_CONNECTING;
1408	UNP_PCB_UNLOCK(unp);
1409	return (error);
1410}
1411
1412static int
1413unp_connect2(struct socket *so, struct socket *so2, int req)
1414{
1415	struct unpcb *unp;
1416	struct unpcb *unp2;
1417
1418	unp = sotounpcb(so);
1419	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1420	unp2 = sotounpcb(so2);
1421	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1422
1423	UNP_LINK_WLOCK_ASSERT();
1424	UNP_PCB_LOCK_ASSERT(unp);
1425	UNP_PCB_LOCK_ASSERT(unp2);
1426
1427	if (so2->so_type != so->so_type)
1428		return (EPROTOTYPE);
1429	unp->unp_conn = unp2;
1430
1431	switch (so->so_type) {
1432	case SOCK_DGRAM:
1433		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1434		soisconnected(so);
1435		break;
1436
1437	case SOCK_STREAM:
1438	case SOCK_SEQPACKET:
1439		unp2->unp_conn = unp;
1440		if (req == PRU_CONNECT &&
1441		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1442			soisconnecting(so);
1443		else
1444			soisconnected(so);
1445		soisconnected(so2);
1446		break;
1447
1448	default:
1449		panic("unp_connect2");
1450	}
1451	return (0);
1452}
1453
1454static void
1455unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1456{
1457	struct socket *so;
1458
1459	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1460
1461	UNP_LINK_WLOCK_ASSERT();
1462	UNP_PCB_LOCK_ASSERT(unp);
1463	UNP_PCB_LOCK_ASSERT(unp2);
1464
1465	unp->unp_conn = NULL;
1466	switch (unp->unp_socket->so_type) {
1467	case SOCK_DGRAM:
1468		LIST_REMOVE(unp, unp_reflink);
1469		so = unp->unp_socket;
1470		SOCK_LOCK(so);
1471		so->so_state &= ~SS_ISCONNECTED;
1472		SOCK_UNLOCK(so);
1473		break;
1474
1475	case SOCK_STREAM:
1476	case SOCK_SEQPACKET:
1477		soisdisconnected(unp->unp_socket);
1478		unp2->unp_conn = NULL;
1479		soisdisconnected(unp2->unp_socket);
1480		break;
1481	}
1482}
1483
1484/*
1485 * unp_pcblist() walks the global list of struct unpcb's to generate a
1486 * pointer list, bumping the refcount on each unpcb.  It then copies them out
1487 * sequentially, validating the generation number on each to see if it has
1488 * been detached.  All of this is necessary because copyout() may sleep on
1489 * disk I/O.
1490 */
1491static int
1492unp_pcblist(SYSCTL_HANDLER_ARGS)
1493{
1494	int error, i, n;
1495	int freeunp;
1496	struct unpcb *unp, **unp_list;
1497	unp_gen_t gencnt;
1498	struct xunpgen *xug;
1499	struct unp_head *head;
1500	struct xunpcb *xu;
1501
1502	switch ((intptr_t)arg1) {
1503	case SOCK_STREAM:
1504		head = &unp_shead;
1505		break;
1506
1507	case SOCK_DGRAM:
1508		head = &unp_dhead;
1509		break;
1510
1511	case SOCK_SEQPACKET:
1512		head = &unp_sphead;
1513		break;
1514
1515	default:
1516		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1517	}
1518
1519	/*
1520	 * The process of preparing the PCB list is too time-consuming and
1521	 * resource-intensive to repeat twice on every request.
1522	 */
1523	if (req->oldptr == NULL) {
1524		n = unp_count;
1525		req->oldidx = 2 * (sizeof *xug)
1526			+ (n + n/8) * sizeof(struct xunpcb);
1527		return (0);
1528	}
1529
1530	if (req->newptr != NULL)
1531		return (EPERM);
1532
1533	/*
1534	 * OK, now we're committed to doing something.
1535	 */
1536	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1537	UNP_LIST_LOCK();
1538	gencnt = unp_gencnt;
1539	n = unp_count;
1540	UNP_LIST_UNLOCK();
1541
1542	xug->xug_len = sizeof *xug;
1543	xug->xug_count = n;
1544	xug->xug_gen = gencnt;
1545	xug->xug_sogen = so_gencnt;
1546	error = SYSCTL_OUT(req, xug, sizeof *xug);
1547	if (error) {
1548		free(xug, M_TEMP);
1549		return (error);
1550	}
1551
1552	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1553
1554	UNP_LIST_LOCK();
1555	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1556	     unp = LIST_NEXT(unp, unp_link)) {
1557		UNP_PCB_LOCK(unp);
1558		if (unp->unp_gencnt <= gencnt) {
1559			if (cr_cansee(req->td->td_ucred,
1560			    unp->unp_socket->so_cred)) {
1561				UNP_PCB_UNLOCK(unp);
1562				continue;
1563			}
1564			unp_list[i++] = unp;
1565			unp->unp_refcount++;
1566		}
1567		UNP_PCB_UNLOCK(unp);
1568	}
1569	UNP_LIST_UNLOCK();
1570	n = i;			/* In case we lost some during malloc. */
1571
1572	error = 0;
1573	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1574	for (i = 0; i < n; i++) {
1575		unp = unp_list[i];
1576		UNP_PCB_LOCK(unp);
1577		unp->unp_refcount--;
1578	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1579			xu->xu_len = sizeof *xu;
1580			xu->xu_unpp = unp;
1581			/*
1582			 * XXX - need more locking here to protect against
1583			 * connect/disconnect races for SMP.
1584			 */
1585			if (unp->unp_addr != NULL)
1586				bcopy(unp->unp_addr, &xu->xu_addr,
1587				      unp->unp_addr->sun_len);
1588			if (unp->unp_conn != NULL &&
1589			    unp->unp_conn->unp_addr != NULL)
1590				bcopy(unp->unp_conn->unp_addr,
1591				      &xu->xu_caddr,
1592				      unp->unp_conn->unp_addr->sun_len);
1593			bcopy(unp, &xu->xu_unp, sizeof *unp);
1594			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1595			UNP_PCB_UNLOCK(unp);
1596			error = SYSCTL_OUT(req, xu, sizeof *xu);
1597		} else {
1598			freeunp = (unp->unp_refcount == 0);
1599			UNP_PCB_UNLOCK(unp);
1600			if (freeunp) {
1601				UNP_PCB_LOCK_DESTROY(unp);
1602				uma_zfree(unp_zone, unp);
1603			}
1604		}
1605	}
1606	free(xu, M_TEMP);
1607	if (!error) {
1608		/*
1609		 * Give the user an updated idea of our state.  If the
1610		 * generation differs from what we told her before, she knows
1611		 * that something happened while we were processing this
1612		 * request, and it might be necessary to retry.
1613		 */
1614		xug->xug_gen = unp_gencnt;
1615		xug->xug_sogen = so_gencnt;
1616		xug->xug_count = unp_count;
1617		error = SYSCTL_OUT(req, xug, sizeof *xug);
1618	}
1619	free(unp_list, M_TEMP);
1620	free(xug, M_TEMP);
1621	return (error);
1622}
1623
1624SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1625    (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1626    "List of active local datagram sockets");
1627SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1628    (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1629    "List of active local stream sockets");
1630SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1631    CTLTYPE_OPAQUE | CTLFLAG_RD,
1632    (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1633    "List of active local seqpacket sockets");
1634
1635static void
1636unp_shutdown(struct unpcb *unp)
1637{
1638	struct unpcb *unp2;
1639	struct socket *so;
1640
1641	UNP_LINK_WLOCK_ASSERT();
1642	UNP_PCB_LOCK_ASSERT(unp);
1643
1644	unp2 = unp->unp_conn;
1645	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1646	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1647		so = unp2->unp_socket;
1648		if (so != NULL)
1649			socantrcvmore(so);
1650	}
1651}
1652
1653static void
1654unp_drop(struct unpcb *unp, int errno)
1655{
1656	struct socket *so = unp->unp_socket;
1657	struct unpcb *unp2;
1658
1659	UNP_LINK_WLOCK_ASSERT();
1660	UNP_PCB_LOCK_ASSERT(unp);
1661
1662	so->so_error = errno;
1663	unp2 = unp->unp_conn;
1664	if (unp2 == NULL)
1665		return;
1666	UNP_PCB_LOCK(unp2);
1667	unp_disconnect(unp, unp2);
1668	UNP_PCB_UNLOCK(unp2);
1669}
1670
1671static void
1672unp_freerights(struct file **rp, int fdcount)
1673{
1674	int i;
1675	struct file *fp;
1676
1677	for (i = 0; i < fdcount; i++) {
1678		fp = *rp;
1679		*rp++ = NULL;
1680		unp_discard(fp);
1681	}
1682}
1683
1684static int
1685unp_externalize(struct mbuf *control, struct mbuf **controlp)
1686{
1687	struct thread *td = curthread;		/* XXX */
1688	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1689	int i;
1690	int *fdp;
1691	struct file **rp;
1692	struct file *fp;
1693	void *data;
1694	socklen_t clen = control->m_len, datalen;
1695	int error, newfds;
1696	u_int newlen;
1697
1698	UNP_LINK_UNLOCK_ASSERT();
1699
1700	error = 0;
1701	if (controlp != NULL) /* controlp == NULL => free control messages */
1702		*controlp = NULL;
1703	while (cm != NULL) {
1704		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1705			error = EINVAL;
1706			break;
1707		}
1708		data = CMSG_DATA(cm);
1709		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1710		if (cm->cmsg_level == SOL_SOCKET
1711		    && cm->cmsg_type == SCM_RIGHTS) {
1712			newfds = datalen / sizeof(struct file *);
1713			rp = data;
1714
1715			/* If we're not outputting the descriptors free them. */
1716			if (error || controlp == NULL) {
1717				unp_freerights(rp, newfds);
1718				goto next;
1719			}
1720			FILEDESC_XLOCK(td->td_proc->p_fd);
1721			/*
1722			 * Now change each pointer to an fd in the global
1723			 * table to an integer that is the index to the local
1724			 * fd table entry that we set up to point to the
1725			 * global one we are transferring.
1726			 */
1727			newlen = newfds * sizeof(int);
1728			*controlp = sbcreatecontrol(NULL, newlen,
1729			    SCM_RIGHTS, SOL_SOCKET);
1730			if (*controlp == NULL) {
1731				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1732				error = E2BIG;
1733				unp_freerights(rp, newfds);
1734				goto next;
1735			}
1736
1737			fdp = (int *)
1738			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1739			if (fdallocn(td, 0, fdp, newfds) != 0) {
1740				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1741				error = EMSGSIZE;
1742				unp_freerights(rp, newfds);
1743				m_freem(*controlp);
1744				*controlp = NULL;
1745				goto next;
1746			}
1747			for (i = 0; i < newfds; i++) {
1748				fp = *rp++;
1749				td->td_proc->p_fd->fd_ofiles[fdp[i]] = fp;
1750				unp_externalize_fp(fp);
1751			}
1752			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1753		} else {
1754			/* We can just copy anything else across. */
1755			if (error || controlp == NULL)
1756				goto next;
1757			*controlp = sbcreatecontrol(NULL, datalen,
1758			    cm->cmsg_type, cm->cmsg_level);
1759			if (*controlp == NULL) {
1760				error = ENOBUFS;
1761				goto next;
1762			}
1763			bcopy(data,
1764			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1765			    datalen);
1766		}
1767		controlp = &(*controlp)->m_next;
1768
1769next:
1770		if (CMSG_SPACE(datalen) < clen) {
1771			clen -= CMSG_SPACE(datalen);
1772			cm = (struct cmsghdr *)
1773			    ((caddr_t)cm + CMSG_SPACE(datalen));
1774		} else {
1775			clen = 0;
1776			cm = NULL;
1777		}
1778	}
1779
1780	m_freem(control);
1781	return (error);
1782}
1783
1784static void
1785unp_zone_change(void *tag)
1786{
1787
1788	uma_zone_set_max(unp_zone, maxsockets);
1789}
1790
1791static void
1792unp_init(void)
1793{
1794
1795#ifdef VIMAGE
1796	if (!IS_DEFAULT_VNET(curvnet))
1797		return;
1798#endif
1799	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1800	    NULL, NULL, UMA_ALIGN_PTR, 0);
1801	if (unp_zone == NULL)
1802		panic("unp_init");
1803	uma_zone_set_max(unp_zone, maxsockets);
1804	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1805	    NULL, EVENTHANDLER_PRI_ANY);
1806	LIST_INIT(&unp_dhead);
1807	LIST_INIT(&unp_shead);
1808	LIST_INIT(&unp_sphead);
1809	SLIST_INIT(&unp_defers);
1810	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
1811	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1812	UNP_LINK_LOCK_INIT();
1813	UNP_LIST_LOCK_INIT();
1814	UNP_DEFERRED_LOCK_INIT();
1815}
1816
1817static int
1818unp_internalize(struct mbuf **controlp, struct thread *td)
1819{
1820	struct mbuf *control = *controlp;
1821	struct proc *p = td->td_proc;
1822	struct filedesc *fdescp = p->p_fd;
1823	struct bintime *bt;
1824	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1825	struct cmsgcred *cmcred;
1826	struct file **rp;
1827	struct file *fp;
1828	struct timeval *tv;
1829	int i, fd, *fdp;
1830	void *data;
1831	socklen_t clen = control->m_len, datalen;
1832	int error, oldfds;
1833	u_int newlen;
1834
1835	UNP_LINK_UNLOCK_ASSERT();
1836
1837	error = 0;
1838	*controlp = NULL;
1839	while (cm != NULL) {
1840		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1841		    || cm->cmsg_len > clen) {
1842			error = EINVAL;
1843			goto out;
1844		}
1845		data = CMSG_DATA(cm);
1846		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1847
1848		switch (cm->cmsg_type) {
1849		/*
1850		 * Fill in credential information.
1851		 */
1852		case SCM_CREDS:
1853			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1854			    SCM_CREDS, SOL_SOCKET);
1855			if (*controlp == NULL) {
1856				error = ENOBUFS;
1857				goto out;
1858			}
1859			cmcred = (struct cmsgcred *)
1860			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1861			cmcred->cmcred_pid = p->p_pid;
1862			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1863			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1864			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1865			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1866			    CMGROUP_MAX);
1867			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1868				cmcred->cmcred_groups[i] =
1869				    td->td_ucred->cr_groups[i];
1870			break;
1871
1872		case SCM_RIGHTS:
1873			oldfds = datalen / sizeof (int);
1874			/*
1875			 * Check that all the FDs passed in refer to legal
1876			 * files.  If not, reject the entire operation.
1877			 */
1878			fdp = data;
1879			FILEDESC_SLOCK(fdescp);
1880			for (i = 0; i < oldfds; i++) {
1881				fd = *fdp++;
1882				if ((unsigned)fd >= fdescp->fd_nfiles ||
1883				    fdescp->fd_ofiles[fd] == NULL) {
1884					FILEDESC_SUNLOCK(fdescp);
1885					error = EBADF;
1886					goto out;
1887				}
1888				fp = fdescp->fd_ofiles[fd];
1889				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1890					FILEDESC_SUNLOCK(fdescp);
1891					error = EOPNOTSUPP;
1892					goto out;
1893				}
1894
1895			}
1896
1897			/*
1898			 * Now replace the integer FDs with pointers to the
1899			 * associated global file table entry..
1900			 */
1901			newlen = oldfds * sizeof(struct file *);
1902			*controlp = sbcreatecontrol(NULL, newlen,
1903			    SCM_RIGHTS, SOL_SOCKET);
1904			if (*controlp == NULL) {
1905				FILEDESC_SUNLOCK(fdescp);
1906				error = E2BIG;
1907				goto out;
1908			}
1909			fdp = data;
1910			rp = (struct file **)
1911			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1912			for (i = 0; i < oldfds; i++) {
1913				fp = fdescp->fd_ofiles[*fdp++];
1914				*rp++ = fp;
1915				unp_internalize_fp(fp);
1916			}
1917			FILEDESC_SUNLOCK(fdescp);
1918			break;
1919
1920		case SCM_TIMESTAMP:
1921			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1922			    SCM_TIMESTAMP, SOL_SOCKET);
1923			if (*controlp == NULL) {
1924				error = ENOBUFS;
1925				goto out;
1926			}
1927			tv = (struct timeval *)
1928			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1929			microtime(tv);
1930			break;
1931
1932		case SCM_BINTIME:
1933			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
1934			    SCM_BINTIME, SOL_SOCKET);
1935			if (*controlp == NULL) {
1936				error = ENOBUFS;
1937				goto out;
1938			}
1939			bt = (struct bintime *)
1940			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1941			bintime(bt);
1942			break;
1943
1944		default:
1945			error = EINVAL;
1946			goto out;
1947		}
1948
1949		controlp = &(*controlp)->m_next;
1950		if (CMSG_SPACE(datalen) < clen) {
1951			clen -= CMSG_SPACE(datalen);
1952			cm = (struct cmsghdr *)
1953			    ((caddr_t)cm + CMSG_SPACE(datalen));
1954		} else {
1955			clen = 0;
1956			cm = NULL;
1957		}
1958	}
1959
1960out:
1961	m_freem(control);
1962	return (error);
1963}
1964
1965static struct mbuf *
1966unp_addsockcred(struct thread *td, struct mbuf *control)
1967{
1968	struct mbuf *m, *n, *n_prev;
1969	struct sockcred *sc;
1970	const struct cmsghdr *cm;
1971	int ngroups;
1972	int i;
1973
1974	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1975	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1976	if (m == NULL)
1977		return (control);
1978
1979	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1980	sc->sc_uid = td->td_ucred->cr_ruid;
1981	sc->sc_euid = td->td_ucred->cr_uid;
1982	sc->sc_gid = td->td_ucred->cr_rgid;
1983	sc->sc_egid = td->td_ucred->cr_gid;
1984	sc->sc_ngroups = ngroups;
1985	for (i = 0; i < sc->sc_ngroups; i++)
1986		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1987
1988	/*
1989	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1990	 * created SCM_CREDS control message (struct sockcred) has another
1991	 * format.
1992	 */
1993	if (control != NULL)
1994		for (n = control, n_prev = NULL; n != NULL;) {
1995			cm = mtod(n, struct cmsghdr *);
1996    			if (cm->cmsg_level == SOL_SOCKET &&
1997			    cm->cmsg_type == SCM_CREDS) {
1998    				if (n_prev == NULL)
1999					control = n->m_next;
2000				else
2001					n_prev->m_next = n->m_next;
2002				n = m_free(n);
2003			} else {
2004				n_prev = n;
2005				n = n->m_next;
2006			}
2007		}
2008
2009	/* Prepend it to the head. */
2010	m->m_next = control;
2011	return (m);
2012}
2013
2014static struct unpcb *
2015fptounp(struct file *fp)
2016{
2017	struct socket *so;
2018
2019	if (fp->f_type != DTYPE_SOCKET)
2020		return (NULL);
2021	if ((so = fp->f_data) == NULL)
2022		return (NULL);
2023	if (so->so_proto->pr_domain != &localdomain)
2024		return (NULL);
2025	return sotounpcb(so);
2026}
2027
2028static void
2029unp_discard(struct file *fp)
2030{
2031	struct unp_defer *dr;
2032
2033	if (unp_externalize_fp(fp)) {
2034		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2035		dr->ud_fp = fp;
2036		UNP_DEFERRED_LOCK();
2037		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2038		UNP_DEFERRED_UNLOCK();
2039		atomic_add_int(&unp_defers_count, 1);
2040		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2041	} else
2042		(void) closef(fp, (struct thread *)NULL);
2043}
2044
2045static void
2046unp_process_defers(void *arg __unused, int pending)
2047{
2048	struct unp_defer *dr;
2049	SLIST_HEAD(, unp_defer) drl;
2050	int count;
2051
2052	SLIST_INIT(&drl);
2053	for (;;) {
2054		UNP_DEFERRED_LOCK();
2055		if (SLIST_FIRST(&unp_defers) == NULL) {
2056			UNP_DEFERRED_UNLOCK();
2057			break;
2058		}
2059		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2060		UNP_DEFERRED_UNLOCK();
2061		count = 0;
2062		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2063			SLIST_REMOVE_HEAD(&drl, ud_link);
2064			closef(dr->ud_fp, NULL);
2065			free(dr, M_TEMP);
2066			count++;
2067		}
2068		atomic_add_int(&unp_defers_count, -count);
2069	}
2070}
2071
2072static void
2073unp_internalize_fp(struct file *fp)
2074{
2075	struct unpcb *unp;
2076
2077	UNP_LINK_WLOCK();
2078	if ((unp = fptounp(fp)) != NULL) {
2079		unp->unp_file = fp;
2080		unp->unp_msgcount++;
2081	}
2082	fhold(fp);
2083	unp_rights++;
2084	UNP_LINK_WUNLOCK();
2085}
2086
2087static int
2088unp_externalize_fp(struct file *fp)
2089{
2090	struct unpcb *unp;
2091	int ret;
2092
2093	UNP_LINK_WLOCK();
2094	if ((unp = fptounp(fp)) != NULL) {
2095		unp->unp_msgcount--;
2096		ret = 1;
2097	} else
2098		ret = 0;
2099	unp_rights--;
2100	UNP_LINK_WUNLOCK();
2101	return (ret);
2102}
2103
2104/*
2105 * unp_defer indicates whether additional work has been defered for a future
2106 * pass through unp_gc().  It is thread local and does not require explicit
2107 * synchronization.
2108 */
2109static int	unp_marked;
2110static int	unp_unreachable;
2111
2112static void
2113unp_accessable(struct file *fp)
2114{
2115	struct unpcb *unp;
2116
2117	if ((unp = fptounp(fp)) == NULL)
2118		return;
2119	if (unp->unp_gcflag & UNPGC_REF)
2120		return;
2121	unp->unp_gcflag &= ~UNPGC_DEAD;
2122	unp->unp_gcflag |= UNPGC_REF;
2123	unp_marked++;
2124}
2125
2126static void
2127unp_gc_process(struct unpcb *unp)
2128{
2129	struct socket *soa;
2130	struct socket *so;
2131	struct file *fp;
2132
2133	/* Already processed. */
2134	if (unp->unp_gcflag & UNPGC_SCANNED)
2135		return;
2136	fp = unp->unp_file;
2137
2138	/*
2139	 * Check for a socket potentially in a cycle.  It must be in a
2140	 * queue as indicated by msgcount, and this must equal the file
2141	 * reference count.  Note that when msgcount is 0 the file is NULL.
2142	 */
2143	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2144	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2145		unp->unp_gcflag |= UNPGC_DEAD;
2146		unp_unreachable++;
2147		return;
2148	}
2149
2150	/*
2151	 * Mark all sockets we reference with RIGHTS.
2152	 */
2153	so = unp->unp_socket;
2154	SOCKBUF_LOCK(&so->so_rcv);
2155	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2156	SOCKBUF_UNLOCK(&so->so_rcv);
2157
2158	/*
2159	 * Mark all sockets in our accept queue.
2160	 */
2161	ACCEPT_LOCK();
2162	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2163		SOCKBUF_LOCK(&soa->so_rcv);
2164		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2165		SOCKBUF_UNLOCK(&soa->so_rcv);
2166	}
2167	ACCEPT_UNLOCK();
2168	unp->unp_gcflag |= UNPGC_SCANNED;
2169}
2170
2171static int unp_recycled;
2172SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2173    "Number of unreachable sockets claimed by the garbage collector.");
2174
2175static int unp_taskcount;
2176SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2177    "Number of times the garbage collector has run.");
2178
2179static void
2180unp_gc(__unused void *arg, int pending)
2181{
2182	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2183				    NULL };
2184	struct unp_head **head;
2185	struct file *f, **unref;
2186	struct unpcb *unp;
2187	int i, total;
2188
2189	unp_taskcount++;
2190	UNP_LIST_LOCK();
2191	/*
2192	 * First clear all gc flags from previous runs.
2193	 */
2194	for (head = heads; *head != NULL; head++)
2195		LIST_FOREACH(unp, *head, unp_link)
2196			unp->unp_gcflag = 0;
2197
2198	/*
2199	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2200	 * is reachable all of the sockets it references are reachable.
2201	 * Stop the scan once we do a complete loop without discovering
2202	 * a new reachable socket.
2203	 */
2204	do {
2205		unp_unreachable = 0;
2206		unp_marked = 0;
2207		for (head = heads; *head != NULL; head++)
2208			LIST_FOREACH(unp, *head, unp_link)
2209				unp_gc_process(unp);
2210	} while (unp_marked);
2211	UNP_LIST_UNLOCK();
2212	if (unp_unreachable == 0)
2213		return;
2214
2215	/*
2216	 * Allocate space for a local list of dead unpcbs.
2217	 */
2218	unref = malloc(unp_unreachable * sizeof(struct file *),
2219	    M_TEMP, M_WAITOK);
2220
2221	/*
2222	 * Iterate looking for sockets which have been specifically marked
2223	 * as as unreachable and store them locally.
2224	 */
2225	UNP_LINK_RLOCK();
2226	UNP_LIST_LOCK();
2227	for (total = 0, head = heads; *head != NULL; head++)
2228		LIST_FOREACH(unp, *head, unp_link)
2229			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2230				f = unp->unp_file;
2231				if (unp->unp_msgcount == 0 || f == NULL ||
2232				    f->f_count != unp->unp_msgcount)
2233					continue;
2234				unref[total++] = f;
2235				fhold(f);
2236				KASSERT(total <= unp_unreachable,
2237				    ("unp_gc: incorrect unreachable count."));
2238			}
2239	UNP_LIST_UNLOCK();
2240	UNP_LINK_RUNLOCK();
2241
2242	/*
2243	 * Now flush all sockets, free'ing rights.  This will free the
2244	 * struct files associated with these sockets but leave each socket
2245	 * with one remaining ref.
2246	 */
2247	for (i = 0; i < total; i++) {
2248		struct socket *so;
2249
2250		so = unref[i]->f_data;
2251		CURVNET_SET(so->so_vnet);
2252		sorflush(so);
2253		CURVNET_RESTORE();
2254	}
2255
2256	/*
2257	 * And finally release the sockets so they can be reclaimed.
2258	 */
2259	for (i = 0; i < total; i++)
2260		fdrop(unref[i], NULL);
2261	unp_recycled += total;
2262	free(unref, M_TEMP);
2263}
2264
2265static void
2266unp_dispose(struct mbuf *m)
2267{
2268
2269	if (m)
2270		unp_scan(m, unp_discard);
2271}
2272
2273static void
2274unp_scan(struct mbuf *m0, void (*op)(struct file *))
2275{
2276	struct mbuf *m;
2277	struct file **rp;
2278	struct cmsghdr *cm;
2279	void *data;
2280	int i;
2281	socklen_t clen, datalen;
2282	int qfds;
2283
2284	while (m0 != NULL) {
2285		for (m = m0; m; m = m->m_next) {
2286			if (m->m_type != MT_CONTROL)
2287				continue;
2288
2289			cm = mtod(m, struct cmsghdr *);
2290			clen = m->m_len;
2291
2292			while (cm != NULL) {
2293				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2294					break;
2295
2296				data = CMSG_DATA(cm);
2297				datalen = (caddr_t)cm + cm->cmsg_len
2298				    - (caddr_t)data;
2299
2300				if (cm->cmsg_level == SOL_SOCKET &&
2301				    cm->cmsg_type == SCM_RIGHTS) {
2302					qfds = datalen / sizeof (struct file *);
2303					rp = data;
2304					for (i = 0; i < qfds; i++)
2305						(*op)(*rp++);
2306				}
2307
2308				if (CMSG_SPACE(datalen) < clen) {
2309					clen -= CMSG_SPACE(datalen);
2310					cm = (struct cmsghdr *)
2311					    ((caddr_t)cm + CMSG_SPACE(datalen));
2312				} else {
2313					clen = 0;
2314					cm = NULL;
2315				}
2316			}
2317		}
2318		m0 = m0->m_act;
2319	}
2320}
2321
2322/*
2323 * A helper function called by VFS before socket-type vnode reclamation.
2324 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2325 * use count.
2326 */
2327void
2328vfs_unp_reclaim(struct vnode *vp)
2329{
2330	struct socket *so;
2331	struct unpcb *unp;
2332	int active;
2333
2334	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2335	KASSERT(vp->v_type == VSOCK,
2336	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2337
2338	active = 0;
2339	UNP_LINK_WLOCK();
2340	VOP_UNP_CONNECT(vp, &so);
2341	if (so == NULL)
2342		goto done;
2343	unp = sotounpcb(so);
2344	if (unp == NULL)
2345		goto done;
2346	UNP_PCB_LOCK(unp);
2347	if (unp->unp_vnode == vp) {
2348		VOP_UNP_DETACH(vp);
2349		unp->unp_vnode = NULL;
2350		active = 1;
2351	}
2352	UNP_PCB_UNLOCK(unp);
2353done:
2354	UNP_LINK_WUNLOCK();
2355	if (active)
2356		vunref(vp);
2357}
2358
2359#ifdef DDB
2360static void
2361db_print_indent(int indent)
2362{
2363	int i;
2364
2365	for (i = 0; i < indent; i++)
2366		db_printf(" ");
2367}
2368
2369static void
2370db_print_unpflags(int unp_flags)
2371{
2372	int comma;
2373
2374	comma = 0;
2375	if (unp_flags & UNP_HAVEPC) {
2376		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2377		comma = 1;
2378	}
2379	if (unp_flags & UNP_HAVEPCCACHED) {
2380		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2381		comma = 1;
2382	}
2383	if (unp_flags & UNP_WANTCRED) {
2384		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2385		comma = 1;
2386	}
2387	if (unp_flags & UNP_CONNWAIT) {
2388		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2389		comma = 1;
2390	}
2391	if (unp_flags & UNP_CONNECTING) {
2392		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2393		comma = 1;
2394	}
2395	if (unp_flags & UNP_BINDING) {
2396		db_printf("%sUNP_BINDING", comma ? ", " : "");
2397		comma = 1;
2398	}
2399}
2400
2401static void
2402db_print_xucred(int indent, struct xucred *xu)
2403{
2404	int comma, i;
2405
2406	db_print_indent(indent);
2407	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2408	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2409	db_print_indent(indent);
2410	db_printf("cr_groups: ");
2411	comma = 0;
2412	for (i = 0; i < xu->cr_ngroups; i++) {
2413		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2414		comma = 1;
2415	}
2416	db_printf("\n");
2417}
2418
2419static void
2420db_print_unprefs(int indent, struct unp_head *uh)
2421{
2422	struct unpcb *unp;
2423	int counter;
2424
2425	counter = 0;
2426	LIST_FOREACH(unp, uh, unp_reflink) {
2427		if (counter % 4 == 0)
2428			db_print_indent(indent);
2429		db_printf("%p  ", unp);
2430		if (counter % 4 == 3)
2431			db_printf("\n");
2432		counter++;
2433	}
2434	if (counter != 0 && counter % 4 != 0)
2435		db_printf("\n");
2436}
2437
2438DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2439{
2440	struct unpcb *unp;
2441
2442        if (!have_addr) {
2443                db_printf("usage: show unpcb <addr>\n");
2444                return;
2445        }
2446        unp = (struct unpcb *)addr;
2447
2448	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2449	    unp->unp_vnode);
2450
2451	db_printf("unp_ino: %d   unp_conn: %p\n", unp->unp_ino,
2452	    unp->unp_conn);
2453
2454	db_printf("unp_refs:\n");
2455	db_print_unprefs(2, &unp->unp_refs);
2456
2457	/* XXXRW: Would be nice to print the full address, if any. */
2458	db_printf("unp_addr: %p\n", unp->unp_addr);
2459
2460	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2461	    unp->unp_cc, unp->unp_mbcnt,
2462	    (unsigned long long)unp->unp_gencnt);
2463
2464	db_printf("unp_flags: %x (", unp->unp_flags);
2465	db_print_unpflags(unp->unp_flags);
2466	db_printf(")\n");
2467
2468	db_printf("unp_peercred:\n");
2469	db_print_xucred(2, &unp->unp_peercred);
2470
2471	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2472}
2473#endif
2474