uipc_usrreq.c revision 189544
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004-2009 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * UNIX Domain (Local) Sockets
36 *
37 * This is an implementation of UNIX (local) domain sockets.  Each socket has
38 * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39 * may be connected to 0 or 1 other socket.  Datagram sockets may be
40 * connected to 0, 1, or many other sockets.  Sockets may be created and
41 * connected in pairs (socketpair(2)), or bound/connected to using the file
42 * system name space.  For most purposes, only the receive socket buffer is
43 * used, as sending on one socket delivers directly to the receive socket
44 * buffer of a second socket.
45 *
46 * The implementation is substantially complicated by the fact that
47 * "ancillary data", such as file descriptors or credentials, may be passed
48 * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49 * over other UNIX domain sockets requires the implementation of a simple
50 * garbage collector to find and tear down cycles of disconnected sockets.
51 *
52 * TODO:
53 *	SEQPACKET, RDM
54 *	rethink name space problems
55 *	need a proper out-of-band
56 */
57
58#include <sys/cdefs.h>
59__FBSDID("$FreeBSD: head/sys/kern/uipc_usrreq.c 189544 2009-03-08 21:48:29Z rwatson $");
60
61#include "opt_ddb.h"
62#include "opt_mac.h"
63
64#include <sys/param.h>
65#include <sys/domain.h>
66#include <sys/fcntl.h>
67#include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68#include <sys/eventhandler.h>
69#include <sys/file.h>
70#include <sys/filedesc.h>
71#include <sys/jail.h>
72#include <sys/kernel.h>
73#include <sys/lock.h>
74#include <sys/mbuf.h>
75#include <sys/mount.h>
76#include <sys/mutex.h>
77#include <sys/namei.h>
78#include <sys/proc.h>
79#include <sys/protosw.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/socket.h>
83#include <sys/socketvar.h>
84#include <sys/signalvar.h>
85#include <sys/stat.h>
86#include <sys/sx.h>
87#include <sys/sysctl.h>
88#include <sys/systm.h>
89#include <sys/taskqueue.h>
90#include <sys/un.h>
91#include <sys/unpcb.h>
92#include <sys/vnode.h>
93
94#ifdef DDB
95#include <ddb/ddb.h>
96#endif
97
98#include <security/mac/mac_framework.h>
99
100#include <vm/uma.h>
101
102/*
103 * Locking key:
104 * (l)	Locked using list lock
105 * (g)	Locked using linkage lock
106 */
107
108static uma_zone_t	unp_zone;
109static unp_gen_t	unp_gencnt;	/* (l) */
110static u_int		unp_count;	/* (l) Count of local sockets. */
111static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
112static int		unp_rights;	/* (g) File descriptors in flight. */
113static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
114static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
115
116static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
117
118/*
119 * Garbage collection of cyclic file descriptor/socket references occurs
120 * asynchronously in a taskqueue context in order to avoid recursion and
121 * reentrance in the UNIX domain socket, file descriptor, and socket layer
122 * code.  See unp_gc() for a full description.
123 */
124static struct task	unp_gc_task;
125
126/*
127 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
128 * stream sockets, although the total for sender and receiver is actually
129 * only PIPSIZ.
130 *
131 * Datagram sockets really use the sendspace as the maximum datagram size,
132 * and don't really want to reserve the sendspace.  Their recvspace should be
133 * large enough for at least one max-size datagram plus address.
134 */
135#ifndef PIPSIZ
136#define	PIPSIZ	8192
137#endif
138static u_long	unpst_sendspace = PIPSIZ;
139static u_long	unpst_recvspace = PIPSIZ;
140static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
141static u_long	unpdg_recvspace = 4*1024;
142
143SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
144SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, "SOCK_STREAM");
145SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
146
147SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
148	   &unpst_sendspace, 0, "Default stream send space.");
149SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
150	   &unpst_recvspace, 0, "Default stream receive space.");
151SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
152	   &unpdg_sendspace, 0, "Default datagram send space.");
153SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
154	   &unpdg_recvspace, 0, "Default datagram receive space.");
155SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
156    "File descriptors in flight.");
157
158/*-
159 * Locking and synchronization:
160 *
161 * Three types of locks exit in the local domain socket implementation: a
162 * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
163 * global locks, the list lock protects the socket count, global generation
164 * number, and stream/datagram global lists.  The linkage lock protects the
165 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
166 * held exclusively over the acquisition of multiple unpcb locks to prevent
167 * deadlock.
168 *
169 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
170 * allocated in pru_attach() and freed in pru_detach().  The validity of that
171 * pointer is an invariant, so no lock is required to dereference the so_pcb
172 * pointer if a valid socket reference is held by the caller.  In practice,
173 * this is always true during operations performed on a socket.  Each unpcb
174 * has a back-pointer to its socket, unp_socket, which will be stable under
175 * the same circumstances.
176 *
177 * This pointer may only be safely dereferenced as long as a valid reference
178 * to the unpcb is held.  Typically, this reference will be from the socket,
179 * or from another unpcb when the referring unpcb's lock is held (in order
180 * that the reference not be invalidated during use).  For example, to follow
181 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
182 * as unp_socket remains valid as long as the reference to unp_conn is valid.
183 *
184 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
185 * atomic reads without the lock may be performed "lockless", but more
186 * complex reads and read-modify-writes require the mutex to be held.  No
187 * lock order is defined between unpcb locks -- multiple unpcb locks may be
188 * acquired at the same time only when holding the linkage rwlock
189 * exclusively, which prevents deadlocks.
190 *
191 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
192 * protocols, bind() is a non-atomic operation, and connect() requires
193 * potential sleeping in the protocol, due to potentially waiting on local or
194 * distributed file systems.  We try to separate "lookup" operations, which
195 * may sleep, and the IPC operations themselves, which typically can occur
196 * with relative atomicity as locks can be held over the entire operation.
197 *
198 * Another tricky issue is simultaneous multi-threaded or multi-process
199 * access to a single UNIX domain socket.  These are handled by the flags
200 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
201 * binding, both of which involve dropping UNIX domain socket locks in order
202 * to perform namei() and other file system operations.
203 */
204static struct rwlock	unp_link_rwlock;
205static struct mtx	unp_list_lock;
206
207#define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
208					    "unp_link_rwlock")
209
210#define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
211					    RA_LOCKED)
212#define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
213					    RA_UNLOCKED)
214
215#define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
216#define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
217#define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
218#define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
219#define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
220					    RA_WLOCKED)
221
222#define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
223					    "unp_list_lock", NULL, MTX_DEF)
224#define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
225#define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
226
227#define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
228					    "unp_mtx", "unp_mtx",	\
229					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
230#define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
231#define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
232#define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
233#define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
234
235static int	uipc_connect2(struct socket *, struct socket *);
236static int	uipc_ctloutput(struct socket *, struct sockopt *);
237static int	unp_connect(struct socket *, struct sockaddr *,
238		    struct thread *);
239static int	unp_connect2(struct socket *so, struct socket *so2, int);
240static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
241static void	unp_dispose(struct mbuf *);
242static void	unp_shutdown(struct unpcb *);
243static void	unp_drop(struct unpcb *, int);
244static void	unp_gc(__unused void *, int);
245static void	unp_scan(struct mbuf *, void (*)(struct file *));
246static void	unp_discard(struct file *);
247static void	unp_freerights(struct file **, int);
248static void	unp_init(void);
249static int	unp_internalize(struct mbuf **, struct thread *);
250static void	unp_internalize_fp(struct file *);
251static int	unp_externalize(struct mbuf *, struct mbuf **);
252static void	unp_externalize_fp(struct file *);
253static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
254
255/*
256 * Definitions of protocols supported in the LOCAL domain.
257 */
258static struct domain localdomain;
259static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
260static struct protosw localsw[] = {
261{
262	.pr_type =		SOCK_STREAM,
263	.pr_domain =		&localdomain,
264	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
265	.pr_ctloutput =		&uipc_ctloutput,
266	.pr_usrreqs =		&uipc_usrreqs_stream
267},
268{
269	.pr_type =		SOCK_DGRAM,
270	.pr_domain =		&localdomain,
271	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
272	.pr_usrreqs =		&uipc_usrreqs_dgram
273},
274};
275
276static struct domain localdomain = {
277	.dom_family =		AF_LOCAL,
278	.dom_name =		"local",
279	.dom_init =		unp_init,
280	.dom_externalize =	unp_externalize,
281	.dom_dispose =		unp_dispose,
282	.dom_protosw =		localsw,
283	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
284};
285DOMAIN_SET(local);
286
287static void
288uipc_abort(struct socket *so)
289{
290	struct unpcb *unp, *unp2;
291
292	unp = sotounpcb(so);
293	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
294
295	UNP_LINK_WLOCK();
296	UNP_PCB_LOCK(unp);
297	unp2 = unp->unp_conn;
298	if (unp2 != NULL) {
299		UNP_PCB_LOCK(unp2);
300		unp_drop(unp2, ECONNABORTED);
301		UNP_PCB_UNLOCK(unp2);
302	}
303	UNP_PCB_UNLOCK(unp);
304	UNP_LINK_WUNLOCK();
305}
306
307static int
308uipc_accept(struct socket *so, struct sockaddr **nam)
309{
310	struct unpcb *unp, *unp2;
311	const struct sockaddr *sa;
312
313	/*
314	 * Pass back name of connected socket, if it was bound and we are
315	 * still connected (our peer may have closed already!).
316	 */
317	unp = sotounpcb(so);
318	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
319
320	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
321	UNP_LINK_RLOCK();
322	unp2 = unp->unp_conn;
323	if (unp2 != NULL && unp2->unp_addr != NULL) {
324		UNP_PCB_LOCK(unp2);
325		sa = (struct sockaddr *) unp2->unp_addr;
326		bcopy(sa, *nam, sa->sa_len);
327		UNP_PCB_UNLOCK(unp2);
328	} else {
329		sa = &sun_noname;
330		bcopy(sa, *nam, sa->sa_len);
331	}
332	UNP_LINK_RUNLOCK();
333	return (0);
334}
335
336static int
337uipc_attach(struct socket *so, int proto, struct thread *td)
338{
339	u_long sendspace, recvspace;
340	struct unpcb *unp;
341	int error;
342
343	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
344	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
345		switch (so->so_type) {
346		case SOCK_STREAM:
347			sendspace = unpst_sendspace;
348			recvspace = unpst_recvspace;
349			break;
350
351		case SOCK_DGRAM:
352			sendspace = unpdg_sendspace;
353			recvspace = unpdg_recvspace;
354			break;
355
356		default:
357			panic("uipc_attach");
358		}
359		error = soreserve(so, sendspace, recvspace);
360		if (error)
361			return (error);
362	}
363	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
364	if (unp == NULL)
365		return (ENOBUFS);
366	LIST_INIT(&unp->unp_refs);
367	UNP_PCB_LOCK_INIT(unp);
368	unp->unp_socket = so;
369	so->so_pcb = unp;
370	unp->unp_refcount = 1;
371
372	UNP_LIST_LOCK();
373	unp->unp_gencnt = ++unp_gencnt;
374	unp_count++;
375	LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead : &unp_shead,
376	    unp, unp_link);
377	UNP_LIST_UNLOCK();
378
379	return (0);
380}
381
382static int
383uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
384{
385	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
386	struct vattr vattr;
387	int error, namelen, vfslocked;
388	struct nameidata nd;
389	struct unpcb *unp;
390	struct vnode *vp;
391	struct mount *mp;
392	char *buf;
393
394	unp = sotounpcb(so);
395	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
396
397	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
398	if (namelen <= 0)
399		return (EINVAL);
400
401	/*
402	 * We don't allow simultaneous bind() calls on a single UNIX domain
403	 * socket, so flag in-progress operations, and return an error if an
404	 * operation is already in progress.
405	 *
406	 * Historically, we have not allowed a socket to be rebound, so this
407	 * also returns an error.  Not allowing re-binding simplifies the
408	 * implementation and avoids a great many possible failure modes.
409	 */
410	UNP_PCB_LOCK(unp);
411	if (unp->unp_vnode != NULL) {
412		UNP_PCB_UNLOCK(unp);
413		return (EINVAL);
414	}
415	if (unp->unp_flags & UNP_BINDING) {
416		UNP_PCB_UNLOCK(unp);
417		return (EALREADY);
418	}
419	unp->unp_flags |= UNP_BINDING;
420	UNP_PCB_UNLOCK(unp);
421
422	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
423	bcopy(soun->sun_path, buf, namelen);
424	buf[namelen] = 0;
425
426restart:
427	vfslocked = 0;
428	NDINIT(&nd, CREATE, MPSAFE | NOFOLLOW | LOCKPARENT | SAVENAME,
429	    UIO_SYSSPACE, buf, td);
430/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
431	error = namei(&nd);
432	if (error)
433		goto error;
434	vp = nd.ni_vp;
435	vfslocked = NDHASGIANT(&nd);
436	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
437		NDFREE(&nd, NDF_ONLY_PNBUF);
438		if (nd.ni_dvp == vp)
439			vrele(nd.ni_dvp);
440		else
441			vput(nd.ni_dvp);
442		if (vp != NULL) {
443			vrele(vp);
444			error = EADDRINUSE;
445			goto error;
446		}
447		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
448		if (error)
449			goto error;
450		VFS_UNLOCK_GIANT(vfslocked);
451		goto restart;
452	}
453	VATTR_NULL(&vattr);
454	vattr.va_type = VSOCK;
455	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
456#ifdef MAC
457	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
458	    &vattr);
459#endif
460	if (error == 0) {
461		VOP_LEASE(nd.ni_dvp, td, td->td_ucred, LEASE_WRITE);
462		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
463	}
464	NDFREE(&nd, NDF_ONLY_PNBUF);
465	vput(nd.ni_dvp);
466	if (error) {
467		vn_finished_write(mp);
468		goto error;
469	}
470	vp = nd.ni_vp;
471	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
472	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
473
474	UNP_LINK_WLOCK();
475	UNP_PCB_LOCK(unp);
476	vp->v_socket = unp->unp_socket;
477	unp->unp_vnode = vp;
478	unp->unp_addr = soun;
479	unp->unp_flags &= ~UNP_BINDING;
480	UNP_PCB_UNLOCK(unp);
481	UNP_LINK_WUNLOCK();
482	VOP_UNLOCK(vp, 0);
483	vn_finished_write(mp);
484	VFS_UNLOCK_GIANT(vfslocked);
485	free(buf, M_TEMP);
486	return (0);
487
488error:
489	VFS_UNLOCK_GIANT(vfslocked);
490	UNP_PCB_LOCK(unp);
491	unp->unp_flags &= ~UNP_BINDING;
492	UNP_PCB_UNLOCK(unp);
493	free(buf, M_TEMP);
494	return (error);
495}
496
497static int
498uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
499{
500	int error;
501
502	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
503	UNP_LINK_WLOCK();
504	error = unp_connect(so, nam, td);
505	UNP_LINK_WUNLOCK();
506	return (error);
507}
508
509static void
510uipc_close(struct socket *so)
511{
512	struct unpcb *unp, *unp2;
513
514	unp = sotounpcb(so);
515	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
516
517	UNP_LINK_WLOCK();
518	UNP_PCB_LOCK(unp);
519	unp2 = unp->unp_conn;
520	if (unp2 != NULL) {
521		UNP_PCB_LOCK(unp2);
522		unp_disconnect(unp, unp2);
523		UNP_PCB_UNLOCK(unp2);
524	}
525	UNP_PCB_UNLOCK(unp);
526	UNP_LINK_WUNLOCK();
527}
528
529static int
530uipc_connect2(struct socket *so1, struct socket *so2)
531{
532	struct unpcb *unp, *unp2;
533	int error;
534
535	UNP_LINK_WLOCK();
536	unp = so1->so_pcb;
537	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
538	UNP_PCB_LOCK(unp);
539	unp2 = so2->so_pcb;
540	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
541	UNP_PCB_LOCK(unp2);
542	error = unp_connect2(so1, so2, PRU_CONNECT2);
543	UNP_PCB_UNLOCK(unp2);
544	UNP_PCB_UNLOCK(unp);
545	UNP_LINK_WUNLOCK();
546	return (error);
547}
548
549static void
550uipc_detach(struct socket *so)
551{
552	struct unpcb *unp, *unp2;
553	struct sockaddr_un *saved_unp_addr;
554	struct vnode *vp;
555	int freeunp, local_unp_rights;
556
557	unp = sotounpcb(so);
558	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
559
560	UNP_LINK_WLOCK();
561	UNP_LIST_LOCK();
562	UNP_PCB_LOCK(unp);
563	LIST_REMOVE(unp, unp_link);
564	unp->unp_gencnt = ++unp_gencnt;
565	--unp_count;
566	UNP_LIST_UNLOCK();
567
568	/*
569	 * XXXRW: Should assert vp->v_socket == so.
570	 */
571	if ((vp = unp->unp_vnode) != NULL) {
572		unp->unp_vnode->v_socket = NULL;
573		unp->unp_vnode = NULL;
574	}
575	unp2 = unp->unp_conn;
576	if (unp2 != NULL) {
577		UNP_PCB_LOCK(unp2);
578		unp_disconnect(unp, unp2);
579		UNP_PCB_UNLOCK(unp2);
580	}
581
582	/*
583	 * We hold the linkage lock exclusively, so it's OK to acquire
584	 * multiple pcb locks at a time.
585	 */
586	while (!LIST_EMPTY(&unp->unp_refs)) {
587		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
588
589		UNP_PCB_LOCK(ref);
590		unp_drop(ref, ECONNRESET);
591		UNP_PCB_UNLOCK(ref);
592	}
593	local_unp_rights = unp_rights;
594	UNP_LINK_WUNLOCK();
595	unp->unp_socket->so_pcb = NULL;
596	saved_unp_addr = unp->unp_addr;
597	unp->unp_addr = NULL;
598	unp->unp_refcount--;
599	freeunp = (unp->unp_refcount == 0);
600	if (saved_unp_addr != NULL)
601		free(saved_unp_addr, M_SONAME);
602	if (freeunp) {
603		UNP_PCB_LOCK_DESTROY(unp);
604		uma_zfree(unp_zone, unp);
605	} else
606		UNP_PCB_UNLOCK(unp);
607	if (vp) {
608		int vfslocked;
609
610		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
611		vrele(vp);
612		VFS_UNLOCK_GIANT(vfslocked);
613	}
614	if (local_unp_rights)
615		taskqueue_enqueue(taskqueue_thread, &unp_gc_task);
616}
617
618static int
619uipc_disconnect(struct socket *so)
620{
621	struct unpcb *unp, *unp2;
622
623	unp = sotounpcb(so);
624	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
625
626	UNP_LINK_WLOCK();
627	UNP_PCB_LOCK(unp);
628	unp2 = unp->unp_conn;
629	if (unp2 != NULL) {
630		UNP_PCB_LOCK(unp2);
631		unp_disconnect(unp, unp2);
632		UNP_PCB_UNLOCK(unp2);
633	}
634	UNP_PCB_UNLOCK(unp);
635	UNP_LINK_WUNLOCK();
636	return (0);
637}
638
639static int
640uipc_listen(struct socket *so, int backlog, struct thread *td)
641{
642	struct unpcb *unp;
643	int error;
644
645	unp = sotounpcb(so);
646	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
647
648	UNP_PCB_LOCK(unp);
649	if (unp->unp_vnode == NULL) {
650		UNP_PCB_UNLOCK(unp);
651		return (EINVAL);
652	}
653
654	SOCK_LOCK(so);
655	error = solisten_proto_check(so);
656	if (error == 0) {
657		cru2x(td->td_ucred, &unp->unp_peercred);
658		unp->unp_flags |= UNP_HAVEPCCACHED;
659		solisten_proto(so, backlog);
660	}
661	SOCK_UNLOCK(so);
662	UNP_PCB_UNLOCK(unp);
663	return (error);
664}
665
666static int
667uipc_peeraddr(struct socket *so, struct sockaddr **nam)
668{
669	struct unpcb *unp, *unp2;
670	const struct sockaddr *sa;
671
672	unp = sotounpcb(so);
673	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
674
675	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
676	UNP_PCB_LOCK(unp);
677	/*
678	 * XXX: It seems that this test always fails even when connection is
679	 * established.  So, this else clause is added as workaround to
680	 * return PF_LOCAL sockaddr.
681	 */
682	unp2 = unp->unp_conn;
683	if (unp2 != NULL) {
684		UNP_PCB_LOCK(unp2);
685		if (unp2->unp_addr != NULL)
686			sa = (struct sockaddr *) unp->unp_conn->unp_addr;
687		else
688			sa = &sun_noname;
689		bcopy(sa, *nam, sa->sa_len);
690		UNP_PCB_UNLOCK(unp2);
691	} else {
692		sa = &sun_noname;
693		bcopy(sa, *nam, sa->sa_len);
694	}
695	UNP_PCB_UNLOCK(unp);
696	return (0);
697}
698
699static int
700uipc_rcvd(struct socket *so, int flags)
701{
702	struct unpcb *unp, *unp2;
703	struct socket *so2;
704	u_int mbcnt, sbcc;
705	u_long newhiwat;
706
707	unp = sotounpcb(so);
708	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
709
710	if (so->so_type == SOCK_DGRAM)
711		panic("uipc_rcvd DGRAM?");
712
713	if (so->so_type != SOCK_STREAM)
714		panic("uipc_rcvd unknown socktype");
715
716	/*
717	 * Adjust backpressure on sender and wakeup any waiting to write.
718	 *
719	 * The unp lock is acquired to maintain the validity of the unp_conn
720	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
721	 * static as long as we don't permit unp2 to disconnect from unp,
722	 * which is prevented by the lock on unp.  We cache values from
723	 * so_rcv to avoid holding the so_rcv lock over the entire
724	 * transaction on the remote so_snd.
725	 */
726	SOCKBUF_LOCK(&so->so_rcv);
727	mbcnt = so->so_rcv.sb_mbcnt;
728	sbcc = so->so_rcv.sb_cc;
729	SOCKBUF_UNLOCK(&so->so_rcv);
730	UNP_PCB_LOCK(unp);
731	unp2 = unp->unp_conn;
732	if (unp2 == NULL) {
733		UNP_PCB_UNLOCK(unp);
734		return (0);
735	}
736	so2 = unp2->unp_socket;
737	SOCKBUF_LOCK(&so2->so_snd);
738	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
739	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
740	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
741	    newhiwat, RLIM_INFINITY);
742	sowwakeup_locked(so2);
743	unp->unp_mbcnt = mbcnt;
744	unp->unp_cc = sbcc;
745	UNP_PCB_UNLOCK(unp);
746	return (0);
747}
748
749static int
750uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
751    struct mbuf *control, struct thread *td)
752{
753	struct unpcb *unp, *unp2;
754	struct socket *so2;
755	u_int mbcnt_delta, sbcc;
756	u_long newhiwat;
757	int error = 0;
758
759	unp = sotounpcb(so);
760	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
761
762	if (flags & PRUS_OOB) {
763		error = EOPNOTSUPP;
764		goto release;
765	}
766	if (control != NULL && (error = unp_internalize(&control, td)))
767		goto release;
768	if ((nam != NULL) || (flags & PRUS_EOF))
769		UNP_LINK_WLOCK();
770	else
771		UNP_LINK_RLOCK();
772	switch (so->so_type) {
773	case SOCK_DGRAM:
774	{
775		const struct sockaddr *from;
776
777		unp2 = unp->unp_conn;
778		if (nam != NULL) {
779			UNP_LINK_WLOCK_ASSERT();
780			if (unp2 != NULL) {
781				error = EISCONN;
782				break;
783			}
784			error = unp_connect(so, nam, td);
785			if (error)
786				break;
787			unp2 = unp->unp_conn;
788		}
789
790		/*
791		 * Because connect() and send() are non-atomic in a sendto()
792		 * with a target address, it's possible that the socket will
793		 * have disconnected before the send() can run.  In that case
794		 * return the slightly counter-intuitive but otherwise
795		 * correct error that the socket is not connected.
796		 */
797		if (unp2 == NULL) {
798			error = ENOTCONN;
799			break;
800		}
801		/* Lockless read. */
802		if (unp2->unp_flags & UNP_WANTCRED)
803			control = unp_addsockcred(td, control);
804		UNP_PCB_LOCK(unp);
805		if (unp->unp_addr != NULL)
806			from = (struct sockaddr *)unp->unp_addr;
807		else
808			from = &sun_noname;
809		so2 = unp2->unp_socket;
810		SOCKBUF_LOCK(&so2->so_rcv);
811		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
812			sorwakeup_locked(so2);
813			m = NULL;
814			control = NULL;
815		} else {
816			SOCKBUF_UNLOCK(&so2->so_rcv);
817			error = ENOBUFS;
818		}
819		if (nam != NULL) {
820			UNP_LINK_WLOCK_ASSERT();
821			UNP_PCB_LOCK(unp2);
822			unp_disconnect(unp, unp2);
823			UNP_PCB_UNLOCK(unp2);
824		}
825		UNP_PCB_UNLOCK(unp);
826		break;
827	}
828
829	case SOCK_STREAM:
830		if ((so->so_state & SS_ISCONNECTED) == 0) {
831			if (nam != NULL) {
832				UNP_LINK_WLOCK_ASSERT();
833				error = unp_connect(so, nam, td);
834				if (error)
835					break;	/* XXX */
836			} else {
837				error = ENOTCONN;
838				break;
839			}
840		}
841
842		/* Lockless read. */
843		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
844			error = EPIPE;
845			break;
846		}
847
848		/*
849		 * Because connect() and send() are non-atomic in a sendto()
850		 * with a target address, it's possible that the socket will
851		 * have disconnected before the send() can run.  In that case
852		 * return the slightly counter-intuitive but otherwise
853		 * correct error that the socket is not connected.
854		 *
855		 * Locking here must be done carefully: the inkage lock
856		 * prevents interconnections between unpcbs from changing, so
857		 * we can traverse from unp to unp2 without acquiring unp's
858		 * lock.  Socket buffer locks follow unpcb locks, so we can
859		 * acquire both remote and lock socket buffer locks.
860		 */
861		unp2 = unp->unp_conn;
862		if (unp2 == NULL) {
863			error = ENOTCONN;
864			break;
865		}
866		so2 = unp2->unp_socket;
867		UNP_PCB_LOCK(unp2);
868		SOCKBUF_LOCK(&so2->so_rcv);
869		if (unp2->unp_flags & UNP_WANTCRED) {
870			/*
871			 * Credentials are passed only once on SOCK_STREAM.
872			 */
873			unp2->unp_flags &= ~UNP_WANTCRED;
874			control = unp_addsockcred(td, control);
875		}
876		/*
877		 * Send to paired receive port, and then reduce send buffer
878		 * hiwater marks to maintain backpressure.  Wake up readers.
879		 */
880		if (control != NULL) {
881			if (sbappendcontrol_locked(&so2->so_rcv, m, control))
882				control = NULL;
883		} else
884			sbappend_locked(&so2->so_rcv, m);
885		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
886		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
887		sbcc = so2->so_rcv.sb_cc;
888		sorwakeup_locked(so2);
889
890		SOCKBUF_LOCK(&so->so_snd);
891		newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
892		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
893		    newhiwat, RLIM_INFINITY);
894		so->so_snd.sb_mbmax -= mbcnt_delta;
895		SOCKBUF_UNLOCK(&so->so_snd);
896		unp2->unp_cc = sbcc;
897		UNP_PCB_UNLOCK(unp2);
898		m = NULL;
899		break;
900
901	default:
902		panic("uipc_send unknown socktype");
903	}
904
905	/*
906	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
907	 */
908	if (flags & PRUS_EOF) {
909		UNP_PCB_LOCK(unp);
910		socantsendmore(so);
911		unp_shutdown(unp);
912		UNP_PCB_UNLOCK(unp);
913	}
914
915	if ((nam != NULL) || (flags & PRUS_EOF))
916		UNP_LINK_WUNLOCK();
917	else
918		UNP_LINK_RUNLOCK();
919
920	if (control != NULL && error != 0)
921		unp_dispose(control);
922
923release:
924	if (control != NULL)
925		m_freem(control);
926	if (m != NULL)
927		m_freem(m);
928	return (error);
929}
930
931static int
932uipc_sense(struct socket *so, struct stat *sb)
933{
934	struct unpcb *unp, *unp2;
935	struct socket *so2;
936
937	unp = sotounpcb(so);
938	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
939
940	sb->st_blksize = so->so_snd.sb_hiwat;
941	UNP_LINK_RLOCK();
942	UNP_PCB_LOCK(unp);
943	unp2 = unp->unp_conn;
944	if (so->so_type == SOCK_STREAM && unp2 != NULL) {
945		so2 = unp2->unp_socket;
946		sb->st_blksize += so2->so_rcv.sb_cc;
947	}
948	sb->st_dev = NODEV;
949	if (unp->unp_ino == 0)
950		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
951	sb->st_ino = unp->unp_ino;
952	UNP_PCB_UNLOCK(unp);
953	UNP_LINK_RUNLOCK();
954	return (0);
955}
956
957static int
958uipc_shutdown(struct socket *so)
959{
960	struct unpcb *unp;
961
962	unp = sotounpcb(so);
963	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
964
965	UNP_LINK_WLOCK();
966	UNP_PCB_LOCK(unp);
967	socantsendmore(so);
968	unp_shutdown(unp);
969	UNP_PCB_UNLOCK(unp);
970	UNP_LINK_WUNLOCK();
971	return (0);
972}
973
974static int
975uipc_sockaddr(struct socket *so, struct sockaddr **nam)
976{
977	struct unpcb *unp;
978	const struct sockaddr *sa;
979
980	unp = sotounpcb(so);
981	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
982
983	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
984	UNP_PCB_LOCK(unp);
985	if (unp->unp_addr != NULL)
986		sa = (struct sockaddr *) unp->unp_addr;
987	else
988		sa = &sun_noname;
989	bcopy(sa, *nam, sa->sa_len);
990	UNP_PCB_UNLOCK(unp);
991	return (0);
992}
993
994static struct pr_usrreqs uipc_usrreqs_dgram = {
995	.pru_abort = 		uipc_abort,
996	.pru_accept =		uipc_accept,
997	.pru_attach =		uipc_attach,
998	.pru_bind =		uipc_bind,
999	.pru_connect =		uipc_connect,
1000	.pru_connect2 =		uipc_connect2,
1001	.pru_detach =		uipc_detach,
1002	.pru_disconnect =	uipc_disconnect,
1003	.pru_listen =		uipc_listen,
1004	.pru_peeraddr =		uipc_peeraddr,
1005	.pru_rcvd =		uipc_rcvd,
1006	.pru_send =		uipc_send,
1007	.pru_sense =		uipc_sense,
1008	.pru_shutdown =		uipc_shutdown,
1009	.pru_sockaddr =		uipc_sockaddr,
1010	.pru_soreceive =	soreceive_dgram,
1011	.pru_close =		uipc_close,
1012};
1013
1014static struct pr_usrreqs uipc_usrreqs_stream = {
1015	.pru_abort = 		uipc_abort,
1016	.pru_accept =		uipc_accept,
1017	.pru_attach =		uipc_attach,
1018	.pru_bind =		uipc_bind,
1019	.pru_connect =		uipc_connect,
1020	.pru_connect2 =		uipc_connect2,
1021	.pru_detach =		uipc_detach,
1022	.pru_disconnect =	uipc_disconnect,
1023	.pru_listen =		uipc_listen,
1024	.pru_peeraddr =		uipc_peeraddr,
1025	.pru_rcvd =		uipc_rcvd,
1026	.pru_send =		uipc_send,
1027	.pru_sense =		uipc_sense,
1028	.pru_shutdown =		uipc_shutdown,
1029	.pru_sockaddr =		uipc_sockaddr,
1030	.pru_soreceive =	soreceive_generic,
1031	.pru_close =		uipc_close,
1032};
1033
1034static int
1035uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1036{
1037	struct unpcb *unp;
1038	struct xucred xu;
1039	int error, optval;
1040
1041	if (sopt->sopt_level != 0)
1042		return (EINVAL);
1043
1044	unp = sotounpcb(so);
1045	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1046	error = 0;
1047	switch (sopt->sopt_dir) {
1048	case SOPT_GET:
1049		switch (sopt->sopt_name) {
1050		case LOCAL_PEERCRED:
1051			UNP_PCB_LOCK(unp);
1052			if (unp->unp_flags & UNP_HAVEPC)
1053				xu = unp->unp_peercred;
1054			else {
1055				if (so->so_type == SOCK_STREAM)
1056					error = ENOTCONN;
1057				else
1058					error = EINVAL;
1059			}
1060			UNP_PCB_UNLOCK(unp);
1061			if (error == 0)
1062				error = sooptcopyout(sopt, &xu, sizeof(xu));
1063			break;
1064
1065		case LOCAL_CREDS:
1066			/* Unlocked read. */
1067			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1068			error = sooptcopyout(sopt, &optval, sizeof(optval));
1069			break;
1070
1071		case LOCAL_CONNWAIT:
1072			/* Unlocked read. */
1073			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1074			error = sooptcopyout(sopt, &optval, sizeof(optval));
1075			break;
1076
1077		default:
1078			error = EOPNOTSUPP;
1079			break;
1080		}
1081		break;
1082
1083	case SOPT_SET:
1084		switch (sopt->sopt_name) {
1085		case LOCAL_CREDS:
1086		case LOCAL_CONNWAIT:
1087			error = sooptcopyin(sopt, &optval, sizeof(optval),
1088					    sizeof(optval));
1089			if (error)
1090				break;
1091
1092#define	OPTSET(bit) do {						\
1093	UNP_PCB_LOCK(unp);						\
1094	if (optval)							\
1095		unp->unp_flags |= bit;					\
1096	else								\
1097		unp->unp_flags &= ~bit;					\
1098	UNP_PCB_UNLOCK(unp);						\
1099} while (0)
1100
1101			switch (sopt->sopt_name) {
1102			case LOCAL_CREDS:
1103				OPTSET(UNP_WANTCRED);
1104				break;
1105
1106			case LOCAL_CONNWAIT:
1107				OPTSET(UNP_CONNWAIT);
1108				break;
1109
1110			default:
1111				break;
1112			}
1113			break;
1114#undef	OPTSET
1115		default:
1116			error = ENOPROTOOPT;
1117			break;
1118		}
1119		break;
1120
1121	default:
1122		error = EOPNOTSUPP;
1123		break;
1124	}
1125	return (error);
1126}
1127
1128static int
1129unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1130{
1131	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1132	struct vnode *vp;
1133	struct socket *so2, *so3;
1134	struct unpcb *unp, *unp2, *unp3;
1135	int error, len, vfslocked;
1136	struct nameidata nd;
1137	char buf[SOCK_MAXADDRLEN];
1138	struct sockaddr *sa;
1139
1140	UNP_LINK_WLOCK_ASSERT();
1141
1142	unp = sotounpcb(so);
1143	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1144
1145	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1146	if (len <= 0)
1147		return (EINVAL);
1148	bcopy(soun->sun_path, buf, len);
1149	buf[len] = 0;
1150
1151	UNP_PCB_LOCK(unp);
1152	if (unp->unp_flags & UNP_CONNECTING) {
1153		UNP_PCB_UNLOCK(unp);
1154		return (EALREADY);
1155	}
1156	UNP_LINK_WUNLOCK();
1157	unp->unp_flags |= UNP_CONNECTING;
1158	UNP_PCB_UNLOCK(unp);
1159
1160	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1161	NDINIT(&nd, LOOKUP, MPSAFE | FOLLOW | LOCKLEAF, UIO_SYSSPACE, buf,
1162	    td);
1163	error = namei(&nd);
1164	if (error)
1165		vp = NULL;
1166	else
1167		vp = nd.ni_vp;
1168	ASSERT_VOP_LOCKED(vp, "unp_connect");
1169	vfslocked = NDHASGIANT(&nd);
1170	NDFREE(&nd, NDF_ONLY_PNBUF);
1171	if (error)
1172		goto bad;
1173
1174	if (vp->v_type != VSOCK) {
1175		error = ENOTSOCK;
1176		goto bad;
1177	}
1178#ifdef MAC
1179	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1180	if (error)
1181		goto bad;
1182#endif
1183	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1184	if (error)
1185		goto bad;
1186	VFS_UNLOCK_GIANT(vfslocked);
1187
1188	unp = sotounpcb(so);
1189	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1190
1191	/*
1192	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1193	 * and to protect simultaneous locking of multiple pcbs.
1194	 */
1195	UNP_LINK_WLOCK();
1196	so2 = vp->v_socket;
1197	if (so2 == NULL) {
1198		error = ECONNREFUSED;
1199		goto bad2;
1200	}
1201	if (so->so_type != so2->so_type) {
1202		error = EPROTOTYPE;
1203		goto bad2;
1204	}
1205	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1206		if (so2->so_options & SO_ACCEPTCONN) {
1207			so3 = sonewconn(so2, 0);
1208		} else
1209			so3 = NULL;
1210		if (so3 == NULL) {
1211			error = ECONNREFUSED;
1212			goto bad2;
1213		}
1214		unp = sotounpcb(so);
1215		unp2 = sotounpcb(so2);
1216		unp3 = sotounpcb(so3);
1217		UNP_PCB_LOCK(unp);
1218		UNP_PCB_LOCK(unp2);
1219		UNP_PCB_LOCK(unp3);
1220		if (unp2->unp_addr != NULL) {
1221			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1222			unp3->unp_addr = (struct sockaddr_un *) sa;
1223			sa = NULL;
1224		}
1225
1226		/*
1227		 * The connecter's (client's) credentials are copied from its
1228		 * process structure at the time of connect() (which is now).
1229		 */
1230		cru2x(td->td_ucred, &unp3->unp_peercred);
1231		unp3->unp_flags |= UNP_HAVEPC;
1232
1233		/*
1234		 * The receiver's (server's) credentials are copied from the
1235		 * unp_peercred member of socket on which the former called
1236		 * listen(); uipc_listen() cached that process's credentials
1237		 * at that time so we can use them now.
1238		 */
1239		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1240		    ("unp_connect: listener without cached peercred"));
1241		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1242		    sizeof(unp->unp_peercred));
1243		unp->unp_flags |= UNP_HAVEPC;
1244		if (unp2->unp_flags & UNP_WANTCRED)
1245			unp3->unp_flags |= UNP_WANTCRED;
1246		UNP_PCB_UNLOCK(unp3);
1247		UNP_PCB_UNLOCK(unp2);
1248		UNP_PCB_UNLOCK(unp);
1249#ifdef MAC
1250		SOCK_LOCK(so);
1251		mac_socketpeer_set_from_socket(so, so3);
1252		mac_socketpeer_set_from_socket(so3, so);
1253		SOCK_UNLOCK(so);
1254#endif
1255
1256		so2 = so3;
1257	}
1258	unp = sotounpcb(so);
1259	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1260	unp2 = sotounpcb(so2);
1261	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1262	UNP_PCB_LOCK(unp);
1263	UNP_PCB_LOCK(unp2);
1264	error = unp_connect2(so, so2, PRU_CONNECT);
1265	UNP_PCB_UNLOCK(unp2);
1266	UNP_PCB_UNLOCK(unp);
1267bad2:
1268	UNP_LINK_WUNLOCK();
1269	if (vfslocked)
1270		/*
1271		 * Giant has been previously acquired. This means filesystem
1272		 * isn't MPSAFE.  Do it once again.
1273		 */
1274		mtx_lock(&Giant);
1275bad:
1276	if (vp != NULL)
1277		vput(vp);
1278	VFS_UNLOCK_GIANT(vfslocked);
1279	free(sa, M_SONAME);
1280	UNP_LINK_WLOCK();
1281	UNP_PCB_LOCK(unp);
1282	unp->unp_flags &= ~UNP_CONNECTING;
1283	UNP_PCB_UNLOCK(unp);
1284	return (error);
1285}
1286
1287static int
1288unp_connect2(struct socket *so, struct socket *so2, int req)
1289{
1290	struct unpcb *unp;
1291	struct unpcb *unp2;
1292
1293	unp = sotounpcb(so);
1294	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1295	unp2 = sotounpcb(so2);
1296	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1297
1298	UNP_LINK_WLOCK_ASSERT();
1299	UNP_PCB_LOCK_ASSERT(unp);
1300	UNP_PCB_LOCK_ASSERT(unp2);
1301
1302	if (so2->so_type != so->so_type)
1303		return (EPROTOTYPE);
1304	unp->unp_conn = unp2;
1305
1306	switch (so->so_type) {
1307	case SOCK_DGRAM:
1308		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1309		soisconnected(so);
1310		break;
1311
1312	case SOCK_STREAM:
1313		unp2->unp_conn = unp;
1314		if (req == PRU_CONNECT &&
1315		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1316			soisconnecting(so);
1317		else
1318			soisconnected(so);
1319		soisconnected(so2);
1320		break;
1321
1322	default:
1323		panic("unp_connect2");
1324	}
1325	return (0);
1326}
1327
1328static void
1329unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1330{
1331	struct socket *so;
1332
1333	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1334
1335	UNP_LINK_WLOCK_ASSERT();
1336	UNP_PCB_LOCK_ASSERT(unp);
1337	UNP_PCB_LOCK_ASSERT(unp2);
1338
1339	unp->unp_conn = NULL;
1340	switch (unp->unp_socket->so_type) {
1341	case SOCK_DGRAM:
1342		LIST_REMOVE(unp, unp_reflink);
1343		so = unp->unp_socket;
1344		SOCK_LOCK(so);
1345		so->so_state &= ~SS_ISCONNECTED;
1346		SOCK_UNLOCK(so);
1347		break;
1348
1349	case SOCK_STREAM:
1350		soisdisconnected(unp->unp_socket);
1351		unp2->unp_conn = NULL;
1352		soisdisconnected(unp2->unp_socket);
1353		break;
1354	}
1355}
1356
1357/*
1358 * unp_pcblist() walks the global list of struct unpcb's to generate a
1359 * pointer list, bumping the refcount on each unpcb.  It then copies them out
1360 * sequentially, validating the generation number on each to see if it has
1361 * been detached.  All of this is necessary because copyout() may sleep on
1362 * disk I/O.
1363 */
1364static int
1365unp_pcblist(SYSCTL_HANDLER_ARGS)
1366{
1367	int error, i, n;
1368	int freeunp;
1369	struct unpcb *unp, **unp_list;
1370	unp_gen_t gencnt;
1371	struct xunpgen *xug;
1372	struct unp_head *head;
1373	struct xunpcb *xu;
1374
1375	head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
1376
1377	/*
1378	 * The process of preparing the PCB list is too time-consuming and
1379	 * resource-intensive to repeat twice on every request.
1380	 */
1381	if (req->oldptr == NULL) {
1382		n = unp_count;
1383		req->oldidx = 2 * (sizeof *xug)
1384			+ (n + n/8) * sizeof(struct xunpcb);
1385		return (0);
1386	}
1387
1388	if (req->newptr != NULL)
1389		return (EPERM);
1390
1391	/*
1392	 * OK, now we're committed to doing something.
1393	 */
1394	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1395	UNP_LIST_LOCK();
1396	gencnt = unp_gencnt;
1397	n = unp_count;
1398	UNP_LIST_UNLOCK();
1399
1400	xug->xug_len = sizeof *xug;
1401	xug->xug_count = n;
1402	xug->xug_gen = gencnt;
1403	xug->xug_sogen = so_gencnt;
1404	error = SYSCTL_OUT(req, xug, sizeof *xug);
1405	if (error) {
1406		free(xug, M_TEMP);
1407		return (error);
1408	}
1409
1410	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1411
1412	UNP_LIST_LOCK();
1413	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1414	     unp = LIST_NEXT(unp, unp_link)) {
1415		UNP_PCB_LOCK(unp);
1416		if (unp->unp_gencnt <= gencnt) {
1417			if (cr_cansee(req->td->td_ucred,
1418			    unp->unp_socket->so_cred)) {
1419				UNP_PCB_UNLOCK(unp);
1420				continue;
1421			}
1422			unp_list[i++] = unp;
1423			unp->unp_refcount++;
1424		}
1425		UNP_PCB_UNLOCK(unp);
1426	}
1427	UNP_LIST_UNLOCK();
1428	n = i;			/* In case we lost some during malloc. */
1429
1430	error = 0;
1431	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1432	for (i = 0; i < n; i++) {
1433		unp = unp_list[i];
1434		UNP_PCB_LOCK(unp);
1435		unp->unp_refcount--;
1436	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1437			xu->xu_len = sizeof *xu;
1438			xu->xu_unpp = unp;
1439			/*
1440			 * XXX - need more locking here to protect against
1441			 * connect/disconnect races for SMP.
1442			 */
1443			if (unp->unp_addr != NULL)
1444				bcopy(unp->unp_addr, &xu->xu_addr,
1445				      unp->unp_addr->sun_len);
1446			if (unp->unp_conn != NULL &&
1447			    unp->unp_conn->unp_addr != NULL)
1448				bcopy(unp->unp_conn->unp_addr,
1449				      &xu->xu_caddr,
1450				      unp->unp_conn->unp_addr->sun_len);
1451			bcopy(unp, &xu->xu_unp, sizeof *unp);
1452			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1453			UNP_PCB_UNLOCK(unp);
1454			error = SYSCTL_OUT(req, xu, sizeof *xu);
1455		} else {
1456			freeunp = (unp->unp_refcount == 0);
1457			UNP_PCB_UNLOCK(unp);
1458			if (freeunp) {
1459				UNP_PCB_LOCK_DESTROY(unp);
1460				uma_zfree(unp_zone, unp);
1461			}
1462		}
1463	}
1464	free(xu, M_TEMP);
1465	if (!error) {
1466		/*
1467		 * Give the user an updated idea of our state.  If the
1468		 * generation differs from what we told her before, she knows
1469		 * that something happened while we were processing this
1470		 * request, and it might be necessary to retry.
1471		 */
1472		xug->xug_gen = unp_gencnt;
1473		xug->xug_sogen = so_gencnt;
1474		xug->xug_count = unp_count;
1475		error = SYSCTL_OUT(req, xug, sizeof *xug);
1476	}
1477	free(unp_list, M_TEMP);
1478	free(xug, M_TEMP);
1479	return (error);
1480}
1481
1482SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1483	    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1484	    "List of active local datagram sockets");
1485SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1486	    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1487	    "List of active local stream sockets");
1488
1489static void
1490unp_shutdown(struct unpcb *unp)
1491{
1492	struct unpcb *unp2;
1493	struct socket *so;
1494
1495	UNP_LINK_WLOCK_ASSERT();
1496	UNP_PCB_LOCK_ASSERT(unp);
1497
1498	unp2 = unp->unp_conn;
1499	if (unp->unp_socket->so_type == SOCK_STREAM && unp2 != NULL) {
1500		so = unp2->unp_socket;
1501		if (so != NULL)
1502			socantrcvmore(so);
1503	}
1504}
1505
1506static void
1507unp_drop(struct unpcb *unp, int errno)
1508{
1509	struct socket *so = unp->unp_socket;
1510	struct unpcb *unp2;
1511
1512	UNP_LINK_WLOCK_ASSERT();
1513	UNP_PCB_LOCK_ASSERT(unp);
1514
1515	so->so_error = errno;
1516	unp2 = unp->unp_conn;
1517	if (unp2 == NULL)
1518		return;
1519	UNP_PCB_LOCK(unp2);
1520	unp_disconnect(unp, unp2);
1521	UNP_PCB_UNLOCK(unp2);
1522}
1523
1524static void
1525unp_freerights(struct file **rp, int fdcount)
1526{
1527	int i;
1528	struct file *fp;
1529
1530	for (i = 0; i < fdcount; i++) {
1531		fp = *rp;
1532		*rp++ = NULL;
1533		unp_discard(fp);
1534	}
1535}
1536
1537static int
1538unp_externalize(struct mbuf *control, struct mbuf **controlp)
1539{
1540	struct thread *td = curthread;		/* XXX */
1541	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1542	int i;
1543	int *fdp;
1544	struct file **rp;
1545	struct file *fp;
1546	void *data;
1547	socklen_t clen = control->m_len, datalen;
1548	int error, newfds;
1549	int f;
1550	u_int newlen;
1551
1552	UNP_LINK_UNLOCK_ASSERT();
1553
1554	error = 0;
1555	if (controlp != NULL) /* controlp == NULL => free control messages */
1556		*controlp = NULL;
1557	while (cm != NULL) {
1558		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1559			error = EINVAL;
1560			break;
1561		}
1562		data = CMSG_DATA(cm);
1563		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1564		if (cm->cmsg_level == SOL_SOCKET
1565		    && cm->cmsg_type == SCM_RIGHTS) {
1566			newfds = datalen / sizeof(struct file *);
1567			rp = data;
1568
1569			/* If we're not outputting the descriptors free them. */
1570			if (error || controlp == NULL) {
1571				unp_freerights(rp, newfds);
1572				goto next;
1573			}
1574			FILEDESC_XLOCK(td->td_proc->p_fd);
1575			/* if the new FD's will not fit free them.  */
1576			if (!fdavail(td, newfds)) {
1577				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1578				error = EMSGSIZE;
1579				unp_freerights(rp, newfds);
1580				goto next;
1581			}
1582
1583			/*
1584			 * Now change each pointer to an fd in the global
1585			 * table to an integer that is the index to the local
1586			 * fd table entry that we set up to point to the
1587			 * global one we are transferring.
1588			 */
1589			newlen = newfds * sizeof(int);
1590			*controlp = sbcreatecontrol(NULL, newlen,
1591			    SCM_RIGHTS, SOL_SOCKET);
1592			if (*controlp == NULL) {
1593				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1594				error = E2BIG;
1595				unp_freerights(rp, newfds);
1596				goto next;
1597			}
1598
1599			fdp = (int *)
1600			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1601			for (i = 0; i < newfds; i++) {
1602				if (fdalloc(td, 0, &f))
1603					panic("unp_externalize fdalloc failed");
1604				fp = *rp++;
1605				td->td_proc->p_fd->fd_ofiles[f] = fp;
1606				unp_externalize_fp(fp);
1607				*fdp++ = f;
1608			}
1609			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1610		} else {
1611			/* We can just copy anything else across. */
1612			if (error || controlp == NULL)
1613				goto next;
1614			*controlp = sbcreatecontrol(NULL, datalen,
1615			    cm->cmsg_type, cm->cmsg_level);
1616			if (*controlp == NULL) {
1617				error = ENOBUFS;
1618				goto next;
1619			}
1620			bcopy(data,
1621			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1622			    datalen);
1623		}
1624		controlp = &(*controlp)->m_next;
1625
1626next:
1627		if (CMSG_SPACE(datalen) < clen) {
1628			clen -= CMSG_SPACE(datalen);
1629			cm = (struct cmsghdr *)
1630			    ((caddr_t)cm + CMSG_SPACE(datalen));
1631		} else {
1632			clen = 0;
1633			cm = NULL;
1634		}
1635	}
1636
1637	m_freem(control);
1638	return (error);
1639}
1640
1641static void
1642unp_zone_change(void *tag)
1643{
1644
1645	uma_zone_set_max(unp_zone, maxsockets);
1646}
1647
1648static void
1649unp_init(void)
1650{
1651
1652	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1653	    NULL, NULL, UMA_ALIGN_PTR, 0);
1654	if (unp_zone == NULL)
1655		panic("unp_init");
1656	uma_zone_set_max(unp_zone, maxsockets);
1657	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1658	    NULL, EVENTHANDLER_PRI_ANY);
1659	LIST_INIT(&unp_dhead);
1660	LIST_INIT(&unp_shead);
1661	TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1662	UNP_LINK_LOCK_INIT();
1663	UNP_LIST_LOCK_INIT();
1664}
1665
1666static int
1667unp_internalize(struct mbuf **controlp, struct thread *td)
1668{
1669	struct mbuf *control = *controlp;
1670	struct proc *p = td->td_proc;
1671	struct filedesc *fdescp = p->p_fd;
1672	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1673	struct cmsgcred *cmcred;
1674	struct file **rp;
1675	struct file *fp;
1676	struct timeval *tv;
1677	int i, fd, *fdp;
1678	void *data;
1679	socklen_t clen = control->m_len, datalen;
1680	int error, oldfds;
1681	u_int newlen;
1682
1683	UNP_LINK_UNLOCK_ASSERT();
1684
1685	error = 0;
1686	*controlp = NULL;
1687	while (cm != NULL) {
1688		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1689		    || cm->cmsg_len > clen) {
1690			error = EINVAL;
1691			goto out;
1692		}
1693		data = CMSG_DATA(cm);
1694		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1695
1696		switch (cm->cmsg_type) {
1697		/*
1698		 * Fill in credential information.
1699		 */
1700		case SCM_CREDS:
1701			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1702			    SCM_CREDS, SOL_SOCKET);
1703			if (*controlp == NULL) {
1704				error = ENOBUFS;
1705				goto out;
1706			}
1707			cmcred = (struct cmsgcred *)
1708			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1709			cmcred->cmcred_pid = p->p_pid;
1710			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1711			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1712			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1713			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1714			    CMGROUP_MAX);
1715			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1716				cmcred->cmcred_groups[i] =
1717				    td->td_ucred->cr_groups[i];
1718			break;
1719
1720		case SCM_RIGHTS:
1721			oldfds = datalen / sizeof (int);
1722			/*
1723			 * Check that all the FDs passed in refer to legal
1724			 * files.  If not, reject the entire operation.
1725			 */
1726			fdp = data;
1727			FILEDESC_SLOCK(fdescp);
1728			for (i = 0; i < oldfds; i++) {
1729				fd = *fdp++;
1730				if ((unsigned)fd >= fdescp->fd_nfiles ||
1731				    fdescp->fd_ofiles[fd] == NULL) {
1732					FILEDESC_SUNLOCK(fdescp);
1733					error = EBADF;
1734					goto out;
1735				}
1736				fp = fdescp->fd_ofiles[fd];
1737				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1738					FILEDESC_SUNLOCK(fdescp);
1739					error = EOPNOTSUPP;
1740					goto out;
1741				}
1742
1743			}
1744
1745			/*
1746			 * Now replace the integer FDs with pointers to the
1747			 * associated global file table entry..
1748			 */
1749			newlen = oldfds * sizeof(struct file *);
1750			*controlp = sbcreatecontrol(NULL, newlen,
1751			    SCM_RIGHTS, SOL_SOCKET);
1752			if (*controlp == NULL) {
1753				FILEDESC_SUNLOCK(fdescp);
1754				error = E2BIG;
1755				goto out;
1756			}
1757			fdp = data;
1758			rp = (struct file **)
1759			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1760			for (i = 0; i < oldfds; i++) {
1761				fp = fdescp->fd_ofiles[*fdp++];
1762				*rp++ = fp;
1763				unp_internalize_fp(fp);
1764			}
1765			FILEDESC_SUNLOCK(fdescp);
1766			break;
1767
1768		case SCM_TIMESTAMP:
1769			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1770			    SCM_TIMESTAMP, SOL_SOCKET);
1771			if (*controlp == NULL) {
1772				error = ENOBUFS;
1773				goto out;
1774			}
1775			tv = (struct timeval *)
1776			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1777			microtime(tv);
1778			break;
1779
1780		default:
1781			error = EINVAL;
1782			goto out;
1783		}
1784
1785		controlp = &(*controlp)->m_next;
1786		if (CMSG_SPACE(datalen) < clen) {
1787			clen -= CMSG_SPACE(datalen);
1788			cm = (struct cmsghdr *)
1789			    ((caddr_t)cm + CMSG_SPACE(datalen));
1790		} else {
1791			clen = 0;
1792			cm = NULL;
1793		}
1794	}
1795
1796out:
1797	m_freem(control);
1798	return (error);
1799}
1800
1801static struct mbuf *
1802unp_addsockcred(struct thread *td, struct mbuf *control)
1803{
1804	struct mbuf *m, *n, *n_prev;
1805	struct sockcred *sc;
1806	const struct cmsghdr *cm;
1807	int ngroups;
1808	int i;
1809
1810	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1811	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1812	if (m == NULL)
1813		return (control);
1814
1815	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1816	sc->sc_uid = td->td_ucred->cr_ruid;
1817	sc->sc_euid = td->td_ucred->cr_uid;
1818	sc->sc_gid = td->td_ucred->cr_rgid;
1819	sc->sc_egid = td->td_ucred->cr_gid;
1820	sc->sc_ngroups = ngroups;
1821	for (i = 0; i < sc->sc_ngroups; i++)
1822		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1823
1824	/*
1825	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1826	 * created SCM_CREDS control message (struct sockcred) has another
1827	 * format.
1828	 */
1829	if (control != NULL)
1830		for (n = control, n_prev = NULL; n != NULL;) {
1831			cm = mtod(n, struct cmsghdr *);
1832    			if (cm->cmsg_level == SOL_SOCKET &&
1833			    cm->cmsg_type == SCM_CREDS) {
1834    				if (n_prev == NULL)
1835					control = n->m_next;
1836				else
1837					n_prev->m_next = n->m_next;
1838				n = m_free(n);
1839			} else {
1840				n_prev = n;
1841				n = n->m_next;
1842			}
1843		}
1844
1845	/* Prepend it to the head. */
1846	m->m_next = control;
1847	return (m);
1848}
1849
1850static struct unpcb *
1851fptounp(struct file *fp)
1852{
1853	struct socket *so;
1854
1855	if (fp->f_type != DTYPE_SOCKET)
1856		return (NULL);
1857	if ((so = fp->f_data) == NULL)
1858		return (NULL);
1859	if (so->so_proto->pr_domain != &localdomain)
1860		return (NULL);
1861	return sotounpcb(so);
1862}
1863
1864static void
1865unp_discard(struct file *fp)
1866{
1867
1868	unp_externalize_fp(fp);
1869	(void) closef(fp, (struct thread *)NULL);
1870}
1871
1872static void
1873unp_internalize_fp(struct file *fp)
1874{
1875	struct unpcb *unp;
1876
1877	UNP_LINK_WLOCK();
1878	if ((unp = fptounp(fp)) != NULL) {
1879		unp->unp_file = fp;
1880		unp->unp_msgcount++;
1881	}
1882	fhold(fp);
1883	unp_rights++;
1884	UNP_LINK_WUNLOCK();
1885}
1886
1887static void
1888unp_externalize_fp(struct file *fp)
1889{
1890	struct unpcb *unp;
1891
1892	UNP_LINK_WLOCK();
1893	if ((unp = fptounp(fp)) != NULL)
1894		unp->unp_msgcount--;
1895	unp_rights--;
1896	UNP_LINK_WUNLOCK();
1897}
1898
1899/*
1900 * unp_defer indicates whether additional work has been defered for a future
1901 * pass through unp_gc().  It is thread local and does not require explicit
1902 * synchronization.
1903 */
1904static int	unp_marked;
1905static int	unp_unreachable;
1906
1907static void
1908unp_accessable(struct file *fp)
1909{
1910	struct unpcb *unp;
1911
1912	if ((unp = fptounp(fp)) == NULL)
1913		return;
1914	if (unp->unp_gcflag & UNPGC_REF)
1915		return;
1916	unp->unp_gcflag &= ~UNPGC_DEAD;
1917	unp->unp_gcflag |= UNPGC_REF;
1918	unp_marked++;
1919}
1920
1921static void
1922unp_gc_process(struct unpcb *unp)
1923{
1924	struct socket *soa;
1925	struct socket *so;
1926	struct file *fp;
1927
1928	/* Already processed. */
1929	if (unp->unp_gcflag & UNPGC_SCANNED)
1930		return;
1931	fp = unp->unp_file;
1932
1933	/*
1934	 * Check for a socket potentially in a cycle.  It must be in a
1935	 * queue as indicated by msgcount, and this must equal the file
1936	 * reference count.  Note that when msgcount is 0 the file is NULL.
1937	 */
1938	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
1939	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
1940		unp->unp_gcflag |= UNPGC_DEAD;
1941		unp_unreachable++;
1942		return;
1943	}
1944
1945	/*
1946	 * Mark all sockets we reference with RIGHTS.
1947	 */
1948	so = unp->unp_socket;
1949	SOCKBUF_LOCK(&so->so_rcv);
1950	unp_scan(so->so_rcv.sb_mb, unp_accessable);
1951	SOCKBUF_UNLOCK(&so->so_rcv);
1952
1953	/*
1954	 * Mark all sockets in our accept queue.
1955	 */
1956	ACCEPT_LOCK();
1957	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
1958		SOCKBUF_LOCK(&soa->so_rcv);
1959		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
1960		SOCKBUF_UNLOCK(&soa->so_rcv);
1961	}
1962	ACCEPT_UNLOCK();
1963	unp->unp_gcflag |= UNPGC_SCANNED;
1964}
1965
1966static int unp_recycled;
1967SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
1968    "Number of unreachable sockets claimed by the garbage collector.");
1969
1970static int unp_taskcount;
1971SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
1972    "Number of times the garbage collector has run.");
1973
1974static void
1975unp_gc(__unused void *arg, int pending)
1976{
1977	struct unp_head *heads[] = { &unp_dhead, &unp_shead, NULL };
1978	struct unp_head **head;
1979	struct file **unref;
1980	struct unpcb *unp;
1981	int i;
1982
1983	unp_taskcount++;
1984	UNP_LIST_LOCK();
1985	/*
1986	 * First clear all gc flags from previous runs.
1987	 */
1988	for (head = heads; *head != NULL; head++)
1989		LIST_FOREACH(unp, *head, unp_link)
1990			unp->unp_gcflag = 0;
1991
1992	/*
1993	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
1994	 * is reachable all of the sockets it references are reachable.
1995	 * Stop the scan once we do a complete loop without discovering
1996	 * a new reachable socket.
1997	 */
1998	do {
1999		unp_unreachable = 0;
2000		unp_marked = 0;
2001		for (head = heads; *head != NULL; head++)
2002			LIST_FOREACH(unp, *head, unp_link)
2003				unp_gc_process(unp);
2004	} while (unp_marked);
2005	UNP_LIST_UNLOCK();
2006	if (unp_unreachable == 0)
2007		return;
2008
2009	/*
2010	 * Allocate space for a local list of dead unpcbs.
2011	 */
2012	unref = malloc(unp_unreachable * sizeof(struct file *),
2013	    M_TEMP, M_WAITOK);
2014
2015	/*
2016	 * Iterate looking for sockets which have been specifically marked
2017	 * as as unreachable and store them locally.
2018	 */
2019	UNP_LIST_LOCK();
2020	for (i = 0, head = heads; *head != NULL; head++)
2021		LIST_FOREACH(unp, *head, unp_link)
2022			if (unp->unp_gcflag & UNPGC_DEAD) {
2023				unref[i++] = unp->unp_file;
2024				fhold(unp->unp_file);
2025				KASSERT(unp->unp_file != NULL,
2026				    ("unp_gc: Invalid unpcb."));
2027				KASSERT(i <= unp_unreachable,
2028				    ("unp_gc: incorrect unreachable count."));
2029			}
2030	UNP_LIST_UNLOCK();
2031
2032	/*
2033	 * Now flush all sockets, free'ing rights.  This will free the
2034	 * struct files associated with these sockets but leave each socket
2035	 * with one remaining ref.
2036	 */
2037	for (i = 0; i < unp_unreachable; i++)
2038		sorflush(unref[i]->f_data);
2039
2040	/*
2041	 * And finally release the sockets so they can be reclaimed.
2042	 */
2043	for (i = 0; i < unp_unreachable; i++)
2044		fdrop(unref[i], NULL);
2045	unp_recycled += unp_unreachable;
2046	free(unref, M_TEMP);
2047}
2048
2049static void
2050unp_dispose(struct mbuf *m)
2051{
2052
2053	if (m)
2054		unp_scan(m, unp_discard);
2055}
2056
2057static void
2058unp_scan(struct mbuf *m0, void (*op)(struct file *))
2059{
2060	struct mbuf *m;
2061	struct file **rp;
2062	struct cmsghdr *cm;
2063	void *data;
2064	int i;
2065	socklen_t clen, datalen;
2066	int qfds;
2067
2068	while (m0 != NULL) {
2069		for (m = m0; m; m = m->m_next) {
2070			if (m->m_type != MT_CONTROL)
2071				continue;
2072
2073			cm = mtod(m, struct cmsghdr *);
2074			clen = m->m_len;
2075
2076			while (cm != NULL) {
2077				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2078					break;
2079
2080				data = CMSG_DATA(cm);
2081				datalen = (caddr_t)cm + cm->cmsg_len
2082				    - (caddr_t)data;
2083
2084				if (cm->cmsg_level == SOL_SOCKET &&
2085				    cm->cmsg_type == SCM_RIGHTS) {
2086					qfds = datalen / sizeof (struct file *);
2087					rp = data;
2088					for (i = 0; i < qfds; i++)
2089						(*op)(*rp++);
2090				}
2091
2092				if (CMSG_SPACE(datalen) < clen) {
2093					clen -= CMSG_SPACE(datalen);
2094					cm = (struct cmsghdr *)
2095					    ((caddr_t)cm + CMSG_SPACE(datalen));
2096				} else {
2097					clen = 0;
2098					cm = NULL;
2099				}
2100			}
2101		}
2102		m0 = m0->m_act;
2103	}
2104}
2105
2106#ifdef DDB
2107static void
2108db_print_indent(int indent)
2109{
2110	int i;
2111
2112	for (i = 0; i < indent; i++)
2113		db_printf(" ");
2114}
2115
2116static void
2117db_print_unpflags(int unp_flags)
2118{
2119	int comma;
2120
2121	comma = 0;
2122	if (unp_flags & UNP_HAVEPC) {
2123		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2124		comma = 1;
2125	}
2126	if (unp_flags & UNP_HAVEPCCACHED) {
2127		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2128		comma = 1;
2129	}
2130	if (unp_flags & UNP_WANTCRED) {
2131		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2132		comma = 1;
2133	}
2134	if (unp_flags & UNP_CONNWAIT) {
2135		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2136		comma = 1;
2137	}
2138	if (unp_flags & UNP_CONNECTING) {
2139		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2140		comma = 1;
2141	}
2142	if (unp_flags & UNP_BINDING) {
2143		db_printf("%sUNP_BINDING", comma ? ", " : "");
2144		comma = 1;
2145	}
2146}
2147
2148static void
2149db_print_xucred(int indent, struct xucred *xu)
2150{
2151	int comma, i;
2152
2153	db_print_indent(indent);
2154	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2155	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2156	db_print_indent(indent);
2157	db_printf("cr_groups: ");
2158	comma = 0;
2159	for (i = 0; i < xu->cr_ngroups; i++) {
2160		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2161		comma = 1;
2162	}
2163	db_printf("\n");
2164}
2165
2166static void
2167db_print_unprefs(int indent, struct unp_head *uh)
2168{
2169	struct unpcb *unp;
2170	int counter;
2171
2172	counter = 0;
2173	LIST_FOREACH(unp, uh, unp_reflink) {
2174		if (counter % 4 == 0)
2175			db_print_indent(indent);
2176		db_printf("%p  ", unp);
2177		if (counter % 4 == 3)
2178			db_printf("\n");
2179		counter++;
2180	}
2181	if (counter != 0 && counter % 4 != 0)
2182		db_printf("\n");
2183}
2184
2185DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2186{
2187	struct unpcb *unp;
2188
2189        if (!have_addr) {
2190                db_printf("usage: show unpcb <addr>\n");
2191                return;
2192        }
2193        unp = (struct unpcb *)addr;
2194
2195	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2196	    unp->unp_vnode);
2197
2198	db_printf("unp_ino: %d   unp_conn: %p\n", unp->unp_ino,
2199	    unp->unp_conn);
2200
2201	db_printf("unp_refs:\n");
2202	db_print_unprefs(2, &unp->unp_refs);
2203
2204	/* XXXRW: Would be nice to print the full address, if any. */
2205	db_printf("unp_addr: %p\n", unp->unp_addr);
2206
2207	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2208	    unp->unp_cc, unp->unp_mbcnt,
2209	    (unsigned long long)unp->unp_gencnt);
2210
2211	db_printf("unp_flags: %x (", unp->unp_flags);
2212	db_print_unpflags(unp->unp_flags);
2213	db_printf(")\n");
2214
2215	db_printf("unp_peercred:\n");
2216	db_print_xucred(2, &unp->unp_peercred);
2217
2218	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2219}
2220#endif
2221