uipc_usrreq.c revision 142155
1/*-
2 * Copyright 2004-2005 Robert N. M. Watson
3 * Copyright (c) 1982, 1986, 1989, 1991, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/kern/uipc_usrreq.c 142155 2005-02-20 23:22:13Z rwatson $");
35
36#include "opt_mac.h"
37
38#include <sys/param.h>
39#include <sys/domain.h>
40#include <sys/fcntl.h>
41#include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
42#include <sys/file.h>
43#include <sys/filedesc.h>
44#include <sys/jail.h>
45#include <sys/kernel.h>
46#include <sys/lock.h>
47#include <sys/mac.h>
48#include <sys/mbuf.h>
49#include <sys/mutex.h>
50#include <sys/namei.h>
51#include <sys/proc.h>
52#include <sys/protosw.h>
53#include <sys/resourcevar.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/signalvar.h>
57#include <sys/stat.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/systm.h>
61#include <sys/un.h>
62#include <sys/unpcb.h>
63#include <sys/vnode.h>
64
65#include <vm/uma.h>
66
67static uma_zone_t unp_zone;
68static	unp_gen_t unp_gencnt;
69static	u_int unp_count;
70
71static	struct unp_head unp_shead, unp_dhead;
72
73/*
74 * Unix communications domain.
75 *
76 * TODO:
77 *	SEQPACKET, RDM
78 *	rethink name space problems
79 *	need a proper out-of-band
80 *	lock pushdown
81 */
82static const struct	sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
83static ino_t	unp_ino;		/* prototype for fake inode numbers */
84
85/*
86 * Currently, UNIX domain sockets are protected by a single subsystem lock,
87 * which covers global data structures and variables, the contents of each
88 * per-socket unpcb structure, and the so_pcb field in sockets attached to
89 * the UNIX domain.  This provides for a moderate degree of paralellism, as
90 * receive operations on UNIX domain sockets do not need to acquire the
91 * subsystem lock.  Finer grained locking to permit send() without acquiring
92 * a global lock would be a logical next step.
93 *
94 * The UNIX domain socket lock preceds all socket layer locks, including the
95 * socket lock and socket buffer lock, permitting UNIX domain socket code to
96 * call into socket support routines without releasing its locks.
97 *
98 * Some caution is required in areas where the UNIX domain socket code enters
99 * VFS in order to create or find rendezvous points.  This results in
100 * dropping of the UNIX domain socket subsystem lock, acquisition of the
101 * Giant lock, and potential sleeping.  This increases the chances of races,
102 * and exposes weaknesses in the socket->protocol API by offering poor
103 * failure modes.
104 */
105static struct mtx unp_mtx;
106#define	UNP_LOCK_INIT() \
107	mtx_init(&unp_mtx, "unp", NULL, MTX_DEF)
108#define	UNP_LOCK()		mtx_lock(&unp_mtx)
109#define	UNP_UNLOCK()		mtx_unlock(&unp_mtx)
110#define	UNP_LOCK_ASSERT()	mtx_assert(&unp_mtx, MA_OWNED)
111#define	UNP_UNLOCK_ASSERT()	mtx_assert(&unp_mtx, MA_NOTOWNED)
112
113static int     unp_attach(struct socket *);
114static void    unp_detach(struct unpcb *);
115static int     unp_bind(struct unpcb *,struct sockaddr *, struct thread *);
116static int     unp_connect(struct socket *,struct sockaddr *, struct thread *);
117static int     unp_connect2(struct socket *so, struct socket *so2);
118static void    unp_disconnect(struct unpcb *);
119static void    unp_shutdown(struct unpcb *);
120static void    unp_drop(struct unpcb *, int);
121static void    unp_gc(void);
122static void    unp_scan(struct mbuf *, void (*)(struct file *));
123static void    unp_mark(struct file *);
124static void    unp_discard(struct file *);
125static void    unp_freerights(struct file **, int);
126static int     unp_internalize(struct mbuf **, struct thread *);
127static int     unp_listen(struct unpcb *, struct thread *);
128
129static int
130uipc_abort(struct socket *so)
131{
132	struct unpcb *unp;
133
134	UNP_LOCK();
135	unp = sotounpcb(so);
136	if (unp == NULL) {
137		UNP_UNLOCK();
138		return (EINVAL);
139	}
140	unp_drop(unp, ECONNABORTED);
141	unp_detach(unp);
142	UNP_UNLOCK_ASSERT();
143	ACCEPT_LOCK();
144	SOCK_LOCK(so);
145	sotryfree(so);
146	return (0);
147}
148
149static int
150uipc_accept(struct socket *so, struct sockaddr **nam)
151{
152	struct unpcb *unp;
153	const struct sockaddr *sa;
154
155	/*
156	 * Pass back name of connected socket,
157	 * if it was bound and we are still connected
158	 * (our peer may have closed already!).
159	 */
160	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
161	UNP_LOCK();
162	unp = sotounpcb(so);
163	if (unp == NULL) {
164		UNP_UNLOCK();
165		free(*nam, M_SONAME);
166		*nam = NULL;
167		return (EINVAL);
168	}
169	if (unp->unp_conn != NULL && unp->unp_conn->unp_addr != NULL)
170		sa = (struct sockaddr *) unp->unp_conn->unp_addr;
171	else
172		sa = &sun_noname;
173	bcopy(sa, *nam, sa->sa_len);
174	UNP_UNLOCK();
175	return (0);
176}
177
178static int
179uipc_attach(struct socket *so, int proto, struct thread *td)
180{
181	struct unpcb *unp = sotounpcb(so);
182
183	if (unp != NULL)
184		return (EISCONN);
185	return (unp_attach(so));
186}
187
188static int
189uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
190{
191	struct unpcb *unp;
192	int error;
193
194	UNP_LOCK();
195	unp = sotounpcb(so);
196	if (unp == NULL) {
197		UNP_UNLOCK();
198		return (EINVAL);
199	}
200	error = unp_bind(unp, nam, td);
201	UNP_UNLOCK();
202	return (error);
203}
204
205static int
206uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
207{
208	struct unpcb *unp;
209	int error;
210
211	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
212
213	UNP_LOCK();
214	unp = sotounpcb(so);
215	if (unp == NULL) {
216		UNP_UNLOCK();
217		return (EINVAL);
218	}
219	error = unp_connect(so, nam, td);
220	UNP_UNLOCK();
221	return (error);
222}
223
224int
225uipc_connect2(struct socket *so1, struct socket *so2)
226{
227	struct unpcb *unp;
228	int error;
229
230	UNP_LOCK();
231	unp = sotounpcb(so1);
232	if (unp == NULL) {
233		UNP_UNLOCK();
234		return (EINVAL);
235	}
236	error = unp_connect2(so1, so2);
237	UNP_UNLOCK();
238	return (error);
239}
240
241/* control is EOPNOTSUPP */
242
243static int
244uipc_detach(struct socket *so)
245{
246	struct unpcb *unp;
247
248	UNP_LOCK();
249	unp = sotounpcb(so);
250	if (unp == NULL) {
251		UNP_UNLOCK();
252		return (EINVAL);
253	}
254	unp_detach(unp);
255	UNP_UNLOCK_ASSERT();
256	return (0);
257}
258
259static int
260uipc_disconnect(struct socket *so)
261{
262	struct unpcb *unp;
263
264	UNP_LOCK();
265	unp = sotounpcb(so);
266	if (unp == NULL) {
267		UNP_UNLOCK();
268		return (EINVAL);
269	}
270	unp_disconnect(unp);
271	UNP_UNLOCK();
272	return (0);
273}
274
275static int
276uipc_listen(struct socket *so, struct thread *td)
277{
278	struct unpcb *unp;
279	int error;
280
281	UNP_LOCK();
282	unp = sotounpcb(so);
283	if (unp == NULL || unp->unp_vnode == NULL) {
284		UNP_UNLOCK();
285		return (EINVAL);
286	}
287	error = unp_listen(unp, td);
288	UNP_UNLOCK();
289	return (error);
290}
291
292static int
293uipc_peeraddr(struct socket *so, struct sockaddr **nam)
294{
295	struct unpcb *unp;
296	const struct sockaddr *sa;
297
298	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
299	UNP_LOCK();
300	unp = sotounpcb(so);
301	if (unp == NULL) {
302		UNP_UNLOCK();
303		free(*nam, M_SONAME);
304		*nam = NULL;
305		return (EINVAL);
306	}
307	if (unp->unp_conn != NULL && unp->unp_conn->unp_addr!= NULL)
308		sa = (struct sockaddr *) unp->unp_conn->unp_addr;
309	else {
310		/*
311		 * XXX: It seems that this test always fails even when
312		 * connection is established.  So, this else clause is
313		 * added as workaround to return PF_LOCAL sockaddr.
314		 */
315		sa = &sun_noname;
316	}
317	bcopy(sa, *nam, sa->sa_len);
318	UNP_UNLOCK();
319	return (0);
320}
321
322static int
323uipc_rcvd(struct socket *so, int flags)
324{
325	struct unpcb *unp;
326	struct socket *so2;
327	u_long newhiwat;
328
329	UNP_LOCK();
330	unp = sotounpcb(so);
331	if (unp == NULL) {
332		UNP_UNLOCK();
333		return (EINVAL);
334	}
335	switch (so->so_type) {
336	case SOCK_DGRAM:
337		panic("uipc_rcvd DGRAM?");
338		/*NOTREACHED*/
339
340	case SOCK_STREAM:
341		if (unp->unp_conn == NULL)
342			break;
343		so2 = unp->unp_conn->unp_socket;
344		SOCKBUF_LOCK(&so2->so_snd);
345		SOCKBUF_LOCK(&so->so_rcv);
346		/*
347		 * Adjust backpressure on sender
348		 * and wakeup any waiting to write.
349		 */
350		so2->so_snd.sb_mbmax += unp->unp_mbcnt - so->so_rcv.sb_mbcnt;
351		unp->unp_mbcnt = so->so_rcv.sb_mbcnt;
352		newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc -
353		    so->so_rcv.sb_cc;
354		(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
355		    newhiwat, RLIM_INFINITY);
356		unp->unp_cc = so->so_rcv.sb_cc;
357		SOCKBUF_UNLOCK(&so->so_rcv);
358		sowwakeup_locked(so2);
359		break;
360
361	default:
362		panic("uipc_rcvd unknown socktype");
363	}
364	UNP_UNLOCK();
365	return (0);
366}
367
368/* pru_rcvoob is EOPNOTSUPP */
369
370static int
371uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
372    struct mbuf *control, struct thread *td)
373{
374	int error = 0;
375	struct unpcb *unp;
376	struct socket *so2;
377	u_long newhiwat;
378
379	unp = sotounpcb(so);
380	if (unp == NULL) {
381		error = EINVAL;
382		goto release;
383	}
384	if (flags & PRUS_OOB) {
385		error = EOPNOTSUPP;
386		goto release;
387	}
388
389	if (control != NULL && (error = unp_internalize(&control, td)))
390		goto release;
391
392	UNP_LOCK();
393	unp = sotounpcb(so);
394	if (unp == NULL) {
395		UNP_UNLOCK();
396		error = EINVAL;
397		goto dispose_release;
398	}
399
400	switch (so->so_type) {
401	case SOCK_DGRAM:
402	{
403		const struct sockaddr *from;
404
405		if (nam != NULL) {
406			if (unp->unp_conn != NULL) {
407				error = EISCONN;
408				break;
409			}
410			error = unp_connect(so, nam, td);
411			if (error)
412				break;
413		} else {
414			if (unp->unp_conn == NULL) {
415				error = ENOTCONN;
416				break;
417			}
418		}
419		so2 = unp->unp_conn->unp_socket;
420		if (unp->unp_addr != NULL)
421			from = (struct sockaddr *)unp->unp_addr;
422		else
423			from = &sun_noname;
424		SOCKBUF_LOCK(&so2->so_rcv);
425		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
426			sorwakeup_locked(so2);
427			m = NULL;
428			control = NULL;
429		} else {
430			SOCKBUF_UNLOCK(&so2->so_rcv);
431			error = ENOBUFS;
432		}
433		if (nam != NULL)
434			unp_disconnect(unp);
435		break;
436	}
437
438	case SOCK_STREAM:
439		/* Connect if not connected yet. */
440		/*
441		 * Note: A better implementation would complain
442		 * if not equal to the peer's address.
443		 */
444		if ((so->so_state & SS_ISCONNECTED) == 0) {
445			if (nam != NULL) {
446				error = unp_connect(so, nam, td);
447				if (error)
448					break;	/* XXX */
449			} else {
450				error = ENOTCONN;
451				break;
452			}
453		}
454
455		SOCKBUF_LOCK(&so->so_snd);
456		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
457			SOCKBUF_UNLOCK(&so->so_snd);
458			error = EPIPE;
459			break;
460		}
461		if (unp->unp_conn == NULL)
462			panic("uipc_send connected but no connection?");
463		so2 = unp->unp_conn->unp_socket;
464		SOCKBUF_LOCK(&so2->so_rcv);
465		/*
466		 * Send to paired receive port, and then reduce
467		 * send buffer hiwater marks to maintain backpressure.
468		 * Wake up readers.
469		 */
470		if (control != NULL) {
471			if (sbappendcontrol_locked(&so2->so_rcv, m, control))
472				control = NULL;
473		} else {
474			sbappend_locked(&so2->so_rcv, m);
475		}
476		so->so_snd.sb_mbmax -=
477			so2->so_rcv.sb_mbcnt - unp->unp_conn->unp_mbcnt;
478		unp->unp_conn->unp_mbcnt = so2->so_rcv.sb_mbcnt;
479		newhiwat = so->so_snd.sb_hiwat -
480		    (so2->so_rcv.sb_cc - unp->unp_conn->unp_cc);
481		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
482		    newhiwat, RLIM_INFINITY);
483		SOCKBUF_UNLOCK(&so->so_snd);
484		unp->unp_conn->unp_cc = so2->so_rcv.sb_cc;
485		sorwakeup_locked(so2);
486		m = NULL;
487		break;
488
489	default:
490		panic("uipc_send unknown socktype");
491	}
492
493	/*
494	 * SEND_EOF is equivalent to a SEND followed by
495	 * a SHUTDOWN.
496	 */
497	if (flags & PRUS_EOF) {
498		socantsendmore(so);
499		unp_shutdown(unp);
500	}
501	UNP_UNLOCK();
502
503dispose_release:
504	if (control != NULL && error != 0)
505		unp_dispose(control);
506
507release:
508	if (control != NULL)
509		m_freem(control);
510	if (m != NULL)
511		m_freem(m);
512	return (error);
513}
514
515static int
516uipc_sense(struct socket *so, struct stat *sb)
517{
518	struct unpcb *unp;
519	struct socket *so2;
520
521	UNP_LOCK();
522	unp = sotounpcb(so);
523	if (unp == NULL) {
524		UNP_UNLOCK();
525		return (EINVAL);
526	}
527	sb->st_blksize = so->so_snd.sb_hiwat;
528	if (so->so_type == SOCK_STREAM && unp->unp_conn != NULL) {
529		so2 = unp->unp_conn->unp_socket;
530		sb->st_blksize += so2->so_rcv.sb_cc;
531	}
532	sb->st_dev = NODEV;
533	if (unp->unp_ino == 0)
534		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
535	sb->st_ino = unp->unp_ino;
536	UNP_UNLOCK();
537	return (0);
538}
539
540static int
541uipc_shutdown(struct socket *so)
542{
543	struct unpcb *unp;
544
545	UNP_LOCK();
546	unp = sotounpcb(so);
547	if (unp == NULL) {
548		UNP_UNLOCK();
549		return (EINVAL);
550	}
551	socantsendmore(so);
552	unp_shutdown(unp);
553	UNP_UNLOCK();
554	return (0);
555}
556
557static int
558uipc_sockaddr(struct socket *so, struct sockaddr **nam)
559{
560	struct unpcb *unp;
561	const struct sockaddr *sa;
562
563	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
564	UNP_LOCK();
565	unp = sotounpcb(so);
566	if (unp == NULL) {
567		UNP_UNLOCK();
568		free(*nam, M_SONAME);
569		*nam = NULL;
570		return (EINVAL);
571	}
572	if (unp->unp_addr != NULL)
573		sa = (struct sockaddr *) unp->unp_addr;
574	else
575		sa = &sun_noname;
576	bcopy(sa, *nam, sa->sa_len);
577	UNP_UNLOCK();
578	return (0);
579}
580
581struct pr_usrreqs uipc_usrreqs = {
582	.pru_abort = 		uipc_abort,
583	.pru_accept =		uipc_accept,
584	.pru_attach =		uipc_attach,
585	.pru_bind =		uipc_bind,
586	.pru_connect =		uipc_connect,
587	.pru_connect2 =		uipc_connect2,
588	.pru_detach =		uipc_detach,
589	.pru_disconnect =	uipc_disconnect,
590	.pru_listen =		uipc_listen,
591	.pru_peeraddr =		uipc_peeraddr,
592	.pru_rcvd =		uipc_rcvd,
593	.pru_send =		uipc_send,
594	.pru_sense =		uipc_sense,
595	.pru_shutdown =		uipc_shutdown,
596	.pru_sockaddr =		uipc_sockaddr,
597	.pru_sosend =		sosend,
598	.pru_soreceive =	soreceive,
599	.pru_sopoll =		sopoll,
600};
601
602int
603uipc_ctloutput(struct socket *so, struct sockopt *sopt)
604{
605	struct unpcb *unp;
606	struct xucred xu;
607	int error;
608
609	switch (sopt->sopt_dir) {
610	case SOPT_GET:
611		switch (sopt->sopt_name) {
612		case LOCAL_PEERCRED:
613			error = 0;
614			UNP_LOCK();
615			unp = sotounpcb(so);
616			if (unp == NULL) {
617				UNP_UNLOCK();
618				error = EINVAL;
619				break;
620			}
621			if (unp->unp_flags & UNP_HAVEPC)
622				xu = unp->unp_peercred;
623			else {
624				if (so->so_type == SOCK_STREAM)
625					error = ENOTCONN;
626				else
627					error = EINVAL;
628			}
629			UNP_UNLOCK();
630			if (error == 0)
631				error = sooptcopyout(sopt, &xu, sizeof(xu));
632			break;
633		default:
634			error = EOPNOTSUPP;
635			break;
636		}
637		break;
638	case SOPT_SET:
639	default:
640		error = EOPNOTSUPP;
641		break;
642	}
643	return (error);
644}
645
646/*
647 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
648 * for stream sockets, although the total for sender and receiver is
649 * actually only PIPSIZ.
650 * Datagram sockets really use the sendspace as the maximum datagram size,
651 * and don't really want to reserve the sendspace.  Their recvspace should
652 * be large enough for at least one max-size datagram plus address.
653 */
654#ifndef PIPSIZ
655#define	PIPSIZ	8192
656#endif
657static u_long	unpst_sendspace = PIPSIZ;
658static u_long	unpst_recvspace = PIPSIZ;
659static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
660static u_long	unpdg_recvspace = 4*1024;
661
662static int	unp_rights;			/* file descriptors in flight */
663
664SYSCTL_DECL(_net_local_stream);
665SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
666	   &unpst_sendspace, 0, "");
667SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
668	   &unpst_recvspace, 0, "");
669SYSCTL_DECL(_net_local_dgram);
670SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
671	   &unpdg_sendspace, 0, "");
672SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
673	   &unpdg_recvspace, 0, "");
674SYSCTL_DECL(_net_local);
675SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, "");
676
677static int
678unp_attach(struct socket *so)
679{
680	struct unpcb *unp;
681	int error;
682
683	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
684		switch (so->so_type) {
685
686		case SOCK_STREAM:
687			error = soreserve(so, unpst_sendspace, unpst_recvspace);
688			break;
689
690		case SOCK_DGRAM:
691			error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
692			break;
693
694		default:
695			panic("unp_attach");
696		}
697		if (error)
698			return (error);
699	}
700	unp = uma_zalloc(unp_zone, M_WAITOK | M_ZERO);
701	if (unp == NULL)
702		return (ENOBUFS);
703	LIST_INIT(&unp->unp_refs);
704	unp->unp_socket = so;
705	so->so_pcb = unp;
706
707	UNP_LOCK();
708	unp->unp_gencnt = ++unp_gencnt;
709	unp_count++;
710	LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead
711			 : &unp_shead, unp, unp_link);
712	UNP_UNLOCK();
713
714	return (0);
715}
716
717static void
718unp_detach(struct unpcb *unp)
719{
720	struct vnode *vp;
721
722	UNP_LOCK_ASSERT();
723
724	LIST_REMOVE(unp, unp_link);
725	unp->unp_gencnt = ++unp_gencnt;
726	--unp_count;
727	if ((vp = unp->unp_vnode) != NULL) {
728		/*
729		 * XXXRW: should v_socket be frobbed only while holding
730		 * Giant?
731		 */
732		unp->unp_vnode->v_socket = NULL;
733		unp->unp_vnode = NULL;
734	}
735	if (unp->unp_conn != NULL)
736		unp_disconnect(unp);
737	while (!LIST_EMPTY(&unp->unp_refs)) {
738		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
739		unp_drop(ref, ECONNRESET);
740	}
741	soisdisconnected(unp->unp_socket);
742	unp->unp_socket->so_pcb = NULL;
743	if (unp_rights) {
744		/*
745		 * Normally the receive buffer is flushed later,
746		 * in sofree, but if our receive buffer holds references
747		 * to descriptors that are now garbage, we will dispose
748		 * of those descriptor references after the garbage collector
749		 * gets them (resulting in a "panic: closef: count < 0").
750		 */
751		sorflush(unp->unp_socket);
752		unp_gc();	/* Will unlock UNP. */
753	} else
754		UNP_UNLOCK();
755	UNP_UNLOCK_ASSERT();
756	if (unp->unp_addr != NULL)
757		FREE(unp->unp_addr, M_SONAME);
758	uma_zfree(unp_zone, unp);
759	if (vp) {
760		mtx_lock(&Giant);
761		vrele(vp);
762		mtx_unlock(&Giant);
763	}
764}
765
766static int
767unp_bind(struct unpcb *unp, struct sockaddr *nam, struct thread *td)
768{
769	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
770	struct vnode *vp;
771	struct mount *mp;
772	struct vattr vattr;
773	int error, namelen;
774	struct nameidata nd;
775	char *buf;
776
777	UNP_LOCK_ASSERT();
778
779	/*
780	 * XXXRW: This test-and-set of unp_vnode is non-atomic; the
781	 * unlocked read here is fine, but the value of unp_vnode needs
782	 * to be tested again after we do all the lookups to see if the
783	 * pcb is still unbound?
784	 */
785	if (unp->unp_vnode != NULL)
786		return (EINVAL);
787
788	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
789	if (namelen <= 0)
790		return (EINVAL);
791
792	UNP_UNLOCK();
793
794	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
795	strlcpy(buf, soun->sun_path, namelen + 1);
796
797	mtx_lock(&Giant);
798restart:
799	mtx_assert(&Giant, MA_OWNED);
800	NDINIT(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME, UIO_SYSSPACE,
801	    buf, td);
802/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
803	error = namei(&nd);
804	if (error)
805		goto done;
806	vp = nd.ni_vp;
807	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
808		NDFREE(&nd, NDF_ONLY_PNBUF);
809		if (nd.ni_dvp == vp)
810			vrele(nd.ni_dvp);
811		else
812			vput(nd.ni_dvp);
813		if (vp != NULL) {
814			vrele(vp);
815			error = EADDRINUSE;
816			goto done;
817		}
818		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
819		if (error)
820			goto done;
821		goto restart;
822	}
823	VATTR_NULL(&vattr);
824	vattr.va_type = VSOCK;
825	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
826#ifdef MAC
827	error = mac_check_vnode_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
828	    &vattr);
829#endif
830	if (error == 0) {
831		VOP_LEASE(nd.ni_dvp, td, td->td_ucred, LEASE_WRITE);
832		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
833	}
834	NDFREE(&nd, NDF_ONLY_PNBUF);
835	vput(nd.ni_dvp);
836	if (error)
837		goto done;
838	vp = nd.ni_vp;
839	ASSERT_VOP_LOCKED(vp, "unp_bind");
840	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
841	UNP_LOCK();
842	vp->v_socket = unp->unp_socket;
843	unp->unp_vnode = vp;
844	unp->unp_addr = soun;
845	UNP_UNLOCK();
846	VOP_UNLOCK(vp, 0, td);
847	vn_finished_write(mp);
848done:
849	mtx_unlock(&Giant);
850	free(buf, M_TEMP);
851	UNP_LOCK();
852	return (error);
853}
854
855static int
856unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
857{
858	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
859	struct vnode *vp;
860	struct socket *so2, *so3;
861	struct unpcb *unp, *unp2, *unp3;
862	int error, len;
863	struct nameidata nd;
864	char buf[SOCK_MAXADDRLEN];
865	struct sockaddr *sa;
866
867	UNP_LOCK_ASSERT();
868	unp = sotounpcb(so);
869
870	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
871	if (len <= 0)
872		return (EINVAL);
873	strlcpy(buf, soun->sun_path, len + 1);
874	UNP_UNLOCK();
875	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
876	mtx_lock(&Giant);
877	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, buf, td);
878	error = namei(&nd);
879	if (error)
880		vp = NULL;
881	else
882		vp = nd.ni_vp;
883	ASSERT_VOP_LOCKED(vp, "unp_connect");
884	NDFREE(&nd, NDF_ONLY_PNBUF);
885	if (error)
886		goto bad;
887
888	if (vp->v_type != VSOCK) {
889		error = ENOTSOCK;
890		goto bad;
891	}
892	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
893	if (error)
894		goto bad;
895	mtx_unlock(&Giant);
896	UNP_LOCK();
897	unp = sotounpcb(so);
898	if (unp == NULL) {
899		error = EINVAL;
900		goto bad2;
901	}
902	so2 = vp->v_socket;
903	if (so2 == NULL) {
904		error = ECONNREFUSED;
905		goto bad2;
906	}
907	if (so->so_type != so2->so_type) {
908		error = EPROTOTYPE;
909		goto bad2;
910	}
911	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
912		if (so2->so_options & SO_ACCEPTCONN) {
913			/*
914			 * NB: drop locks here so unp_attach is entered
915			 *     w/o locks; this avoids a recursive lock
916			 *     of the head and holding sleep locks across
917			 *     a (potentially) blocking malloc.
918			 */
919			UNP_UNLOCK();
920			so3 = sonewconn(so2, 0);
921			UNP_LOCK();
922		} else
923			so3 = NULL;
924		if (so3 == NULL) {
925			error = ECONNREFUSED;
926			goto bad2;
927		}
928		unp = sotounpcb(so);
929		unp2 = sotounpcb(so2);
930		unp3 = sotounpcb(so3);
931		if (unp2->unp_addr != NULL) {
932			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
933			unp3->unp_addr = (struct sockaddr_un *) sa;
934			sa = NULL;
935		}
936		/*
937		 * unp_peercred management:
938		 *
939		 * The connecter's (client's) credentials are copied
940		 * from its process structure at the time of connect()
941		 * (which is now).
942		 */
943		cru2x(td->td_ucred, &unp3->unp_peercred);
944		unp3->unp_flags |= UNP_HAVEPC;
945		/*
946		 * The receiver's (server's) credentials are copied
947		 * from the unp_peercred member of socket on which the
948		 * former called listen(); unp_listen() cached that
949		 * process's credentials at that time so we can use
950		 * them now.
951		 */
952		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
953		    ("unp_connect: listener without cached peercred"));
954		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
955		    sizeof(unp->unp_peercred));
956		unp->unp_flags |= UNP_HAVEPC;
957#ifdef MAC
958		SOCK_LOCK(so);
959		mac_set_socket_peer_from_socket(so, so3);
960		mac_set_socket_peer_from_socket(so3, so);
961		SOCK_UNLOCK(so);
962#endif
963
964		so2 = so3;
965	}
966	error = unp_connect2(so, so2);
967bad2:
968	UNP_UNLOCK();
969	mtx_lock(&Giant);
970bad:
971	mtx_assert(&Giant, MA_OWNED);
972	if (vp != NULL)
973		vput(vp);
974	mtx_unlock(&Giant);
975	free(sa, M_SONAME);
976	UNP_LOCK();
977	return (error);
978}
979
980static int
981unp_connect2(struct socket *so, struct socket *so2)
982{
983	struct unpcb *unp = sotounpcb(so);
984	struct unpcb *unp2;
985
986	UNP_LOCK_ASSERT();
987
988	if (so2->so_type != so->so_type)
989		return (EPROTOTYPE);
990	unp2 = sotounpcb(so2);
991	unp->unp_conn = unp2;
992	switch (so->so_type) {
993
994	case SOCK_DGRAM:
995		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
996		soisconnected(so);
997		break;
998
999	case SOCK_STREAM:
1000		unp2->unp_conn = unp;
1001		soisconnected(so);
1002		soisconnected(so2);
1003		break;
1004
1005	default:
1006		panic("unp_connect2");
1007	}
1008	return (0);
1009}
1010
1011static void
1012unp_disconnect(struct unpcb *unp)
1013{
1014	struct unpcb *unp2 = unp->unp_conn;
1015	struct socket *so;
1016
1017	UNP_LOCK_ASSERT();
1018
1019	if (unp2 == NULL)
1020		return;
1021	unp->unp_conn = NULL;
1022	switch (unp->unp_socket->so_type) {
1023
1024	case SOCK_DGRAM:
1025		LIST_REMOVE(unp, unp_reflink);
1026		so = unp->unp_socket;
1027		SOCK_LOCK(so);
1028		so->so_state &= ~SS_ISCONNECTED;
1029		SOCK_UNLOCK(so);
1030		break;
1031
1032	case SOCK_STREAM:
1033		soisdisconnected(unp->unp_socket);
1034		unp2->unp_conn = NULL;
1035		soisdisconnected(unp2->unp_socket);
1036		break;
1037	}
1038}
1039
1040#ifdef notdef
1041void
1042unp_abort(struct unpcb *unp)
1043{
1044
1045	unp_detach(unp);
1046	UNP_UNLOCK_ASSERT();
1047}
1048#endif
1049
1050/*
1051 * unp_pcblist() assumes that UNIX domain socket memory is never reclaimed
1052 * by the zone (UMA_ZONE_NOFREE), and as such potentially stale pointers
1053 * are safe to reference.  It first scans the list of struct unpcb's to
1054 * generate a pointer list, then it rescans its list one entry at a time to
1055 * externalize and copyout.  It checks the generation number to see if a
1056 * struct unpcb has been reused, and will skip it if so.
1057 */
1058static int
1059unp_pcblist(SYSCTL_HANDLER_ARGS)
1060{
1061	int error, i, n;
1062	struct unpcb *unp, **unp_list;
1063	unp_gen_t gencnt;
1064	struct xunpgen *xug;
1065	struct unp_head *head;
1066	struct xunpcb *xu;
1067
1068	head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
1069
1070	/*
1071	 * The process of preparing the PCB list is too time-consuming and
1072	 * resource-intensive to repeat twice on every request.
1073	 */
1074	if (req->oldptr == NULL) {
1075		n = unp_count;
1076		req->oldidx = 2 * (sizeof *xug)
1077			+ (n + n/8) * sizeof(struct xunpcb);
1078		return (0);
1079	}
1080
1081	if (req->newptr != NULL)
1082		return (EPERM);
1083
1084	/*
1085	 * OK, now we're committed to doing something.
1086	 */
1087	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1088	UNP_LOCK();
1089	gencnt = unp_gencnt;
1090	n = unp_count;
1091	UNP_UNLOCK();
1092
1093	xug->xug_len = sizeof *xug;
1094	xug->xug_count = n;
1095	xug->xug_gen = gencnt;
1096	xug->xug_sogen = so_gencnt;
1097	error = SYSCTL_OUT(req, xug, sizeof *xug);
1098	if (error) {
1099		free(xug, M_TEMP);
1100		return (error);
1101	}
1102
1103	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1104
1105	UNP_LOCK();
1106	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1107	     unp = LIST_NEXT(unp, unp_link)) {
1108		if (unp->unp_gencnt <= gencnt) {
1109			if (cr_cansee(req->td->td_ucred,
1110			    unp->unp_socket->so_cred))
1111				continue;
1112			unp_list[i++] = unp;
1113		}
1114	}
1115	UNP_UNLOCK();
1116	n = i;			/* in case we lost some during malloc */
1117
1118	error = 0;
1119	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK);
1120	for (i = 0; i < n; i++) {
1121		unp = unp_list[i];
1122		if (unp->unp_gencnt <= gencnt) {
1123			xu->xu_len = sizeof *xu;
1124			xu->xu_unpp = unp;
1125			/*
1126			 * XXX - need more locking here to protect against
1127			 * connect/disconnect races for SMP.
1128			 */
1129			if (unp->unp_addr != NULL)
1130				bcopy(unp->unp_addr, &xu->xu_addr,
1131				      unp->unp_addr->sun_len);
1132			if (unp->unp_conn != NULL &&
1133			    unp->unp_conn->unp_addr != NULL)
1134				bcopy(unp->unp_conn->unp_addr,
1135				      &xu->xu_caddr,
1136				      unp->unp_conn->unp_addr->sun_len);
1137			bcopy(unp, &xu->xu_unp, sizeof *unp);
1138			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1139			error = SYSCTL_OUT(req, xu, sizeof *xu);
1140		}
1141	}
1142	free(xu, M_TEMP);
1143	if (!error) {
1144		/*
1145		 * Give the user an updated idea of our state.
1146		 * If the generation differs from what we told
1147		 * her before, she knows that something happened
1148		 * while we were processing this request, and it
1149		 * might be necessary to retry.
1150		 */
1151		xug->xug_gen = unp_gencnt;
1152		xug->xug_sogen = so_gencnt;
1153		xug->xug_count = unp_count;
1154		error = SYSCTL_OUT(req, xug, sizeof *xug);
1155	}
1156	free(unp_list, M_TEMP);
1157	free(xug, M_TEMP);
1158	return (error);
1159}
1160
1161SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1162	    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1163	    "List of active local datagram sockets");
1164SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1165	    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1166	    "List of active local stream sockets");
1167
1168static void
1169unp_shutdown(struct unpcb *unp)
1170{
1171	struct socket *so;
1172
1173	UNP_LOCK_ASSERT();
1174
1175	if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
1176	    (so = unp->unp_conn->unp_socket))
1177		socantrcvmore(so);
1178}
1179
1180static void
1181unp_drop(struct unpcb *unp, int errno)
1182{
1183	struct socket *so = unp->unp_socket;
1184
1185	UNP_LOCK_ASSERT();
1186
1187	so->so_error = errno;
1188	unp_disconnect(unp);
1189}
1190
1191#ifdef notdef
1192void
1193unp_drain(void)
1194{
1195
1196}
1197#endif
1198
1199static void
1200unp_freerights(struct file **rp, int fdcount)
1201{
1202	int i;
1203	struct file *fp;
1204
1205	for (i = 0; i < fdcount; i++) {
1206		fp = *rp;
1207		/*
1208		 * zero the pointer before calling
1209		 * unp_discard since it may end up
1210		 * in unp_gc()..
1211		 */
1212		*rp++ = 0;
1213		unp_discard(fp);
1214	}
1215}
1216
1217int
1218unp_externalize(struct mbuf *control, struct mbuf **controlp)
1219{
1220	struct thread *td = curthread;		/* XXX */
1221	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1222	int i;
1223	int *fdp;
1224	struct file **rp;
1225	struct file *fp;
1226	void *data;
1227	socklen_t clen = control->m_len, datalen;
1228	int error, newfds;
1229	int f;
1230	u_int newlen;
1231
1232	UNP_UNLOCK_ASSERT();
1233
1234	error = 0;
1235	if (controlp != NULL) /* controlp == NULL => free control messages */
1236		*controlp = NULL;
1237
1238	while (cm != NULL) {
1239		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1240			error = EINVAL;
1241			break;
1242		}
1243
1244		data = CMSG_DATA(cm);
1245		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1246
1247		if (cm->cmsg_level == SOL_SOCKET
1248		    && cm->cmsg_type == SCM_RIGHTS) {
1249			newfds = datalen / sizeof(struct file *);
1250			rp = data;
1251
1252			/* If we're not outputting the descriptors free them. */
1253			if (error || controlp == NULL) {
1254				unp_freerights(rp, newfds);
1255				goto next;
1256			}
1257			FILEDESC_LOCK(td->td_proc->p_fd);
1258			/* if the new FD's will not fit free them.  */
1259			if (!fdavail(td, newfds)) {
1260				FILEDESC_UNLOCK(td->td_proc->p_fd);
1261				error = EMSGSIZE;
1262				unp_freerights(rp, newfds);
1263				goto next;
1264			}
1265			/*
1266			 * now change each pointer to an fd in the global
1267			 * table to an integer that is the index to the
1268			 * local fd table entry that we set up to point
1269			 * to the global one we are transferring.
1270			 */
1271			newlen = newfds * sizeof(int);
1272			*controlp = sbcreatecontrol(NULL, newlen,
1273			    SCM_RIGHTS, SOL_SOCKET);
1274			if (*controlp == NULL) {
1275				FILEDESC_UNLOCK(td->td_proc->p_fd);
1276				error = E2BIG;
1277				unp_freerights(rp, newfds);
1278				goto next;
1279			}
1280
1281			fdp = (int *)
1282			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1283			for (i = 0; i < newfds; i++) {
1284				if (fdalloc(td, 0, &f))
1285					panic("unp_externalize fdalloc failed");
1286				fp = *rp++;
1287				td->td_proc->p_fd->fd_ofiles[f] = fp;
1288				FILE_LOCK(fp);
1289				fp->f_msgcount--;
1290				FILE_UNLOCK(fp);
1291				unp_rights--;
1292				*fdp++ = f;
1293			}
1294			FILEDESC_UNLOCK(td->td_proc->p_fd);
1295		} else { /* We can just copy anything else across */
1296			if (error || controlp == NULL)
1297				goto next;
1298			*controlp = sbcreatecontrol(NULL, datalen,
1299			    cm->cmsg_type, cm->cmsg_level);
1300			if (*controlp == NULL) {
1301				error = ENOBUFS;
1302				goto next;
1303			}
1304			bcopy(data,
1305			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1306			    datalen);
1307		}
1308
1309		controlp = &(*controlp)->m_next;
1310
1311next:
1312		if (CMSG_SPACE(datalen) < clen) {
1313			clen -= CMSG_SPACE(datalen);
1314			cm = (struct cmsghdr *)
1315			    ((caddr_t)cm + CMSG_SPACE(datalen));
1316		} else {
1317			clen = 0;
1318			cm = NULL;
1319		}
1320	}
1321
1322	m_freem(control);
1323
1324	return (error);
1325}
1326
1327void
1328unp_init(void)
1329{
1330	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1331	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
1332	if (unp_zone == NULL)
1333		panic("unp_init");
1334	uma_zone_set_max(unp_zone, nmbclusters);
1335	LIST_INIT(&unp_dhead);
1336	LIST_INIT(&unp_shead);
1337
1338	UNP_LOCK_INIT();
1339}
1340
1341static int
1342unp_internalize(struct mbuf **controlp, struct thread *td)
1343{
1344	struct mbuf *control = *controlp;
1345	struct proc *p = td->td_proc;
1346	struct filedesc *fdescp = p->p_fd;
1347	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1348	struct cmsgcred *cmcred;
1349	struct file **rp;
1350	struct file *fp;
1351	struct timeval *tv;
1352	int i, fd, *fdp;
1353	void *data;
1354	socklen_t clen = control->m_len, datalen;
1355	int error, oldfds;
1356	u_int newlen;
1357
1358	UNP_UNLOCK_ASSERT();
1359
1360	error = 0;
1361	*controlp = NULL;
1362
1363	while (cm != NULL) {
1364		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1365		    || cm->cmsg_len > clen) {
1366			error = EINVAL;
1367			goto out;
1368		}
1369
1370		data = CMSG_DATA(cm);
1371		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1372
1373		switch (cm->cmsg_type) {
1374		/*
1375		 * Fill in credential information.
1376		 */
1377		case SCM_CREDS:
1378			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1379			    SCM_CREDS, SOL_SOCKET);
1380			if (*controlp == NULL) {
1381				error = ENOBUFS;
1382				goto out;
1383			}
1384
1385			cmcred = (struct cmsgcred *)
1386			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1387			cmcred->cmcred_pid = p->p_pid;
1388			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1389			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1390			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1391			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1392							CMGROUP_MAX);
1393			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1394				cmcred->cmcred_groups[i] =
1395				    td->td_ucred->cr_groups[i];
1396			break;
1397
1398		case SCM_RIGHTS:
1399			oldfds = datalen / sizeof (int);
1400			/*
1401			 * check that all the FDs passed in refer to legal files
1402			 * If not, reject the entire operation.
1403			 */
1404			fdp = data;
1405			FILEDESC_LOCK(fdescp);
1406			for (i = 0; i < oldfds; i++) {
1407				fd = *fdp++;
1408				if ((unsigned)fd >= fdescp->fd_nfiles ||
1409				    fdescp->fd_ofiles[fd] == NULL) {
1410					FILEDESC_UNLOCK(fdescp);
1411					error = EBADF;
1412					goto out;
1413				}
1414				fp = fdescp->fd_ofiles[fd];
1415				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1416					FILEDESC_UNLOCK(fdescp);
1417					error = EOPNOTSUPP;
1418					goto out;
1419				}
1420
1421			}
1422			/*
1423			 * Now replace the integer FDs with pointers to
1424			 * the associated global file table entry..
1425			 */
1426			newlen = oldfds * sizeof(struct file *);
1427			*controlp = sbcreatecontrol(NULL, newlen,
1428			    SCM_RIGHTS, SOL_SOCKET);
1429			if (*controlp == NULL) {
1430				FILEDESC_UNLOCK(fdescp);
1431				error = E2BIG;
1432				goto out;
1433			}
1434
1435			fdp = data;
1436			rp = (struct file **)
1437			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1438			for (i = 0; i < oldfds; i++) {
1439				fp = fdescp->fd_ofiles[*fdp++];
1440				*rp++ = fp;
1441				FILE_LOCK(fp);
1442				fp->f_count++;
1443				fp->f_msgcount++;
1444				FILE_UNLOCK(fp);
1445				unp_rights++;
1446			}
1447			FILEDESC_UNLOCK(fdescp);
1448			break;
1449
1450		case SCM_TIMESTAMP:
1451			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1452			    SCM_TIMESTAMP, SOL_SOCKET);
1453			if (*controlp == NULL) {
1454				error = ENOBUFS;
1455				goto out;
1456			}
1457			tv = (struct timeval *)
1458			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1459			microtime(tv);
1460			break;
1461
1462		default:
1463			error = EINVAL;
1464			goto out;
1465		}
1466
1467		controlp = &(*controlp)->m_next;
1468
1469		if (CMSG_SPACE(datalen) < clen) {
1470			clen -= CMSG_SPACE(datalen);
1471			cm = (struct cmsghdr *)
1472			    ((caddr_t)cm + CMSG_SPACE(datalen));
1473		} else {
1474			clen = 0;
1475			cm = NULL;
1476		}
1477	}
1478
1479out:
1480	m_freem(control);
1481
1482	return (error);
1483}
1484
1485/*
1486 * unp_defer is thread-local during garbage collection, and does not require
1487 * explicit synchronization.  unp_gcing prevents other threads from entering
1488 * garbage collection, and perhaps should be an sx lock instead.
1489 */
1490static int	unp_defer, unp_gcing;
1491
1492static void
1493unp_gc(void)
1494{
1495	struct file *fp, *nextfp;
1496	struct socket *so;
1497	struct file **extra_ref, **fpp;
1498	int nunref, i;
1499	int nfiles_snap;
1500	int nfiles_slack = 20;
1501
1502	UNP_LOCK_ASSERT();
1503
1504	if (unp_gcing) {
1505		UNP_UNLOCK();
1506		return;
1507	}
1508	unp_gcing = 1;
1509	unp_defer = 0;
1510	UNP_UNLOCK();
1511	/*
1512	 * before going through all this, set all FDs to
1513	 * be NOT defered and NOT externally accessible
1514	 */
1515	sx_slock(&filelist_lock);
1516	LIST_FOREACH(fp, &filehead, f_list)
1517		fp->f_gcflag &= ~(FMARK|FDEFER);
1518	do {
1519		LIST_FOREACH(fp, &filehead, f_list) {
1520			FILE_LOCK(fp);
1521			/*
1522			 * If the file is not open, skip it
1523			 */
1524			if (fp->f_count == 0) {
1525				FILE_UNLOCK(fp);
1526				continue;
1527			}
1528			/*
1529			 * If we already marked it as 'defer'  in a
1530			 * previous pass, then try process it this time
1531			 * and un-mark it
1532			 */
1533			if (fp->f_gcflag & FDEFER) {
1534				fp->f_gcflag &= ~FDEFER;
1535				unp_defer--;
1536			} else {
1537				/*
1538				 * if it's not defered, then check if it's
1539				 * already marked.. if so skip it
1540				 */
1541				if (fp->f_gcflag & FMARK) {
1542					FILE_UNLOCK(fp);
1543					continue;
1544				}
1545				/*
1546				 * If all references are from messages
1547				 * in transit, then skip it. it's not
1548				 * externally accessible.
1549				 */
1550				if (fp->f_count == fp->f_msgcount) {
1551					FILE_UNLOCK(fp);
1552					continue;
1553				}
1554				/*
1555				 * If it got this far then it must be
1556				 * externally accessible.
1557				 */
1558				fp->f_gcflag |= FMARK;
1559			}
1560			/*
1561			 * either it was defered, or it is externally
1562			 * accessible and not already marked so.
1563			 * Now check if it is possibly one of OUR sockets.
1564			 */
1565			if (fp->f_type != DTYPE_SOCKET ||
1566			    (so = fp->f_data) == NULL) {
1567				FILE_UNLOCK(fp);
1568				continue;
1569			}
1570			FILE_UNLOCK(fp);
1571			if (so->so_proto->pr_domain != &localdomain ||
1572			    (so->so_proto->pr_flags&PR_RIGHTS) == 0)
1573				continue;
1574#ifdef notdef
1575			if (so->so_rcv.sb_flags & SB_LOCK) {
1576				/*
1577				 * This is problematical; it's not clear
1578				 * we need to wait for the sockbuf to be
1579				 * unlocked (on a uniprocessor, at least),
1580				 * and it's also not clear what to do
1581				 * if sbwait returns an error due to receipt
1582				 * of a signal.  If sbwait does return
1583				 * an error, we'll go into an infinite
1584				 * loop.  Delete all of this for now.
1585				 */
1586				(void) sbwait(&so->so_rcv);
1587				goto restart;
1588			}
1589#endif
1590			/*
1591			 * So, Ok, it's one of our sockets and it IS externally
1592			 * accessible (or was defered). Now we look
1593			 * to see if we hold any file descriptors in its
1594			 * message buffers. Follow those links and mark them
1595			 * as accessible too.
1596			 */
1597			SOCKBUF_LOCK(&so->so_rcv);
1598			unp_scan(so->so_rcv.sb_mb, unp_mark);
1599			SOCKBUF_UNLOCK(&so->so_rcv);
1600		}
1601	} while (unp_defer);
1602	sx_sunlock(&filelist_lock);
1603	/*
1604	 * We grab an extra reference to each of the file table entries
1605	 * that are not otherwise accessible and then free the rights
1606	 * that are stored in messages on them.
1607	 *
1608	 * The bug in the orginal code is a little tricky, so I'll describe
1609	 * what's wrong with it here.
1610	 *
1611	 * It is incorrect to simply unp_discard each entry for f_msgcount
1612	 * times -- consider the case of sockets A and B that contain
1613	 * references to each other.  On a last close of some other socket,
1614	 * we trigger a gc since the number of outstanding rights (unp_rights)
1615	 * is non-zero.  If during the sweep phase the gc code un_discards,
1616	 * we end up doing a (full) closef on the descriptor.  A closef on A
1617	 * results in the following chain.  Closef calls soo_close, which
1618	 * calls soclose.   Soclose calls first (through the switch
1619	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
1620	 * returns because the previous instance had set unp_gcing, and
1621	 * we return all the way back to soclose, which marks the socket
1622	 * with SS_NOFDREF, and then calls sofree.  Sofree calls sorflush
1623	 * to free up the rights that are queued in messages on the socket A,
1624	 * i.e., the reference on B.  The sorflush calls via the dom_dispose
1625	 * switch unp_dispose, which unp_scans with unp_discard.  This second
1626	 * instance of unp_discard just calls closef on B.
1627	 *
1628	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1629	 * which results in another closef on A.  Unfortunately, A is already
1630	 * being closed, and the descriptor has already been marked with
1631	 * SS_NOFDREF, and soclose panics at this point.
1632	 *
1633	 * Here, we first take an extra reference to each inaccessible
1634	 * descriptor.  Then, we call sorflush ourself, since we know
1635	 * it is a Unix domain socket anyhow.  After we destroy all the
1636	 * rights carried in messages, we do a last closef to get rid
1637	 * of our extra reference.  This is the last close, and the
1638	 * unp_detach etc will shut down the socket.
1639	 *
1640	 * 91/09/19, bsy@cs.cmu.edu
1641	 */
1642again:
1643	nfiles_snap = openfiles + nfiles_slack;	/* some slack */
1644	extra_ref = malloc(nfiles_snap * sizeof(struct file *), M_TEMP,
1645	    M_WAITOK);
1646	sx_slock(&filelist_lock);
1647	if (nfiles_snap < openfiles) {
1648		sx_sunlock(&filelist_lock);
1649		free(extra_ref, M_TEMP);
1650		nfiles_slack += 20;
1651		goto again;
1652	}
1653	for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref;
1654	    fp != NULL; fp = nextfp) {
1655		nextfp = LIST_NEXT(fp, f_list);
1656		FILE_LOCK(fp);
1657		/*
1658		 * If it's not open, skip it
1659		 */
1660		if (fp->f_count == 0) {
1661			FILE_UNLOCK(fp);
1662			continue;
1663		}
1664		/*
1665		 * If all refs are from msgs, and it's not marked accessible
1666		 * then it must be referenced from some unreachable cycle
1667		 * of (shut-down) FDs, so include it in our
1668		 * list of FDs to remove
1669		 */
1670		if (fp->f_count == fp->f_msgcount && !(fp->f_gcflag & FMARK)) {
1671			*fpp++ = fp;
1672			nunref++;
1673			fp->f_count++;
1674		}
1675		FILE_UNLOCK(fp);
1676	}
1677	sx_sunlock(&filelist_lock);
1678	/*
1679	 * for each FD on our hit list, do the following two things
1680	 */
1681	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1682		struct file *tfp = *fpp;
1683		FILE_LOCK(tfp);
1684		if (tfp->f_type == DTYPE_SOCKET &&
1685		    tfp->f_data != NULL) {
1686			FILE_UNLOCK(tfp);
1687			sorflush(tfp->f_data);
1688		} else {
1689			FILE_UNLOCK(tfp);
1690		}
1691	}
1692	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp)
1693		closef(*fpp, (struct thread *) NULL);
1694	free(extra_ref, M_TEMP);
1695	unp_gcing = 0;
1696
1697	UNP_UNLOCK_ASSERT();
1698}
1699
1700void
1701unp_dispose(struct mbuf *m)
1702{
1703
1704	if (m)
1705		unp_scan(m, unp_discard);
1706}
1707
1708static int
1709unp_listen(struct unpcb *unp, struct thread *td)
1710{
1711	UNP_LOCK_ASSERT();
1712
1713	/*
1714	 * XXXRW: Why populate the local peer cred with our own credential?
1715	 */
1716	cru2x(td->td_ucred, &unp->unp_peercred);
1717	unp->unp_flags |= UNP_HAVEPCCACHED;
1718	return (0);
1719}
1720
1721static void
1722unp_scan(struct mbuf *m0, void (*op)(struct file *))
1723{
1724	struct mbuf *m;
1725	struct file **rp;
1726	struct cmsghdr *cm;
1727	void *data;
1728	int i;
1729	socklen_t clen, datalen;
1730	int qfds;
1731
1732	while (m0 != NULL) {
1733		for (m = m0; m; m = m->m_next) {
1734			if (m->m_type != MT_CONTROL)
1735				continue;
1736
1737			cm = mtod(m, struct cmsghdr *);
1738			clen = m->m_len;
1739
1740			while (cm != NULL) {
1741				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
1742					break;
1743
1744				data = CMSG_DATA(cm);
1745				datalen = (caddr_t)cm + cm->cmsg_len
1746				    - (caddr_t)data;
1747
1748				if (cm->cmsg_level == SOL_SOCKET &&
1749				    cm->cmsg_type == SCM_RIGHTS) {
1750					qfds = datalen / sizeof (struct file *);
1751					rp = data;
1752					for (i = 0; i < qfds; i++)
1753						(*op)(*rp++);
1754				}
1755
1756				if (CMSG_SPACE(datalen) < clen) {
1757					clen -= CMSG_SPACE(datalen);
1758					cm = (struct cmsghdr *)
1759					    ((caddr_t)cm + CMSG_SPACE(datalen));
1760				} else {
1761					clen = 0;
1762					cm = NULL;
1763				}
1764			}
1765		}
1766		m0 = m0->m_act;
1767	}
1768}
1769
1770static void
1771unp_mark(struct file *fp)
1772{
1773	if (fp->f_gcflag & FMARK)
1774		return;
1775	unp_defer++;
1776	fp->f_gcflag |= (FMARK|FDEFER);
1777}
1778
1779static void
1780unp_discard(struct file *fp)
1781{
1782	FILE_LOCK(fp);
1783	fp->f_msgcount--;
1784	unp_rights--;
1785	FILE_UNLOCK(fp);
1786	(void) closef(fp, (struct thread *)NULL);
1787}
1788