1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * The kernel resource manager.  This code is responsible for keeping track
32 * of hardware resources which are apportioned out to various drivers.
33 * It does not actually assign those resources, and it is not expected
34 * that end-device drivers will call into this code directly.  Rather,
35 * the code which implements the buses that those devices are attached to,
36 * and the code which manages CPU resources, will call this code, and the
37 * end-device drivers will make upcalls to that code to actually perform
38 * the allocation.
39 *
40 * There are two sorts of resources managed by this code.  The first is
41 * the more familiar array (RMAN_ARRAY) type; resources in this class
42 * consist of a sequence of individually-allocatable objects which have
43 * been numbered in some well-defined order.  Most of the resources
44 * are of this type, as it is the most familiar.  The second type is
45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46 * resources in which each instance is indistinguishable from every
47 * other instance).  The principal anticipated application of gauges
48 * is in the context of power consumption, where a bus may have a specific
49 * power budget which all attached devices share.  RMAN_GAUGE is not
50 * implemented yet.
51 *
52 * For array resources, we make one simplifying assumption: two clients
53 * sharing the same resource must use the same range of indices.  That
54 * is to say, sharing of overlapping-but-not-identical regions is not
55 * permitted.
56 */
57
58#include "opt_ddb.h"
59
60#include <sys/cdefs.h>
61__FBSDID("$FreeBSD$");
62
63#include <sys/param.h>
64#include <sys/systm.h>
65#include <sys/kernel.h>
66#include <sys/limits.h>
67#include <sys/lock.h>
68#include <sys/malloc.h>
69#include <sys/mutex.h>
70#include <sys/bus.h>		/* XXX debugging */
71#include <machine/bus.h>
72#include <sys/rman.h>
73#include <sys/sysctl.h>
74
75#ifdef DDB
76#include <ddb/ddb.h>
77#endif
78
79/*
80 * We use a linked list rather than a bitmap because we need to be able to
81 * represent potentially huge objects (like all of a processor's physical
82 * address space).  That is also why the indices are defined to have type
83 * `unsigned long' -- that being the largest integral type in ISO C (1990).
84 * The 1999 version of C allows `long long'; we may need to switch to that
85 * at some point in the future, particularly if we want to support 36-bit
86 * addresses on IA32 hardware.
87 */
88struct resource_i {
89	struct resource		r_r;
90	TAILQ_ENTRY(resource_i)	r_link;
91	LIST_ENTRY(resource_i)	r_sharelink;
92	LIST_HEAD(, resource_i)	*r_sharehead;
93	u_long	r_start;	/* index of the first entry in this resource */
94	u_long	r_end;		/* index of the last entry (inclusive) */
95	u_int	r_flags;
96	void	*r_virtual;	/* virtual address of this resource */
97	struct	device *r_dev;	/* device which has allocated this resource */
98	struct	rman *r_rm;	/* resource manager from whence this came */
99	int	r_rid;		/* optional rid for this resource. */
100};
101
102static int     rman_debug = 0;
103TUNABLE_INT("debug.rman_debug", &rman_debug);
104SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
105    &rman_debug, 0, "rman debug");
106
107#define DPRINTF(params) if (rman_debug) printf params
108
109static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
110
111struct	rman_head rman_head;
112static	struct mtx rman_mtx; /* mutex to protect rman_head */
113static	int int_rman_activate_resource(struct rman *rm, struct resource_i *r,
114				       struct resource_i **whohas);
115static	int int_rman_deactivate_resource(struct resource_i *r);
116static	int int_rman_release_resource(struct rman *rm, struct resource_i *r);
117
118static __inline struct resource_i *
119int_alloc_resource(int malloc_flag)
120{
121	struct resource_i *r;
122
123	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
124	if (r != NULL) {
125		r->r_r.__r_i = r;
126	}
127	return (r);
128}
129
130int
131rman_init(struct rman *rm)
132{
133	static int once = 0;
134
135	if (once == 0) {
136		once = 1;
137		TAILQ_INIT(&rman_head);
138		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
139	}
140
141	if (rm->rm_start == 0 && rm->rm_end == 0)
142		rm->rm_end = ~0ul;
143	if (rm->rm_type == RMAN_UNINIT)
144		panic("rman_init");
145	if (rm->rm_type == RMAN_GAUGE)
146		panic("implement RMAN_GAUGE");
147
148	TAILQ_INIT(&rm->rm_list);
149	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
150	if (rm->rm_mtx == NULL)
151		return ENOMEM;
152	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
153
154	mtx_lock(&rman_mtx);
155	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
156	mtx_unlock(&rman_mtx);
157	return 0;
158}
159
160int
161rman_manage_region(struct rman *rm, u_long start, u_long end)
162{
163	struct resource_i *r, *s, *t;
164
165	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
166	    rm->rm_descr, start, end));
167	if (start < rm->rm_start || end > rm->rm_end)
168		return EINVAL;
169	r = int_alloc_resource(M_NOWAIT);
170	if (r == NULL)
171		return ENOMEM;
172	r->r_start = start;
173	r->r_end = end;
174	r->r_rm = rm;
175
176	mtx_lock(rm->rm_mtx);
177
178	/* Skip entries before us. */
179	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
180		if (s->r_end == ULONG_MAX)
181			break;
182		if (s->r_end + 1 >= r->r_start)
183			break;
184	}
185
186	/* If we ran off the end of the list, insert at the tail. */
187	if (s == NULL) {
188		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
189	} else {
190		/* Check for any overlap with the current region. */
191		if (r->r_start <= s->r_end && r->r_end >= s->r_start)
192			return EBUSY;
193
194		/* Check for any overlap with the next region. */
195		t = TAILQ_NEXT(s, r_link);
196		if (t && r->r_start <= t->r_end && r->r_end >= t->r_start)
197			return EBUSY;
198
199		/*
200		 * See if this region can be merged with the next region.  If
201		 * not, clear the pointer.
202		 */
203		if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
204			t = NULL;
205
206		/* See if we can merge with the current region. */
207		if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
208			/* Can we merge all 3 regions? */
209			if (t != NULL) {
210				s->r_end = t->r_end;
211				TAILQ_REMOVE(&rm->rm_list, t, r_link);
212				free(r, M_RMAN);
213				free(t, M_RMAN);
214			} else {
215				s->r_end = r->r_end;
216				free(r, M_RMAN);
217			}
218		} else if (t != NULL) {
219			/* Can we merge with just the next region? */
220			t->r_start = r->r_start;
221			free(r, M_RMAN);
222		} else if (s->r_end < r->r_start) {
223			TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
224		} else {
225			TAILQ_INSERT_BEFORE(s, r, r_link);
226		}
227	}
228
229	mtx_unlock(rm->rm_mtx);
230	return 0;
231}
232
233int
234rman_init_from_resource(struct rman *rm, struct resource *r)
235{
236	int rv;
237
238	if ((rv = rman_init(rm)) != 0)
239		return (rv);
240	return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
241}
242
243int
244rman_fini(struct rman *rm)
245{
246	struct resource_i *r;
247
248	mtx_lock(rm->rm_mtx);
249	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
250		if (r->r_flags & RF_ALLOCATED) {
251			mtx_unlock(rm->rm_mtx);
252			return EBUSY;
253		}
254	}
255
256	/*
257	 * There really should only be one of these if we are in this
258	 * state and the code is working properly, but it can't hurt.
259	 */
260	while (!TAILQ_EMPTY(&rm->rm_list)) {
261		r = TAILQ_FIRST(&rm->rm_list);
262		TAILQ_REMOVE(&rm->rm_list, r, r_link);
263		free(r, M_RMAN);
264	}
265	mtx_unlock(rm->rm_mtx);
266	mtx_lock(&rman_mtx);
267	TAILQ_REMOVE(&rman_head, rm, rm_link);
268	mtx_unlock(&rman_mtx);
269	mtx_destroy(rm->rm_mtx);
270	free(rm->rm_mtx, M_RMAN);
271
272	return 0;
273}
274
275int
276rman_first_free_region(struct rman *rm, u_long *start, u_long *end)
277{
278	struct resource_i *r;
279
280	mtx_lock(rm->rm_mtx);
281	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
282		if (!(r->r_flags & RF_ALLOCATED)) {
283			*start = r->r_start;
284			*end = r->r_end;
285			mtx_unlock(rm->rm_mtx);
286			return (0);
287		}
288	}
289	mtx_unlock(rm->rm_mtx);
290	return (ENOENT);
291}
292
293int
294rman_last_free_region(struct rman *rm, u_long *start, u_long *end)
295{
296	struct resource_i *r;
297
298	mtx_lock(rm->rm_mtx);
299	TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
300		if (!(r->r_flags & RF_ALLOCATED)) {
301			*start = r->r_start;
302			*end = r->r_end;
303			mtx_unlock(rm->rm_mtx);
304			return (0);
305		}
306	}
307	mtx_unlock(rm->rm_mtx);
308	return (ENOENT);
309}
310
311/* Shrink or extend one or both ends of an allocated resource. */
312int
313rman_adjust_resource(struct resource *rr, u_long start, u_long end)
314{
315	struct	resource_i *r, *s, *t, *new;
316	struct	rman *rm;
317
318	/* Not supported for shared resources. */
319	r = rr->__r_i;
320	if (r->r_flags & (RF_TIMESHARE | RF_SHAREABLE))
321		return (EINVAL);
322
323	/*
324	 * This does not support wholesale moving of a resource.  At
325	 * least part of the desired new range must overlap with the
326	 * existing resource.
327	 */
328	if (end < r->r_start || r->r_end < start)
329		return (EINVAL);
330
331	/*
332	 * Find the two resource regions immediately adjacent to the
333	 * allocated resource.
334	 */
335	rm = r->r_rm;
336	mtx_lock(rm->rm_mtx);
337#ifdef INVARIANTS
338	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
339		if (s == r)
340			break;
341	}
342	if (s == NULL)
343		panic("resource not in list");
344#endif
345	s = TAILQ_PREV(r, resource_head, r_link);
346	t = TAILQ_NEXT(r, r_link);
347	KASSERT(s == NULL || s->r_end + 1 == r->r_start,
348	    ("prev resource mismatch"));
349	KASSERT(t == NULL || r->r_end + 1 == t->r_start,
350	    ("next resource mismatch"));
351
352	/*
353	 * See if the changes are permitted.  Shrinking is always allowed,
354	 * but growing requires sufficient room in the adjacent region.
355	 */
356	if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
357	    s->r_start > start)) {
358		mtx_unlock(rm->rm_mtx);
359		return (EBUSY);
360	}
361	if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
362	    t->r_end < end)) {
363		mtx_unlock(rm->rm_mtx);
364		return (EBUSY);
365	}
366
367	/*
368	 * While holding the lock, grow either end of the resource as
369	 * needed and shrink either end if the shrinking does not require
370	 * allocating a new resource.  We can safely drop the lock and then
371	 * insert a new range to handle the shrinking case afterwards.
372	 */
373	if (start < r->r_start ||
374	    (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
375		KASSERT(s->r_flags == 0, ("prev is busy"));
376		r->r_start = start;
377		if (s->r_start == start) {
378			TAILQ_REMOVE(&rm->rm_list, s, r_link);
379			free(s, M_RMAN);
380		} else
381			s->r_end = start - 1;
382	}
383	if (end > r->r_end ||
384	    (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
385		KASSERT(t->r_flags == 0, ("next is busy"));
386		r->r_end = end;
387		if (t->r_end == end) {
388			TAILQ_REMOVE(&rm->rm_list, t, r_link);
389			free(t, M_RMAN);
390		} else
391			t->r_start = end + 1;
392	}
393	mtx_unlock(rm->rm_mtx);
394
395	/*
396	 * Handle the shrinking cases that require allocating a new
397	 * resource to hold the newly-free region.  We have to recheck
398	 * if we still need this new region after acquiring the lock.
399	 */
400	if (start > r->r_start) {
401		new = int_alloc_resource(M_WAITOK);
402		new->r_start = r->r_start;
403		new->r_end = start - 1;
404		new->r_rm = rm;
405		mtx_lock(rm->rm_mtx);
406		r->r_start = start;
407		s = TAILQ_PREV(r, resource_head, r_link);
408		if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
409			s->r_end = start - 1;
410			free(new, M_RMAN);
411		} else
412			TAILQ_INSERT_BEFORE(r, new, r_link);
413		mtx_unlock(rm->rm_mtx);
414	}
415	if (end < r->r_end) {
416		new = int_alloc_resource(M_WAITOK);
417		new->r_start = end + 1;
418		new->r_end = r->r_end;
419		new->r_rm = rm;
420		mtx_lock(rm->rm_mtx);
421		r->r_end = end;
422		t = TAILQ_NEXT(r, r_link);
423		if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
424			t->r_start = end + 1;
425			free(new, M_RMAN);
426		} else
427			TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
428		mtx_unlock(rm->rm_mtx);
429	}
430	return (0);
431}
432
433struct resource *
434rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
435		      u_long count, u_long bound,  u_int flags,
436		      struct device *dev)
437{
438	u_int	want_activate;
439	struct	resource_i *r, *s, *rv;
440	u_long	rstart, rend, amask, bmask;
441
442	rv = NULL;
443
444	DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], "
445	       "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end,
446	       count, flags,
447	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
448	want_activate = (flags & RF_ACTIVE);
449	flags &= ~RF_ACTIVE;
450
451	mtx_lock(rm->rm_mtx);
452
453	for (r = TAILQ_FIRST(&rm->rm_list);
454	     r && r->r_end < start + count - 1;
455	     r = TAILQ_NEXT(r, r_link))
456		;
457
458	if (r == NULL) {
459		DPRINTF(("could not find a region\n"));
460		goto out;
461	}
462
463	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
464	if (start > ULONG_MAX - amask) {
465		DPRINTF(("start+amask would wrap around\n"));
466		goto out;
467	}
468
469	/* If bound is 0, bmask will also be 0 */
470	bmask = ~(bound - 1);
471	/*
472	 * First try to find an acceptable totally-unshared region.
473	 */
474	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
475		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
476		/*
477		 * The resource list is sorted, so there is no point in
478		 * searching further once r_start is too large.
479		 */
480		if (s->r_start > end - (count - 1)) {
481			DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
482			    s->r_start, end));
483			break;
484		}
485		if (s->r_start > ULONG_MAX - amask) {
486			DPRINTF(("s->r_start (%#lx) + amask (%#lx) too large\n",
487			    s->r_start, amask));
488			break;
489		}
490		if (s->r_flags & RF_ALLOCATED) {
491			DPRINTF(("region is allocated\n"));
492			continue;
493		}
494		rstart = ulmax(s->r_start, start);
495		/*
496		 * Try to find a region by adjusting to boundary and alignment
497		 * until both conditions are satisfied. This is not an optimal
498		 * algorithm, but in most cases it isn't really bad, either.
499		 */
500		do {
501			rstart = (rstart + amask) & ~amask;
502			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
503				rstart += bound - (rstart & ~bmask);
504		} while ((rstart & amask) != 0 && rstart < end &&
505		    rstart < s->r_end);
506		rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
507		if (rstart > rend) {
508			DPRINTF(("adjusted start exceeds end\n"));
509			continue;
510		}
511		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
512		       rstart, rend, (rend - rstart + 1), count));
513
514		if ((rend - rstart + 1) >= count) {
515			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
516			       rstart, rend, (rend - rstart + 1)));
517			if ((s->r_end - s->r_start + 1) == count) {
518				DPRINTF(("candidate region is entire chunk\n"));
519				rv = s;
520				rv->r_flags |= RF_ALLOCATED | flags;
521				rv->r_dev = dev;
522				goto out;
523			}
524
525			/*
526			 * If s->r_start < rstart and
527			 *    s->r_end > rstart + count - 1, then
528			 * we need to split the region into three pieces
529			 * (the middle one will get returned to the user).
530			 * Otherwise, we are allocating at either the
531			 * beginning or the end of s, so we only need to
532			 * split it in two.  The first case requires
533			 * two new allocations; the second requires but one.
534			 */
535			rv = int_alloc_resource(M_NOWAIT);
536			if (rv == NULL)
537				goto out;
538			rv->r_start = rstart;
539			rv->r_end = rstart + count - 1;
540			rv->r_flags = flags | RF_ALLOCATED;
541			rv->r_dev = dev;
542			rv->r_rm = rm;
543
544			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
545				DPRINTF(("splitting region in three parts: "
546				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
547				       s->r_start, rv->r_start - 1,
548				       rv->r_start, rv->r_end,
549				       rv->r_end + 1, s->r_end));
550				/*
551				 * We are allocating in the middle.
552				 */
553				r = int_alloc_resource(M_NOWAIT);
554				if (r == NULL) {
555					free(rv, M_RMAN);
556					rv = NULL;
557					goto out;
558				}
559				r->r_start = rv->r_end + 1;
560				r->r_end = s->r_end;
561				r->r_flags = s->r_flags;
562				r->r_rm = rm;
563				s->r_end = rv->r_start - 1;
564				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
565						     r_link);
566				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
567						     r_link);
568			} else if (s->r_start == rv->r_start) {
569				DPRINTF(("allocating from the beginning\n"));
570				/*
571				 * We are allocating at the beginning.
572				 */
573				s->r_start = rv->r_end + 1;
574				TAILQ_INSERT_BEFORE(s, rv, r_link);
575			} else {
576				DPRINTF(("allocating at the end\n"));
577				/*
578				 * We are allocating at the end.
579				 */
580				s->r_end = rv->r_start - 1;
581				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
582						     r_link);
583			}
584			goto out;
585		}
586	}
587
588	/*
589	 * Now find an acceptable shared region, if the client's requirements
590	 * allow sharing.  By our implementation restriction, a candidate
591	 * region must match exactly by both size and sharing type in order
592	 * to be considered compatible with the client's request.  (The
593	 * former restriction could probably be lifted without too much
594	 * additional work, but this does not seem warranted.)
595	 */
596	DPRINTF(("no unshared regions found\n"));
597	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
598		goto out;
599
600	for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) {
601		if ((s->r_flags & flags) == flags &&
602		    s->r_start >= start &&
603		    (s->r_end - s->r_start + 1) == count &&
604		    (s->r_start & amask) == 0 &&
605		    ((s->r_start ^ s->r_end) & bmask) == 0) {
606			rv = int_alloc_resource(M_NOWAIT);
607			if (rv == NULL)
608				goto out;
609			rv->r_start = s->r_start;
610			rv->r_end = s->r_end;
611			rv->r_flags = s->r_flags &
612				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
613			rv->r_dev = dev;
614			rv->r_rm = rm;
615			if (s->r_sharehead == NULL) {
616				s->r_sharehead = malloc(sizeof *s->r_sharehead,
617						M_RMAN, M_NOWAIT | M_ZERO);
618				if (s->r_sharehead == NULL) {
619					free(rv, M_RMAN);
620					rv = NULL;
621					goto out;
622				}
623				LIST_INIT(s->r_sharehead);
624				LIST_INSERT_HEAD(s->r_sharehead, s,
625						 r_sharelink);
626				s->r_flags |= RF_FIRSTSHARE;
627			}
628			rv->r_sharehead = s->r_sharehead;
629			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
630			goto out;
631		}
632	}
633
634	/*
635	 * We couldn't find anything.
636	 */
637out:
638	/*
639	 * If the user specified RF_ACTIVE in the initial flags,
640	 * which is reflected in `want_activate', we attempt to atomically
641	 * activate the resource.  If this fails, we release the resource
642	 * and indicate overall failure.  (This behavior probably doesn't
643	 * make sense for RF_TIMESHARE-type resources.)
644	 */
645	if (rv && want_activate) {
646		struct resource_i *whohas;
647		if (int_rman_activate_resource(rm, rv, &whohas)) {
648			int_rman_release_resource(rm, rv);
649			rv = NULL;
650		}
651	}
652
653	mtx_unlock(rm->rm_mtx);
654	return (rv == NULL ? NULL : &rv->r_r);
655}
656
657struct resource *
658rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
659		      u_int flags, struct device *dev)
660{
661
662	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
663	    dev));
664}
665
666static int
667int_rman_activate_resource(struct rman *rm, struct resource_i *r,
668			   struct resource_i **whohas)
669{
670	struct resource_i *s;
671	int ok;
672
673	/*
674	 * If we are not timesharing, then there is nothing much to do.
675	 * If we already have the resource, then there is nothing at all to do.
676	 * If we are not on a sharing list with anybody else, then there is
677	 * little to do.
678	 */
679	if ((r->r_flags & RF_TIMESHARE) == 0
680	    || (r->r_flags & RF_ACTIVE) != 0
681	    || r->r_sharehead == NULL) {
682		r->r_flags |= RF_ACTIVE;
683		return 0;
684	}
685
686	ok = 1;
687	for (s = LIST_FIRST(r->r_sharehead); s && ok;
688	     s = LIST_NEXT(s, r_sharelink)) {
689		if ((s->r_flags & RF_ACTIVE) != 0) {
690			ok = 0;
691			*whohas = s;
692		}
693	}
694	if (ok) {
695		r->r_flags |= RF_ACTIVE;
696		return 0;
697	}
698	return EBUSY;
699}
700
701int
702rman_activate_resource(struct resource *re)
703{
704	int rv;
705	struct resource_i *r, *whohas;
706	struct rman *rm;
707
708	r = re->__r_i;
709	rm = r->r_rm;
710	mtx_lock(rm->rm_mtx);
711	rv = int_rman_activate_resource(rm, r, &whohas);
712	mtx_unlock(rm->rm_mtx);
713	return rv;
714}
715
716int
717rman_await_resource(struct resource *re, int pri, int timo)
718{
719	int	rv;
720	struct	resource_i *r, *whohas;
721	struct	rman *rm;
722
723	r = re->__r_i;
724	rm = r->r_rm;
725	mtx_lock(rm->rm_mtx);
726	for (;;) {
727		rv = int_rman_activate_resource(rm, r, &whohas);
728		if (rv != EBUSY)
729			return (rv);	/* returns with mutex held */
730
731		if (r->r_sharehead == NULL)
732			panic("rman_await_resource");
733		whohas->r_flags |= RF_WANTED;
734		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
735		if (rv) {
736			mtx_unlock(rm->rm_mtx);
737			return (rv);
738		}
739	}
740}
741
742static int
743int_rman_deactivate_resource(struct resource_i *r)
744{
745
746	r->r_flags &= ~RF_ACTIVE;
747	if (r->r_flags & RF_WANTED) {
748		r->r_flags &= ~RF_WANTED;
749		wakeup(r->r_sharehead);
750	}
751	return 0;
752}
753
754int
755rman_deactivate_resource(struct resource *r)
756{
757	struct	rman *rm;
758
759	rm = r->__r_i->r_rm;
760	mtx_lock(rm->rm_mtx);
761	int_rman_deactivate_resource(r->__r_i);
762	mtx_unlock(rm->rm_mtx);
763	return 0;
764}
765
766static int
767int_rman_release_resource(struct rman *rm, struct resource_i *r)
768{
769	struct	resource_i *s, *t;
770
771	if (r->r_flags & RF_ACTIVE)
772		int_rman_deactivate_resource(r);
773
774	/*
775	 * Check for a sharing list first.  If there is one, then we don't
776	 * have to think as hard.
777	 */
778	if (r->r_sharehead) {
779		/*
780		 * If a sharing list exists, then we know there are at
781		 * least two sharers.
782		 *
783		 * If we are in the main circleq, appoint someone else.
784		 */
785		LIST_REMOVE(r, r_sharelink);
786		s = LIST_FIRST(r->r_sharehead);
787		if (r->r_flags & RF_FIRSTSHARE) {
788			s->r_flags |= RF_FIRSTSHARE;
789			TAILQ_INSERT_BEFORE(r, s, r_link);
790			TAILQ_REMOVE(&rm->rm_list, r, r_link);
791		}
792
793		/*
794		 * Make sure that the sharing list goes away completely
795		 * if the resource is no longer being shared at all.
796		 */
797		if (LIST_NEXT(s, r_sharelink) == NULL) {
798			free(s->r_sharehead, M_RMAN);
799			s->r_sharehead = NULL;
800			s->r_flags &= ~RF_FIRSTSHARE;
801		}
802		goto out;
803	}
804
805	/*
806	 * Look at the adjacent resources in the list and see if our
807	 * segment can be merged with any of them.  If either of the
808	 * resources is allocated or is not exactly adjacent then they
809	 * cannot be merged with our segment.
810	 */
811	s = TAILQ_PREV(r, resource_head, r_link);
812	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
813	    s->r_end + 1 != r->r_start))
814		s = NULL;
815	t = TAILQ_NEXT(r, r_link);
816	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
817	    r->r_end + 1 != t->r_start))
818		t = NULL;
819
820	if (s != NULL && t != NULL) {
821		/*
822		 * Merge all three segments.
823		 */
824		s->r_end = t->r_end;
825		TAILQ_REMOVE(&rm->rm_list, r, r_link);
826		TAILQ_REMOVE(&rm->rm_list, t, r_link);
827		free(t, M_RMAN);
828	} else if (s != NULL) {
829		/*
830		 * Merge previous segment with ours.
831		 */
832		s->r_end = r->r_end;
833		TAILQ_REMOVE(&rm->rm_list, r, r_link);
834	} else if (t != NULL) {
835		/*
836		 * Merge next segment with ours.
837		 */
838		t->r_start = r->r_start;
839		TAILQ_REMOVE(&rm->rm_list, r, r_link);
840	} else {
841		/*
842		 * At this point, we know there is nothing we
843		 * can potentially merge with, because on each
844		 * side, there is either nothing there or what is
845		 * there is still allocated.  In that case, we don't
846		 * want to remove r from the list; we simply want to
847		 * change it to an unallocated region and return
848		 * without freeing anything.
849		 */
850		r->r_flags &= ~RF_ALLOCATED;
851		r->r_dev = NULL;
852		return 0;
853	}
854
855out:
856	free(r, M_RMAN);
857	return 0;
858}
859
860int
861rman_release_resource(struct resource *re)
862{
863	int	rv;
864	struct	resource_i *r;
865	struct	rman *rm;
866
867	r = re->__r_i;
868	rm = r->r_rm;
869	mtx_lock(rm->rm_mtx);
870	rv = int_rman_release_resource(rm, r);
871	mtx_unlock(rm->rm_mtx);
872	return (rv);
873}
874
875uint32_t
876rman_make_alignment_flags(uint32_t size)
877{
878	int	i;
879
880	/*
881	 * Find the hightest bit set, and add one if more than one bit
882	 * set.  We're effectively computing the ceil(log2(size)) here.
883	 */
884	for (i = 31; i > 0; i--)
885		if ((1 << i) & size)
886			break;
887	if (~(1 << i) & size)
888		i++;
889
890	return(RF_ALIGNMENT_LOG2(i));
891}
892
893void
894rman_set_start(struct resource *r, u_long start)
895{
896	r->__r_i->r_start = start;
897}
898
899u_long
900rman_get_start(struct resource *r)
901{
902	return (r->__r_i->r_start);
903}
904
905void
906rman_set_end(struct resource *r, u_long end)
907{
908	r->__r_i->r_end = end;
909}
910
911u_long
912rman_get_end(struct resource *r)
913{
914	return (r->__r_i->r_end);
915}
916
917u_long
918rman_get_size(struct resource *r)
919{
920	return (r->__r_i->r_end - r->__r_i->r_start + 1);
921}
922
923u_int
924rman_get_flags(struct resource *r)
925{
926	return (r->__r_i->r_flags);
927}
928
929void
930rman_set_virtual(struct resource *r, void *v)
931{
932	r->__r_i->r_virtual = v;
933}
934
935void *
936rman_get_virtual(struct resource *r)
937{
938	return (r->__r_i->r_virtual);
939}
940
941void
942rman_set_bustag(struct resource *r, bus_space_tag_t t)
943{
944	r->r_bustag = t;
945}
946
947bus_space_tag_t
948rman_get_bustag(struct resource *r)
949{
950	return (r->r_bustag);
951}
952
953void
954rman_set_bushandle(struct resource *r, bus_space_handle_t h)
955{
956	r->r_bushandle = h;
957}
958
959bus_space_handle_t
960rman_get_bushandle(struct resource *r)
961{
962	return (r->r_bushandle);
963}
964
965void
966rman_set_rid(struct resource *r, int rid)
967{
968	r->__r_i->r_rid = rid;
969}
970
971int
972rman_get_rid(struct resource *r)
973{
974	return (r->__r_i->r_rid);
975}
976
977void
978rman_set_device(struct resource *r, struct device *dev)
979{
980	r->__r_i->r_dev = dev;
981}
982
983struct device *
984rman_get_device(struct resource *r)
985{
986	return (r->__r_i->r_dev);
987}
988
989int
990rman_is_region_manager(struct resource *r, struct rman *rm)
991{
992
993	return (r->__r_i->r_rm == rm);
994}
995
996/*
997 * Sysctl interface for scanning the resource lists.
998 *
999 * We take two input parameters; the index into the list of resource
1000 * managers, and the resource offset into the list.
1001 */
1002static int
1003sysctl_rman(SYSCTL_HANDLER_ARGS)
1004{
1005	int			*name = (int *)arg1;
1006	u_int			namelen = arg2;
1007	int			rman_idx, res_idx;
1008	struct rman		*rm;
1009	struct resource_i	*res;
1010	struct resource_i	*sres;
1011	struct u_rman		urm;
1012	struct u_resource	ures;
1013	int			error;
1014
1015	if (namelen != 3)
1016		return (EINVAL);
1017
1018	if (bus_data_generation_check(name[0]))
1019		return (EINVAL);
1020	rman_idx = name[1];
1021	res_idx = name[2];
1022
1023	/*
1024	 * Find the indexed resource manager
1025	 */
1026	mtx_lock(&rman_mtx);
1027	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1028		if (rman_idx-- == 0)
1029			break;
1030	}
1031	mtx_unlock(&rman_mtx);
1032	if (rm == NULL)
1033		return (ENOENT);
1034
1035	/*
1036	 * If the resource index is -1, we want details on the
1037	 * resource manager.
1038	 */
1039	if (res_idx == -1) {
1040		bzero(&urm, sizeof(urm));
1041		urm.rm_handle = (uintptr_t)rm;
1042		if (rm->rm_descr != NULL)
1043			strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
1044		urm.rm_start = rm->rm_start;
1045		urm.rm_size = rm->rm_end - rm->rm_start + 1;
1046		urm.rm_type = rm->rm_type;
1047
1048		error = SYSCTL_OUT(req, &urm, sizeof(urm));
1049		return (error);
1050	}
1051
1052	/*
1053	 * Find the indexed resource and return it.
1054	 */
1055	mtx_lock(rm->rm_mtx);
1056	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
1057		if (res->r_sharehead != NULL) {
1058			LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
1059				if (res_idx-- == 0) {
1060					res = sres;
1061					goto found;
1062				}
1063		}
1064		else if (res_idx-- == 0)
1065				goto found;
1066	}
1067	mtx_unlock(rm->rm_mtx);
1068	return (ENOENT);
1069
1070found:
1071	bzero(&ures, sizeof(ures));
1072	ures.r_handle = (uintptr_t)res;
1073	ures.r_parent = (uintptr_t)res->r_rm;
1074	ures.r_device = (uintptr_t)res->r_dev;
1075	if (res->r_dev != NULL) {
1076		if (device_get_name(res->r_dev) != NULL) {
1077			snprintf(ures.r_devname, RM_TEXTLEN,
1078			    "%s%d",
1079			    device_get_name(res->r_dev),
1080			    device_get_unit(res->r_dev));
1081		} else {
1082			strlcpy(ures.r_devname, "nomatch",
1083			    RM_TEXTLEN);
1084		}
1085	} else {
1086		ures.r_devname[0] = '\0';
1087	}
1088	ures.r_start = res->r_start;
1089	ures.r_size = res->r_end - res->r_start + 1;
1090	ures.r_flags = res->r_flags;
1091
1092	mtx_unlock(rm->rm_mtx);
1093	error = SYSCTL_OUT(req, &ures, sizeof(ures));
1094	return (error);
1095}
1096
1097static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
1098    "kernel resource manager");
1099
1100#ifdef DDB
1101static void
1102dump_rman_header(struct rman *rm)
1103{
1104
1105	if (db_pager_quit)
1106		return;
1107	db_printf("rman %p: %s (0x%lx-0x%lx full range)\n",
1108	    rm, rm->rm_descr, rm->rm_start, rm->rm_end);
1109}
1110
1111static void
1112dump_rman(struct rman *rm)
1113{
1114	struct resource_i *r;
1115	const char *devname;
1116
1117	if (db_pager_quit)
1118		return;
1119	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
1120		if (r->r_dev != NULL) {
1121			devname = device_get_nameunit(r->r_dev);
1122			if (devname == NULL)
1123				devname = "nomatch";
1124		} else
1125			devname = NULL;
1126		db_printf("    0x%lx-0x%lx ", r->r_start, r->r_end);
1127		if (devname != NULL)
1128			db_printf("(%s)\n", devname);
1129		else
1130			db_printf("----\n");
1131		if (db_pager_quit)
1132			return;
1133	}
1134}
1135
1136DB_SHOW_COMMAND(rman, db_show_rman)
1137{
1138
1139	if (have_addr) {
1140		dump_rman_header((struct rman *)addr);
1141		dump_rman((struct rman *)addr);
1142	}
1143}
1144
1145DB_SHOW_COMMAND(rmans, db_show_rmans)
1146{
1147	struct rman *rm;
1148
1149	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1150		dump_rman_header(rm);
1151	}
1152}
1153
1154DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
1155{
1156	struct rman *rm;
1157
1158	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1159		dump_rman_header(rm);
1160		dump_rman(rm);
1161	}
1162}
1163DB_SHOW_ALIAS(allrman, db_show_all_rman);
1164#endif
1165